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ABSTRACT Multimedia Super-Resolution (SR) reconstruction is an essential and mandatory process for
different visualization functions. Recently, several schemes have been suggested for single- and multi-image
SR reconstruction. This work presents an effective SR reconstruction scheme for visual quality and resolution
enhancement of 3D Video (3DV) sequences. The idea behind the proposed 3DV SR reconstruction scheme is
the utilization of a recursive Bayesian algorithm for improving the resolution of the degraded 3DV sequences
with down-sampling, blurring, and noise effects. In addition, a significant stage of histogram matching based
on a visual image with a better-distributed histogram is employed. The main aim of employing the histogram
matching stage for enhancing the 3DV sequence is to introduce a dynamic range modification of each 3DV
frame. Hence, it presents a 3DV sequence with an enhanced distribution of intensities. This improves the
whole performance efficiency of the suggested scheme. The performance of the proposed SR reconstruction
scheme is compared with that of the conventional bicubic interpolation scheme. Comparisons with recent and
related SR reconstruction schemes are also introduced. Simulation results reveal that the proposed scheme
achieves superior outcomes in terms of Structural Similarity (SSIM) index, local contrast, average gradient,
Mean Square Error (MSE), edge intensity, entropy, and Peak Signal-to-Noise Ratio (PSNR) of the resulting
3DV frames.

INDEX TERMS 3DV SR, recursive Bayesian algorithm, bicubic interpolation, histogram matching, image
quality enhancement.

I. INTRODUCTION

Multimedia Super-Resolution (SR) reconstruction schemes
are used to enhance the resolution of a single image, a single
video frame, multiple images, or a video stream. Hence,
SR reconstruction schemes have been introduced to allow
High-Resolution (HR) images to be created from numerous
detected Low-Resolution (LR) images. The single-image-
based and multiple-image-based SR reconstruction schemes
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are built based on the number of input images. The input of a
single-image SR reconstruction scheme is a single LR image.
On the other hand, in the multiple-image SR reconstruction,
different images of the same scene are utilized. SR recon-
struction schemes can be employed in the spatial or a trans-
form domain [1], [2]. In the spatial domain, the operations
are directly performed on pixels. Different transforms are
utilized, such as Fourier transform, wavelet transform, dual-
tree complex wavelet transform, etc. The transform converts
the input image into different components, and then math-
ematical operations are performed on them. After that, the
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image is transformed back into the spatial domain for display
purposes.

According to the operation principles, SR reconstruction
schemes may be categorized into three principal categories:
learning-based, reconstruction-based, and interpolation-
based schemes [3], [4]. The first and second categories
are extremely popular among the existing SR reconstruc-
tion schemes. The reconstruction-based SR category is
mainly concerned with multiple-image SR reconstruction
schemes [5], [6].

The image SR reconstruction problem has been treated
in the literature for decades as an inverse problem. In this
type of inverse problems, multiple frames degraded with
both blurring and noise, in addition to some registration and
motion errors, are available. The objective is to get HR images
of the LR degraded images. The registration process must be
firstly performed, and then the degradation model is inverted
either on a single-channel or multi-channel basis in the pres-
ence of blurring and noise effects. The ill-posedness of this
problem is attributed to the inversion process of the channel
degradation model in the presence of noise. This inversion
may lead to noise enhancement [5], [6]. The solution of
this problem begins with some attempts to adapt the Linear
Minimum Mean Square Error (LMMSE) algorithm [7]. This
solution is performed with Fourier transform and Toeplitz-
to-circulant approximations [8], [9]. However, this solu-
tion requires estimating the Signal-to-Noise Ratio (SNR)
of the image before the implementation of the SR recon-
struction scheme. Besides, there is a need for approximating
the auto-correlation matrix for the unavailable HR image
from the degraded ones. To overcome the limitations of the
LMMSE algorithm, entropy concepts have been adopted.
In this approach, the HR image is reconstructed based on a
cost function, and various constraints are set to maximize the
entropy [10]. This approach is easy to implement compared to
the inverse solution that requires diagonal matrices. However,
it does not consider the image local activity levels [11].

The regularization algorithms are considered excellent
solutions for ill-posed problems in image processing [12].
The regularization-based SR reconstruction is performed
using multiple stages of multi-channel restoration, image
fusion, and image interpolation [13]. Other trends have been
presented for blind SR reconstruction of images based on the
greatest common divisor algorithm. However, these trends
depend on the assumption of co-prime blurring operators.
In addition, the quality of the obtained images are very
limited [14].

The process of video SR reconstruction aims to obtaining
an HR video from one or multiple LR videos to enhance both
temporal and spatial resolutions. The temporal correlations
in the input LR frames can be exploited to obtain the best
HR video quality. Most SR reconstruction schemes use the
information from multiple frames to produce an upscaled
frame [12]. These multi-frame schemes differ considerably
from the complicated single-frame upscaling schemes that
generate artificial information.
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There are two main types of resolution in an imaging
system: spatial and temporal. The spatial resolution depends
on the spatial density of the sensor (or detector) array. More-
over, the blur effect is attributed to the point spread function
of the sensors. On the other hand, the temporal resolution is
affected by the camera exposure time and its frame rate [15].
Therefore, the aliasing effect on the spatial and temporal
resolutions causes more degradations in the captured images
and videos. The spatial aliasing is introduced in video frames
or images once the lens cut-off frequency is higher than
the detector cut-off frequency. On the other hand, temporal
aliasing occurs in the video frames, when the camera frame
rate is low and the captured objects move faster. The blur
effect on videos and images that degrades their quality has
different types like motion blur, defocus blur, detector blur,
and optical blur. Hence, there is an urgent need for intro-
ducing efficient SR reconstruction schemes to mitigate these
problems.

Therefore, the proposed work considers the blurring,
down-sampling, and noise effects for efficiently improv-
ing the performance of the 3DV SR reconstruction scheme.
The proposed 3DV SR reconstruction scheme assumes
that the input degraded 3DV LR frames are blurred
and down-sampled noisy forms of the 3DV HR frames.
Consequently, this paper presents an efficient SR recon-
struction scheme for visual quality and resolution enhance-
ment of 3DV sequences. A simple iterative Bayesian
algorithm is followed in the de-blurring and de-noising pro-
cesses. In addition, a further stage of histogram match-
ing is utilized to enhance the quality of the resulting 3DV
frames from the recursive Bayesian algorithm to improve
the whole efficiency of the suggested SR reconstruction
scheme.

The major merits of the proposed 3DV SR reconstruction
scheme are as follows:

« The Bayesian probabilistic model can efficiently formu-
late the nonlinear mappings in the temporal and spatial
directions of the 3DV frames. It can improve the fidelity
and visual quality of multiple video frames.

o The proposed scheme deals with the motion, blur, and
noise effects. It can achieve good results in the presence
of undetermined noise, unspecified blur kernel, and ran-
dom motion.

« An efficient motion estimation algorithm is utilized to
minimize the processing time of the SR reconstruction
scheme.

o A non-uniformity correction algorithm based on his-
togram matching is used to enhance the quality of the
reconstructed 3DV HR frames.

The remainder of the work is structured as follows.
Section 2 demonstrates the literature review of various
image and video SR reconstruction schemes. The proposed
3DV SR reconstruction scheme is discussed in Section 3.
Section 4 shows the analysis of the proposed scheme. Finally,
the concluding remarks and future research directions are
given in Section 5.
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Il. RELATED WORK

The resolution of an image is one of the most important
parameters for efficient image representation. The SR recon-
struction schemes are used to enhance the resolution of a spe-
cific image extracted from multiple LR images or a single LR
image. SR reconstruction schemes have several applications
such as satellite imaging, medical imaging, High-Definition
TV (HDTV), and surveillance [5], [11].

The SR reconstruction process from a single image
is termed SISR [16]. The SISR schemes comprise
reconstruction-, learning-, and interpolation-based schemes.
Reconstruction-based schemes produce water-color artifacts.
On the other hand, interpolation-based schemes, like bicubic
interpolation, remain the main tool of digital zooming in
consumer devices, but they yield ringing or blurring arti-
facts. The SISR can be implemented with the reconstruction-
based and interpolation-based schemes. In the learning-based
schemes, a mapping from LR patches to their corresponding
HR patches is learned to utilize a set of HR-LR patch pairs.
Most of these mappings are computation- and memory-
intensive due to the creation of an LR-HR patch database
through searching inside the same image. However, direct
nonlinear regression mapping amongst HR and LR patches
needs adequate time and memory requirements.

The image and video frame resolutions are limited due to
sensor physical characteristics like detector density and size.
In addition, image or video frame degradations are caused
during the recording process. For example, motion blur is
caused by limited shutter speed, optical distortion, aliasing
effects, and noise. There are two approaches to produce
an HR frame. The first one is by installing an HR sensor.
Unfortunately, it is not reasonable due to the cost increase
and the consumed power. The second one is by using a
post-processing method to build the HR video frame. The
more appealing approach in this research area is the resolu-
tion enhancement or SR reconstruction [15], [16].

Several schemes can be utilized to recover an HR image
from one or multiple LR images. The standard interpolation
techniques, such as nearest neighbor interpolation, have been
used [17]. The resulting images from these techniques have
blurred edges, but they do well in smoother regions. In the
case of conventional multi-frame SR reconstruction schemes,
several LR images of the same scene with different pixel
shifts are taken as inputs, and the correspondence between
HR and LR patches is learned from a database that consists
of LR and HR image pairs. After that, this knowledge is
exploited on a new LR image to rebuild the corresponding
HR image.

In [18], the authors presented an efficient algorithm to
obtain image patches with consistent structures and exact
pixel values. Accordingly, it has flexibility and power to des-
ignate different image patterns. Asuni et al. [19] introduced
an algorithm named Smooth Regression with Local Structure
Prior (SRLSP) that was employed to forecast the expected
HR pixel data from the LR patch. The main concept of this
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algorithm is to create an HR image from an LR one using a
set of training samples.

Jin et al. [20] suggested the Bayesian and affine geometric
distortion algorithm for realistic sequence SR reconstruction.
They presented a design of a robust kernel for improved edge
localization. Moreover, they introduced a sufficient proce-
dure for initializing the optimization method, including mis-
registration uncertainties. The authors of [21] proposed an
adaptive image prior model and established a Bayesian SR
reconstruction algorithm. In this algorithm, the degree of cor-
relation between pixels is modified adaptively by an adaptive
norm, which is inferred based on the local image features.
This algorithm avoids artifacts in the smoothed regions and
also preserves edge details.

Katartzis ef al. [22] proposed the Convolutional Sparse
Coding (CSC) algorithm with joint Bayesian learning for
SR reconstruction of images. The algorithm performance
depends on the selection of certain parameters. In addition,
a coupled Beta-Bernoulli procedure is utilized to nominate
suitable Sparse Coding Maps (SCMs) and filters for both
low- and high-resolution images. The sparse feature maps
and filters for both HR and LR images are realized adaptively
through the Bayesian learning methodology. Zhao et al. [23]
suggested a video SR reconstruction scheme by filling the
missing pixels with virtual-view or spatial interpolated pixels.
This scheme achieved better performance than other ones.

Ge et al. [24] suggested a multi-frame SR reconstruction
scheme with less processing time and lower complexity than
those of other multi-frame SR reconstruction schemes. This
scheme could reproduce adequate HR video streams with
higher HR frame quality. Jin ef al. [25] focused on improv-
ing a Bayesian method to combine SR reconstruction with
video stream merging. An adaptive video SR reconstruc-
tion scheme based on a Bayesian probabilistic model via
concurrently estimating the underlying blur kernel, motion,
and noise level, while recovering the original HR frames,
has been proposed [26]. This scheme delivers auspicious SR
outcomes, and it is adapted to various blur kernels and noise
levels. To investigate the effect of blur kernel and noise, the
Cramer-Rao bounds have been used to perform a two-step
analysis to show the impact of the blur kernel and noise level
on the performance of the SR reconstruction scheme.

Chen et al. [27] suggested a multi-frame SR reconstruction
scheme based on the Bidirectional Recurrent Convolutional
Network (BRCN). The primary impact is for the utilization of
3D feedforward convolutions, in recurrent, and bidirectional
networks for sufficient temporal modeling. This scheme has
some limitations of computational complexity, lower recon-
struction performance, and the need for large-scale video SR
datasets. Liu et al. [28] introduced an image SR reconstruc-
tion scheme that has been combined with a multi-camera
system to exploit the benefits of temporal and spatial correla-
tions amongst the recorded streams. Three SR reconstruction
schemes have been suggested: spatial-temporal, temporal-
spatial, and mixed SR. The mixed SR scheme outperforms the
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other schemes, because it has a flexible scaling factor, and it
has a reduced computational cost as a unique SR reconstruc-
tion procedure is performed. Huang et al. [29] proposed a
video SR reconstruction scheme with improved robustness to
innovation outliers in real-time operation. An intuitive study
was suggested for the proximal-point cost function represen-
tation of the Recursive Least Mean Squares (RLMS) gradient
descent algorithm. This regularization provides faster conver-
gence of the solution in the subspace related to innovations,
while maintaining earlier estimated details.

Quevedo et al. [30] introduced an efficient configuration
model for image and video SR reconstruction. Due to
the weaknesses of the Basic Particle Swarm Optimization
(BPSO), the genetic and ant colony algorithms have been
utilized in the introduced model. Borsoi et al. [31] offered
a new procedure for video SR reconstruction through a
Generative Adversarial Network (GAN). GANs are Artifi-
cial Intelligence (AI) algorithms composed of two Neural
Networks (NNs) to learn deep representations. It has been
proved that GAN results for large upscaling factors are, by a
substantial margin, more photo-realistic than reconstructions
achieved with reference schemes.

Yu et al. [32] proposed a temporal adaptive network and
examined various ways of image alignment involving a
spatial alignment network to learn the temporal dynam-
ics in order to improve video SR reconstruction. Video
SR reconstruction can be launched from two aspects: the
inter-frame temporal relation and the intra-frame spatial
relation. The spatial alignment modules and the temporal
adaptation are manifested to enhance the SR reconstruction
quality. Gopan et al. [33] suggested depth SR reconstruction
on RGB-D video streams with significant displacement 3D
motion. This method is improved in two phases: merging
of compensated depth images and motion compensation of
depth images. For the compensation phase, a 3D Nearest-
Neighbor Field (NNF) estimation method called RGB-D
super-pixel matching was proposed, demonstrating that it
is robust in the existence of large-displacement 3D motion.
A deep Convolutional Neural Network (CNN) structure has
been developed for the fusion phase to achieve an efficient
performance. Liu ef al. [34] suggested an approach for video
SR reconstruction. This approach is the first very deep non-
simultaneous, fully-recurrent CNN for video SR reconstruc-
tion. The temporal dependencies are modeled by late fusion
depending on fully-recurrent convolutional layers and motion
compensation. Deep residual learning is employed in the
recurrent structure to increase the representation ability of
large and complex motions.

Wang et al. [35] proposed an efficient algorithm to rebuild
high-spatial-resolution video satellite images from a super-
vised perspective depending on CNNs in order to increase
adaptability to video satellite imagery. It was confirmed
that utilizing high-spatial-resolution static images for train-
ing is necessary for the reconstruction of video satellite
motion images. Also, it was proved that the CNN-based SR
reconstruction schemes are better than bicubic interpolation.
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Li et al. [36] introduced a blind deconvolution and SR recon-
struction scheme to work on LR video. To estimate the
blur(s), the input frames are first up-sampled using the
Non-Uniform Interpolation (NUI) SR reconstruction method,
assuming that the blurs are identical or have slow varia-
tions over time. Then, the blurs are determined iteratively
from some enhanced edges in the upsampled frames. After
completion of blur estimation, the reconstructed frames are
discarded, and a non-blind iterative SR reconstruction process
is performed to obtain the final reconstructed frames using the
estimated blur(s). A masking process is employed throughout
each iteration of the final frame rebuilding to avoid artifacts
produced from incorrect motion prediction, successively.

It is observed that several authors presented a lot of
research activities on image SR reconstruction in the spa-
tial domain. On the other hand, various modern image and
video SR reconstruction schemes have been employed in
transform domains. Commonly, there are few contributions
in the literature on 3DV SR reconstruction schemes. More-
over, some of the introduced schemes have significant prob-
lems with the reconstruction quality of 3DV frames. Because
the conventional video SR reconstruction schemes have not
accomplished satisfactory subjective and objective quality
levels in the presence of down-sampling, blurring, and noise
effects, we have been motivated to present the proposed work.
Therefore, considering the constraints of the conventional
video and image SR reconstruction schemes, the significant
contribution of this paper is the introduction of a hybrid
3DV SR reconstruction scheme for improving the resolution
and visual quality of 3DV sequences. The proposed 3DV
SR reconstruction scheme consists of the recursive Bayesian
and the histogram matching algorithms. The first stage is
presented to mitigate the effects of blurring, down-sampling,
and noise. The second stage is introduced to improve the
visual representation of the 3DV frames resulting from the
first stage.

IIl. PROPOSED HYBRID 3DV SR RECONSTRUCTION
SCHEME

As stated previously, the video SR reconstruction process can
be carried out on either a single LR video frame or multiple
LR video frames. Therefore, a video frame SR reconstruction
scheme can improve the details in a single LR video frame
to produce an enhanced HR video frame. Also, a video frame
SR reconstruction scheme can be used for improving multiple
LR frames to produce an enhanced HR video frame. The
resolution is improved for a single LR frame with a video SR
reconstruction scheme by enhancing the edges of the objects
presented in the LR frame or replacing an LR patch with its
corresponding HR patch through a patch redundancy algo-
rithm. The proposed 3DV SR reconstruction scheme works
on multiple LR frames, where enhancing high-frequency
components gives the 3DV HR frame by integrating non-
repeatable information within multiple LR frames. Therefore,
the proposed 3DV SR reconstruction scheme has the main
benefit that the resulting 3DV HR frame is generated from
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multiple 3DV LR frames with less power consumption and
lower computational cost.

In the proposed 3DV SR reconstruction scheme, the basic
reconstruction idea of a 3DV HR frame from multiple 3DV
LR frames is the exploitation of spatial, temporal, and
inter-view correlations from the surrounding 3DV frames in
the same scene or neighboring scenes. Figure 1 presents the
basic idea for the proposed 3DV SR reconstruction scheme
from multiple 3DV LR frames. If the 3DV LR frames have
a minor shift, then the 3DV HR reconstructed frame will
not contain any new information. By taking one frame as
a reference, pixels are interleaved as a 3DV HR frame is
generated. In addition, Fig. 1 shows that the subpixel motion
provides complementary information among the LR frames
that makes the SR reconstruction possible. The main steps
of the proposed scheme can be summarized as registration or
motion estimation, interpolation, deblurring or noise removal,
and histogram matching, as shown in Fig. 2.

Figure 2 displays the proposed 3DV SR reconstruction
scheme, which comprises the registration and restoration pro-
cesses. First, sequences are registered from the input stream
of LR 3DV frames to determine the motion relationship
between a reference frame gz, and the keyframe g, g,. The
registration process estimates the motion of the blocks for
every reference frame to the keyframe g;r,. Then, these 3DV
LR input frames are projected into the coordinates of the
keyframe, and after that, they are interpolated to recover the
3DV HR keyframe. The keyframe of the 3DV HR sequence
is the projected frame of the HR blurred frame. After that,
the authentic 3DV HR frame is obtained by deblurring the
HR frame. Finally, the histogram matching is exploited to
generate the final 3DV HR frame with better distribution of
intensities.

It is assumed that the 3DV LR frames gpg,, with
i ={-L,...,L}, are obtained from the 3DV HR original
frames gpp, as illustrated in (1), where V in video space
indicates the down-sampling operator. E indicates the blur
operator, and it is performed on the received video frames by
convoluting with a blur kernel E and v; denotes the additive
system noise.

qir; =V x E X qur;, + Vi (1

In general, camera movements and scene details can be
shifted horizontally, vertically, and arbitrarily rotated [24].
Thus, the gpg,; differs from the gyg, by a shifting value
Ad; and a revolving value i, (frame i motion parameters).
Therefore, the Fas; is the shifting function and Ry, is the
revolving function from the gpg; to gur,. The gur, can be
described as in (2). Thence, equation (1) can be reformulated
as expressed in (3).

qHR, = Ry X Fas; X qHR; 2)
qir; =V X E X Ry; X Fas; X qur, + Vi 3

After the blurring of the 3DV frame resulting from sampling
at LR and vibration or camera motion, the 3DV frames
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FIGURE 1. The basic idea for the proposed 3DV frame SR reconstruction
from multiple 3DV LR frames.

are obtained. A camera usually moves low. Consequently,
the motion blur does not significantly affect the resolution
quality of the obtained 3DV frames. The sampling blur can
considerably affect capturing a real scene with much details.
If the motion blur and sampling blur parameters are required
to be estimated simultaneously, afterwards, the estimation
process for the blur kernel might be extraordinarily complex.
We concentrate on the sampling blur and exclude the motion
blur in the proposed scheme to facilitate the SR reconstruc-
tion process. Each LR pixel is an average color value of all
HR pixels within the range of color values. Therefore, the
sampling blur kernel can be determined by a mean filter with
asize h x h, and it can be expressed as:

R
E = 4
xRl @

The unknowns include the pixels of the present 3DV HR
frame, and the set of parameters of noise and motion. The
Bayesian Maximum A Posteriori (MAP) likelihood [24] is
exploited in the proposed scheme to get the best possible solu-
tion to estimate the unknowns. The utilized Bayesian MAP
algorithm has low complexity by solving for the unknown
parameters for a block of pixels. The proposed model for
estimation is as follows:

(@ (ALY, (W) f0))
= argmaxXqyg,,{As ) (¥i). {ei}
X Py (Do) (i), (0} 1 (g1 ) )

where
P(Gro- 108}, (Vi) {ei} |{aer, D)
= Hp (C]LR; ’qLR,ﬂ A(Si, Iﬂi, (pl)

1
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FIGURE 2. The basic steps of the suggested 3DV SR reconstruction scheme.
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From equations (5) and (6), we have, 5
"
(g (ALY AW 0]
=
= argmaxqyp, (As).(vi). i) 2.
[
< A[ [ (4, 4Lz, A8i. Vi 1) =
i
<
ol
xp(anro) [ Tp s [ Tp i [ Tr @) 2
L 1 1

= argmaxg, (As,).(yi).{oi)
X {Zi logp (qrr; |qLr, ASi, Vi, @i)
+1og(qmr,) + ) . 1ogp(A8)
+ D logp() + ) logp(pi)} ™

where p (qur, |gnr, . ASi, Wi, ¢;) refers to the probability dis-
tribution of estimated parameters, Ad;, ¥, and ¢; for the
likelihood of ggp,. The logy with a base two is used in all
presented equations. An exponential distribution is presumed
according to the probability given in (8).

p (qrr, |aur,. ASi, i, ¢i)
1
= ——exp{— ||qLr,
Mai ||
=V X E X Ry, x Fpas; X qur, + ¥ill} 3

where the state numbers for the parameter estimation input
are G and M,; as follows:

expl—|lqrr; =V x E x Ry, x Fas, % qur, + Vill}.
Mo =" epl—|qur, =V x E
X Ry X Fas; X qur, + Vil } ©)

The parameters gnr,, Ad;, ¥;, and ¢; are optimal, if their gra-
dients have the smallest values. Their exponential probability
distributions are given as follows,

1
p(qur,) = i, P {=Vaur,|} (10)

41940

FIGURE 3. The original Poznan, Balloons, and Shark frames of the tested
3DV sequences.

1
p (A&') = ]\TyiexP {_ || VA H } (11)
pWi) = Migiexp{— | Vil } (12)
1
p(pi) = ATexP{_ | Vil } (13)

&i

where Mg, M,,, and M., indicate the normalized values for
their likelihood distributions. V is the gradient operator,
IV g, | = 32 IV anr, (3]

:ny:(a ) (14)

aqHRo
With equations (6) to (14), equation (5) can be described
as:

(e D5 (W) i 1)
= argmaXqyg, (As;}.(¥i). (e

x {Zi HQLRi — V X E X Ry; X Fas, X qur,+ il
|V qmr, | + DIV ASH+ IV vl
+ Zi IV @il + Zi logM,,; + Zi log Mg
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FIGURE 4. The visual outcomes of the suggested scheme compared to the bicubic technique for frame 1 of the Poznan 3DV sequence by
employing down-sampling by 4, and a blur kernel with ¢ = 1.6, without AWGN effect.
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FIGURE 5. Objective comparison of average intensity outcomes of the suggested scheme compared to the conventional bicubic
technique on the first 50 frames of the Poznan 3DV sequence for down-sampling by 4, and a blur kernel with o} = 1.6, without AWGN

effect.

+ ) dogMy, + ) logMe, ) " log M) (15)

Because

Zi log My, Zi logMg, Zi logM,;, and Zi log M¢;

are constants. Hence, the optimum condition for the proposed
SR reconstruction scheme is,

(@, (AL U)o )
= argmaXqyg, {As;}, (i e}
X {Zi ‘ qrr; =V X E X Ry, X Fay, X qrro+ Vil
+ |V anr, | + Y1V Asl+ YNV vl
+ > IV el (16)

The last step in the suggested 3DV SR reconstruction scheme
is histogram matching. Because the histogram shows the
different gray level probabilities within the video frame, the
histogram matching is a processing tool employed to enhance
the visual representation of the resulting 3DV HR frames.
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To perform the histogram matching process, we must choose
a better-distributed histogram for a reference image in order
to achieve a better distribution of intensities for the 3DV HR
frames. If we alter the histogram of every frame in the 3DV
SR video to be spread over the whole range of the reference
image, then the SR video frames will be visually improved.
This procedure is known as the histogram matching process.
It can be implemented by selecting a reference image with
large variance, such that the mean 7 and variance ¢ of the
SR video frame become dependent on their counterparts in
the reference image. The steps of the employed histogram
matching of the SR video frame to the reference image are
explained below:

1. Calculate the mean of the authentic SR video frame

B (i,)).

K H

=3

B, )) (17)
i=1 j=1

where K and H are the SR video frame dimensions.
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FIGURE 6. Objective comparison contrast outcomes of the suggested scheme compared to the conventional bicubic
technique on the first 50 frames of the 3DV Poznan sequence for down-sampling by 4, and a blur kernel with o = 1.6,

without AWGN effect.
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FIGURE 7. Objective comparison edge intensity outcomes of the suggested scheme compared to the conventional
bicubic technique on the first 50 frames of the 3DV Poznan sequence for down-sampling by 4, and a blur kernel with

ok = 1.6, without AWGN effect.

2. Calculate the reference image s (w, g) mean.

w G
=3 s g)

w=l1 g=1

(13)

where W and G are the reference image dimensions.
3. Estimate the SR video frame standard deviation .

1 &L A
Gt = | 77 2 2 BEH—iw?  (19)

i=1 j=I
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@)}

. Estimate the reference image standard deviation {g7.

W G
1 R
Cstd2 = WxG v; ;(5 (w, ) — )2 (20)

. Determine the multiplicative correction factor Gy by

dividing the reference image standard deviation by the SR
video frame standard deviation.

Gf _ Cstd2 1)
Cstd1
. Calculate the additive correction factor fyc.
fuc =105 — Gy x 1p (22)
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FIGURE 8. Objective comparison entropy outcomes of the suggested scheme compared to the conventional bicubic
technique on the first 50 frames of the 3DV Poznan sequence for down-sampling by 4, and a blur kernel with o = 1.6,

without AWGN effect.
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FIGURE 9. Objective comparison PSNR outcomes of the suggested scheme compared to the conventional bicubic technique on the
first 50 frames of the 3DV Poznan sequence for down-sampling by 4, and a blur kernel with ¢4 = 1.6, without AWGN effect.
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FIGURE 10. Visual outcomes of the suggested scheme compared to the bicubic technique for frame 25 of the Balloons 3DV sequence without
down-sampling, and with a blur kernel with sy = 1.2, and AWGN effect with o5 = 0.01.

7. Determine the histogram-matched video frame.
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IV. RESULTS AND COMPARATIVE ANALYSIS
To evaluate the suggested 3DV SR reconstruction scheme,

Bum (G, j) = fuc + B(, j) x Gy (23) numerous analyses and tests on the most common and
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FIGURE 11. Objective comparison of average intensity outcomes of the suggested scheme compared to the bicubic technique on
the first 50 frames for the Balloons 3DV sequence without down-sampling, and with a blur kernel with o5 = 1.2, and AWGN effect

with o = 0.01.
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FIGURE 12. Objective comparison contrast outcomes of the suggested scheme compared to the bicubic technique on the
first 50 frames for the Balloons 3DV sequence without down-sampling, and with a blur kernel with o = 1.2, and AWGN

effect with o5 = 0.01.

standard 3DV (Poznan, Balloons, and Shark) 1920 x
1088 streams have been carried out [29]. Different evalua-
tion metrics are used to assess performance on the utilized
3DV frames after the proposed processing operations and
then compare the results with the original video frames.
In this paper, the average gradient, local contrast, MSE, edge
intensity, PSNR, SSIM index, and entropy quality metrics
[16], [17] are utilized to assess the accomplishment of the
suggested 3DV SR reconstruction scheme compared to the
traditional schemes. Further explanations, descriptions, and
mathematical representations of the utilized assessment met-
rics used in this section could be found in [7], [13], [16].

41944

In our simulation experiments, to create the LR 3DV streams,
the HR 3DV streams are downsampled by 4. After that, the
proposed SR reconstruction scheme is employed to upsam-
ple the LR 3DV streams by 4. In the simulation experi-
ments, we tested different consecutive and non-consecutive
frames to assess the proposed 3DV SR scheme, and we
only presented samples of the 3DV frames to prove the
effectiveness of the suggested scheme. A size of 16 x 16 is
chosen for frame blocks in the motion estimation process.
The suggested SR reconstruction scheme is compared to the
conventional bicubic technique and the more recent related
works.
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FIGURE 13. Objective comparison edge intensity outcomes of the suggested scheme compared to the bicubic technique
on the first 50 frames for the Balloons 3DV sequence without down-sampling, and with a blur kernel with o = 1.2, and
AWGN effect with o, = 0.01.
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FIGURE 14. Objective comparison entropy outcomes of the suggested scheme compared to bicubic technique on the first
50 frames for the Balloons 3DV sequence without down-sampling, and with a blur kernel with o, = 1.2, and AWGN effect

with op = 0.01.

The LR 3DV frames are produced in the experimental work
by employing the down-sampling process on the tested 3DV
HR frames with a factor L = 4, blurring effect, and Gaussian
noise effect. These processes are considered to simulate the
acquisition process of the 3DV frames using a low-quality
camera. The proposed SR reconstruction scheme is evaluated
by presenting more objective and subjective outcomes. The
visual results of the reconstructed 3DV frames with the pro-
posed scheme are firstly compared to those of the bicubic
technique. Then, the proposed SR reconstruction scheme is
compared to different traditional SR reconstruction schemes.
Moreover, more objective results of the local contrast, aver-
age gradient, edge intensity, PSNR, SSIM index, correlation,
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and entropy metrics between the reconstructed frames and
the original HR frames are presented to carefully assess
the proposed 3DV SR scheme compared to the traditional
ones. In the introduced objective outcomes for all tested
3DV frames, we assess the efficiency of the investigated SR
reconstruction schemes on the first 50 frames for each tested
3DV sequence. The samples of the original 3DV frames of the
tested streams in the introduced simulation results are given
in Fig. 3.

Due to space limitations, only a single frame from the
shown frames in Fig. 3 is considered in the subjective
results for each tested 3DV sequence. Figure 4 illustrates
the results of the proposed 3DV SR reconstruction scheme
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FIGURE 15. Objective comparison PSNR outcomes of the suggested scheme compared to the bicubic technique on
the first 50 frames for the Balloons 3DV sequence without down-sampling, and with a blur kernel with o; = 1.2, and
AWGN effect with o = 0.01.
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FIGURE 16. Visual outcomes of the suggested approach compared to the bicubic technique for frame 50 of the Shark 3DV frame for down-sampling
by 4, and a blur kernel with ¢ = 1.6, without AWGN effect.
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FIGURE 17. Objective comparison of average intensity outcomes of the suggested scheme compared to the bicubic technique on
the first 50 frames of the 3DV Shark sequence with down-sampling by 4, a blur kernel with o, = 1.6, and without AWGN effect.

compared to the conventional bicubic technique [6], [13] for by 4, a standard deviation of the blur kernel o = 1.6,
frame 1 of the tested Poznan 3DV stream with down-sampling without Additive White Gaussian Noise (AWGN) effect.
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FIGURE 18. Objective comparison of contrast outcomes of the suggested scheme compared to the bicubic technique on
the first 50 frames of the 3DV Shark sequence for down-sampling by 4, and a blur kernel with o = 1.6, without AWGN

effect.
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FIGURE 19. Objective comparison of edge intensity outcomes of the suggested scheme compared to the bicubic
technique on the first 50 frames of the 3DV Shark sequence for down-sampling by 4, and a blur kernel with ¢ = 1.6,
without AWGN effect.

TABLE 1. Objective comparison outcomes for the sample first frame of the Shark 3DV stream without histogram matching, by employing down-sampling
by 4, with blurring effect with different standard deviation values, and AWGN effect with different noise variances.

Before histogram matchin

AGWN

G, =0.01

o, = 0.03

0, = 0.05

Blur kernel

o, =12

o, =16

g, =2.0

g, =12

o, =16

g, =2.0

o, =12

g, =16

o, =2.0

Method

Bay.

Bi.

Bay.

Bi.

Bay.

Bi.

Bay.

Bi.

Bay.

Bi.

Bi.

Bay.

Bi.

Bay.

Bi.

Bay.

Bi.

Entropy

75872

7.5525

7.5883

7.5516

7.5902

7.5515

76507

75525

7.6512

7.5516

7.6503

75515

7.7128

7.5525

7.7072

75516

7.7047

7.5515

Average gradient

0.0094

0.0061

0.0089

0.0055

0.0089

0.0050

0.0136

0.0061

0.0133

0.0055

0.0131

0.0050

0.0172

0.0061

0.0170

0.0055

0.0166

0.0050

Local contrast

02698

0.2118

0.2602

0.1977

02579

0.1865

03561

02118

0.3525

0.1977

03484

0.1863

0.4454

0.2118

0.4383

01977

04325

0.1865

Edge intensity

0.1018

0.0672

0.0969

0.0607

0.0959

0.0553

0.1464

0.0672

0.1436

0.0607

0.1412

00553

0.1861

0.0672

0.1835

0.0607

0.1794

0.0553

RMSE

0.0368

0.0338

0.0368

0.0346

0.0374

0.0358

0.0432

0.0338

0.0434

0.0346

0.0446

0.0358

0.0517

0.0338

0.0523

0.0346

0.0525

0.0358

PSNR

28676

29.426

2868

2922

28541

28.93

27207

29.426

27.246

20223

27.021

2893

25.736

29.426

25.638

29223

25.602

28.93

SSIM

0.8022

0.852

0796

0844

0.7823

0.8352

0.6705

0.8517

0.6619

0.8440

0.6493

0.8352

0.5615

0.8517

05497

0.8440

05471

0.8352

Figures 5 to 9 show the objective comparison results of
the average gradient, contrast, edge intensity, entropy, and
PSNR for the first 50 frames of the Poznan 3DV sequence
by employing down-sampling by 4, a standard deviation of
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the blur kernel o = 1.6, without AWGN effect. From the
presented objective and subjective results in Figs. 4 to 9,
it is clear that there is a great similarity between the recon-
structed and the original 3DV frames with the suggested
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FIGURE 20. Objective comparison of entropy outcomes of the suggested scheme compared to the bicubic technique on the
first 50 frames of the 3DV Shark sequence for down-sampling by 4, with a blur kernel with o = 1.6, and AWGN effect.
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FIGURE 21. Objective comparison of PSNR outcomes of the suggested scheme compared to the bicubic technique on the
first 50 frames for the 3DV Shark sequence, for down-sampling by 4, and a blur kernel with o = 1.6, without AWGN effect.

TABLE 2. Objective comparison outcomes for the sample first frame of the Shark 3DV stream with histogram matching, for down-sampling by 4, with

blurring effect with different standard deviation values, and AWGN effect with different noise variances.

After histogram matchin;
AGWN 0, =0.01 o, =0.03 g, =0.05
Blur kernel o, =12 g, =16 g, =2.0 o, =12 g, =16 o, =2.0 o, =12 o, =16 o, =2.0
Scheme Bay. Bi. Bay. Bi. Bay. Bi. Bay. Bi. Bay. Bi. Bay. Bi. Bay. Bi. Bay. Bi. Bay. Bi.
Entropy 7.5872 75525 7.5883 7.5516 7.5902 7.5515 7.6507 7.5525 7.6512 7.5516 7.6502 75515 7.7126 7.5525 7.7070 7.5516 7.7044 75515
Average gradiem 0.0096 0.0062 0.0092 0.0056 0.0091 0.0051 0.0138 0.0062 0.0135 0.0056 0.0134 0.0051 0.0173 0.0062 0.0171 0.0056 0.0168 0.0051
Local contrast 0.2816 0.2210 0.2726 02073 02710 0.1965 0.3680 0.2210 0.3663 02073 0.3647 0.1965 04543 0.2210 0.4473 0.2073 04452 0.1965
Edge intensity 0.1039 0.0687 0.0991 0.0622 0.0983 0.0569 0.1484 0.0687 0.1461 0.0622 0.1441 0.0569 0.1869 0.0687 0.1848 0.0622 0.1815 0.0569
RMSE 0.0334 0.0298 0.0333 0.0307 0.0339 0.0339 0.0404 0.0298 0.0406 0.0307 0.0419 0.0320 0.0493 0.0298 0.0500 0.0307 0.0503 0.0320
PSNR 29.5378 305144 295378 30.2690 29.3878 29.9082 27.8760 305144 27.8200 30.2690 275563 29.9082 26.1470 30.5144 26,0244 30.2690 25.9679 29.9082
SSIM 0.8166 0.8689 0.8103 0.8610 0.7957 0.8516 0. 6809 0.8689 0.6711 0.8610 0.6571 08516 0.5718 0.8689 0.5586 0.8610 0.5541 0.8516
scheme compared to the conventional bicubic technique. intensity, entropy, and PSNR values for the tested 3DV
So, the suggested 3DV SR reconstruction scheme intro- Poznan frames compared to the bicubic technique. Also,
duces better-reconstructed frames than those of the bicu- the significant effect of using the histogram matching is
bic technique. Furthermore, the suggested scheme achieves observed in improving the quality of the reconstructed
superior objective results of average gradient, contrast, edge 3DV frames.
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TABLE 3. Results of average PSNR (dB), SSIM, and CPU time (sec)
assessment outcomes of the suggested 3DV SR scheme and the
traditional schemes on the 3DV Shark frames.

SR Scheme SSIM PSNR | CPU time (sec)
[16] 0.8684 31.24 2.475
(23] 0.8499 32.61 2.894
[30] 0.8992 31.62 4.647
[36] 0.9103 32.47 5.206
[37] 0.8961 31.90 4.973
Proposed 0.9075 32.52 2.867

Figure 10 demonstrates the outcomes of the suggested
3DV SR reconstruction scheme compared to the conventional
bicubic technique [6], [13] for frame 25 of the tested Bal-
loons 3DV stream without employing down-sampling, with
a standard deviation of blur kernel o, = 1.6, and AWGN
effect (o, = 0.01). Figures 11 to 15 show the objective
comparison results of the average gradient, contrast, edge
intensity, entropy, and PSNR for the first 50 frames of the
Balloons 3DV sequence without employing down-sampling,
with a standard deviation of blur kernel o3, = 1.6, and AWGN
effect (o,, = 0.01).

It is observed from the quantitative and visual results
shown in figures 10 to 15 that the proposed 3DV SR recon-
struction scheme presents improved reconstructed frames
compared to those of the bicubic technique. Also, it is noticed
that there is a significant effect of the histogram match-
ing process employed in the proposed scheme for obtain-
ing the reconstructed 3DV frames with recommended and
superior quality. Moreover, it is detected that there is a high
level of similarity between the reconstructed and original
3DV frames with the suggested 3DV SR scheme compared
to the conventional Bicubic technique. Additionally, it is
observed that the proposed scheme accomplishes greater and
superior values of entropy, average gradient, edge inten-
sity, contrast, and PSNR values for the utilized 3DV Bal-
loons frames compared to those of the bicubic technique,
which confirms the pre-eminence of the suggested 3DV SR
reconstruction scheme. Figure 16 clarifies the outcomes of
the suggested hybrid 3DV SR reconstruction scheme com-
pared to the conventional bicubic technique [6], [13] for
the frame 50 of the tested Shark 3DV stream with down-
sampling by 4, standard deviation of blur kernel o} = 1.6,
without AWGN effect. Figures 17 to 21 show the objec-
tive comparison results of the average gradient, contrast,
edge intensity, entropy, and PSNR for the first 50 frames
of the Shark 3DV sequence with down-sampling by 4, stan-
dard deviation of blur kernel o = 1.6, without AWGN
effect.

From the presented objective and subjective results in
Figs. 16 to 21, itis clear that there is a great similarity between
the reconstructed and original 3DV frames with the suggested
scheme compared to the conventional bicubic technique.
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So, the suggested 3DV SR reconstruction scheme intro-
duces better-reconstructed frames than those of the bicubic
technique. Furthermore, the suggested scheme achieves supe-
rior objective results of average gradient, contrast, edge inten-
sity, entropy, and PSNR values for the tested 3DV Shark
frames compared to those of the bicubic technique. Also,
it is observed that there is a great effect of the histogram
matching for improving the quality of the reconstructed
3DV frames.

Tables 1 and 2 present the objective comparison results
of the local contrast, entropy, edge intensity, MSE, average
gradient, PSNR, and SSIM for the first frame of the Shark
3DV sequence with and without histogram matching, for
down-sampling by 4, a blurring effect with different stan-
dard deviation values, and AWGN effect with various noise
variances. It is observed that the suggested 3DV SR recon-
struction scheme with histogram matching achieves superior
outcomes in terms of edge intensity, average gradient, MSE,
PSNR, local contrast, SSIM index, and entropy metrics for
the resulting 3DV frames compared to the case of not employ-
ing histogram matching.

The whole introduced subjective and objective out-
comes demonstrate that the suggested 3DV SR recon-
struction scheme is more appreciated and recommended
for 3DV communication applications. It has more superior
visual and objective results than those of the traditional
schemes that do not use the Bayesian and histogram
matching algorithms, especially in mitigating the effect of
blurring, noise, and down-sampling effects. Furthermore,
it is noticed that the suggested 3DV SR reconstruction
scheme gives preferable outcomes for various well-known
3DV streams that have different spatial and temporal
features.

Furthermore, to highlight the efficacy of the suggested
hybrid SR reconstruction scheme for reliable reconstruc-
tion of 3DV frames, different comparisons are implemented
to assess its outcomes to be compared with those of the
previous schemes [16], [23], [30], [36], [37]. The compar-
isons have been implemented on the 3DV Shark stream
in the presence of down-sampling, blurring, and AWGN
effects.

Table 3 reveals the average CPU time, SSIM, and PSNR
values of the suggested 3DV SR scheme compared to those
of the previous SR schemes in [16], [23], [30], [36], [37].
We notice that the suggested 3DV SR reconstruction scheme
surpasses the recent previous schemes by presenting better
average values of SSIM and PSNR. It also offers lower
computational times compared to those of the other related
studies. Consequently, it is seen that by deploying the his-
togram matching besides the Bayesian model, the 3DV SR
reconstruction quality can be improved with good SSIM and
PSNR values compared to those of the conventional schemes.
In addition, there is a great benefit provided by the pro-
posed SR reconstruction scheme in terms of computational
complexity.
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V. CONCLUSION AND FUTURE RESEARCH DIRECTIONS
An efficient SR reconstruction scheme for 3DV communica-
tion has been suggested in this paper. The proposed scheme
is based on recursive probabilistic Bayesian and histogram
matching algorithms for recovering HR 3DV frames with
good features. It is observed that the proposed hybrid 3DV
SR scheme has higher robustness in the cases of unknown
noise levels, unknown blur kernels, and arbitrary motion com-
pared to the contemporary schemes available in the literature.
Furthermore, the introduced simulation results on different
standard 3DV sequences with different spatial and temporal
features using different quality metrics demonstrated that the
proposed hybrid 3DV SR reconstruction scheme outperforms
many existing SR reconstruction schemes. Furthermore, the
histogram matching algorithm proved its efficiency in the
proposed scheme to generate 3DV sequences with better
distributions of intensities. As a result, the suggested scheme
has demonstrated favorable outcomes, and it is feasible for
reliable 3DV SR reconstruction applications. In the future,
deep-learning-based enhancement steps can be incorporated
for improving the resolutions of 3DV frames. In addition,
advanced segmentation techniques can be utilized to improve
the region of interest in the degraded 3DV frames.
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