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ABSTRACT Scale the ionosonde ionograms to produce accurate readings is a professional manual scaling
technique. However, there is a high demand for auto-scaling software that can manage a large number of
ionograms in order to avoid the time and effort involved in manual scaling as well as human errors. Noise-
free, accurate trace identification and precise segmentation are required for the auto-scaling program to
work. The Canadian Advanced Digital Ionosonde (CADI) ionograms are processed and auto-scaled using
a new model on an open-source (Python) platform in this paper. Filtering the noise, Convolution Neural
Network (CNN) based trace detection, layer-wise segmentation, and then extracting the ionospheric features
are used to accomplish the scaling accuracy. The investigation uses raw ionogram files generated by the
CADI system in Hyderabad, India (Lat: 17.47◦N, Long: 78.57◦E) between 2014 and 2015. Raw ionograms
in ∗.md4 or ∗.md2 file formats can be accepted by the suggested model (Individual or Hourly integrated).
The proposed auto-scaling software tool’s individual block performance is examined with several classes of
ionograms, and the overall performance is evaluated with a huge set of ionograms obtained during adverse
space weather circumstances (16th to 18th March 2015). Univap Digital Ionosonde Data Analysis (UDIDA)
software tool was considered for manual scaling. The results of manual scaling are compared with that
of proposed scaling software. In fmin and h’f, respectively, the proposed model has a mean absolute
error (MAE) of 0.36 MHz and 11.72 km, and a root mean square error (RMSE) of 0.7 MHz and 22.36 km.

INDEX TERMS Ionosonde, CNN, VGG-16, auto-scaling.

I. INTRODUCTION
Digital ionosondes are high frequency (HF) and high-power
ionosphere probing devices. Ionosonde transmits series of
modulated pulses at vertical incidence and records reflected
echoes representing the ionospheric features in the form of
ionograms. Traces in the ionogram reveal the features of
the ionosphere in terms of frequency and height components.
The ionospheric features can be extracted from the iono-
gram by employing manual scaling or auto-scaling software
tools. Even though the manual scaling results are accurate,
but it is achieved only with the right expertise. Manual
scaling of various classes of ionograms is a time taking
and tedious job. In contrast, the ionogram auto-scaling is
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faster and entirely accurate than manual scaling values but
tends to fail in complexity, such as ordinary and extraordi-
nary traces, E and F layer spread phenomenon, and incom-
plete ionogram formation [1]. Pezzopane and Scotto (2002)
developed Autoscala software [2], Huang and Reinisch
(1983) proposed and developed an ARTIST software [3],
Ding Zonghua (2010) proposed Cadiscale software [4], and
Pillat et al. (2013) proposed Univap Digital Ionosonde Data
Analysis (UDIDA) software for scaling the ionospheric fea-
tures automatically [5]. UDIDA addressed reducing the man-
ual work in the ionograms by resulting time, frequency versus
height information from each ionogram for further process-
ing [5].Whereas the processed results of UDIDA require fine-
tuning, Autoscala results reduce error during specific periods
and events [6]. Lynn (2017) proposed a method for iono-
gram displaying and auto-scaling of F layer [7]. The method
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relies on the formation of frequency and height histograms in
each ionogram. Jiang et al. (2017) developed an Ionogram
Scaler software to carry out manual and automatic scaling
of vertical incidence ionograms [8]. The software program
performed well in terms of ionogram scaling and Ionosonde
Total Electron Content (ITEC) estimate. Chen et al. (2018)
proposed an algorithm for automatic scaling of ionograms
with separated O and X waves [9]. Image recognition, math-
ematical morphology, and graph theory are used to create
the novel auto-scaling method, and crucial parameters are
identified using ionospheric properties. Fagre et al. (2020)
proposed an algorithm for automatic scaling of F layer
from the ionograms [10]. An image processing methodol-
ogy for the extraction of curvilinear structures is used to
offer a method for automatically scaling the F-layer from
ionograms.

The accuracy and consistency of automatic scaled data are
still challenging even though significant auto-scaling tech-
niques and models have been proposed in recent years. The
major problem in automatic ionogram scaling is correctly
distinguishing multiple hop Es reflections (in the virtual
height of F region) and right F-traces. In addition to that,
correct identification of the ordinary part of spread traces
is also a significant issue. The ARTIST auto-scale software
uses neural networks and hyperbolic trace fitting techniques
to identify the trace and scale the ionograms’ features. The
image processing technique is used in Autoscala software,
and a fuzzy logic technique is used in the UDIDA software.
The physical significance in the ionosphere irregularities
is identified by classifying the ionogram using the CNN
method. Feature extraction from the ionogram increased the
prediction accuracy in prediction models [11]. De La Jara
and Olivares (2019) proposed ionospheric echoes detection
in digital ionograms using Convolutional Neural Network
(CNN), a subset of Deep Neural Network (DNN). The CNN
model can capture ionospheric features using the filtering
process of ionograms [12].

In this paper, a concept of ionogram auto-scaling proce-
dure on an open-source platform is proposed to extract the

ionospheric fmin and h’min of E, F1, and F2 layer features.
An open-source ionosonde data analysis visual tool develop-
ment will benefit for the ionospheric researchers and would
be helpful for other CADI ionosonde receivers across the
world.

II. METHODOLOGY
The architecture of the proposed scaling software is
described in Fig.1. It has a de-noising filter, CNN (Visual
Geometry Group (VGG-16)) based trace detection (clas-
sifier), segmentation, and an auto-scaling block. Pre-
trained CNN (VGG-16) net modified with the required
number of classes and used Tensorflow and Keras for
training, validating and testing the net for ionogram
classification. CADI data files offline plotting program
developed on Python is available to the developers and
can be downloaded from GitHub (https://github.com/pi-
tgo/cadi24h/blob/master/cadi24h.py). Auto-scaling module
on python 3.6 is developed. Matplotlib and NumPy for dis-
playing the ionogram and listing the frequency versus height
value bins are considered.

A. RAW IONOGRAM FILES READING AND PLOTTING
The proposed software can handle both ∗.md2 and ∗.md4 file
formats. It reads the header information such as station ID,
time, and integration (Individual or Hourly) details from the
raw ionogram file. The program sets the reading information
in terms of flags 1, 2, 3, 4, 6 for the time intervals of 1, 0.5,
0.33, 0.25, 0.16 Hours from ∗.md2 and ∗.md4 files. Then,
based on the flag information, the program sequentially reads
the frequency and height bins from the location. Finally, the
program plots the frequency versus height points as x and
y-axis, respectively.

B. FILTERING THE NOISE
An adaptive sliding frequency window technique is imple-
mented at each height to de-noise or filter the ionogram’s
noise [13].

FIGURE 1. Functional block diagram of the proposed model.
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The steps in Adaptive sliding frequency window algorithm
are as follows:

1. Frequency versus height bins are arranged at each height
point.

2. At each height point, if there are less than 2 frequency
points between 2 MHz to 18 MHz frequency window,
it is treated as noise. The identified frequencies at the
particular height are eliminated.

3. If more than 2 frequency points are observed, a new
sliding frequency window size was set with minimum and
maximum frequency points.

4. The rest of the frequency points at the particular height are
eliminated.

5. Repeat steps 1 to 4 till the end of the height points.

C. CNN (VGG-16) TRACE DETECTION
VGG-16 net is a subset of deep Convolution Neural Network
(CNN), and it is considered in the proposed scaling software
to detect or identify traces in the ionogram images. Preceding
number to VGG specifies the network depth to hold the
trainable parameters [14]. The number of convolution layers
in a net or the depth of the network significantly affects
model accuracy. Generally, better performance is achieved
withmore convolution layers, but converging in deeper neural
networks is challenging, and their accuracy may get satu-
rated [15]. Also, the receptive fields or kernel size should be
as small as possible to minimize the training time. So, there
must be a tradeoff in selecting the network depth and kernel
size.

The VGG-16 net mean absolute error is less when com-
pared with AlexNet and ResNet. VGG-16 is a network with
16 layers of depth that holds the trainable parameters [14].
It has two sets of two convolution layers with the filter size
of 64 and 128 respectively, 3 sets of three convolution layers
with 256, 512, and 512 filter sizes in each set, and finally has
3 dense or fully-connected layers respectively with 512 units
in two dense layers and number of training class units in
the final dense layer. The details of the CNN (VGG-16) Net
architecture are tabulated in Table 1. All convolution layers
have hidden rectified linear units (ReLU) as their activation
function, and all sets are interconnected with max-pooling
layers. A pre-trained VGG-16 net is considered and mod-
ified the fully connected layer block with the user-defined
classification.

D. IONOSPHERIC LAYER-WISE SEGMENTATION
Chen et al. (2013) investigated and scaled the F layer param-
eters by separating the E and F layer trace pixels respectively
extended in the range of 90 km to 150 km and 150 km to over
500 km using bounding box estimation to locate the E and F
layer traces from the ionograms [16]. Scotto and Pezzopane
(2007) examined the ionograms to scale the sporadic E layer
observed in the height range of 90 km to 120 km or more [17].
Yusupov and Bakhmetieva (2021) explored the sporadic E
Layer with a structure of double cusp in the vertical sounding

TABLE 1. CNN (VGG-16) net architecture.

ionogram in the range of 90 km to 130 km and reported that
they can be distinguishable from other D, E, and F layer
traces [18]. Enell et al. (2016) evaluated the comparison of
manual scaling and Autoscala scaled parameters of E, F1, and
F2 layer parameters and reported that Es were observed in the
range of 100 km to 170 km which are not part of the normal
E and F layer trace and F1 layer critical frequency observed
above 150 km [19].

It is important and necessary to consider the geographical
location, diurnal, seasonal, and solar cycle variation parame-
ters while segmenting the layer-wise frequency versus height
points. In our work, frequency versus height points are seg-
mented based on the general height settings such as 90 km
to 150 km for E layer, 160 km to 290 km for F1 layer, and
300 km to 600 km for F2 layer. And in the case of Spread F
and Sporadic E event traces image classification, F layer win-
dow is set to 160 km to 600 km. Layer height settings can be
arranged with respect to latitudinal and seasonal ionospheric
changes.

E. AUTO-SCALING
The respective layer-wise segmented height versus frequency
bins are passed to the scaling block. The scaling block lists the
frequency bin values with indexed height values in ascend-
ing order. The first indexed values of frequency and height
are the minimum components of that particular layer trace.
To improve the accuracy and minimize the error, the first
5minimum indexed frequency and height values are averaged
to get frequency minimum and height minimum components
of each layer trace.

There are two program components in the proposed scaling
software. The first one is a CNN-based ionogram classifi-
cation program, which is trained on an IBM server (IBM
3400 M3) and considered the history of the trained program
to classify the input ionogram. The second program is the
scaling program, which is running on the same IBM server
to scale the features from the ionogram.

Before applying the raw ionogram files at the input
of the proposed tool for auto-scaling, the CNN block is
trained with the training set and optimized to achieve better
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accuracy. Then, the location of the ionogram files is given to
the proposed auto-scaling module to read the files sequen-
tially. Finally, the raw ionogram file content will be serially
transferred through the filter block for removing the noise,
CNN trace identification block for identifying the various
traces, segmentation block for separating the frequency ver-
sus height points, and scaling block for extracting the iono-
spheric features.

III. RESULTS & DISCUSSION
Raw ionogram files (∗.md4) generated by CADI located
at Hyderabad, India (Lat: 17.47◦N, Long: 78.57◦E) during
2014 – 2015 are considered. About 78840 valid ionograms
are available for analysis and manually constructed the clas-
sification data set with about 40,000 ionograms. CADI iono-
grams at the location of interest are manually verified and the
following general class of ionograms are identified:

1. Blank/Noise ionograms.
2. Ionograms with ordinary traces.
3. Ordinary and extraordinary trace ionograms.
4. E and F (F1 and F2) layer trace ionograms.
5. Ionograms with E, F, and secondary/multiple traces.
6. Ionograms with Spread F.
7. Spread F and Sporadic E trace ionograms.
8. Ionograms with Sporadic E, F layer, and multiple traces.
Ionograms are manually confirmed and labeled with the

class number it belongs to and segregated under the label-
ing class. A set of 4000, 6000, 6000, 5000, 6000, 5000,
4000, and 4000 similar ionograms are manually recognized
and segregated with the labeling of (blank/noise), (single
ordinary trace), (ordinary and extraordinary trace), (E and
F layer trace), (E, F, and secondary/multiple traces), (spread
F event trace), (spread F and sporadic E trace), and (sporadic
E, F layer and multiple traces), respectively. 80% of images
from each class are considered as training data sets, and 10 %
are considered for validation and testing using the temporal
split procedure.

A. CNN BASED TRACE DETECTION (CLASSIFICATION)
BLOCK PERFORMANCE EVALUATION
The performance of CNN based trace detection module is
evaluated in comparison with the traditional Artificial Neural
Network (ANN). In the case of CNN, each image size in the
training, validation, and testing set is fixed to 224 × 224 ×
3 to support a pre-trained VGG-16 net. In the case of ANN,
a Pattern Recognition Tool (nprtool) is used for ionogram
image classification. The ionogram images are converted to
black andwhite imagewith a squarematrix size of 224× 224.
Then, all images are combined to make a single large matrix
and train the ANN. Initially, both CNN and ANN nets are
trained on IBM server (IBM 3400 M3) with the training
images set (80% of total images set from each class). The
CNN and ANN nets are tuned and optimized for the settings
during the training process.

The CNN trace detection efficiency is evaluated with the
10% test images set from each class compared to the ANN

TABLE 2. Comparison of proposed CNN and traditional ANN classifier.

classification efficiency results with the same test image set.
The classification accuracy, F-Score, and False Omission
Rate (FOR) evaluation metrics [20] opted for the analysis
and comparison of the proposed CNN and traditional ANN
classifier are presented in Table 2.

Accuracy = (TP+ TN)/(TP+ TN+ FP+ FN) (1)

Precision = TP/(TP+ FP) (2)

Recall = TP/(TP+ FN) (3)

F− Score = 2 ∗ Precision ∗ Recall/(Precision+ Recall)

(4)

FOR (False Omission Rate) = FN/(FN+ TN) (5)

where, TP is True Positive, TN is True Negative, FP is False
Positive, and FN is False Negative.

The CNN classifier’s overall accuracy is about 97%,
F-Score is 89.34 and significant less FOR of 1.6. Whereas the
traditional ANN overall accuracy is about 78.4 %, F-Score is
78.8, and high FOR of 3.78. The overall accuracy is increased
by 14% and 18.66% when compared with the module pre-
sented in [11] and ANN, respectively.

The proposed auto-scaling software can be implemented
in off-line mode and the computation time is about 1 to
2 seconds for each raw ionogram file depending on the com-
plexity of each ionogram, such as ordinary and extraordinary
ionograms, Sporadic E event, and spread F event ionograms.
When compared with ANN computation time for each input
ionogram file, there is an improvement of few seconds in
the computation time for the same input ionogram file to the
CNN classifier.

B. PERFORMANCE EVALUATION WITH VARIOUS CLASSES
OF IONOGRAMS
The performance of the de-noising filter, CNN trace
detection, segmentation, and auto-scale blocks is eval-
uated with different classes of ionograms (Fig. 2).
Fig. 2 (a), (d), (g), and (j) respectively indicate the classes of
F1 and F2 layer traces, sporadic E, F1, and F2 layer traces,
sporadic E and spread F traces, and spread F trace. After
applying the adaptive sliding frequency window technique
with 2 nonzero points, elimination at each height (6 km
resolution) preserved the valid and spread traces in the filtered
ionogram as shown in Fig. 2 (b), (e), (h), and (k), respectively.

The CNN-based trace detection block outputs a number 1
depending on the class of ionogram it detected. The number
indicated in Fig. 2 (c), (f), (i), and (l) shows the accurate
detection of various layers by the CNN-based trace detection
block. The layer-wise segmentation block adjusts the height
range settings depending on the number it received from the
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FIGURE 2. Performance evaluation of De-noising filter, CNN based trace detection block and segmentation block for various classes of ionogram images.
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CNN-based trace detection block and separates the frequency
indexed height values to respective layer bins. The images
shown in Fig. 2 (c), (f), (i), and (l) indicates the non-presence
of other layers residual part due to the segmentation process
implemented.

For different classes of ionograms shown in
Fig. 2 (a), (d), (g), and (j), the auto-scaled results in compar-
ison with manually scaled values of minimum frequency
(fmin) of various layer traces are respectively presented
in Fig. 3 (a), (c), (e) and (g) and virtual height (h’f)
of various layer traces are respectively presented in
Fig. 3. (b), (d), (f) and (h). In Fig. 3, the pink color bar indi-
cates the auto-scaled value and the orange color bar indicates
the manual scaled values. Es layer details are presented with
blue edge color, F1 layer details with green edge color, and
F2 layer details with black edge color. When compared with
the manually scaled values, the auto-scaling block resulted
in F1 and F2 layer fmin values with an error of 0.03 MHz
and 0MHz (Fig. 3 (a)) and h’f values with an error of−0.4 km
and 3.0 km (Fig. 3 (b)) respectively for the input ionogram
shown in Fig. 2 (a).

In the case of the ionogram shown in Fig. 2 (d), the auto-
scaling block outputs Es, F1, and F2 layer fmin values with
an error of 0.02 MHz, 0.07 MHz, and−0.05 MHz (Fig. 3 (c))
and h’f values with an error of −2.0 km, 1.0 km, and 2.0 km
(Fig. 3 (d)) respectively.

Similarly, in the case of sporadic E and spread F event
traces in the ionogram (Fig. 2(g)), the auto-scaling block
extracted fmin and h’f values respectively from Es, and SF
traces with an error of 0.12 MHz (Fig. 3 (e)) and 1.8 km

(Fig. 3 (f)), and −0.03 MHz (Fig. 3 (e)) and −0.8 km
(Fig. 3 (f)). And finally, in the case of spread F trace class
ionogram (Fig. 2 (j)), the auto-scaling block outputs fmin
and h’f values with an error of 0.02 MHz (Fig. 3 (g)) and
2.2 km (Fig. 3 (h)), respectively. The better scaling accuracy
in fmin and h’f is due to the considering average of the first
5 minimum points during the scaling process.

C. MODEL PERFORMANCE EVALUATION DURING ST.
PATRICK’S DAY STORM
The complete auto-scaling module performance is evaluated
with about 432 raw ionogram files recorded during one of
the major storms from 16th to 18th March 2015. The F
layer’s fmin and h’f results of the proposed auto-scaling
model are compared with the UDIDA manual scaling val-
ues. Fig. 4 shows the comparison results, and corresponding
statistical results are presented in Table 3. It is clear from
Fig. 4 (a) and (b) that the proposed auto-scaling software
results of fmin and h’f are closely following the manual
scaling values during dawn and dusk periods and a bit overes-
timation (error) during mid of the day on pre, post and storm
days.

Overestimation (higher than manual scale value) could be
because of eliminating first points by the noise filter due to
treating them as noise or miss interpretation of weak signal
indications from the ionogram during manual scaling (which
results in lower values). It is also evident from Table 3 that
the proposed auto-scaling software better extracted fmin and
h’f values from all valid ionogram files. It is also noticed

FIGURE 3. Auto-Scaling block performance evaluation with different classes of ionogram traces. Pink color bar and orange color bar respectively
indicates the auto-scale and manual scaled values. Es Layer details are presented with blue edge color, F1 layer details with green edge color and F2
layer details with black edge color.
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FIGURE 4. Proposed auto-scaling software performance evaluation during 16th to 18th March 2015.

TABLE 3. Error analysis during the St. Patrick’s day Geo-magnetic storm.

that the proposed auto-scaling software tool assigned NaN
values at the blank or un-useful ionograms (Fig. 4). The
overall RMSE of 0.7 MHz and 22.36 km in fmin and h’f,
respectively in the case of large ionogram data set, is due to
the filtering process adopted, the accurate identification of
the traces in the ionogram by the CNN trace detection block,
layer-wise segmentation process and considering the average
of first 5 minimum points during the scaling process. The
RMSE values obtained are very close to the acceptable range
mentioned in Jiang et al. (2017) [8]. The acceptable value is
within ±0.5 MHz of the manual value for the frequency and
±25 km of the manual value for the height.

IV. CONCLUSION
In this paper, the CADI ionogram processing and auto-scaling
software tool are presented on an open-source (Python) plat-
form. The complete module is implemented with a noise
filter, CNN-based trace detection, segmentation, and scaling
modules. A VGG-16 net, a subset of deep learning CNN,
is used to detect traces in a wide variety of ionograms.

Initially, the CNN-based trace detection module is trained,
validated, and tested with more than 50% (40,000) of images
recorded from 2014 – 2015 at Hyderabad, India station.
Optimized the trace detection accuracy of the CNN module
and compared the results with traditional ANN. Then, the
proposed auto-scaling software tool individual block per-
formance is evaluated with various classes of ionograms,
and the performance of the complete auto-scaling model is
evaluated using the ionogram data set recorded from 16th
to 18th March 2015. Finally, proposed auto-scale software
tool results are compared with UDIDAmanual scaled values.
Auto-scale results of the proposed model are very much close
to the manual scale values. The MAE (0.36 MHz, 11.72 km)
and RMSE (0.7 MHz, 22.36 km) values show the model’s
fair performance. The better accuracy is achieved due to the
implementation of noise filter, CNN-based trace detection,
layer-wise segmentation, and considering the average of the
first 5 minimum points in the proposed auto-scaling software
tool.
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