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ABSTRACT Automatic train operation is an important part of the train control system. As train operating
intervals continue to shorten and train speeds continue to increase, multiple train cooperative control is
currently an important technology to further improve the efficiency of train operation and line passing
capacity. However, considering various factors such as the nonlinearity and uncertainty of the train dynamics
model and the complexity of the line conditions, this creates even greater demands on the design of the
controller. In this study, we propose an adaptive cooperative tracking control method for multiple trains
using adjacent information. For the multiple-train coordinated tracking control in the presence of model
uncertainties, unknown parameters, and external disturbances, a distributed cooperative control scheme for
multiple trains is designed using the displacement, velocity, and acceleration information of adjacent trains,
combined with radial basis function neural networks and adaptive methods. A fast high-order sliding mode
observer is used to estimate the train velocity and acceleration information. Stability and convergence are
proved for single and multiple trains utilizing Lyapunov stability analysis. Simulation examples demonstrate
the effectiveness of the proposed controller.

INDEX TERMS Adaptive methods, cooperative control, multiple trains, radial basis function networks,
stability analysis, trajectory tracking, uncertainty.

I. INTRODUCTION
With its safety, efficiency and low carbon footprint, urban
railway transportation is becoming an indispensable mode
of transport in the development of major cities [1]. The
development of contemporary railway systems has been
considerably aided by communication-based train control
systems (CBTC) [2]. For signaling systems equipped with
CBTC, which operate in moving block or virtual block forms,
real-time information about the trains in front of them, vehicle
characteristics and other information is used to calculate the
moving authority of trains through advanced communication,
positioning and control technologies, thereby reducing the
interval between trains and improving the operational effi-
ciency of railway lines, and has been widely used in urban
rail transit systems [3]. Automatic train operation (ATO) is
a very important part of the train control system, acting in
all phases of train operation, and one of its main tasks is
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speed regulation. As train operating intervals continue to
shorten and train speeds continue to increase, it is necessary
to explore control strategies that use adaptive and intelligent
control methods.

In recent decades, a great deal of research has been carried
out by researchers on methods for single train automatic
operation control. In [4], a model-free adaptive controller
combining neural networks (NN) and proportional-integral-
derivative (PID) algorithms is proposed in order to be able to
adjust the PID gain adaptively and efficiently. The proposed
NNPID controller has better tracking and is more energy
saving. For high-speed trains with time-varying resistance
coefficients, an adaptive model predictive control (MPC)
technique was proposed in [5]. An adaptive update rule for
estimated parameters and a multiply restricted MPC for the
estimated system are combined to create the adaptive MPC.
In [6], a robust adaptive nonsingular terminal sliding mode
control technique was developed for solving the automatic
train operation system’s position and velocity tracking control
problem in the presence of unknown parameters, model
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uncertainty, and external disturbances. In [7], intelligent
train operation algorithms based on expert systems and
reinforcement learning are proposed without the use of
accurate train models and offline optimized speed profiles,
respectively, and the superiority of the algorithms is verified
by means of a simulation platform.

Trains are not isolated in the line network and the states
between trains are coupled. In addition, with the develop-
ment of advanced communication technologies, train-to-train
communication in real time has become possible [8]–[10].
Multi-train cooperative control is currently an important
technology to further improve the efficiency of train operation
and line passing capacity. In [11], the implementation
of one-parameter adaptive cooperative control of multiple
trains in predecessor following and bidirectional architecture
modes is proposed. To solve the problem of ‘‘explosion
of complexity’’ in backstepping method design, a dynamic
surface control mechanism is added into the algorithm.
A multi-agent system is used to model the motion of
high-speed trains in [12]. The new coordinated cruise control
strategy for multiple trains based on neighbouring trains’
information was designed to ensure that each train can track
the intended speed and that high-speed trains run safely and
efficiently, using potential fields and the LaSalle’s invariance
principle. Based on the multi-agent system model above,
[13] investigates the coordinated control of multiple high-
speed trains in the presence of actuator saturation. In [14],
the cooperative control for multiple high-speed trains was
addressed to achieve the speed and position of high-speed
trains that are assured to be constrained to certain speed
limits and authorized distances certified by automatic train
protection and movement authority respectively. In [15],
a novel distributed optimal control algorithm based on a
distributed message passing mechanism was developed using
an alternating direction method of multipliers and a model
predictive control approach. The controller is updated based
on train information with common global variables rather
than exchanging any information with other trains. In [16],
considering train controller output constraints and safe train
following distance, a multi-train cooperative control model
was proposed to adjust train following headway based on
cooperative adaptive cruise control. The simulation results
were analysed to illustrate the effectiveness of the proposed
method.

In the problem of multi-train cooperative control, the
design of this controller poses higher requirements, consider-
ing various factors such as the non-linearity and uncertainty
of the train dynamics model and the complexity of the line
conditions. The combination of non-linear and intelligent
control methods can effectively solve these problems. A neu-
ral networks-based auto-tune PID-like controller is suggested
in [17] for underwater vehicles. The neural network’s purpose
is to automatically estimate the best set of PID gains for
system stability. In [18], a full-regulated neural network with
a double hidden layer recurrent neural network structure is
presented for a class of dynamic systems and an adaptive

global sliding-mode controller is based on this. When com-
pared to a general neural network with a single hidden layer,
the novel proposed network may improve network accuracy
and generalization, reduce network weights, and speed up
network training. In [19], the backstepping method was used
to develop a direct one-parameter adaptive neural network
control scheme for a class of nonlinear stochastic strict-
feedback systems with unknown time delays. In [20], neural
networks are used to design adaptive motion controllers for
underactuated wheeled inverted pendulum model. In [21],
based on the characteristics of fuzzy neural network without
prior knowledge of uncertainty and sufficient observed data,
the online approximation of the uncertain dynamics of the
robot is carried out, and the adaptive fuzzy neural network
control is proposed. In [22], a fuzzy gain-scheduling sliding
mode control method is proposed by combining sliding
mode control with fuzzy logic, thus solving the attitude
regulation problem of unmanned quadcopters with parameter
uncertainty and external disturbances.

Motivated by these above observations, this study pro-
poses an adaptive cooperative tracking control method for
multiple trains using adjacent information. Specifically,
the contributions of this study are presented as follows:
(1) For the multiple train coordinated tracking control in
the presence of model uncertainties, unknown parameters
and external disturbances, a distributed cooperative control
scheme formultiple trains is designed using the displacement,
velocity, and acceleration information of adjacent trains,
combined with radial basis function neural networks and
adaptive methods. Neural networks with online adjustment
characteristics and adaptive methods are used to estimate
uncertain dynamicsmodels and external disturbances, and the
stability and convergence of single and multiple trains are
guaranteed by Lyapunov methods. (2) Based on the above
design, an observer-based multi-train cooperative tracking
controller is designed to reduce the burden on sensors
while maintaining good tracking performance, with only the
position information of neighboring trains provided.

The remaining of this paper is organized as follows.
Section 2 introduces the problem formulation and preliminar-
ies. Section 3 gives the design of coordinated tracking control
of multiple trains. The stability analysis of the designed
controllers is given in Section 4. Simulation results are given
in Section 5 to illustrate the effectiveness of the proposed
methods. Conclusions are presented in Section 6.

II. PROBLEM FORMULATION
Considering only the longitudinal motion of the train, the
dynamics of the train i can be described as follows [23]:

dxi (t)
dt
= vi (t)

dvi (t)
dt
= ai (t)

Miai (t) = Fi (t)− fib (vi)− fie (xi, vi, t)
−die(xi, vi, t)

fie = fir + fic + fit

(1)
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where t represents a continuous time indicator; Mi denotes
the total mass of the train, including the weights of the
train, passengers and baggage; xi (t), vi (t), ai (t) are the real-
time displacement, velocity, and acceleration, respectively;
Fi (t) is implemented force, that is, the traction or braking
force of the train; fib (vi) is the specific basic resistance
of the train operation.; fie (xi, vi, t) is the combination of
the additional resistance, which includes ramp resistance fir ,
line curve resistance fic and tunnel resistance fit ; die(xi, vi, t)
represents unmolded dynamics, such as time-varying external
disturbance.

The basic resistance consisting mainly of mechanical
and air resistance can be expressed as the following Davis
equation [24]:

fib (vi) = ci0 (t)+ ci1 (t) vi + ci2 (t) v2i (2)

where ci0 (t), ci1 (t) and ci2 (t) are the time-varying empir-
ical positive coefficients. Generally these coefficients are
obtained through numerous experiments.

Therefore, the train dynamics model adopted in this paper
is rewritten as follows:{

ẋi (t) = vi (t)
v̇i (t) = ui (t)− fi (vi)− di(xi, vi, t)

(3)

where di (xi, vi, t)=(fie (xi, vi, t)+die (xi, vi, t) )/M , fi (vi) =
fib (vi) /M and ui (t) = Fi (t) /M is the acceleration and
deceleration of train i, which is chosen to be designed as the
control input later. To design the controller, there is a need to
introduce the following assumptions.
Assumption 1: The pre-specified trajectory xd for the first

train is known and bounded. The first and second order
derivatives of xd are also known and bounded.
Assumption 2: The Davis equation coefficients ci0 (t),

ci1 (t), ci2 (t) and the combined disturbance di(xi, vi, t) are
all unknown but continuously bounded, that is, |ci0 (t)| ≤c

+

i0,
|ci1 (t)| ≤ c

+

i1, |ci2 (t) | ≤c
+

i2, |di (xi, vi, t) | ≤d
+

i .
Assumption 3: The ideal neural network weights W ∗ are

bounded, i.e., ‖W ∗‖≤ ||W ∗N ||, where ||W
∗
N || is the boundary

of ‖W ∗‖.
For the train dynamics model (3), considering that the

basic resistance and combined disturbances of the trains
are unknown, the multiple train cooperative control law is
designed with the following control objectives: to ensure that
the displacement and velocity of the first train can follow the
desired trajectory, that the displacement of the following train
canmaintain a pre-specified distance from the preceding train
while the velocity remains consistent, and that the closed-
loop signals for all trains are guaranteed to be uniformly
ultimately bounded.

III. CONTROL DESIGN
A. COOPERATIVE CONTROL DESIGN
To begin with the cooperative tracking control design, define
the following displacement tracking errors{

e1 = xd − x1
ei = xi−1 − xi + Ls, i = 2, . . . , n

(4)

where xi is the real-time position of train i, xd and Ls
denote the pre-specified position trajectory versus time for
the first train and separation distance for the following train,
respectively. The derivative of ei is obtained as{

ė1 = vd − v1
ėi = vi−1 − vi, i = 2, . . . , n

(5)

The filtered error is designed as follows

si = λiei + ėi, i = 1, . . . , n (6)

where λi is a positive design parameter for train i. It can
be known from (6) that the filtered error variables only
take into account the information of train i. To introduce
information about the adjacent trains, the coupling error
variable is defined as follows{

Ei = µisi − si+1, i = 1, . . . , n− 1
En = µnsn

(7)

where µi is a positive constant design parameter. It can be
concluded that the boundedness or asymptotic convergence of
si and Ei are equivalent, which is briefly explained as follows.

Let M1 = [s1s2 . . . sn]T and M2 = [E1E2 . . .En]T . The
relationship of M1 and M2 is governed by M2 = AM1,
where

A =



µ1 −1
µ2 −1

. . .
. . .

. . . −1
µn

 .

Because µi for all i are positive, A is a non-singular matrix.
This guarantees the above perspective.

Define Ji as
Ji = µiλiėi + µiv̇i−1 − λi+1ėi+1 + v̇i+1,

i = 1, . . . , n− 1
Jn = µnλnėn + µnv̇n−1.

(8)

The time derivative of (7) can be calculated as

Ėi = µiṡi − ṡi+1
= µi (λiėi + v̇i−1 − v̇i)− (λi+1ėi+1 + v̇i − v̇i+1)

= − (µi + 1) v̇i + Ji. (9)

In this study, considering its excellent universal approxi-
mation property [25], the radial basis function (RBF) neural
network will be used to approximate fi (vi) as follows{

fi = W ∗T h (Z )+ ε
f̂i = Ŵ T h(Z )

(10)

where Z is the input vector of the neural network; W ∗ is
the neural network ideal weights; ε is the neural network’s
approximation error and εN is the boundary value of ε; h (Z )
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is the basis function vector, and the basis function is chosen
as

hj = exp(

∥∥Z − ncj∥∥2
2n2bj

) (11)

where j, ncj, nbj represents the jth node of the hidden layer of
the neural network, the central value of the Gaussian function
and the width of the Gaussian function, respectively.

The cooperative tracking control law is designed as
ui =

ki + 0.5 (µi + 1)
µi + 1

Ei +
1

µi + 1
Ji + f̂i + tanh (ωiEi) d̂i,

i = 1, . . . , n− 1

un =
kn + 0.5µn

µn
En +

1
µn

Jn + f̂n + tanh(ωnEn)d̂n

(12)

where ki is positive design constant; f̂i is the estimation of the
unknown basic operating resistance fi (vi); d̂i is updated by
the following adaptive laws:{
˙̂di=δi((µi + 1)Eitanh (ωiEi)− σid̂i) i=1, . . . , n− 1
˙̂dn=δn(µnEntanh (ωnEn)− σnd̂n)

(13)

where δi, σi are positive design parameters. The RBF neural
network weights are updated by{
˙̂Wi=γi (µi + 1)Eih (Z )− γiηiŴi i=1, . . . , n− 1
˙̂Wn=γnµnEnh (Z )− γnηnŴn

(14)

with γi> 0 and ηi> 0 being design parameters.

B. COOPERATIVE CONTROL DESIGN USING OBSERVER
As can be noted from the design above, the controller requires
the displacement, velocity, and acceleration of neighbouring
trains. For the consideration of reducing the amount of
information to be collected, this section designs a multi-
train cooperative controller based on a fast high-order sliding
mode differentiator, with the advantage that only position
information is required, while velocity and acceleration
information is obtained through the observer. First, it is
assumed that the following inequalities hold:{

|ṽi| =
∣∣v̂i − vi∣∣ ≤ κai

|ãi| =
∣∣âi − ai∣∣ ≤ κbi (15)

where κai and κbi are positive constants indicating the
boundary value of the observation error; ṽi = v̂i − vi and
ãi = ãi−ai are the observation errors. It is noted that velocity
and acceleration information is not available in this section,
so the variables are redefined as follows

ŝi = λiei + ˙̂ei, i = 1, . . . , n
Êi = µiŝi − ŝi+1, i = 1, . . . , n− 1
Ên = µnŝn
Ĵi = µiλi ˙̂ei + µi ˙̂vi−1 − λi+1 ˙̂ei+1 + ˙̂vi+1,

i = 1, . . . , n− 1
Ĵn = µnλn ˙̂en + µn ˙̂vn−1.

(16)

Similar to the design procedures in the above section,
the cooperative control using observer is proposed
as follows

ui =
ki + 0.5
µi + 1

Êi +
1

µi + 1
Ĵi + f̂i + tanh

(
ωiÊi

)
d̂i,

i = 1, . . . , n− 1

un =
kn + 0.5
µn

Ên +
1
µn

Ĵn + f̂n + tanh
(
ωnÊn

)
d̂n,

(17)

where d̂i is updated by
˙̂di = δi((µi + 1) Êitanh

(
ωiÊi

)
− σi

∣∣∣Êi∣∣∣ d̂i),
i = 1, . . . , n− 1

˙̂dn = δn
(
µnÊntanh

(
ωnÊn

)
− σn

∣∣∣Ên∣∣∣ d̂n) ; (18)

˙̂Wi is updated by
˙̂Wi = γi (µi + 1) Êih (Z )− γiηi

∣∣∣Êi∣∣∣ Ŵi,

i = 1, . . . , n− 1
˙̂Wn = γnµnÊnh (Z )− γnηn

∣∣∣Ên∣∣∣ Ŵn.

(19)

IV. STABILITY ANALYSIS
Lemma 1. It is said that a group of multiple trains is

platoon stable if

given any τ > 0, ‖ei (0) ||∞ < ξ ⇒ sup‖ ei (·) ||∞ < τ

where ξ is a constant [11].
Theorem 1: Under Assumptions 1-3, considering the

train dynamics model (3), the proposed controller (12) and
adaptation laws (13) and (14) guarantee that all the signals in
the closed-loop system are uniformly ultimately bounded.
Proof of Theorem 1: Choose the following Lyapunov

candidate as

Vai =
1
2
E2
i +

1
2γi

W̃ T
i W̃i +

1
2δi

d̃2i (20)

and its time derivative can be calculated as

V̇ai = EiĖi +
1
γi
W̃ T
i
˙̂Wi +

1
δi
d̃i
˙̃di. (21)

Select W̃i:=Ŵi−W ∗ and d̃i:=d̂i−di as the estimation errors.
Substituting (12) into (9), we have

Ėi = − (ki + 0.5 (µi + 1))Ei − (µi + 1)
(
W̃ T
i h (Z )− εi

)
− (µi + 1)

(
tanh (ωiEi) d̂i − di

)
. (22)

Therefore, the Lyapunov function can be written as

V̇ai =
1
δi
d̃i
˙̃di − Ei (µi + 1)

(
tanh (ωiEi) d̂i − di

)
+

1
γi
W̃ T
i
˙̂Wi − (ki + 0.5 (µi + 1))E2

i

−Ei (µi + 1)
(
W̃ T
i h (Z )− εi

)
. (23)
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FIGURE 1. Block diagram of the adaptive cooperative tracking control system using the observer.

Incorporating the adaptive laws (13) and (14), one has

V̇ai
= −σid̃id̂i + (µi + 1)Ei (di − tanh (ωiEi) di)

−kiE2
i − ηiW̃

T
i Ŵi − 0.5 (µi + 1)E2

i + εi (µi + 1)Ei.

(24)

According to [26], [27], we obtain some inequalities as
follows

(µi + 1) d+i (|Ei| − Eitanh (ωiEi)) ≤ 0.2785
(µi + 1)d+i

ωi

−σid̃id̂i ≤ σi
d2i
2
− σi

d̃2i
2

−ηiW̃ T
i Ŵi ≤ ηi

∥∥W ∗i ∥∥2
2
− ηi

∥∥∥W̃i

∥∥∥2
2

(µi + 1) εiEi ≤ (µi + 1)
ε2i

2
+ (µi + 1)

E2
i

2
.

(25)

Equation (25) becomes

V̇ai

≤ −kiE2
i − ηi

W̃ T
i W̃i

2
− σi

d̃2i
2

+ηi

∥∥W ∗N∥∥2
2
+ (µi + 1)

ε2N

2
+ σi

d2i
2
+ 0.2785

µi + 1
ωi

d+i .

(26)

Let 

αi :=

min{ki,
ηi

2
,
σi

2
}

max{
1
2
,
1
2γi
,

1
2σi
}

βi := ηi

∥∥W ∗N∥∥2
2
+ (µi + 1)

ε2N

2
+ σi

d2i
2

+0.2785
µi + 1
ωi

d+i .

(27)

It gives

V̇ai ≤ −αiVai + βi. (28)

Multiplying (28) by eαit and integrating from 0 to t , yields

0 ≤ Vai (t) ≤ e−αit
(
Vai (0)−

βi

αi

)
+
βi

αi
, ∀t > 0. (29)

Equation (29) shows that Vai (t) is bounded. And it can be
concluded that 

|Ei| ≤

√
2βi
αi∥∥∥W̃i

∥∥∥ ≤ √2γiβi
αi∣∣∣d̃i∣∣∣ ≤ √2δiβi

αi
.

(30)

The error variables can be adjusted to be arbitrarily small by
choosing appropriate parameters. The proof is completed.
Theorem 2: Under the Assumptions 1-3, considering the

train dynamics model (3), the proposed controller (12) and
adaptation laws (13) and (14) guarantee that a group of
multiple trains is platoon stable.
Proof of Theorem 2: Choose the following Lyapunov

function for multiple trains:

Vb =
∑n

i=1
Vai. (31)

The derivative of (31) can be calculated as

V̇b ≤ −
∑n

i=1
(αiVai)+

∑n

i=1
βi ≤ −AVb +

∑n

i=1
βi

(32)

where A = min{α1, . . . ,αn}. From (32), it can be obtained
that

0 ≤ Vb (t) ≤ e−At
(
Vb (0)−

∑n
i=1 βi

A

)
+

∑n
i=1 βi

A
, (33)

which indicates that there exists a time moment T such that
for any t > T , the coupling error Ei, estimation error W̃i and
d̃i is ultimately bounded by

|Ei| ≤

√
2

∑n
i=1 βi

A∥∥∥W̃i

∥∥∥ ≤ √2γi

∑n
i=1 βi

A∣∣∣d̃i∣∣∣ ≤ √2δi

∑n
i=1 βi

A
.

(34)

Platoon stability is guaranteed for multiple trains. The proof
is completed.
Theorem 3: The adopted train dynamics model is given

by (3). Under Assumptions 1-3, if the control law is designed
as (17) and adaptive law (18) and (19) are selected, then the
closed-loop system is uniformly ultimately bounded.
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Proof of Theorem 3: The Lyapunov function is considered
as follows

Vci =
1
2γi

Ŵ T
i Ŵi. (35)

The derivative of Vci is calculated as

V̇ci =
1
γi
Ŵ T
i
˙̂Wi. (36)

Incorporating (19), one has

V̇ci = Ŵ T
i

(
(µi + 1) Êih (Z )− ηiŴi

∣∣∣Êi∣∣∣)
≤ −

∥∥∥Ŵi

∥∥∥ ∣∣∣Êi∣∣∣ (ηi ∥∥∥Ŵi

∥∥∥− (µi + 1) h+
)

(37)

where ‖h (Z )‖ ≤ h+. Noticing that V̇ci ≤ 0 if
∥∥∥Ŵi

∥∥∥ >

(1/ηi) (µi + 1) h+, according to the Lyapunov theorem, Ŵi
is ultimately bounded by∥∥∥Ŵi

∥∥∥ ≤ 1
ηi
(µi + 1) h+. (38)

The Lyapunov function is considered as follows

Vdi =
1
2δi

d̂2i . (39)

Similarly, in view of the adaptive law (18), the time derivative
of (39) can be calculated as

V̇di =
1
δi
d̂i
˙̂di = d̂i

(
(µi + 1) Êitanh

(
ωiÊi

)
− σi

∣∣∣Êi∣∣∣ d̂i)
≤ −

∣∣∣d̂i∣∣∣ ∣∣∣Êi∣∣∣ (σi ∣∣∣d̂i∣∣∣− (µi + 1)
)
. (40)

Noticing that V̇di ≤ 0 if
∣∣∣d̂i∣∣∣> (1/σi)(µi+1), d̂i is ultimately

bounded by ∣∣∣d̂i∣∣∣ ≤ 1
σi
(µi + 1). (41)

Consider the Lyapunov function

Vei =
1
2
E2
i . (42)

Substitute (17) into (9), it yields

Ėi = −J̃i − (ki + 0.5) Êi − (µi + 1)
(
W̃ T
i h (Z )− εi

)
− (µi + 1)

(
tanh

(
ωiÊi

)
d̂i − di

)
. (43)

We have the derivative of (42) as follows:

V̇ei

= −J̃iEi − (ki + 0.5) ÊiEi − (µi + 1)Ei
(
W̃ T
i h (Z )− εi

)
− (µi + 1)Ei

(
tanh

(
ωiÊi

)
d̂i − di

)
= − (ki + 0.5)E2

i − Ei
(
(ki + 0.5) Ẽi + J̃i

)
− (µi + 1)Ei

(
W̃ T
i h (Z )− εi

)
− (µi + 1)Ei

(
tanh

(
ωiÊi

)
d̂i − di

)
. (44)

It is worth noticing the above fact and the following
inequalities

Ẽi ≤ µiκai + κa(i+1)
J̃i ≤ κb(i+1) + λi

(
κai + κa(i+1)

)
+µi

(
κb(i−1) + λiκa(i−1) + λiκai

)
.

(45)

Equation (44) becomes

V̇ei ≤ − (k + 0.5)E2
i + |Ei| β̄i

≤ −k1E2
i +

β̄2i

2

= −ᾱiVei +
1
2
β̄2i . (46)

Multiplying (28) by eᾱit and integrating from 0 to t , it follows

0 ≤ Vei (t) ≤ e−ᾱit
(
Vei (0)−

β̄2i

2ᾱi

)
+
β̄2i

2ᾱi
, ∀t > 0. (47)

Therefore, Vei (t) is bounded. And it can be concluded that

|Ei| ≤

√
β̄2i

ᾱi
. (48)

The proof is completed.
Theorem 4: The adopted train dynamics model is given

by (3). Under Assumptions 1-3, if the control law is designed
as (17) and adaptive law (18) and (19) are selected, then a
group of multiple trains is platoon stable.
Proof of Theorem 4: The Lyapunov function is considered

as follows

Vf =
∑n

i=1
Vei (49)

and take derivative Vf of along time, yields

V̇f ≤ −
∑n

i=1
(ᾱiVei)+

∑n

i=1

(
1
2
β̄2i

)
≤ −BVf +

∑n

i=1

(
1
2
β̄2i

)
(50)

with B = min{ā1, . . . ,ān}. Thus, by following along the
similar lines with the proof of Theorem 2, we can conclude
that

|Ei| ≤

√∑n
i=1

(
β̄2i

)
B

. (51)

Platoon stability is guaranteed for multiple trains. The proof
is completed.

V. SIMULATION RESULTS
Simulation examples for tracking control are conducted to
verify the effectiveness of the proposed control method. The
number of trains is 4 in the simulation. The pre-specified
trajectory for the first train and the disturbance for all
trains are given in Figures 2 and 3 respectively. All trains
have an initial speed of 0 and initial positions of 0 m,
400 m, 800 m and 1200 m respectively. The distance
between the two trains is set at 400 m. The basic resistance
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FIGURE 2. The pre-specified position and velocity trajectory for train 1.

FIGURE 3. The disturbance for all trains.

forces of trains are simulated by 0.9+ 0.002v1+0.00015v21,
1.0+ 0.004v2+0.0002v22, 0.7+ 0.001v3+0.0004v23, and
0.8+ 0.002v4+0.0003v24, respectively.
The simulation will use the following fast high-order

sliding mode observer, whose stability is demonstrated
in [28].

˙̂xi = −ρi1
∣∣x̂i − xi∣∣23 sgn(x̂i − xi)− ρi1 (x̂i − xi)+ v̂i

˙̂vi = −ρi2
∣∣∣v̂i − ˙̂xi∣∣∣12 sgn (v̂i − ˙̂xi)− ρi2 (v̂i − ˙̂xi)+ âi

˙̂ai = −ρi3
∣∣∣âi − ˙̂vi∣∣∣

q
p sgn

(
âi − ˙̂vi

)
− ρi3(âi − ˙̂vi)

(52)

The design parameters applying Theorem 1-2 are chosen
as: λi = 4,µi = 10,ωi = 0.15,ki = 20,σi = 0.001,
δi = 1e−7, γi = 1,ηi = 0.001. The design parameters
applying Theorem 3-4 are chosen as: λi = 5,µi = 1,
ωi = 0.15,ki = 25,σi = 0.001,δi = 1e−7, γi = 1,
ηi = 0.001,ρ11 = 8,ρ12 = 4,ρ13 = 2,ρi1 = 6,ρi2 = 3,
ρi3 = 1,q = 7,p = 9,i = 1, . . . , 4. The initial values of d̂i are

FIGURE 4. Position values of the four trains versus time using Theorem
1-2.

FIGURE 5. Velocity values of the four trains versus time using Theorem
1-2.

FIGURE 6. Position tracking errors of the four trains using Theorem 1-2.

set as 0.0001. The input vectors of the RBF neural networks
are set to Z = [ei, ėi]T . The widths of the Gaussian basis
function of the neural networks containing 11 nodes are all
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FIGURE 7. Velocity tracking errors of the four trains using Theorem 1-2.

FIGURE 8. Neural networks estimation using Theorem 1-2.

FIGURE 9. Neural networks estimation error using Theorem 1-2.

10, with the following central values:[
−20 − 16 − 12 − 8 − 4 0 4 8 12 16 20
−20 − 16 − 12 − 8 − 4 0 4 8 12 16 20

]
. (53)

The initial weights of the neural networks are all 0.1.

FIGURE 10. Position values of the four trains versus time using Theorem
3-4.

FIGURE 11. Velocity values of the four trains versus time using Theorem
3-4.

FIGURE 12. Position tracking errors of the four trains using Theorem 3-4.

The simulation results for Theorems 1-2 are shown in
Figures 4-9. The first train tracks the given trajectory, while
the following trains maintain the set distance while the speed
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FIGURE 13. Velocity tracking errors of the four trains using Theorem 3-4.

FIGURE 14. Neural networks estimation using Theorem 3-4.

FIGURE 15. Neural networks estimation error using Theorem 3-4.

converges. From Figures 6-7 it can be seen that the tracking
errors for displacement and speed are small. The simulation
results for Theorems 3-4 are shown in Figures 10-17. The
tracking performance for position and velocity is given in
Figures 10-13. According to Figures 16-17, the observer
used in the simulation is able to observe the speed and
acceleration of the trains very well. It is observed that the

FIGURE 16. Velocity observations for the four trains.

FIGURE 17. Acceleration observations for the four trains.

cooperative controllers of Theorems 3-4 have a slight loss
of tracking accuracy but significantly reduce the burden of
sensor acquisition due to multi-state information through the
observer technique. It is apparent that the designed control
schemes can effectively ensure that the closed-loop system
signals are bounded and the platoon stability is achieved.

VI. CONCLUSION
This paper designs multiple train distributed cooperative
tracking control schemes. A combination of radial basis
function neural networks and adaptive methods is used to
cope with model uncertainties, unknown parameters and
external disturbances in the train operating environment.
A fast high-order sliding mode observer is used to estimate
the train velocity and acceleration information. Stability and
convergence are proved for single and multiple trains by
means of Lyapunov stability analysis. Simulation examples
demonstrate the effectiveness of the proposed controller.
While uncertain dynamics and external disturbances have
been considered in this paper, due to the complexity of the
actual train operating environment, there are still several
problems with multiple train control that have yet to be
investigated, such as sensor delays and actuator saturation,
which will be explored in future work.
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