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ABSTRACT Industrial Internet of Things (IIoT) is based on data acquisition and data analytics technologies.
A variety of and a large amount of data is collected at management nodes with computing and storage
capacities. Recently, the computing ability, denoted by the edge, has been located closer to the service fields
to achieve faster and more reliable data-driven service provisioning. Edge computing is a useful resource to
facilitate smart manufacturing based on IIoT. Since the current IndustrialWireless Sensor Networks (IWSNs)
technologies for IIoT do not perfectly cover all the demands of industries with smart manufacturing such as
agile flexibility with asset movement. A major future demand for IWSNs should be to support the mobility
of assets in a wireless environment. This paper investigates the shortages of current technologies such as
WirelessHART and proposes a novel wireless networking scheme based on edge-based cognitive computing
in order to support reliable and low latency communication of mobile assets, which is involved in the
smart manufacturing processes. We devise a two-tier geographical networking (TTGN) system that supports
position-based mobility detection and networking. Also, resource allocation for the reliable and real-time
has been obtained based on the game theory. Evaluation results demonstrate that TTGN can guarantee a
high data transmission success ratio, as well as a fast delivery ratio for link path establishment.

INDEX TERMS Edge computing, Industrial Internet of Things, mobility, resource allocation.

I. INTRODUCTION
Recent advances in computing and wireless communication
technologies are leading to the evolution of factory automa-
tion and smart manufacturing, named Industry 4.0 [1]. With
the novel version of industrial technologies, companies, and
manufacturers could accommodate newly-driven goals faced
with constant and increased supplies of various products
and growing demands for services [2]. To accommodate
the increasing demand for agility, flexibility, low cost, and
data-driven reconfigurable production and manufacturing in
the smart factory should be developed with intelligent and
low-cost automation of industrial processes [3].

In the context of intelligent manufacturing, IWSNs bring
an array of advantages over wired systems in terms of elim-
ination of the need for complex, expensive, and difficult
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installation of wired systems in placing production robots
and manufacturing machines with sensors, reliable and
real-time data gathering, and machine controls, etc [4]. The
self-configuring and self-organizing capabilities of IWSNs
make it an ideal choice to ensure modular structured smart
factories with cyber-physical systems for decentralized and
real-time decisions both internally and across organizational
services for participants of the value chain [5]. Furthermore,
IWSNs create a highly reliable system that rapidly responds
to real-time events.

A large amount of data is generated from IIoT devices
installed over IWSNs and the collected data bring infor-
mation about the operations of factory [6]. The collected
data from IIoT needs to be relayed, scheduled, and stored in
real-time manner [7]. In addition, IIoT in the manufacturing
system requires attributes such as location awareness and low
latency [8]. The advanced factories deployed IIoT can also
self-configure the equipment and material flows depending
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FIGURE 1. Industrial IoT system architecture for industry 4.0.

on the product being built and schedule changes, and then
see the impact of those changes in real-time [9]. The smart
factories that Industry 4.0 fosters should rely on the recon-
figurable manufacturing unit, reconfigurable production line,
and intelligent data acquisition which enable the application
of business logic between the downstream data of the cloud
service and the upstream data of the IIoT configured with
IWSNs [10]. In other words, in the Industry 4.0 domain, there
are multiple production cells (PCs) supported by IWSNs.
Each PC includes a wide variety of industrial assets such
as producing robots, autonomous mobile robots, various
vehicles, sensing devices, workers with handheld devices,
and so on [11].

Nowadays, WirelessHART [12] is emerging as a stan-
dard solution for IWSNs, providing a simple, reliable,
and secure communication protocol [13]. WirelessHART is
one of the first standards of a wireless sensor networking
technology developed for industrial process automation
and based on the Highway Addressable Remote Trans-
ducer (HART) Protocol [14]. Also, WirelessHART is a
global IEC-approved standard (IEC 62591) that specifies an
interoperable self-organizing mesh technology. Industry field
devices and instruments form wireless networks that dynam-
ically mitigate obstacles in the process environment with
WirelessHART [15]. IWSNs based on the WirelessHART
can communicate data back to host systems securely and
reliably, and can be used for both control and monitoring
applications [16]. Furthermore, WirelessHART is backward
compatible with HART, which can send and receive digital
information over analogue wires between control and moni-
toring systems.

The smart factory needs to be highly scalable, reliable,
and real-time systems [17]. In addition, a self-organization
dynamic scheduling with agility is very important [18]. Agile
flexibility allows advanced factories to adapt the schedule
and product changes with minimal intervention. Agility can
increase factory uptime and yield byminimizing changeovers
due to scheduling or product changes for flexible scheduling.

However, the current IWSNs technologies such as Wire-
lessHART have the inherent restriction with respect to the

mobility support of assets since they have been initially
designed to take over the same missions from reliable and
secure wired technology like HART and to take advantage of
wireless networks [16]. A major future demand for industrial
wireless systems could be the capability to support the mobil-
ity [19]. Thus, this paper explores the way to support mobility
of assets in the smart factory environments.

There are multiple production cells, and each production
cell includes various industrial assets shown in Figure 1.
Edge computing aims to support the operation, maintenance,
scalability, and reliability of the data by creating a framework
with the capability of integrating core capabilities such as
networking, computing storage, and application. Also, all
the edges are managed by a cloud platform to cover the
networking of a smart factory.

In this paper, a mobility support scheme is proposed in the
Industry 4.0 domains as shown in Figure 1. The proposed
mobility support scheme has goals to achieve reliable and
low latency communication for data acquisition and control
transport. The proposed scheme is built on WirelesHART
and relies on the edge computing paradigm to facilitate faster
cognitive computing and offloading from the cloud to cover
the whole domains in a smart factory. The main contributions
of the proposed mobility support scheme in this paper are as
follows:
• it provides a fine-grained mobility detection and
resourcemanagement mechanism relying on a deep neu-
ral network-based localization technique;

• the long-term movement prediction is addressed to
support successive mobility support of an asset with
long-term resource allocation based on game theory;

• fast link path construction based on resource allocation
andmanagement mechanisms is presented to tune up the
current WirelessHART protocol.

The rest of this paper is organized as follows. In section II,
we present the state-of-the-art in terms of the smart factory,
edge computing, cognitive computing, and localization tech-
nologies. In section III, the proposedmobility support scheme
is addressed in detail. Then, the various experimental results
are explained in section IV. Finally, we conclude this paper
with performance evaluation results.

II. STATE-OF-THE-ART
In this section, the recent studies are analyzed to find out
shortages of the current works related to the smart manu-
facturing and factory automation with novel computing and
communication technologies.

A. WSN AND IoT FOR INDUSTRIES
To alleviate limitations of the traditional wired system like
HART, wireless networking technologies such as IEEE
802.15.4 [20], ISA 100.11A [21], and WirelessHART are
exploited in the industrial system denoted by IWSNs. The
wireless networks promise lower installation costs rather than
wired systems since each wireless sensor could install easily
on industrial assets and instruments [22]. While the wired
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network leads to more complex wiring, the wireless networks
are easy to set up simply because it has self-organization
ability. Particularly, they facilitate the addition, removal, and
relocation of industry devices such as lathe, milling, produc-
tion robots, and so on for newly-demanded low-volume, high-
variety production.

Discussion on IWSNs techniques to find favourable tech-
nologies and standards for industrial applications is a highly
complicated subject since they share the same physical layer
specifications (IEEE 802.15.4 2.4GHz DSSS radio) and only
bear the slightest resemblance in the higher layers. However,
ISA 100.11A cannot support backward compatibility with the
widely used HART network in the industrial process. Thus,
WirelessHART is a suitable wireless solution for satisfying
the various industrial requirements such as real-time, relia-
bility and security, and support backward compatibility with
native HART network for reducing the installation costs [13].
This paper focuses on WirelessHART standard as the main
wireless solution for industrial processes.

WirelessHART has been standardized to fill the existing
gap in the industrial wireless communication standardization.
It is an extension of the widely used HART communication
protocol. It is designed to be not only simple-to-use, self-
organizing, self-healing, and flexible, but also reliable and
secure. Also, WirelessHART network is a centrally managed
mesh network [23]. It is built upon IEEE 802.15.4 physical
layer with datalink, network and application layer. Industrial
security and authentication are reached through 128-bit AES
algorithms that cover end-to-end and hop-to-hop commu-
nications. Media access control (MAC) is based on time
division multiple access (TDMA) scheduled with frequency
hopping. Reliability is achieved using methods of frequency
diversity, path diversity, andmessage delivery retrials. Energy
consumption could be efficiently optimized by proper man-
agement of the communications schedule. Security, relia-
bility, scalability, low energy consumption, and backward
compatibility are fundamental in WirelessHART. However,
the current WirelessHART easily suffers from asset mobility
in terms of such reliable and real-time properties.

B. EDGE FOR COGNITIVE COMPUTING
Edge computing extends the capabilities of computation,
network connection, and storage from the cloud to the edge
of the network [8]. The development of smart applications
based on edge computing is continuously expanding more
and more toward our living places, manufacturing domains,
and even transportations areas. The next generation intelli-
gent manufacturing, so-called smart factory, is composed of
a variety of device components such as autonomous mobile
robots (AMRs) transporting factory assets through logistics,
robotic production lines with programmable logic controllers
(PLCs), cranes and trucks embedded with various sensors,
and so on [5]. There are static and mobile components in the
domain, and they dynamically form manufacturing cells in
order to achieve responsive operation and flexible production.
Also, sensing data should be acquired at some places and

computed for extracting information. In the smart factory,
edge computing provides added benefits of not only increas-
ing agility, real-time processing, and autonomy to create
value for intelligent manufacturing but also decreasing over-
head for centralized management of the cloud platform.

Recently, mobile edge computing has been considered as
the adequate place in even 5G mobile systems for such smart
applications [24]. The smart service provisioning is based on
cognitive computing such that data acquisition and analyt-
ics should be fulfilled in closer places for time-constrained
applications. Mobile edge computing is increasingly used
in various application designs. On the other hand, cognitive
computing for context-awareness, to generate information
or intelligence eventually, has been facing a boosting tech-
nology in the last couple of years. Recently, the state-of-
the-art researches have been worked based on deep neural
network (DNN). The DNN technologies (e.g., multi-layered
neural network, convolutional neural network, reinforcement
learning, autoencoder, etc.) are exploited in a variety of smart
applications. Thus, up-to-date studies have been worked on
communication or IoT related services such as indoor local-
ization [25], [26], user activity sensing [27], and so on.

Cognitive computing methods are based on one model:
train offline-use online. It means that data acquisition is
fulfilled as pre-operation separately; then, data training into
designed DNN is performed at a cloud or a cloud-edge hier-
archy as an offline operation. Finally, trained weight of the
DNN for the real-time sensory data is used for the goal of
their application.

III. TTGN: TWO-TIER GEOGRAPHICAL NETWORKING FOR
INDUSTRIAL INTERNET OF THINGS
This section explains the proposed mobility support scheme
above the WirelessHART protocol. The proposed scheme
consists of two layers for an asset localization and mobility
management layer and a link path construction and data dis-
semination layer. Here, such two-layered organization of the
proposed scheme is called two-tier networking architecture.
As shown in Figure 2, TTGN is composed of 1) edge comput-
ing tier involving DNN based localization and position-based
mobility detection/resource allocation and 2) Industrial WSN
tier for position/link path query and networking path estab-
lishment.

A. TTGN ARCHITECTURE
TTGN shows two-tier architecture as shown in Figure 2, and
each tier is a modular subsystem according to key functionali-
ties. In the edge computing tier, the data management module
performs data acquisition from all assets in the industrial
WSN area. The industrial WSN area indicates a production
cell in an Industry 4.0 domain as shown Figure 1. In the
Industry 4.0 domain, i.e., a smart factory domain, there are
multiple production cells. Each production cell is configured
for specific product manufacturing, and then it is kept until
asset units in the cell need to be reconfigured for the other
product in the same place or a different location in a factory
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FIGURE 2. TTGN architecture over industrial WSN.

domain. Thus, the production cell (PC) can have a unique ID
(e.g., PC_ID). All the assets in a PC would be dealt with by
the PC_ID during the lifetime of the PC controlled by the
manufacturer or manager of the smart factory. The data from
all assets per PC and assets working as inter-PC missions like
AMRs are collected at the data management module and the
Radio Signal Strength (RSS) data of each device is used as
input of the geographic positioning module.

The geographic positioning module is composed of multi-
layer perceptron (MLP) based on DNN and it can predict the
location of the queried asset.

Data sets are RSSs of Bluetooth Low Energy (BLE) bea-
cons at each grid cell as shown in Industrial WSN Tier of
Figure 2. All the data sets have labelled by the coordinates.
When any asset uploads its current RSS value tuples, the
geographic positioning module can detect where the asset is
within the localization grid over a PC. After the geographic
positioning module gets a result for positioning, it tosses
the result to the mobility detection and long-term prediction
module. The module first fulfills the resource allocation to
the graph topology, and then it additionally arranges channel
resources to the mobile assets. Based on the resource alloca-
tion, the module also tries to establish a link path from/to all
assets including mobile devices. After receiving the resource
allocation information and path information, all nodes start
upstream and downstream communications.

As shown in Figure 2(a), the mobile node NM is currently
attached to sensor node 1, then it uploads its detected RSS
tuples to the edge. The edge could detect where the mobile
nodeNM exists so that it allocates channel resources to access
point 1 (A1), sensor node 1, and the mobile node NM . Since
the mobile node NM keeps moving along with the blue arrow
and it still reports its RSS data, the edge figures out that it
will be attached to sensor node 2 and will exploit the link
path node 2-A2-G (gateway). Thus, the edge provides this

information to the mobile node NM by the current link path,
i.e., the blue path in Figure 2(b), and then the mobile node
NM will connect to the sensor node 2. The mobile node NM
can communicate after being connected to the sensor node 2,
because the channel resources of all sensor nodes on the new
path (red arrows) have already been allocated.

B. MLP FOR ASSET MOBILITY DETECTION AND
PREDICTION
For the mobility detection and long-term prediction in the
edge computing tier, the fine-grained localization based on
the positioning result is fulfilled. The module can update the
current position map of all assets upon the localization grid
and then classifies whether the asset is a mobile or stationary
device. If the asset is mobile device, themobilitymanagement
phase considers a wireless networking graph topology to
update and predict the mobility of the mobile device.

The MLP should be pre-trained by a large amount of data
to accommodate the required position prediction accuracy.
In the MLP, each node can be performed by two functions:
summation and activation. The product of inputs, weights,
and bias are computed using the function by Equation 1.

fj =
n∑
i=1

wij · xi + βj, (1)

where n, xi, βj, and wij show the number of inputs, the input
variable of i, bias term, and the connection weight, respec-
tively. Sigmoid function is used for an activation function in
the MLPmodel. Sigmoid function is described in Equation 2,
and the output of the neuron j can be obtained by Equation 3
as follows:

sj(x) =
1

1+ exp (−fj)
, (2)

yi = fj ·

(
n∑
i=1

wij · xi + βj

)
. (3)

C. ASSET MOBILITY SUPPORT
This subsection presents the mobility support mechanism
in detail. The edge acquires data from all assets, and it
manages networking, positioning, and security. That is, the
edge could be the network, position, and security manager.
In WirelessHART, there is the network and security man-
ager to configure the network graph topology for uplinks
and downlinks. Thus, TTGN tunes up this manager as the
advanced network manager with mobility support ideas and
the positioning manager with geographic positioning module
and the mobility detection and long-term prediction module.

After the mobile node NM uploads its RSS data tuples to
the edge a couple of times, the edge can figure out the moving
direction and speed of the mobile node NM . It means that the
edge can determine the grid cells for the mobile node NM .
Then, the edge makes schedules to allocate channel resources
upon the link paths to be established for the mobile node NM .
TTGN deals with suchmobility management in the long-term
mobility prediction and the long-term resource allocation
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FIGURE 3. Mobility detection and long-term prediction based on edge-based network cognition.

in the mobility detection and long-term prediction module.
After the mobile node NM receives the long-term mobility
support information from the edge, it won’t upload its RSS
data to the edge. However, if the mobile node NM detects
changes related to moving direction and speed of itself, it will
report its RSS data again quickly. After that, the edge tries
to detect the new direction and speed to manage the mobile
node NM .
Figure 3 illustrates the long-term mobility detection and

the predictive establishment of link paths along with the
moving direction and speed of the mobile node. Edge which
is connected to the access points (i.e., A1 and A2) acquires
data from all assets through the access points (APs). Also,
all the assets can transmit their data and relay information
from other assets utilizing WirelessHART supporting mesh
network.

After the mobile node NM reports its RSS data tuples to
the edge several times, the edge can figure out the moving
direction of the mobile node NM and determine NM ’s moving
speed. Thus, the edge also knows that the mobile node NM
will passes by the cell {2,4}, {2,3}, {3,3}, and {3,2} in
consecutive order. If the direction and speed are not changed,
the link paths are constructed successively. Figure 3(b) shows
the path information changes along with NM ’s movement.

D. RESOURCE ALLOCATION BASED ON GAME THEORY
We develop a game-theoretic approach to achieve reliable
and low latency communication for data acquisition in the
smart manufacturing process. Game theory is a theoretical
framework in which competitors make strategic decisions
based on expectations or predictions of their opponents in an
interdependent situation [28].

In Figure 4, the mobile node NM passes through the cell
{2,4}, {2,3} and {3,2} with the blue arrow, where NM selects
a sensor node Ni at each cell. There are two or three sensor

FIGURE 4. Resource allocation based on game theory.

node in each cell. NM selects 3A in the cell {2,4}, 2A in the
cell {2,3} and 4C in the cell {3,2}. The best response strat-
egy [29] is used to consider the strategy of each sensor node
Ni in a cell. Then, the edge calculates the Nash equilibrium
of all the cells for resource allocation.

The game model is composed of players, strategies and
payoff [28]. Ni is a sensor node of player i, where i =
{1, 2, . . . , n}. The terms player and the sensor node Ni are
used interchangeably, because the sensor nodes are players in
the gamemodel. In addition,N−i represents all players except
player Ni. Si is a strategy of player i and can be represented
as Si = {0, 1}. Si = 0 means that Si is not connected
with the mobile node NM , whereas Si = 1 indicates that
Si is connected with the mobile node NM . For the resource
allocation, we define a payoff of the strategy of player i as
Pi = [di, li]. Payoff Pi consists of values di which is the
distance between the sensor node Ni and the mobile node
NM , and the data loss ratio li from sensor node Ni to the
edge. The important notations for the game theory model are
summarized in Table 1.
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TABLE 1. Summary of notations.

To derive a Nash equilibrium as a solution of the game,
the best response strategy is used. For any given actions
of the players other than player i, player i’s action makes
various payoffs for its strategies. We are interested in the best
strategy, which has the highest payoff among various payoffs.
The strategy S∗ = (S∗i , S

∗
−i) is a best response strategy if

Pi(S∗i , S
∗
−i) ≥ Pi(Si, S−i) for each player i. If the set of

strategy is a Nash equilibrium of the game, no player change
their strategy. A Nash equilibrium is an action of strategy
profile that is not changed because every player’s strategy
is a best response to the other players’ strategy. Resource
allocation decision profile S∗ = (S∗1 , S

∗

2 , . . . , S
∗
n ) is a Nash

equilibrium if any node cannot further increase its benefit by
changing its strategy. A Nash equilibrium S∗i of player i can
be defined as follows:

Pi(S∗i , S−i) ≥ Pi(Si, S−i). (4)

The best response strategy and the Nash equilibrium can
be applied to update the resource allocation. According to
the vector of the mobile node NM , the edge calculates the
best response strategy of sensor node Ni. After calculat-
ing the best response strategy of each sensor node Ni in
the same cell, the edge derive the Nash equilibrium NEi,
where i = {1, 2, . . . , n}. Nash equilibrium includes the best
response strategy of all the sensor nodes. To consider the
long-term resource allocation, we consider all the production
cells in the smart factory. The long-term resource alloca-
tion can be represented as the set of the Nash equilibrium
NE = {NE1,NE2, . . . ,NEn}.
Algorithm 1 shows a procedure of resource allocation.

The edge detects a mobility for each mobile node NM . The
mobility consists of a location of each NM and a moving
speed. The edge could predict a series of cells Listcell on the
movement path of NM through the tracking with consecutive
mobility awareness. Then, the edge selects one of sensor
nodes N in each cell Cellc of Listcell . To select one sensor
node, the edge calculates the best response strategy S with
the payoff P for every sensor node. The result of S and
information of N are inserted into a set of strategies Sset .
Then, the sensor node is selected by NE with Sset in each
cell. This procedure is repeated until the end of processing
for every Cell. As a result of the procedure, NEset includes
a list of sensor nodes, which are able to communicate with
NM , for each cell. Eventually, the edge performs the resource
allocation asNEset . In other words, the edge with Algorithm 1
conducts not only the resource allocation for one cell but also
the long-term resource allocation for a series of cells.

Algorithm 1 Resource Allocation Algorithm
1: Listcell = PredictionCellEntries(NM )
2: for Cellc in Listcell do
3: for Ni in Cellc do
4: P = [getDist(Ni), getLoss(Ni)] // Payoff
5: S = calculateBestRespStrategy(P) // Strategy
6: Sset .insert(Ni, S)
7: end for
8: NEc = NashEquilibrium_Cell(Sset )
9: NEset .insert(NEc)

10: end for
11: for NEi in NEset do
12: ResourceAllocation(NEi)
13: end for

IV. PERFORMANCE ANALYSIS
A. PROOF-OF-CONCEPT AND TESTBED SETUP
In this section, we evaluate the performance of the proposed
scheme. Proof-of-concept consists of an edge, APs, the sta-
tionary node with a beacon signal, and a smartphone. Per-
formance analysis is divided into MLP performance results
and resource allocation optimization and TTGN results. The
number of nodes for localization and resource allocation is
set to 4 (3 stationary nodes and 1 moving smartphone) and 9
(8 stationary nodes and 1 moving smartphone), respectively.
Experimental environments are listed in Table 2.

B. MLP PERFORMANCE FOR LOCALIZATION RESULTS
MLP on the edge predicts a geographical position of a smart-
phone. For this experiment, MLP trains 800 RSSs for local-
ization of a moving smartphone with 3 stationary nodes with
a beacon signal. Then,MLP tests the position of a smartphone
with 400 RSSs. We measure the training time, the prediction
time and the prediction accuracy for MLP. Then we evaluate
performance for MLP. The number of nodes in the output
layer is the same as the number of cells to be predicted.
Besides, in each hidden layer, the number of hidden nodes
is set to 10 or 20 according to experimental environments.

Figure 5 shows a MLP performance implemented on the
edge. MLP performance is affected by various factors such
as the number of layers and the number of nodes per layer.
MLP10 andMLP20mean the number of hidden nodes. Those
represent 10 and 20 hidden nodes, respectively. The number
of hidden nodes has an impact on prediction accuracy as well
as the training time and the prediction time. The prediction
accuracy increases in proportion to the number of hidden
nodes, and the training time and prediction time also increase.
The prediction accuracy in MLP10 has about 96 percent,
in MLP20 has about 100 percent. In Figure 5(a), the training
time in MLP10 has about 2s, in MLP20 has about 4.6s.
In Figure 5(b), the prediction time in MLP10 has about 1ms,
in MLP20 has about 3ms. This phenomenon may require a
large of resources on the edge server for localization and
mobility support on the network. However, the training time
and the prediction time are very short. In addition, the training
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TABLE 2. Proof-of-Concept and experiment setup.

frequency is low since the training is performed only when
a certain amount of data is collected. And the prediction is
periodically performed to predict the geographical positions
of all the nodes on the network, but the required time for
the prediction is 1ms to 3ms, which does not have a large
effect on the edge server. This experiment shows that MLP
for localization is sufficiently applicable to the edge server.

C. RESOURCE ALLOCATION OPTIMIZATION AND TTGN
RESULTS
Figure 6 shows optimization results based on the game theory.
To derive the best response strategy and the Nash equilibrium,
we used the payoff of each sensor node and measured the sig-
nal strength of the APs for the communication between APs
and the mobile node. The signal strength range is measured
from −87dBm to −73dBm. We set up the environment for
the resource allocation experiment, like Figure 4 with 8 sta-
tionary nodes with a beacon signal in 3 cells.

Figure 6(a) shows the cumulative loss ratio on each
cell. In the non-optimization model, as the number of cells
increases, data loss increases. Also, the graph of game theory
optimization shows the increase in loss ratio as cells increase.
This is because we have not considered any constraints for
the optimization model. However, comparing the graphs in
Figure 6(a), the game theory optimized one is lower than the
non-optimized one. In this result, it can be assumed that data
loss decreases in the optimized model as the number of cells
increases.

In Figure 6(b), the game theory based optimization
approach shows the stable transmission success ratio at each
iteration. The best response strategy of each sensor node
means the best value of the payoff for each sensor node. Thus,
the set of the best response strategy (i.e., Nash equilibrium) is
to maximize the payoff of all nodes in each cell. However, the
non-optimization resource allocation is unstable in compari-
son with the game theory optimized graph at each iteration.
This is because the non-optimization model calculated in
the edge allocates the sensor node randomly. Therefore, the
values of non-optimization are lower or the same as the values
of the game theory optimization model.

Figure 7 indicates the comparison of proposed TTGN
and original WirelessHART about mobility support.

FIGURE 5. MLP performance for position prediction accuracy and time
duration.

As a comparison target, we choose Han Routing scheme [16],
which is widely used in original WirelessHART. Figure 7(a)
shows the packet delivery success ratio for TTGN and Han
Routing scheme. The Han Routing scheme has 84% of suc-
cess ratio, and the proposed scheme has 98% of success ratio.
All of the industrial assets periodically report a health report
message to the network manager through their industrial
wireless sensor network. A link path failure by themobility of
assets makes it impossible to send the message to the network
manager. That is, the mobility has an impact on the packet
delivery success ratio. To prevent packet loss by a link path
failure, the mobility detection of assets is important. The Han
Routing scheme takes a relatively long time to recover the
link path compared to the proposed scheme. Therefore, the
number of packets lost during the link path failure period is
larger than the proposed scheme. On the other hand, in the
proposed scheme, a few packets are lost since the proposed
scheme supports network-based mobility detection in the
edge server. The long-termmobility prediction function in the
edge server predicts themoving direction and speed ofmobile
assets, and then the long-term resource allocation function
allocates a resource for the mobile asset to every asset on a
moving path. That is, although the mobile asset continuously
moves, the mobile asset can immediately transmit packets
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FIGURE 6. Resource allocation performance for optimization.

FIGURE 7. Mobility support impacts on success ratio and latency.

to the nearby asset locally. Thus, the proposed scheme has
a higher packet delivery success ratio than the Han Routing
scheme.

Figure 7(b) presents the latency for link path establish-
ments. This means the time required to establish a new link
path as the network topology changes by asset movement.
The proposed and Han Routing schemes require around
15s and 2s, respectively. Link path establishment is closely
related to mobility detection of assets. Since the Han Routing
scheme does not support mobility detection, the network
manager recognizes the change of the network topology after
a mobile asset is disconnected from the network. The mobile
asset discovers a neighbour asset that can be connected to the
network and be able to request resource allocation to the net-
work manager. The Han Routing scheme is inefficient since
it takes considerable time. On the other hand, the proposed
scheme supports mobility detection in the edge server. When
an asset moves, the edge server predicts a moving path based
on a geographical position of an asset and then allocates radio
resources. Then, the edge server delivers new link path infor-
mation to both the closest asset geographically on the moving
path and the mobile asset. Since this process is performed
before the mobile asset is disconnected, it is possible to
minimize the link path recovery time for the link path failure.
Thus, the proposed scheme consumes very shorter time than
the Han Routing scheme for link path establishment.

V. CONCLUSION
This paper explores shortages of the current IWSNs technolo-
gies, mainlyWirelessHART. AsWirelessHART performance
suffers from asset mobility issues, TTGN has come up with.
TTGN relies on the edge to support the mobility of the assets.
The edge-based localization and short-range and long-term
mobility prediction can continuously hold the reliable and
real-time properties of WirelessHART, although the assets
based on IWSNs are heterologous, i.e., stationary and mobile
nodes. Specifically, long-term resource allocation has been
obtained based on the game theory via the best response
strategy and the Nash equilibrium. The performance evalu-
ation results demonstrate that the data transmission success
ratio is almost 80% and data loss is lower than the non-
optimization model. In addition, the proposed TTGN scheme
shows improvement in terms of packet delivery ratio and
is 7.5 times faster than the original WirelessHART for link
path establishment. In future work, multiple mobile nodes
and stationary nodes in production cells will be considered
for supporting a lot of nodes with a realistic smart factory
environment.
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