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ABSTRACT This study presents a deep learning-based speech signal-processing mobile application known
as CITISEN. The CITISEN can perform three functions: speech enhancement (SE), model adaptation (MA),
and background noise conversion (BNC), which allow CITISEN to be used as a platform for utilizing and
evaluating SE models and flexibly extend the models to address various noise environments and users. For
SE, CITISEN downloads pretrained SE models on the cloud server and then uses these models to effectively
reduce noise components from prerecordings or instant recordings provided by users. When it encounters
noisy speech signals with unknown speakers or noise types, theMA function allows CITISEN to improve the
SE performance effectively. A few audio files of unseen speakers or noise types are recorded and uploaded
to the cloud server and then used to adapt the pretrained SE model. Finally, for BNC, CITISEN removes
the original background noise using an SE model and then mixes the processed speech signal with new
background noise. The novel BNC function can evaluate SE performance under specific conditions, cover
people’s tracks, and provide entertainment. The experimental results confirmed the effectiveness of SE, MA,
and BNC functions. Compared with the noisy speech signals, the enhanced speech signals by SE achieved
about 6% and 33% of improvements, respectively, in terms of short-time objective intelligibility (STOI) and
perceptual evaluation of speech quality (PESQ). With MA, the STOI and PESQ could be further improved
by approximately 6% and 11%, respectively. Note that the SE model and MA method are not limited to
the ones described in this study and can be replaced with any SE model and MA method. Finally, the BNC
experiment results indicated that the speech signals of original and converted backgrounds have a close
scene identification accuracy and similar embeddings in an acoustic scene classification model. Therefore,
the proposed BNC can effectively convert the background noise of a speech signal and be a data augmentation
method when clean speech signals are unavailable.

INDEX TERMS Speech enhancement, model adaptation, background noise conversion, deep learning,
mobile application.

I. INTRODUCTION
In recent years, a wide variety of speech-related applica-
tions have been developed. Most of these applications are
highly convenient for human–human and human–machine
communications. However, the following long-existing and
critical issues that may limit the achievable performance of
these applications remain to be solved: speech distortions
caused by additive/convolutional noises and channel/device
effects [1]–[6]. Identifying an effective method of addressing
this distortion issue is a critical and challenging task, and
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numerous approaches have been proposed to this end, among
which speech enhancement (SE) is notable.

The goal of SE is to transform noisy speech signals
into enhanced speech signals with improved quality and
intelligibility [7], [8]. In the past several decades, SE has
been widely used as a front-end unit in many voice-based
applications, such as automatic speech recognition [9],
speaker identification [10], [11], speech coding [12], hearing
aids [13], [14], and cochlear implants [15], [16]. The
existing SE methods can be divided into two classes.
In the first class, SE methods design a filter or function to
attenuate noise components. Examples of methods in this
class include the Wiener filter and its extensions [17]–[20],
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adaptive filtering [21], the minimum mean square error
spectral estimator (MMSE) [22]–[24], Karhunen-Loeve
transform [25], maximum a posteriori spectral amplitude
estimator [26], [27], maximum likelihood spectral amplitude
estimator [28], [29], linear prediction models [30], predictive
coding [31], orthogonal polynomial-based method [32],
super-Gaussian-based methods [33], [34], and the hybrid
of orthogonal polynomial and super-Gaussian [35]. Most
SE methods of the first class have a common limitation:
the inability to effectively contrast non-stationary noise
signals in real-world scenarios under unexpected acoustic
conditions.

SE methods in the second class are based on machine-
learning algorithms; these methods typically prepare a
model for noisy-to-clean transformation in a data-driven
manner. Notable SE methods belonging to this class include
hidden Markov models [36], non-negative matrix factor-
ization [37]–[39], compressive sensing [40], and robust
principal component analysis [41]. In addition, artificial
neural networks (ANNs), as a successful machine-learning
model, have been used for SE because of their powerful
nonlinear transformation capability. In [42]–[45], a shallow
ANN was used to map noisy speech signals to clean
ones. More recently, various types of ANNs with deep
structures have been used for SE (e.g., deep neural net-
works (DNNs) [46]–[49], deep recurrent neural networks
and long-short term memory (LSTM) networks [50], [51],
convolutional neural networks (CNNs) [52], [53], and
convolutional recurrent neural networks (CRNNs) [54]).
Also, [55] proposed a hybrid architecture of CNN and a
tensor-train layer and compared the performance between
DNN and CNN.

To improve the performance of these ANN-related
approaches, several SE studies have applied a generative
adversarial network (GAN) model [56]–[59]. The GAN
model is used to generate enhanced samples for a discrimi-
nator to determine whether the input follows the distribution
of a real clean speech signal. In addition, some researchers
applied a transformer technique to perform SE, in which
the attention mechanism was utilized to capture long-term
temporal correlations to extract clean components from noisy
input [60]–[62]. Moreover, instead of using a large amount
of training data to perform SE, a transfer learning technique
has been commonly used to enhance the generalization of
models in unseen environments. For example, [63] fine-
tuned the generator in a pretrained GAN-based SE model
with small amounts of data and confirmed the efficiency
of transfer learning. In [64], the authors proposed the use
of a teacher-student learning strategy to adapt an SE model
to unlabeled noisy speech signals. Furthermore, the FA-
MK-MMD approach was proposed in [65] to train a neural
network model from the labeled source domain to extract
the shared representation to enhance the unlabeled input.
Although the effectiveness of these SE approaches has been
verified, their performance in mobile applications is yet to be
confirmed.

In this study, we present a speech signal processing mobile
application called CITISEN.1 CITISEN is a standardized SE
software with a user interface that can be used as a platform
for utilizing and evaluating newly performed deep-learning-
SE models by simply replacing the default settings with the
associated model. Based on SE, two extended functions—
model adaptation (MA) and background noise conversion
(BNC)—were also implemented in CITISEN. The MA
function was built to further improve the SE performance
for a specific user or under certain noise environments. The
adaptation data were prepared by the users to meet their
requirements, thus making the framework a customized tool.
The BNC function converts the original background noise to
another one. BNC can be used to evaluate SE performance
under practical conditions. In this condition, the residual
noises in an enhanced source speech signal are combined
with different background interference and affect the quality
and intelligibility of a target speech signal. In addition, the
BNC can be used to cover people’s tracks by converting the
original environment noises to noises from other places when
a positioning system is unavailable or not being used because
of limited access to the technology or the lack of intention.
Furthermore, the BNC can also be used for entertainment
purposes, such as adding background music or sound effects.

The contribution of this study is summarized as follows:

• To the best of our knowledge, the proposed CITISEN is
the first to integrate BNC and MA functions with SE in
a mobile application.

• CITISEN has a user interface for performing SE on
a prerecording or instant recording. The experimental
results confirmed the SE function of improving short-
time objective intelligibility (STOI) [66] and perceptual
evaluation of speech quality (PESQ) [67] scores.

• CITISEN has an MA function that allows users to adapt
the SE models to unseen background noises or speakers.
The MA function is proven to provide notable STOI and
PESQ improvements compared to the results without
MA.

• CITISEN provides a novel BNC function that can
evaluate SE performance under specific conditions,
cover people’s tracks, and provide entertainment. The
listening test results indicated that the BNC function
could convert the background noise while maintaining
the clarity and intelligibility of the converted speech
signals.

• An acoustic scene classification (ASC) model was
used to evaluate the BNC performance. The results
showed that new background noise could be successfully
recognized. Moreover, the ASC embeddings suggested
that the conversation results from a silent background
were close to a noisy background. Therefore, the BNC
function can potentially serve as a data augmentation

1CITISENGitHub Page: https://github.com/yuwchen/CITISEN If there is
any problem with testing pretrained SE models on CITISEN, please contact
the corresponding author.
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FIGURE 1. Traditional filter-based SE architecture. STFT and iSTFT denote
the short-time Fourier transform and inverse STFT, respectively.

method for the ASC model when clean speech signals
are unavailable.

• By simply replacing the settings with the associated
model, CITISEN can utilize and evaluate other deep
learning-based SE models not described in this study.
Therefore, CITISEN can effectively reduce the devel-
opment interval for converting SE models to industrial
applications.

The remainder of this paper is organized as follows.
Section II reviews related works. Section III elaborates the
functions and user interface of CITISEN. Section IV presents
the experimental setup and results. Finally, Section V pro-
vides some concluding remarks regarding this research.

II. RELATED WORKS
In this section, we first review one traditional filter-based
SE method and four neural-network-based SE models used
for comparison in the experiments. Then, we introduce the
concept of MA.

A. TRADITIONAL GAIN FUNCTION-BASED SE METHOD
In the SE task, we generally assume that the noisy speech
signal x contains a clean speech signal s and a noise signal v.

x = s+ v (1)

For the MMSE SE [22], [68] approach, the time-domain
signal, x, is first converted to a spectral feature, X , using the
short-time Fourier transform (STFT). After the STFT, Eq. 1
can be expressed as:

X [m] = S[m]+ V [m] (2)

where m denotes the mth frequency bin in the entire set of
spectral features. By estimating the a priori and a posteriori
signal-to-noise ratio (SNR) statistics based on a noise-
estimation approach, we can estimate a function G[m]. The
enhanced speech signal, Ŝ[m], is obtained by filtering X [m]
through G[m]. Finally, an inverse STFT (iSTFT) is applied
to convert the spectral features Ŝ to the time-domain signal ŝ,
as shown in Fig.1.

B. NEURAL-NETWORK-BASED SE METHOD
In this work, we used one waveform-based SE model,
fully convolutional network (FCN) [52], and three spectral-
based SE models, namely, deep denoising autoencoder
(DDAE) [48], LSTM [51], and CRNN [54]. Table. 1

FIGURE 2. FCN-based SE architecture.

summarizes the NN models used in this study. Similar to
traditional SE methods, the goal of the neural-network-based
SE is to find the enhanced speech signal ŝ that is close to the
clean speech signal s.

1) FCN-BASED SE MODEL
Fig. 2 shows an FCN model, which is similar to a
conventional CNN, but all the fully connected layers are
removed. As reported in [53], the FCN model can address
the high-and low-frequency components of the rawwaveform
simultaneously. The relation between the output sample ŝt
and the connected hidden nodes Rt can be represented by:

ŝt = QTRt (3)

where Q denotes one of the learned filters and subscript t
indexes the time step. Then, the objective function of the
FCN-based SE model is defined as:

L(θF ) = ||̂s− s||2 (4)

where θF denotes the model parameters of FCN.

2) DDAE-BASED SE MODEL
During the training of DDAE, noisy-clean speech signal pairs
were used to compute the mapping function from noisy to
clean spectral (logarithm amplitude in this study) features.
The DDAE model aims to transform the noisy speech signal
to a clean speech signal by minimizing the reconstruction
error between the predicted Ŝ and the reference clean spectral
features S such that:

θ∗D = argmin
θD

L(θD)+ ρC(θD), (5)

with

L(θD) = ‖̂S − S‖2, (6)

where θD denotes the model parameters of DDAE. ρ is a
constant that controls the trade-off between the reconstruction
accuracy and regularization term C(θD) [48] and is deter-
mined through the validation set in the training process.
In this study, to simplify and compare with other methods,
we set ρ to 0.
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TABLE 1. Summary of NN models used in this study. The W and S in feature type column represent waveform-based and spectral-based input,
respectively. Conv is the abbreviation of convolution.

Given noisy spectral features X , the DDAE estimates a
clean speech signal by:

h1(X ) = σ (W1X + b1),
...

hL−1(X ) = σ (WL−1hL−2(X )+ bL−1),

Ŝ = WLhL−1(X )+ bL , (7)

where W1 . . .WL and b1 . . . bL are the weight matrices and
bias vectors, respectively, and L is the number of layers.
In addition, σ is a vector-wise non-linear activation function
sigmoid.

3) LSTM-BASED SE MODEL
Because LSTM can capture the temporal relation of speech
signals, it has proven to deliver promising results in SE [51].
The objective function of the LSTM-based SE model is close
to that of the DDAE model, which is to find the best model
parameters of LSTM θL that can minimize:

L(θL) = ‖̂S − S‖2, (8)

In this study, we used the LSTM unit defined as follows:

in = σ (WiXn + Uihn−1 + bi),

on = σ (WoXn + Uohn−1 + bo),

fn = σ (Wf Xn + Uf hn−1 + bf ),

gn = tanh(WgXn + Ughn−1 + bg),

cn = fn � cn−1 + in � gn,

hn = on � tanh(cn) (9)

where Xn, fn, in, on, gn, cn, and hn represent the input,
forget gate, input gate, output gate, cell input activation,
cell state, and hidden state vectors, respectively, and the
subscript n indexes the frame step. In addition, Wq and
bq denote the weights and biases, respectively, where the
subscript q can either be the input gate i, output gate o, forget
gate f , or memory cell g, and � represents element-wise
multiplication.

FIGURE 3. CRNN-based SE architecture.

4) CRNN-BASED SE MODEL
The CRNN in this work combines a CNN, LSTM, and Dense
layer. Previous work indicated that CRNN could lead to better
objective intelligibility and perceptual quality than an LSTM
model with fewer trainable parameters [54]. The architecture
of the CRNN-based SE model is shown in Fig. 3.

C. MODEL ADAPTATION
When operating SE in a real-world scenario, unknown
noise types and new users are often encountered. Therefore,
in many cases, the testing data may not be adequately covered
by the trained SE model. Such training/testing mismatches
in acoustic characteristics may considerably degrade SE
performance. To effectively address this mismatch issue,
an adaptation of an SE model is required. Thus far, various
MA approaches have been proposed [69]–[73]. The main
concept of MA is to adjust the parameters of a pretrained
model (prepared using training data) based on a small set
of testing data to reduce the influence of training/testing
mismatches. Because the adapted SE models match the
testing conditions, the SE performance can be improved.

III. THE PRESENTED CITISEN APPLICATION
CITISEN has three functions, including SE, MA, and BNC.
For SE, CITISEN can enhance the quality and intelligibility
of noise signals by reducing noise components from the
speech signals. Then, for MA, CITISEN can further improve
the results of SE by fine-tuning the SE model with uploaded
data. Finally, for BNC, CITISEN can replace the original
background noise with specified background noise. The
functions of CITISEN are illustrated in Fig. 4.

VOLUME 10, 2022 46085



Y.-W. Chen et al.: CITISEN: Deep Learning-Based Speech Signal-Processing Mobile Application

FIGURE 4. The SE, BNC, and MA functions in CITISEN.

A. SE FUNCTION
SE is a major function of CITISEN. As shown by the blue
block in Fig. 4, given the noisy speech signal, the SE function
removes background noises and generates the enhanced
speech signal with improved quality and intelligibility. The
SE models were trained in a cloud server, and the trained
models were loaded into mobile devices. Because the model
is trained and saved in a cloud server, mobile devices do not
need to have a huge computational resource.When connected
to the Internet, mobile devices automatically download
updated SE models. A third-party module, called okhttp3,
was used to save and manage the SE models. In addition,
for SE, CITISEN has two recording modes: prerecording
and instant recording. In the prerecording mode, CITISEN
records the entire speech signal before processing, whereas in
the instant recording mode, CITISEN records and processes
the speech signal simultaneously. CITISEN is a standardized
SE software with a user interface that can support pretrained
SE models trained by various machine learning frameworks,
including Keras, PyTorch, and TensorFlow. In addition, the
SE models can have different architectures or input acoustic
feature formats.

Fig. 5 (a) shows the implementation of the SE function
in CITISEN, which contains four steps, including audio-
recording, pre-processing, speech enhancing, and post-
pressing. The details of SE function steps in CITISEN are
described as follows.

1) AUDIO RECORDING
In this step, the application interface is implemented using
the Java/Android application programming interface (API)
AudioRecord. The AudioRecord saves an audio signal at a
sampling rate of 16000 Hz in a single channel. In the instant
recording mode, as AudioRecord processes and analyzes
audio data in every 5120 bytes, which is equivalent to
320 sample points per second, the instant recording will
approximately have a 20 ms delay. The configuration of the
AudioRecord in CITISEN is presented in Table 2.

2) PRE-PROCESSING
In this step, CITISEN transfers the data format of the
mobile input (byte) to the data format of the SE model

TABLE 2. AudioRecord configuration in CITISEN. (PCM: pulse-code
modulation).

input (float). For waveform-based SE models, such as FCN,
the preprocessing step transfers the format of time-domain
audio signals from bytes to float. For spectral-based SE
models, such as DDAE, an additional STFT is required to
transfer time-domain signals into frequency-domain signals.
CITISEN performs STFT by calling Java/Android API
DoubleFFT_1D in the JTransforms library. By calling this
API, a one-dimensional time-domain signal is transferred into
a complex matrix. The energy part of the complex matrix is
presented as a spectrogram, which is used as the input for
spectral-based SE models. The phase part of the complex
matrix is reserved and used later to convert the enhanced
spectrogram back to the time-domain audio signals.

3) SPEECH-ENHANCING
To operate the SE model on mobile devices, the pretrained
SEmodel needs to be packaged into a.pb file. Then, CITISEN
calls the Java API, which is built in TensorFlow: TensorFlow-
InferenceInterface, and passes the assetManager (.pb file) and
modelFilename (model Name) to the API. Finally, CITISEN
loads the SE model and calculates the enhanced speech
signal. This part requires the microprocessor of the mobile
device to participate in the calculation, and thus different
types of mobile phone models will have different time delays.
Currently, we have implemented FCN-based and DDAE-
based SE in CITISEN; however, the available SE models can
be easily extended by uploading the SE models using the
same method.

4) POST-PROCESSING
For spectral-based SE models, such as DDAE, the output of
the SE model are reconstructed to a time-domain signal. The
waveform reconstruction method in CITISEN is the iSTFT,
which is implemented with the DoubleFFT_1D function.
For waveform-based SE models, such as FCN, the output is
already a time-domain signal and does not require additional
conversions. Finally, the data type of the enhanced speech
signals is converted to a playable form (from float to byte).

B. MA FUNCTION
The MA function of CITISEN aims to adapt the SE model
to unknown noises or new speakers, or both. CITISEN
provides three different MA modes: noise only (N), speaker
only (S), and noise and speaker (N+S). Users can upload
a short audio clip of the environment noise or their clean
speech signals to the cloud server, and the parameters of the

46086 VOLUME 10, 2022



Y.-W. Chen et al.: CITISEN: Deep Learning-Based Speech Signal-Processing Mobile Application

FIGURE 5. Implementation details of three functions in CITISEN. Figure (a), (b), and (c) are SE, MA, BNC functions, respectively.
For SE, CITISEN downloads pretrained SE models on the cloud server and then uses them to enhance prerecordings or instant
recordings provided by users. For MA, a few audio files of unseen speakers or noise types are recorded and uploaded to the
cloud server then used to adapt the pretrained SE model. For BNC, CITISEN removes the original background noise using an SE
model, then mixes the processed speech signal with new background noise.

original SE model will be fine-tuned using the uploaded data.
Users can then download and use the adapted SE models
in CITISEN. Currently, we suggest that users record their
referenced target speech signal in a noise-free environment.
However, previous studies [74], [75] have shown that some
level of noise contained in the referenced target can also lead
to an effective reconstruction of the clean waveform in an
SE system. The implementation of the MA function is shown
in Fig. 5 (b).

C. BNC FUNCTION
BNC is a new topic in the field of speech processing. This
idea is similar to the changing background of an image or
video [76]. With the BNC, users can artificially convert the
background noise of their speech signal to another specified
noise. To use the BNC function, the noises of the target
background must be recorded and stored first. Users can
record background noises in different environments in real-
world scenarios, such as car engine sounds and train stations.
Then, users need to select the target background noise
before running the BNC function. When running the BNC
function, CITISEN removes the original background noise
by using SE first and mixes the enhanced speech signal
with new background noises by playing them simultaneously.

In addition to SE steps, BNC has three additional steps: audio
recording (of background noise), noise selection, and audio
mixing. Fig. 5 (c) illustrates the implementation of the BNC
function.

D. CITISEN USER INTERFACE AND USAGE
CITISEN has four pages: ‘‘speech enhancement,’’ ‘‘back-
ground noise conversion,’’ ‘‘uploading,’’ and ‘‘recording,’’ as
shown in Fig. 6. The page name and navigation buttons are
on each page’s top left and bottom, respectively.

1) SPEECH ENHANCEMENT PAGE
Fig. 7 shows the ‘‘speech enhancement’’ page. On this
page, the user needs to specify the gender by the ‘‘gender’’
button. Because males and females usually have different
voice characteristics, knowing the users’ gender can help to
improve the performance of SE models. Then, by pressing
the ‘‘model switch’’ button, the user can choose different SE
models from an SE model list. Currently, CITISEN provides
several default SE models trained using our own collected
speech datasets. By pressing the ‘‘preview’’ button, users can
hear their instant recordings without using SE. By pressing
the ‘‘activate’’ button, the SE function will be activated, and
users can hear their enhanced instant recordings.
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FIGURE 6. Four main pages in CITISEN.

FIGURE 7. Speech enhancement page of CITISEN. The ‘‘gender’’ button on
the upper-right corner is used to specify the user’s gender. By pressing
the ‘‘model switch’’ button, an SE model list will pop up, and users can
change the SE model. After pressing the ‘‘preview’’ button, users will hear
their original instant recordings, and after pressing the ‘‘activate’’ button,
users will hear their enhanced instant recordings.

2) BACKGROUND NOISE CONVERSION PAGE
The ‘‘background noise conversion’’ page of CITISEN is
shown in Fig. 8. On this page, CITISEN mixes the specified
background noise with the enhanced speech signal to gener-
ate a new speech signal with the specified background noise.
By pressing the ‘‘sound switch’’ button, users can choose the
background noise they want to use on the pop-up background
noise list. By pressing the ‘‘record noise’’ button, users
can record and save a new background noise. In addition,
by pressing the ‘‘activate’’ button, users will hear their
enhanced instant recordings with the specified background
noise. Moreover, the ‘‘background noise conversion’’ page
has a volume bar, which allows users to adjust the volume of
background noise and specify the SNR level of the converted
speech signal accordingly.

3) UPLOADING PAGE
The ‘‘uploading’’ page is used for uploading the data for
the MA function. As CITISEN provides both unknown
noise adaptation and new speaker adaptation, there are two

FIGURE 8. Background noise conversion page of CITISEN. By pressing the
‘‘sound switch’’ button, a background noise list will pop up. After pressing
the ‘‘record noise’’ button, users can record and save a new noise signal.
After pressing the ‘‘activate’’ button, users will hear the enhanced instant
recording contaminated with the specified background noise. Note that
the ‘‘gender’’ button and the ‘‘model switch’’ button have the same
function as those on the ‘‘speech enhancement’’ page.

FIGURE 9. Uploading page of CITISEN. After recording a noise or speech
signal, CITISEN asks the user to name and save the audio file and upload
it to the cloud server.

file upload buttons: ‘‘record speech’’ and ‘‘record noise.’’
To start the recording, users can simply press one button.
After finishing the recording by pressing the button again,
CITISEN will pop up a submission window. Users can then
name the audio file and upload the recorded audio to the
server. After receiving the audio file, the server can adapt
the SE model by fine-tuning the original SE model using
the recorded audio data. The name of the audio file can also
be used to call the adapted SE model, which is later sent
from the server to the mobile device and appears on the
SE model list on ‘‘speech enhancement’’ and ‘‘background
noise conversion’’ pages. Accordingly, users can run the
SE and BNC functions using the adapted SE model. The
‘‘uploading’’ page of CITISEN is shown in Fig. 9.

4) RECORDING PAGE
The ‘‘recording’’ page supports prerecording and SE model
evaluation. Specifically, on the ‘‘recording’’ page, users
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FIGURE 10. Recording page of CITISEN (Part I). A new audio file is
recorded after pressing the ‘‘record new’’ button. The file can then be
named and saved in a pop-up submission window.

can save, playback, and run SE on a saved speech signal.
First, users can record new audio by pressing the ‘‘record
new’’ button, and CITISEN will redirect to a processing
page. After finishing the recording by pressing the ‘‘stop’’
button, users can name and save the record. The workflow
is shown in Fig. 10. Then, users can choose an audio file,
a model mode, and an SE model with the ‘‘choose file,’’
‘‘gender,’’ and ‘‘model switch’’ buttons, respectively. Finally,
by pressing the ‘‘run’’ button, an enhanced speech signal is
generated. Because CITISEN demonstrates both the noisy
and enhanced spectrograms, users can visually evaluate the
SE results. In addition, users can aurally evaluate the results
by pressing the ‘‘play’’ and ‘‘stop’’ buttons to listen to the
original and the enhanced speech signals. An illustration
showing more details about the ‘‘recording’’ page is shown
in Fig. 11 and Fig. 12.

IV. EXPERIMENTS
This section presents the setup, implementation details, and
results of the experiments that tested the performance of the
SE, MA, and BNC functions.

A. EXPERIMENTAL SETUP
In this study, TMHINT utterances [77] were used to prepare
the training and testing sets, and the utterances were recorded
at a 16 kHz sampling rate in a 16-bit format. Notably, the
experiments are conducted offline on the cloud platform
instead of the mobile platform for several reasons. First, the
cloud platform provides a more stable communication and
computation environment, which ensures the listening test
can go smoothly. Second, because the performance of mobile
phones varied too much, choosing one as the representative
is hard. Moreover, mobile phones progress so fast that the
current best mobile phone might be greatly outperformed

FIGURE 11. Recording page of CITISEN (Part II). By pressing the ‘‘choose
file’’ button, users can choose an audio file on a pop-up window.

FIGURE 12. Recording page of CITISEN (Part III). Users can choose an SE
model type and an SE model by using the ‘‘gender’’ and ‘‘model switch’’
buttons. In addition, users can evaluate the SE results visually and aurally.

by the new mobile phone next year. Finally, evaluating the
results on the cloud platform provides the upper bound of
these functions and makes the results comparable with other
studies.

1) SE EXPERIMENTS
In the SE experiments, the training set was prepared using
speech utterances from three males and three females. Each
speaker read 200 TMHINT utterances in a quiet room, total-
ing 1200 clean utterances. Each utterance had approximately
3s and contained ten Chinese characters. Noisy utterances
were generated by artificially contaminating these 1200 clean
training utterances with five randomly sampled noise types
from a 100-noise type dataset [78] at eight different SNR
levels (±1dB, ±4dB, ±7dB, and ±10dB). Consequently,
48000 noisy-clean pair utterances were obtained. As for
the testing set, we used the speech utterance from two
other speakers (one male and one female, termed testing
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speaker in the following discussion), with 120 utterances for
each speaker. We generated noisy utterances by artificially
contaminating these 120 clean utterances with another set
of five noise types (car, sea wave, take-off, train, and song)
at two different SNR levels (0dB and 5dB). Notably, the
speakers, speech content, and noise types differed between
the training and testing sets. The performance of the SE
was tested using both subjective listening tests and objective
evaluations.

For the listening tests, we recruited 20 participants with a
male-to-female ratio of 2 to 3. The group ages were between
20 and 38 years, with a mean age of 21.50 (standard deviation
(SD)= 3.97). All participants were nativeMandarin speakers
with normal hearing to perceive the stimuli during the
test. Each participant listened to 80 testing speech signals
(40 for 0 dB and 40 for 5 dB) spoken by one male and
one female testing speakers. These 80 speech signals had
different contents with one of the five assigned background
noises (car, sea wave, take-off, train, and song) under four
conditions, including original noisy speech signals (without
enhancement), enhanced by an MMSE-based SE method,
enhanced by a DDAE-based SE model, and enhanced by
an FCN-based SE model. These four conditions are denoted
as noisy, MMSE, DDAE, and FCN, respectively, in the
following discussion. Each participant tested 40 lower- and
40 higher-SNR speech signals. In addition, the subjects were
instructed to repeat what they had heard verbally and were
allowed to repeat the stimuli once. The character correct
rate (CCR), which is calculated by dividing the number
of correctly identified characters by the total number of
characters, was used to evaluate the intelligibility of speech
signals.

For the objective test, we evaluated the results of two more
neural-network-based methods, including LSTM-based SE
and CRNN-based SE. In the following discussion, the speech
signals enhanced by these two methods are denoted as LSTM
and CRNN, respectively. PESQ [67] and STOI [66] were
used as objective evaluation metrics. PESQ was designed to
evaluate the quality of the processed speech signal, and the
score ranged from−0.5 to 4.5. A higher PESQ score indicates
that an enhanced speech signal is closer to the clean speech
signal. STOI was designed to compute speech intelligibility,
and the scores ranged from 0 to 1. A higher STOI score
indicates better speech intelligibility.

2) MA EXPERIMENTS
The performance of the MA function was evaluated under
three modes: MA(N), MA(S), and MA(N+S). The training
set of the MA experiments was prepared as follows: For
MA(N), two new noises (machine beeping and air flowing)
from a real hospital scenario were mixed with the same
training clean utterances as the SE experiments to form the
new noisy-clean speech signal pairs. For MA(S), we mixed
40 clean utterances of the testing speakers in the SE
experiments (20 utterances for each speaker) with the same
training noises as the SE experiments to form the new

noisy-clean speech signal pairs. For MA(S+N), the testing
speakers’ clean utterances and new noise signals were
mixed to form new noisy-clean speech signal pairs. In the
SE experiments, the SNRs for performing noisy-training
utterances were ±1 dB, ±4 dB, ±7 dB, and ±10 dB. These
training data were then used to fine-tune the pretrained SE
model in the SE experiments until the model converged.
The testing set of MA experiments had the same testing
clean utterances as the SE experiments mixed with machine
beeping and air flowing noise at four different SNR levels
(±2 dB, 0 dB, and 5 dB).

Specifically, for MA(N), the training and testing speakers
were independent, but the noises came from the same source.
For MA(S), the training and testing speakers overlapped,
but the training and testing noises were independent.
In MA(S+N), the training speakers and testing speakers
overlapped, and the noises came from the same source. Note
that in every MA experiment, the contents of training speech
signals and testing speech signals were different. In addition,
the training and testing noises in MA(N) andMA(S+N) were
from the same sources but recorded at different times.

3) BNC EXPERIMENTS
Based on our literature survey, there is no standardmethod for
evaluating BNC. Because BNC aims to convert the original
background noise into the target background noise, the
accuracy (ACC), which is the number of correctly identified
types of background noise divided by the total number of
questions, was used to evaluate the BNC results. In addition,
CCR was used to evaluate the maintenance of clarity and
intelligibility of the converted speech signals. The ACC and
CCR scores are estimated by both humans and machines.
Specifically, we invited human listeners to conduct listening
tests. We also trained an ASC model to analyze the ACC
and used a pretrained automatic speech recognition (ASR)
model to measure the CCR. For human evaluation, the CCR
was the ratio of characters that a participant could correctly
recognize. For machine evaluation, the CCR was calculated
using the Levenshtein distance [79] between the predictions
of a pretrained ASR system [80] and the ground truth. The
details of the listening test and the ASC model are as follows.

a: LISTENING TEST
We asked the listeners to identify one out of five background
noises (car, sea wave, take-off, train, and song) after listening
to a converted speech signal. To avoid random guessing,
listeners could choose ‘‘not clear’’ if they could not identify
the background noise. During the test, participants were asked
to repeat what they had heard, select the characters they had
heard, and identify the background noise. Forty participants
with a male-to-female ratio of 9 to 11 were recruited to
participate in this set of listening tests. The group ages were
between 14 and 43 years, with a mean age of 25.74 (SD =
8.68). All participants were native Mandarin speakers with
normal hearing to perceive the stimuli during the test.
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FIGURE 13. Structure of the ASC model. Conv2D represents the 2D
convolution layer, where f is the number of filters, and k is the kernel
size. The h in the dense layer denotes the size of each output sample.

The stimuli were Mandarin sentences spoken by one male
and one female testing speaker. The testing speech signals
were either processed using one of three SE methods (i.e.,
MMSE, DDAE, and FCN) or were not processed (i.e. the
clean speech signals). Notably, the enhanced speech signals
from SE experiments were used for BNC experiments, which
means the original background noises were either car, sea
wave, take-off, train, or song. The enhanced speech signals
were then contaminated with the car, sea wave, take-off,
train, or song noises, making 5 × 5 possible kinds of BNC
conditions. To avoid the fatigue effect, we only tested the
results of the 5 dB to 5 dB SNR condition. That is, the SNR of
original and converted speech signals are both 5 dB. In total,
each participant listened to 80 utterances.

b: ASC MODEL
We used the same dataset as the SE experiment to train the
ASC model. Specifically, the training and testing utterances
were the same as those in the SE experiments described
in Section IV-A1. Thirteen noise types were used for the
ASC model. Five of them were test noises used for the SE
experiment, including car, sea wave, take-off, train, and song.
The remaining eight noises were selected from the training
noises of the SE experiment. Each noise segment was cut into
two segments with a ratio of one to four. The shorter segment
was used for testing, whereas the longer segment was used for
training. The training and testing SNR levels were the same
as the SE experiment.

Fig. 13 shows the details of the ASC model, which
is based on [81]. The input of the model is the log1p
spectrograms [82]. A Training epoch of 100, batch size of
128, optimizer Adam with a learning rate of 0.0001, and
cross-entropy loss were used.

B. IMPLEMENTATION DETAILS OF SE MODELS
This section describes the structures and training details of the
neural-network-based SEmodels. For spectral-based models,

including DDAE, LSTM, and CRNN, the parameter settings
of the STFT were as follows: the window length was 512, the
hop length was 256, and the window type was the Hanning
window. Then, the log1p spectrograms [82] were used as the
input for the SE models. In inference, the noisy phase was
reserved and combined with the enhanced spectral features
to reconstruct the time-domain signals.

1) FCN
The FCN consisted of eight convolutional layers, where the
filter number and kernel size of each of the first seven layers
were 128 and 55, respectively. Batch normalization and the
LeakyReLU were used to regularize the output of a hidden
layer. The filter number and kernel size in the last layer
were 1 and 55, respectively, with the hyperbolic tangent
activation function applied to the FCN output. The number
of training epochs was set to 60. In addition, batch size 1,
optimizer Adam with a learning rate of 0.001, and mean
square error (MSE) criteria were used.

2) DDAE
To incorporate contextual information, for each self-defined
DDAE layer in this work, five adjacent frames of the input
feature vector were concatenated to form the input of the next
layer, whereas the output of each layer was a single frame.
Also, the ReLU was used to regularize the output layer. The
DDAE was composed of three DDAE layers with 257 output
units in each layer, followed by a dense layer with single
frames as the input and 825 output units, and another dense
layer with 257 output units. Finally, the DDAE model had
four more DDAE layers with 257 output units. The number
of training epochs was 200. In addition, a batch size of 128,
an Adam optimizer with a learning rate of 0.0001, and MSE
criteria were used.

3) LSTM
The LSTM model used in this evaluation was constructed
in the order of three stacked LSTMs and dense layers. Each
LSTM layer contained 492 memory cells, and the size of the
latest dense layer was 257. The number of training epochs
was set to 20. The Adam optimizer with a learning rate of
0.001 and MSE criteria were used.

4) CRNN
The CRNN combines CNN and LSTM to enhance the input
raw waveform. The CRNN comprised four convolutional
blocks first, where each block was composed of three
two-dimensional convolution layers. The ReLu activation
function was applied to process the output of each layer. The
kernel size for each convolutional layer was three, and the
number of channel settings was arranged in the order of 16,
32, 64, and 64. In each block, the stride setting for the output
convolutional layer along the speech feature dimension was
three, and the setting for the remaining layers was one. Then,
the convolutional block was followed by four LSTM layers
with 384 memory cells and 257-dimensional dense layers
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TABLE 3. FLOPs and number of model parameters for FCN, DDAE, LSTM,
and CRNN models.

with the ReLu activation function. The input dimensions for
the decoder were reshaped from the output of the encoder to
192 (3× 64). In addition, the number of training epochs was
200, the batch size was 128, the optimizer was Adam with a
learning rate of 0.0001, and MSE criteria were used.

C. EXPERIMENTAL RESULTS
In this section, we compare the complexity of the neural-
network-based models and then perform a numerical analysis
of the SE, MA, and BNC functions. Finally, we present the
visualization results of processed speech signals.

1) COMPLEXITY ANALYSES
First, we evaluated the complexity of neural-network-based
SE models in terms of floating-point operations (FLOPs2)
and the number of model parameters. From the results in
Table 3, we can observe that models with convolutional
layers, such as the FCN and CRNN, require higher computa-
tional cost in terms of the FLOPs metric. The higher FLOPs
imply that these models require more computational loading
on hardware resources with similar parameter sizes.

Note that to avoid unstable communication and compu-
tation, we conducted experiments offline on a computer.
However, we also tested whether the model with the highest
FLOPs, the FCN model, could run on CITISEN. The results
showed that the FCN model could successfully run on
CITISEN.

2) SE EXPERIMENT
Table 4 presents the STOI and PESQ scores of noisy and
enhanced speech signals processed using the MMSE, DDAE,
FCN, LSTM, and CRNN models. From Table 4, all SE
methods improved the PESQ scores, and except for MMSE
and LSTM, other SE methods increased the performance of
STOI. The increased PESQ along with the decreased STOI
imply that some SE methods improve the quality, but the
produced distortion might affect the intelligibility of a speech
signal. The results also show that DDAE, CRNN, and FCN
achieved higher scores than MMSE in terms of both STOI
and PESQ, whereas FCN provided the highest PESQ and
STOI scores among the evaluated methods. The results also
demonstrate the effectiveness of using a deep-learning model
for the SE task.

Table 5 presents the subjective listening test results for
noisy and the three SE methods. From the table, it can

2https://github.com/Lyken17/pytorch-OpCounter

FIGURE 14. The subject-wise CCRs at (a) 0 dB and (b) 5 dB SNR
conditions.

TABLE 4. Average STOI and PESQ scores for noisy and three SE methods
over 0 and 5 dB SNR conditions. Noisy denotes the results of original
noise without performing SE.

TABLE 5. Average speech recognition results (CCRs) for noisy and three
SE methods at 0 dB and 5 dB SNR conditions.

be observed that MMSE yielded lower CCRs compared to
noisy for both 0 dB and 5 dB SNRs, which is consistent
with the findings of previous research and the STOI results
reported in Table 1. That is, although some SE methods
effectively remove background noise, speech intelligibility
might be affected. In addition, the SE function is more helpful
under low SNR situations, as noisy speech signals maintain
high levels of intelligibility under high SNR situations.
The one-way analysis of variance and Tukey post-hoc
comparisons were applied to demonstrate the significance
of improvements for analyzing the SNR-based CCR results
of noisy, MMSE, FCN, and DDAE. The evaluations first
revealed the significant difference across four SE systems,
with p < 0.001 at 0 dB and 5 dB SNRs. The Tukey post-
hoc tests further verified the significant differences for the
following SE condition pairs at 0 dB: (FCN, DDAE), (DDAE,
MMSE), (FCN, MMSE), and (noisy, MMSE), and at 5 dB:
(MMSE, DDAE), (noisy, DDAE), (FCN, DDAE). Notably,
the analysis on the scores of FCN and noisy indicated no
significant difference, with p > 0.05 at both 0 dB and
5 dB SNRs. To achieve a significant difference from noisy
speech signals to enhanced speech signals, a more advanced
SE method performing under lower SNR conditions might be
required.
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TABLE 6. Average STOI and PESQ scores for different SE models over −2,
0, 2, and 5 dB SNR conditions. Noisy denotes the results of original noise
without performing SE, and baseline denotes the original FCN-based SE
results.

In addition to the averaged CCRs for all the participants,
Fig. 14 (a) and (b) illustrate the subject-wise CCRs at
0 dB and 5 dB, respectively. Each gray circle in the
figure represents the CCR score of an individual participant.
According to both sub-figures, we can observe a larger CCR
variance for MMSE and DDAE than that for FCN and noisy.
The results imply the effectiveness of the FCN model in
enhancing noisy speech signals with less ambiguous content
than that of MMSE and DDAE.

3) MA EXPERIMENT
For the MA experiment, we fine-tuned the FCN model used
in the SE experiment and used the original SE results from
the FCN model as our baseline. From Table 6, it can be seen
that SE yielded higher STOI and PESQ scores as compared to
noisy, thereby confirming the results in that SE can improve
speech quality and intelligibility over noisy speech signals,
although the noise types are unknown and different from
those used in the training set.

Next, compared with the baseline (original SE model
without MA), all three MA modes achieved higher PESQ
and STOI scores. More specifically, MA(N), MA(S), and
MA(N+S) yielded noticeable relative improvements of
5.06%, 2.94%, and 5.84% in terms of STOI, and relative
improvements of 12.48%, 3.32%, and 11.24%, in terms
of PESQ, respectively, as compared to the baseline. Thus,
the results obtained confirmed the effectiveness of the
MA function and indicated that intelligibility and quality
improvements could be attained by adapting the SE model
based on both noise and speaker information. From the
experimental results, we also observe that MA(N) achieved
a higher PESQ than MA(S) and MA(S + N). One of the
possible reasons for this is that the data for MA(N) was more
than that for MA(S) and MA(S+N). Specifically, the number
of fine-tuned speech signals was 2× 1200× 8 (new noises×
clean training utterances of the original SE model × SNRs),
5 × 40 × 8 (training noises of original SE model × clean
utterances from new speakers × SNRs,) and 2 × 40 × 8
(new noise × clean utterances from new speakers × SNRs)
for MA(N), MA(S), and MA(S+N), respectively.

4) BNC EXPERIMENT
We present human and machine evaluations of the BNC
function. Human evaluation was performed by conducting a
listening test, whereas the machine evaluation was performed

TABLE 7. CCR and ACC scores based on the BNS function in CITISEN.

using an ASC model and a pretrained ASR system [80].
We evaluated the BNC using machines for three major
reasons. First, recruiting humans to perform the tests is
expensive and time-consuming, whereas using a machine
to evaluate the performance is relatively inexpensive and
efficient. Second, the ASC model has potential in several
applications, such as monitoring systems, context-aware
mobile devices, and audio search. Third, the machine can
assist in human judgment. Therefore, the performance of the
ASC model is also important for the BNC function. The
details of the ASC model used in this study are described in
Section IV-A3.b.

a: RESULTS OF HUMAN EVALUATION
Based on the three SE methods, namely, MMSE, FCN, and
DDAE, three sets of converted speech signals were obtained,
denoted as BNC(MMSE), BNC(FCN), and BNC(DDAE),
respectively. In addition, we included the results of
BNC(clean), which is a set of speech signals converted from
a silent background. Notably, BNC(clean) represents the
upper bound of the BNC results because it was converted
from a clean speech signal. From Table 7, we find that
BNC(clean) has an ACC of 86.5%. This result suggests
that participants sometimes could not correctly identify the
type of background noise, although other types of noise
did not contaminate the original speech signal. The 54.9%
ACC of the BNC(MMSE) indicated that the enhanced speech
signals of MMSE still contained high noise components that
hindered the identification of the new background. However,
BNC(FCN) and BNC(DDAE) achieved approximately 80%
of ACC, suggesting that FCN and DDAE can produce
enhanced speech signals with low residual noise components
for the BNC function. Finally, the high CCR scores of the
BNC(FCN) and BNC(DDAE) indicate the maintenance of
clarity and intelligibility of the converted speech signals.

Fig. 15 shows the ACC of different types of BNC
conditions. The results were the average scores of BNC(FCN)
and BNC(DDAE). We excluded the results of BNC(MMSE)
because the ACC of BNC(MMSE) was considerably lower
than that of BNC(FCN) and BNC(DDAE), and MMSE
performed worse than other SE methods (Table 4). From the
column ‘‘sea’’ and ‘‘take-off’’ in Fig. 15, we observed that
participants were less able to identify the background ‘‘sea’’
and ‘‘take-off.’’ The ‘‘sea’’ and ‘‘take-off’’ backgrounds are
less recognizable than the other noises because participants
must hear a nearly complete wave or take-off sound to
confirm it. Conversely, from the column ‘‘song,’’ we know
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FIGURE 15. Listening test ACC of different kinds of BNC conditions. The
results were the average scores of BNC(FCN) and BNC(DDAE).

that participants found it easier to identify the ‘‘song’’
background. This result might be because the ‘‘song’’
background containsmusic with a human voice, which is con-
siderably different from other background noise. Evidently,
the characteristics of the target background significantly
affected the identification results. In addition, the original
background noise affected the ACC because the noise type
usually notably affects the SE performance.

b: RESULTS OF MACHINE EVALUATION
Because the BNC function focused on the background noise,
the SNR level affected the performance. We make two
assumptions about the effect of the SNR level of a speech
signal on the performance of the BNC. The first assumption
is that a higher original SNR will lead to a better ACC.
That is, the target background noise is easier to identify if
the converted speech signal is less affected by the original
background noise. The second assumption is that a lower
converted SNR will result in a better ACC. That is, the target
background noise is easier to recognize if it is louder than the
speech signals.

To test these two assumptions, we conducted four pairs of
experiments that converted speech signals with the original
SNR level a dB to speech signals with converted SNR level
b dB, where a ∈ {0, 5}, and b ∈ {0, 5}. Fig. 16 shows
the average ACC of the BNC(DDAE) and BNC(FCN). The
figures in the same row and column represent the speech
signals with the same original levels and converted SNR
levels, respectively. That is, the influences of the original
SNR level could be obtained by comparing the figures in
different rows, whereas the effects of the converted SNR level
could be determined by comparing the figures in different
columns. In Fig. 16, we find that speech signals with an

FIGURE 16. ACC at different BNC conditions. Comparing (c) and
(d) (bottom row) with (a) and (b) (top row), the results showed that a
speech signal with a higher original SNR had a better BNC result.
In addition, comparing (a) and (c) (left column) with (b) and (d) (right
column), the results indicated that a speech signal with a lower converted
SNR had a better BNC result. The results were the average scores of
BNC(FCN) and BNC(DDAE).

original SNR level of 5 dB (bottom row) outperform speech
signals with an original SNR of 0 dB (top row), which
confirms our first assumption that a speech signal with a
higher original SNR has a better BNC result. Subsequently,
speech signals with the converted SNR level of 0 dB (left
column) performed better than speech signals with the
converted SNR level of 5 dB (right column). This result
verified our second assumption that a speech signal with a
lower converted SNR yields a better BNC result.

We evaluated the ACC of speech signals converted from a
silent background (i.e., from a clean speech signal instead of
an enhanced speech signal), which is the upper bound of BNC
performance. Fig. 17 shows the results for different SNR
levels. Unlike the results of the previous experiments, the
converted SNR level did not affect the ACC of the BNC.None
of the background noise conditions indicated that a lower
converted SNR would lead to a better ACC. In addition, the
average scores remained stable under different SNR levels.
One possible reason is that, for an enhanced speech signal,
a lower converted SNR can suppress the noise that was not
removed by the SE models and make the target background
easier to identify. Conversely, a lower converted SNR makes
no difference for a clean speech signal because it does not
contain other noise. Therefore, the target background is easy
to recognize despite having a high converted SNR level.
Notably, the ASC model achieves high ACC on the ‘‘sea’’
and ‘‘take-off’’ background, whereas the participants of the
listening test have a lower identification rate for these two
noises. The results suggest that the ASC model has potential
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FIGURE 17. ACC vs. SNR of speech signals converted from a silent
background. The ACC of ‘‘song’’ and ‘‘sea’’ overlapped in this figure. The
results showed that SNR levels did not affect the ACC of BNC.

FIGURE 18. CCR vs. SNR of speech signals converted from a silent
background. The results showed that the lower the SNR levels, the lower
was the CCR.

TABLE 8. Summary of machine evaluations. The enhanced signal
achieved more than 90% of ACC but had a great decline in CCR.

to assist human listeners in recognizing noise that they cannot
distinguish correctly. Finally, we present the CCR results
using a pretrainedASR system [80]. As can be seen in Fig. 18,
the SNR levels significantly affect the CCR. That is, the lower
the SNR levels, the lower is the CCR.

Table 8 presents a summary of the machine evaluations.
For the accuracy of BNC, enhanced speech signals performed
worse than clean speech signals but still achieved more than
90% of accuracy. For the CCR, the performance decreased
when using enhanced speech signals instead of clean speech
signals. One possible reason is that the ASR system was
not trained with the enhanced speech signals; therefore, the
prediction of an enhanced speech signal is less accurate.
In addition, the CCR is significantly affected by the language
model of the pretrained ASR system. Specifically, despite
having the same pronunciation, the ASR system might result
in the wrong word, leading to a decline in CCR.

Subsequently, we used principal component analysis
(PCA) [83] to visualize the embeddings of the ASC models
in Fig. 19, where the clean and enhanced speech signals
with background noise ‘‘n’’ are denoted as ‘‘c+n’’ and
‘‘en+n,’’ respectively. We first found that different noise

FIGURE 19. Visualization of the ASC embeddings. The original background
noise of an enhanced speech signal was either ‘‘take-off’’ or ‘‘train.’’ The
embeddings of clean speech signals with new noise were close to those
of enhanced speech signals with the same converted noise, which
indicates that the BNC function might be used as a data augmentation
method for the ASC model when a clean speech signal is unavailable.

types were separated, indicating that the ASCmodel correctly
recognized the background noise types. Then, we observed
that the embeddings of clean speech signals with a new
noise were close to those of enhanced speech signals with
the same converted noise. Therefore, the BNC function can
serve as a data augmentation method for the ASC model
when clean speech signals are unavailable. Specifically, the
BNC function can perform data augmentation by generating
arbitrary numbers and SNR levels of training speech signals
with specific background noise. In addition, the proposed
BNC has the potential to open up new and interesting topics
that have not yet received sufficient attention. For example,
related studies include conversion of a new background
noise naturally and the development of an ASC model that
can distinguish between artificially converted and naturally
recorded background noise.

5) VISUALIZATION RESULTS
Finally, we present the visualization results shown in Fig. 20.
Figs. 20 (a), (b), (c), and (d) depict the spectrogram and
waveform plots of the clean, noisy, enhanced, and BNC
speech signals, respectively. For each sub-figure in Fig. 20,
the left column depicts the spectrogram, and the right side
depicts the associated waveform. Noisy speech signal (b) was
produced by contaminating clean speech signal with car
noise. Additionally, the BNC speech signal (d), which was
produced by mixing the enhanced speech signal (c) with train
noise, demonstrates the converted result from car noise to
train noise.

The enhanced spectrogram shown in Fig. 20 (c) preserves
several harmonic clean speech structures when compared
with those presented in Figs. 20 (a). In addition, when
comparing the waveforms in Figs. 20 (a), (b), and (c),
the enhanced waveform presented in Fig. 20 (c) depicts
considerably smaller noise components. Both observations
demonstrate the effectiveness of SE in reducing noise from
noisy input while providing detailed speech structures.
The spectrogram shown in Fig. 20 (d) clearly illustrates
different noise patterns in comparison with those presented
in Fig. 20(b) and confirms the effectiveness of BNC.

VOLUME 10, 2022 46095



Y.-W. Chen et al.: CITISEN: Deep Learning-Based Speech Signal-Processing Mobile Application

FIGURE 20. CITISEN processed speech signals: (a) clean speech signal,
(b) noisy speech signal (with car noise), (c) enhanced speech signal, and
(d) converted speech signal (from car noise to train noise). For each
sub-figure, the left and right columns show the spectrogram and
waveform, respectively.

V. CONCLUSION
In this study, we presented a speech signal processing
mobile application called CITISEN. The contributions of
CITISEN are as follows: (1) CITISEN was developed as a
standardized SE tool with a user interface for performing
SE on a prerecording or instant recording. In addition,
experimental results confirmed the SE function of providing
improved STOI and PESQ scores. (2) CITISEN has an MA
function that allows users to adapt the SE models in terms
of personalized testing conditions, and the MA function was
proven to provide notable STOI and PESQ improvements
as compared to the results without MA. (3) CITISEN
provides a BNC function that converts the background
noise of a speech signal into another noise. Notably, the
BNC function is a novel concept for SE techniques and

was implemented in mobile devices for the first time.
The listening test results indicated that the BNC function
could convert the background noise while maintaining the
clarity and intelligibility of the converted speech signals.
In addition, machine evaluation experiments showed that
the ASC embeddings of clean speech signals with a new
noise were close to those of enhanced speech signals with
the same converted noise. Therefore, the BNC function can
serve as a data augmentation method for the ASC model
in the condition that clean speech signals are unavailable.
(4) By simply replacing the settings with the associated
model, CITISEN can run with other SE models that were not
tested in this study. Therefore, CITISEN provides a suitable
platform for evaluating deep-learning-based SE models and
effectively reduces the development interval for converting
deep-learning models to industrial applications.
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