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ABSTRACT Population health is multidimensional in nature, having complex relationships with the
various health determinants. However, most previous studies investigate a single dimension of population
health using linear models, failing to capture the nonlinearity in the data and interdependence of multiple
dimensions in health outcomes. In this paper, we propose a data-driven multivariate statistical learning
approach to simultaneously model various aspects of population health—characterizing the length and
quality of life—as a function of health behaviors, clinical care, socioeconomic factors, physical environment,
and demographics. We also propose a novel percentile-based variable selection for multivariate regression,
without compromising the model’s generalization performance. We demonstrate the applicability of our
proposed data-driven methodological framework using the New York State as a case study. Leveraging
cross-validation techniques and statistical hypothesis tests, the results indicate that multivariate tree boosting
method outperforms the traditionally-used univariate linear regression model and random forest in modeling
multidimensional population health. The variable importance heat-map illustrates the relative influence of the
key health determinants on the various dimensions of population health. Partial dependence plots are used to
quantify the marginal effects and the nonlinear relationships between the health outcomes and health inputs.
Our results show that teen birth rate is strongly associated with both length of life (e.g., child mortality) and
quality of life (e.g., physically unhealthy days). Socioeconomic status is the key indicator to predict child
and infant mortality. Our proposed framework can be used as a decision support tool for accurately assessing
and predicting multivariate population health.

INDEX TERMS Data-driven framework, multivariate tree boosting, multidimensional population health,
variable selection.

I. INTRODUCTION
Human health and wellbeing is the key to a thriving and
equitable society [1]. Population health is often concep-
tualized as the health status and health outcomes within
a group of people, instead of considering the individual
health at a time [2]. In the last decade, efforts have been
made to enhance the overall population health by not
only improving the overall or mean population health of a
community, but also eliminating health disparities within that
population [3]–[5]. Recently, the ‘‘Healthy People 2030’’,
developed by the U.S. Department of Health and Human
Services Advisory Committee on National Health Promotion
and Disease Prevention for 2030, sets data-driven national
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objectives to improve health and well-being over the next
decade [1]. Even though increasing attention has been paid
to enhancing population health, several challenges still exist
towards quantitatively assessing population health.

Most importantly, population health has a multidimen-
sional construct, characterized by length of life (a.k.a.,
mortality) and quality of life (a.k.a., morbidity) [5], [6].
Although a number of studies focus on assessing population
health, most of them consider only one of the dimensions such
as health-related quality of life [7], [8], life expectancy [9]
or the mortality rate [10] in their analysis. Such a silo-
ed approach, however, fails to provide the comprehensive
and holistic picture of the health outcomes within a
population.

In addition, the recent studies show that the relationships
between health outcomes and health variables such as social
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and economic factors are highly complex and nonlinear
[11]–[13]. However, there is a lack of systematic quantitative
approach in modeling the complex nonlinear characteristics
of population health [14], [15]. The traditionally-used linear
models often fall short in accurately estimating the health
outcomes [5], [6], [16], thus underestimating the risks to
population health.

Moreover, population health is affected by a wide range
of factors including health behaviors, clinical care, social
and economic conditions, physical environment and demo-
graphics [16], [17]. Presently, a weighted average technique
is used to account for the relative contribution of such factors
on population health. However, the weighting mechanism is
simplistic where the weights of the factors in contribution
to the health outcomes are often assumed to be equally
distributed, or are assigned based on expert opinions [4],
[18], [19]. Recognizing the complex interactions of the health
determinants to population health, such traditional weighing
mechanisms could lead to a biased estimate of the population
health, leading to sub-optimal decision making.

To address the above-mentioned challenges and gaps,
in this paper, we propose to develop a novel data-driven
multivariate framework to model the population health
at county-level leveraging the advanced statistical learning
theory, while considering its multidimensional construct.
Specifically, in this proposed framework, nine different
dimensions of population health outcomes characterizing
length of life and quality of life are considered. Population
health of a county is then modeled as function of a wide range
of factors including health behaviors, clinical care, social
and economic characteristics, physical environment and
demographics. A suite of statistical learningmodels including
linear regression and non-linear ensemble tree-based models
along with their multivariate and univariate versions are
implemented to evaluate the population health. Additionally,
we propose a percentile-based variable selection method
for multivariate analysis without compromising the gener-
alization performance of the model. Finally, we present the
visualization tools including a variable importance heat-map
and partial dependence plots of the key predictors to explain
the underlying relationships of the important variables with
the population health outcomes.

We implemented our proposed framework for the state of
New York (NY) as a case study because [20]:
• NY state’s population is the fourth-largest in the United
States;

• NY state has one of the most diverse demographic
characteristics;

• the minority populations in NY state increased as a
percentage of the total population (39.8% in 2006 to
44.5% in 2016);

• NY population is aging—e.g., the median age of NY
population increased from 37.4 years in 2006 to 23.4 in
2016; in fact, the percentage of population aged 65 and
over increased to 15.3% from 13.1%, while that aged
19 and younger decreased to 23.8% from 26.3%.

Therefore, NY presents a unique case to study the
populations health and its key determinants. Although we
present the applicability of our proposed framework for the
state of NY, this methodological framework is generalized
enough that can be implemented to any other states in the US
or states of other nations, provided data are available.

The major contributions of our proposed data-driven
framework are two-fold. First, it provides a systematic
approach to develop and select a model that can best capture
the complex relationships of the various determinants of
health with the multidimensional population health. Second,
it helps to identify and evaluate the key health factors
affecting the overall health outcomes, which can help
policymakers, community leaders, and public health officials
in informed decision making towards improving overall
population health.

The rest of this paper is organized as follows. Section II
presents the literature review regarding population health
assessment, highlighting the gaps in the body of knowledge.
Section III presents the collection and preprocessing of
the data. Section IV introduces our proposed research
methodology. Section V provides the results including model
comparison and selection, variable selection, and statisti-
cal inference. Finally, the discussion and conclusion are
exhibited in Section VI and VII respectively. The Appendix
provides additional information for variable descriptions and
results on hypothesis testing.

II. LITERATURE REVIEW
The concept of multidimensional population health provides
a holistic picture of integrating all major aspects of health
outcomes and various health determinants. This concept
recently has gained more and more attention to better
understand and improve overall population health [21], [22].
Generally speaking, length of life and quality of life describe
different aspects of population health, and a combination
of these two characteristics can provide more compre-
hensive and holistic analysis of health outcomes of the
population [5], [6].

Length of life is one of the critical dimensions of
population health [5], [16]. Various studies indicated that
length of life can be represented by the overall life expectancy
that measures how long people can live on average [9], [23].
In recent years, the average life expectancy in the United
States has been declining [24], [25], even falling behind other
wealthy countries [10]. Besides life expectancy, mortality rate
is another metrics for length of life. Preston et al. found
that different age groups exhibit different mortality rates.
For example, in 2017 the US witnessed a sharp increase in
mortality rate among adults aged 20 to 34, in contrast to
a decline in mortality rates among people aged 85 and up,
compared to other similar European countries [10].

Quality of life, on the other hand, indicates the extent
to which people feel physically, mentally, socially, and
emotionally healthy [5], [16]. Quality of life, therefore,
is measured by various characteristics of a population such
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as number of unhealthy days, prevalence of diabetes within
the population, low birth weight, psychological distress,
etc. However, most of the existing studies have focused on
evaluating a single measure depicting the quality of life. For
instance, Slabaugh et al. used number of healthy days to
measure quality of life in order to understand both mental
and physical well-being of a population [26]. Prevalence of
diabetes within a population, as another measure of quality of
life, has been studied in various existing literature [27]–[29].
The epidemic of diabetes is one of the most prevalent and
costly chronic diseases in the US, which adversely affects the
quality of life in majority of the population [30], [31]. Longer
duration of any type of diabetes was found to be correlated
with poor quality of life [27], [32]. Some other studies
included low birthweight [33] and psychological distress [34]
in the evaluation of quality of life.

In addition to being multidimensional in nature, recent
studies demonstrate that the associations between population
health and the various health determinants are complex and
exhibit nonlinear characteristics, and that the linear models
are inadequate to capture such nonlinear behaviors [11]–[13].
However, most of the existing studies in the population
health assessment domain have used linear models to analyze
the relationships between the health determinants and the
population health outcomes. For example, to determine the
relationships between health-related behaviors and the health
outcomes of people with chronic conditions, Hinnell et al.
implemented Logistic regression model. The authors found
that physical inactivity was significantly correlated with
epilepsy disorder [35]. Another study by Khedmat et al.,
which aimed to predict health-related quality of life,
leveraged ordinal logistic regression to characterize the
socioeconomic and demographic conditions associated with
the perceived physical and mental health conditions of the
participants [7]. Veen et al., in a different study, used linear
regression analysis to investigate the degree of variance in
quality of life that contributed to the risk of facial palsy [8].
In another study, Michel et al. examined the disparities of
age and gender in the quality of life among teenagers using
multilevel regression analyses. The authors found that girls
reported a significant deterioration in quality of life than boys
with increasing age [36]. Thus, although linear models are
predominantly used to model population health outcomes
because of their easier interpretability and low computational
cost, the theory of these models are founded on a set of
rigid assumptions regarding the underlying distribution of
the data such as linearity and normality [37]. However,
in reality such assumptions often do not hold, leading to
poor generalization performance of the model [38]. Recently,
data-driven techniques are developed and demonstrated to
have potential values in discovering the complex nonlinear
relationships in the field of public health [39], [40].

Population health is also affected by a number of
factors. For example, socioeconomic determinants of health
including unemployment and income are found to be strongly
associated with the population health [41]. Moriarty et al.

showed that people from poor socioeconomic condition
are likely to suffer from more unhealthy days, impacting
their quality of life—an important dimension of population
health [42]. Lin et al. separately investigated the relationships
between demographic backgrounds, and the physical and
mental wellbeing of US adults aged over 65 years. The
authors found that people living in the rural areas are
likely to suffer more from poor physical health rather
than mental illness [43]. Wu et al. examined a range of
demographic and socioeconomic factors in relation to the
mental wellbeing of adolescents. The authors pointed out
that African-American youths, girls, and children from low
income family are the most vulnerable to mental illness [44].
Physical environment also plays a critical role in shaping
population health. Samet et al. investigated the relationships
between air pollutants and mortality rates in the major
metropolitan areas in the US. The authors found that the
level of PM10 was positively linked to a higher risk of death
from all causes [45]. Zanobetti et al. examined the association
between air temperature and mortality rate, and concluded
that a 10◦F increase in air temperature was associated with
an 1.8% increase in mortality rate [46]. Thus, although it is
evident that population health is dependent on a multitude
of factors, most of the studies focused on understanding the
association of a particular type of a determinant/factor on
population health, neglecting their complex interactions and
the holistic effects of such factors on the population health.

It is noteworthy that some of the recent studies have
developed the population health assessment framework,
integrating all the different types of health determinants to
the population health outcomes. For example, Kindig et al.
proposed a framework to assess the population health
outcomes by considering five determinants includingmedical
care, individual behaviors, social environment, physical
environment and genetics. However, the authors assumed that
all the determinants are equally weighted, i.e., they make
equal contributions to the health outcomes [4]. Similarly, the
County Health Ranking (CHR) framework developed by the
University of Wisconsin Population Health Institute and the
RobertWood Johnson Foundation, assumes a fixedweight for
all the health determinants. The CHR framework delineates
four main categories of health determinants including health
behaviors, clinical care, socioeconomic factors, and physical
environment [16], [17], where the weight of each health
determinant is determined by expert knowledge, and is fixed
for all counties [16]. However, the interactions of health
determinants to population health are highly complex [47],
and the simple weighing mechanisms can lead to sub-
optimal decision making where the decision makers cannot
adequately prioritize the key risk factors affecting the
population health that needs attention.

To summarize, the gaps in the current body of literature
aiming to evaluate the population health are as follows:
• the state-of-the-art modeling approach undermines the
importance of the multidimensional aspect of the
population health;
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• the traditionally-used linear models cannot cap-
ture the nonlinearities and the complex interactions
between the various factors and the population health,
thereby underestimating the risk factors of population
health;

• most of the existing studies use silo-ed approaches, i.e.,
focus on the effects of a specific type of a determinant,
instead of leveraging a holistic approach that can
consider a wide range of predictors for the analysis; and,

• finally, few of the studies that have considered a
range of various factors in assessing population health,
used a fixed or equal weighting system assuming
that all the predictors have equal contribution towards
estimating population health, which is often times not
true.

To the best of our knowledge, no previous studies have
simultaneously modeled all major dimensions of population
health as a predictive function of a wide range of health deter-
minants. Therefore, to address this research gap, we propose
a systematic data-driven multivariate approach to model the
multiple dimensions of population health (such as quality of
life and length of life) as a function of various determinants
of health, leveraging advanced statistical learning algorithms.
Our framework can not only provide a robust way to select
the optimal model for understanding and predicting the
population health outcomes, but also help decision makers
identify and quantify the focal health factors influencing
population health.

III. DATA COLLECTION AND PRE-PROCESSING
In this section, we describe the detailed data preprocessing
procedures for response and input variables used in this study.
The population health data are collected at the county-level
for each of 62 counties in New York State during 2010 to
2020. The mean of population per county is 0.3 million,
and the total population across all counties is 19.5 million
(2020 U.S. Census).

A. DATA PREPROCESSING
The health-related population data used in this study are
provided by County Health Rankings & Roadmaps (CHR)
program [48], and weather information are collected
through National Center for Environmental Information
(NOAA) [49]. Then, we conducted two following steps to
process the collected raw data.

The first step is to address missing values, which is
a common issue in data-driven analytics [50]. We found
that few health features (e.g., income inequality, insufficient
sleep) in NY had more than half of data missing in our study
period 2010–2020. This was mostly due to small reported
sample size or other uncertainties [5]. To avoid introducing
bias in the analysis, we only kept the variables that had at
least 50% of non-missing observations. For the variable that
had less than or equal to 50% of the observations missing,
we imputed the missing values leveraging the multivariate

imputation by chained equations (MICE) technique using the
R package ‘mice’ [51].

The second step is to detect the correlation between
variables. The Pearson correlation coefficient (denoted as ρ)
between two variables in each category of predictors and
responses is calculated. If two variables are demonstrated to
exceed a correlation of 0.90, the one with higher percentage
of missing values is excluded from our analysis. For example,
we found that the premature age-adjusted mortality is highly
correlated with years of potential life lost (YPLL) with
ρ = 0.93, and the proportion of missing data for the
premature age-adjusted mortality is 27% compared to 0%
missing values in YPLL. Then, the YPLL is kept in the
analysis. To identify the highly correlated variables are
essential for statistical inference to avoid ‘‘masking effect’’,
which has been successfully used in previous research
studies [52], [53].

B. RESPONSE VARIABLES
To capture the multifaceted length of life in a population,
we included three measures of mortality, namely, years
of potential life lost (YPLL), child mortality, and infant
mortality. Here, YPLL can capture overall mortality of the
population. Child and infant mortality can inform policy-
makers to design prevention strategies for meeting United
Nations’ Sustainable Development Goals by 2030 in the
reduction of preventable deaths of newborns and children
under age five [54].

To characterize the quality of life, six measures are used
including poor or fair health, poor physical health days, poor
mental health days, low birth weight, diabetes, and HIV
prevalence. These variables have been used and validated
by the CHR framework to assess the quality of life in
population [5], [16]. Note that, CHR program also provides
additional measures of quality of life including physical and
mental distress among adults. Since these two variables have
missing data for six years (i.e., over 50% of the data is
missing), we did not include them in our study.

The summary statistics of the total of nine multivariate
responses are displayed in Table 1. The description of all
response variables is exhibited in Table 5 from Appendix A,
and their dependencies and distributions are depicted in
Fig. 13 from Appendix B.

C. INPUT VARIABLES
A wide range of input variables in relation to population
health are analyzed in our study. These health factors
are grouped into five categories: health behaviors, clinical
care, social and economic factors, physical environment
and demographics, based on the CHR framework [48].
Each variable has been validated by researchers and experts
to satisfy several criteria such as: a) their importance to
population health, b) their applicability to future population
health, and c) availability and reliability of the indicators [5].
Additionally, we collected weather-related variables (precipi-
tation, snowfall, etc.) from NOAA, and added to the category
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TABLE 1. Summary statistics of the response variables.

of physical environment for better characterizing the impacts
of physical surroundings on population health. All the input
variables used in our analysis are displayed in Table 2, and
the detailed description of variables are presented in Table 5
from Appendix A.
To summarize, we have 67 variables (9 responses variables,

58 input variables including 57 health measures and one
proxy variable ‘year’) for each county in New York State
from 2010 to 2020, that are used for model development.

IV. METHODOLOGY
A. RESEARCH FRAMEWORK
In this study, we propose a data-driven multivariate frame-
work to assess and predict the multidimensional population
health outcomes, leveraging the advanced predictive algo-
rithms. The framework is depicted in Fig. 1, where each
component is explained as follows.

The first component in the framework is data collection and
pre-processing (described in Section III). Specifically, nine
different variables are used as health outcomes to represent
length of life (mortality) and quality of life (morbidity) in
population. Input variables including health behaviors, clin-
ical care, social and economic factors, physical environment
and demographics are used in the analysis. Then, a sequence
of data pre-processing procedures are implemented including
screening for missing data and correlated variables. Addi-
tionally, we applied the min-max normalization to scale the
response values to the range [0, 1] so that the performance
of various models are comparable across response vari-
ables [55]. Finally, the data are aggregated for each county
at a given year, which is used for model development.

The second component in the framework is model
development, evaluation, and selection as described in
Sections IV-B. The final model selection consists of two
steps—Step-1: a library of multivariate models including
multivariate linear regression, multivariate random forest,
and multivariate tree boosting model have been developed.
Following that, the best multivariate model is chosen based
on the generalization performance; Step-2: based on the
multivariate model selection, the corresponding univariate
model is implemented; following this, the generalization per-
formances were again compared to select the final model for
statistical inferencing. Note that, generalization performance

is obtained through 5-fold cross validation approach. Further,
hyper-parameter tuning process is executed based on the
selected model. Specifically, our proposed two-step model
selection framework aims to test two hypotheses as follows:
• Hypothesis (1): multivariate tree-based models can
better capture the complex nonlinear effects and inter-
actions between population health and the various
predictor variables than the traditionally used linear
model (outcome of Step-1);

• Hypothesis (2): the multivariate model can better pre-
dict the multi-dimensional population health outcomes
simultaneously, compared to corresponding univariate
models for capturing each health outcome separately
(outcome of Step-2).

The third component in the framework is model inter-
pretation and inference as presented in Section IV-C.
To further reduce model complexity without sacrificing the
generalization performance, the percentile-based variable
selection for multivariate regression (PVS-MR) approach
is proposed to select the optimal subset of features. The
statistical insights of key factors related to health outcomes
are provided, with the help of the variable importance heat-
map and partial dependence plots.

B. MODEL IMPLEMENTATION
In this section, different types of models are introduced
including parametric and nonparametric models, multivariate
and univariate models. Specifically, we implement tree-based
models, including random forest and gradient boosted model
in the context of univariate and multivariate constructs, and
compare their performances to that of the traditionally-used
linear regressionmodel. The rationale for selecting tree-based
models is that they are able to capture the non-linearity and
the complex interactions between the health outcomes and
the corresponding health factors [13], [40]. Then, we provide
the details of the multivariate tree boosting model. The
generalization performance is also presented to help select
the final model.

1) PARAMETRIC VS. NON-PARAMETRIC MODELS
The objective of supervised learning is to estimate the
function f that maps the input vector X to the response
Y . Mathematically it can be written as Y = f (X ) + ε,
where ε is the irreducible error term that captures unobserved
heterogeneity from the data [56], [57].

Supervised learning algorithms vary differently in their
degree of complexity and flexibility depending on the
construction of function f [58], [59]. Broadly speaking,
parametric and non-parametric are the common types of
learning models. The widely-used generalized linear regres-
sion belongs to the family of parametric models, where
the model parameters are predetermined and estimated
from data. One of the major advantages of parametric
model is easier interpretability from explicit formulae of the
function [60]; however, it comes at the cost of predictive
accuracy. On the contrary, non-parametric model does not
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TABLE 2. List of input variables in the model.

FIGURE 1. Schematic depicting the proposed framework for modeling multivariate population health.

require prior knowledge about the form of mapping function,
and has the flexibility to fit in any structure of the data. Thus,
it can better capture the complex nonlinear relationships but
comes at the cost of interpretability [37], [58]. Grounded in
ensemble theory, non-parametric tree ensembles are robust to
outliers and noise in the data, and exhibit superior predictive
accuracy [37], [61]. Therefore, in this paper we implemented
ensemble tree-based models including random forest and
gradient tree boosting in our analysis.

2) MULTIVARIATE VS. UNIVARIATE MODELS
Depending on the number of response variables in the
analysis, the statistical model can be either univariate
or multivariate. Specifically, multivariate model involves
multivariate response Y ∈ R

N×Q where N ≥ 1 is the total
observations and Q > 1 denotes the cardinality of response
variables, and it can be reduced to univariate regression
when Q = 1. Multivariate analysis is often implemented in
the cases where the covariances between multiple response
variables are dependent on a set of input variables [62].
By utilizing the covariance structure of the response vari-
ables, it can allow us to predict multivariate response

simultaneously, and to capture the variability of responses
in order to improve model’s predictive accuracy [62], [63].
Therefore, in this study, we implemented both multivariate
and univariate models to investigate if the covariance between
the nine different response variables representing population
health contributes to the overall accuracy of the population
health assessment and prediction model.

3) MULTIVARIATE TREE BOOSTING ALGORITHM
The gradient boosted trees [64] (viz., gradient boosting
machines [65]) leverage the gradient boosting technique to
iteratively fit ensembles of decision trees to minimize the
loss function, and it can be applied for both classification
and regression problems. Specifically, gradient boosting
algorithm constructs several decision trees sequentially,
where each tree is grown by utilizing information (i.e.,
residuals) from the previous trees in each iteration [66].
Essentially, the model performance can be ‘‘boosted’’ by
adding more penalty on bad predictions [67]. The gradient
boosted tree model has several advantages: (1) it does not
require any pre-determined form of the function, (2) the
nonlinear effects and interactions among variables can be
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captured in the process of growing trees, and (3) the tree-
building process uses previous information (i.e., each tree is
grown sequentially on residuals), which helps the model to
be efficient and robust [64], [67].

The multivariate tree boosting algorithm is an extension
of the gradient boosted tree algorithm, and it helps to
predict the multivariate response simultaneously, given a
set of input variables. Particularly, the multivariate tree
boosting algorithm sequentially fits the regression trees
to simultaneously minimize the loss function L for each
response variable and maximize the covariance discrepancy
D in the multivariate response. Here, the mean squared error
(a.k.a., squared L2 norm) is represented as loss function,
which is given by

L(Y , Ŷ ) =
1
NQ

N∑
i=1

(Yi − Ŷi)2, (1)

where Ŷi is the predicted value of the multivariate response
using the i-th observation, and Yi is the actual value.
In addition, covariance discrepancyD can be mathematically
written as [68]

Dm,q = ||
∑̂

(m−1)
−

∑̂
(m,q)
||, (2)

where
∑̂

(m−1) is the covariance matrix of the response
variables at the previous step m − 1, and

∑̂
(m,q) is the

covariance matrix at the current stepm after fitting a decision
tree to the response variable y(q). The discrepancy D(m,q) is
used to measure the amount of covariance explained in the
multivariate responses by the predictors selected by the tree
to fit in y(q) in step m. Basically, D denotes the improvement
in model fitting in the sample covariance matrix during
each iteration [68]. The steps of multivariate ensemble tree
boosting algorithm are displayed in Algorithm (1).

Algorithm 1 Multivariate Ensemble Tree Boosting Algo-
rithm [68]
1: for m in 1, · · · ,M steps (regression trees) do
2: for q in 1, · · · ,Q response variables do
3: train treem(q) to residuals, and assess the covariance

discrepancy Dm,q as in (2).
4: end for
5: Select the response y(q) corresponding to the regres-

sion tree with the maximum covariance discrepancy
Dm,q.

6: Update residuals by subtracting the predictions of the
tree fitted to y(q), multiplied by step-size.

7: end for

4) MODEL EVALUATION
The generalization performance of a learned model is
evaluated leveraging a robust cross-validation technique [57].
In this study, we leveraged a 5-fold cross validation technique,
where the data are randomly divided into five different

folds of roughly equal size. During each of the five cross-
validation loops, themodel is trained using the four folds (i.e.,
80% of data) and tested using the remaining fold (i.e., 20%
of data). This procedure is repeated five times until every
fold is utilized for model testing. During each loop, the in-
sample goodness-of-fit performance is estimated using the
training set, while the out-of-sample predictive accuracy is
evaluated using the test set. This procedure can guarantee
every single data point is being utilized for both training and
test, to produce the generalized and robustmodel results. Note
that, to control other factors (i.e., sampling bias) that could
affect model performance, all the models are fitted into the
same training set, and tested using identical test set during
each cross validation loop.

We apply root mean square error (RMSE) and R2 to
be representative of in-sample and out-of-sample model
performance metrics. The overall model performance is
evaluated through the averaged RMSE and R2 across all
validation loops for each population health dimension. The
model with the highest R2, and the lowest RMSE for both
in-sample and out-of-sample is then selected as the final
model, which is used to conduct the statistical inference.
Mathematically, the RMSE and R2 are given by

RMSE(q) =
1
K

K∑
k=1

√√√√1
u

u∑
i=1

(
y(q)i,k − ŷ

(q)
i,k

)2
R2(q) =

1
K

K∑
k=1

(
1−

∑u
i=1

(
y(q)i,k − ŷ

(q)
i,k

)2∑u
i=1

(
y(q)i,k − ȳ

(q)
k

)2 ), (3)

where q represents the q-th response variable to be calculated,
k is the number of times cross validation performed, u
indicates the number of observations from either in-sample
or out-of-sample. For response q under the k-th iteration, ŷ(q)i,k
describes the predicted value at the observation i, y(q)i,k is the

actual value, and ȳ(q)k is the mean value of the response q.

C. STATISTICAL INFERENCE
Inferential statistical techniques are provided here based on
the final multivariate tree boosting model. First, variable
importance is introduced to assess how useful health predictor
is at predicting population health outcome variables. Second,
we proposed a feature selection approach for multivariate
analysis. Third, the partial dependence analysis is presented
to quantify the marginal effect of health determinants on the
health outcomes.

1) VARIABLE IMPORTANCE
To identify and evaluate the impacts of key predictors on
population health outcome variables, the relative importance
of each input variable is measured. A predictor with larger
relative importance is considered to be of significance in
contributing to the overall model performance. In ensemble
tree-based methods, the relative importance can be computed
in two steps [65]. First, the importance of a predictor j
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in a single tree T is measured by the number of times
this predictor is used for splitting in growing of the tree,
weighted by the squared improvement of the model as a
result of each split, as denoted Î2j (T ) in (4). Secondly,
the relative importance can be obtained by averaging all
importance over ensembles of trees {Tm}M1 , as denoted Î2j in
(5). Mathematically, the importance in a single tree can be
written as:

Î2j (T ) =
J−1∑
t=1

î2t 1(vt = j). (4)

Here, the summation is over the non-terminal nodes t of the
J -terminal node tree T , vt is the splitting variable associated
with node t , and î2t is the improvement in squared error as a
result of the split in the tree. For an ensemble of trees, the
relative importance of the predictor j can be given by

Î2j =
1
M

M∑
m=1

Î2j (Tm), (5)

where M is the number of trees in the model. More details
can be referred to [65].

2) VARIABLE SELECTION
The variable selection (a.k.a., feature selection) is used to
select a subset of original features to reduce the dimensions of
data, and it is computationally expensive [69], [70]. The naive
brute-force method for feature selection aims to exhaustively
search over all possible combinations of variables, which
require massive computation power [71]. Some greedy search
strategies, which are computationally advantageous, can be
generally classified as either forward selection or backward
elimination, which can iteratively add (or delete) one variable
at a time to (or from) the existing subset [72]. Variable
importance scores can also help in key variable selection
based on the ranking of variable importance obtained from
the model [73].

Most of the feature selection methods are developed
for univariate models, which fall short in selecting key
features in the context of multivariate analysis. Therefore,
in this paper, we propose a novel approach for feature
selection, named Percentile-based Variable Selection for
Multivariate Regression (PVS-MR), to strategically select
the optimal subset of input variables for multivariate analysis
without compromising the generalization performance of the
model. The proposed PVS-MR algorithm leverages backward
elimination to iteratively eliminate variables, based on the
quantile of the variables’ relative importance obtained from
multivariate tree boosting model. Specifically, during each
model run, one or more variables can be removed from the
model if their relative importance is universally below a
pre-determined quantile threshold across all responses. This
process is repeatedly executed with a small increment in
threshold to its upper bound. Finally, the optimal subset
of features can be obtained based on the generalization

performance of the model. The PVS-MR algorithm is
displayed in Algorithm (2).

Note that the proposed PVS-MR is particularly developed
for multivariate analysis, and has the following advantages.
First, it is computationally efficient as one or more variables
are deleted at each iteration. Second, the model’s generaliza-
tion performance can be guaranteed, in the sense that model
error is evaluated in each step of variable selection. Third,
variables are assessed simultaneously across all responses in
the context of multivariate analysis. Finally, decision makers
can adjust their threshold and increment to control the process
of feature selection.

Algorithm 2 Percentile-Base d Variable Selection for Multi-
variate Regression (PVS-MR)
1: Initialization: J = {All input features}, threshold p,

upper bound U , and increment δ.
2: while p ≤ U do
3: Run multivariate model with J and evaluate model

performance. Let J = |J |.
4: for q in 1, · · · ,Q response variable do
5: for j in 1, · · · , J input variable do
6: Calculate Î2qj based on (5).
7: end for
8: Create a flag variable

θqj =

{
0, if quantile of Î2qj,∀j, is below p

1, Otherwise.
9: end for

10: for j in 1, · · · , J input variable do
11: if

∑
q θqj = 0 then

12: Delete variable j, and update J ← J − {j}.
13: end if
14: end for
15: p← p+ δ.
16: end while

3) PARTIAL DEPENDENCE ANALYSIS
The partial dependence plot (PDP) is a widely-used method
to assess the marginal effects of an input variable to
the response variable in non-parametric statistical learning
models. Presence of non-linearity can be easily detected
leveraging PDPs, where the estimated values of the function
are produced by changing the value of the predictor, while
keeping rest of predictors constant (i.e., ceteris paribus
condition) [65]. Mathematically, the partial dependency can
be written as:

f̂j(xj) = Ex−j [f̂ (xj, x−j)] =
∫
f̂ (xj, x−j)dP(x−j). (6)

Here, x−j represents all the predictor variables except j. The
estimated partial dependency of predictor xj is calculated by
integrating the function f̂ when xj is fixed and x−j varies
over its marginal distribution. The PDPs could inform the
changing direction and functional form of the marginal effect
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TABLE 3. Performance comparisons among multivariate models.

of the predictor on the response. Thus, it can be used to
facilitate the model inference [68].

V. RESULTS
In this section, we present the results from our case study
to illustrate the applicability of our proposed data-driven
multivariate framework for modeling the multidimensional
population health outcomes.

A. MODEL SELECTION
In this section, first, we discuss and compare the performance
of the various multivariate models, following which we
select the multivariate model that outperforms all the other
models in terms of their generalization performance. Second,
we discuss and compare the performance of the selected
multivariate model and the corresponding univariate model,
following which we select the final model for statistical
inferencing.

1) COMPARING PERFORMANCE AMONG
MULTIVARIATE MODELS
Table 3 displays the generalization performances of the
three multivariate models—linear, random forest and tree-
boosting. The RMSE and R2 are calculated for each response
variable in terms of both in-sample goodness of fit and
out-of-sample predictive accuracy. The goodness of fit
indicates how well the model fits the data, and predictive
accuracy describes the prediction power of the model in
an unseen dataset. Higher values of R2, conversely lower
values of RMSE , indicate superior performance of the
model. In Table 3, we observe that the tree-based models
(multivariate random forest and multivariate tree boosting)
demonstrate superior performance on average for each of
the nine response variables, over the multivariate linear
regression model. This pattern is observed across both
the goodness of fit and predictive accuracy performances.
Additionally, we implemented t-test to verify if this pattern
is statistically significant. Our results show that p < 0.01 for
each of the response variables (shown in Table 6 from
Appendix C), indicating that there is a significant statistical
difference between the performances of the linear versus
the non-linear ensemble tree-based models. Therefore, the
Hypothesis-1 holds good, concluding that non-parametric

tree-based models better capture the non-linear effects and
interactions between population health outcomes and the
predictors than the parametric linear model.

We can also observe from Table 3 that multivariate tree
boosting model outperforms the multivariate random forest
model. Specifically, multivariate tree boosting model has
improved the goodness-of-fit by 24% over linear regression,
and the predictive accuracy by 11% over random forest.
This illustrates that the multivariate tree boosting method
best models the county-level population health outcomes.
Additionally, we compared themodel results to the null (a.k.a.
mean-only) model, where the average values of each response
variable is used to fit the data.

Comparing the results, we found that multivariate tree
boosting model significantly reduces the training and test
errors, i.e., improves the goodness of fit and predictive
accuracy by 91% and 54% in YPLL, 87% and 36% in child
mortality, 86% and 35% in infant mortality, 90% and 48%
in poor or fair health, 87% and 40% in poor physical health
days, 88% and 37% in poor mental health days, 93% and
62% in low birth weight, 88% and 45% in diabetes, 96%
and 80% in HIV prevalence, over the null model. Therefore,
we selected multivariate tree boosting model as the best mul-
tivariate model to compare with its corresponding univariate
model.

2) COMPARING PERFORMANCE BETWEEN MULTIVARIATE
AND UNIVARIATE MODELS
Table 4 shows the in-sample and out-of-sample model perfor-
mance of themultivariate tree boosting and the corresponding
univariate tree boosting models. The corresponding t-test
results are shown in Table 6 in Appendix C. The results
show multivariate tree boosting model performs significantly
better than the corresponding univariate model across all
response variables in terms of goodness of fit, but this
significance is relatively weak with respect to predictive
accuracy. Specifically, in case of predicting the responses
YPLL, infant mortality, diabetes and HIV prevalence, there
is no significance in predictive accuracy betweenmultivariate
and univariate models. But for the remaining five responses,
the multivariate model is statistically better than the cor-
responding univariate model in predictive performance.
Overall we concluded that multivariate tree boosting model
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TABLE 4. Performance comparisons between multivariate and univariate models.

outperforms the univariate tree boosting models on average,
confirming that our Hypothesis-2 holds good.

B. VARIABLE SELECTION
After selecting the final model, we then applied a grid search
technique to fine tune two parameters in the multivariate
tree boosting model, namely the number of trees T and
depth of each of the trees D. The rationale for choosing
these two parameters are: a) they are critical for controlling
the generalization performance of the model, and b) they
can be easily modified by decision-makers to modulate
computational complexity [68], [74]. Instead of searching
the whole two-dimensional space Z2

+ to find the optimal
values, we limited the bound for parameter T is the range
of [500, 5000] with a 500 unit grid-step, and the bound for
parameterD is the range of [2, 20] with a grid-step of 2 units.
In total, there are 100 = 10× 10 combinations for those two
parameters. Among those, we aim to find the optimal values
of T and D that can achieve the minimal generalization error
of the model. Leveraging this method, we finally determined
T = 3500 and D = 16 in the model, which are used for
further variable selection and statistical inferencing.

We applied the proposed PVS-MR method on the final
model to select a subset of important variables, and to
further reduce model complexity by mitigating the curse of
dimensionality. The training error (denoted by black curve)
and test error (denoted by red curve) shown in Fig. 2,
are obtained by averaging the RMSE across all the nine
response variables using the final multivariate tree boosting
model. From the Fig. 2, the model with exact 29 variables
(denoted by blue vertical line) yields the least generalization
error. Additionally, we observed that the model performance
improves while downsizing the number of input variables; but
after a certain threshold as further variables are removed, the
model performance deteriorates. This indicates that optimal
selection of variables plays a pivotal role in accurately
and sufficiently modeling the multidimensional population
health. Thus, without compromising model generalization
performance, we included only 29 variables as the key
influencing factors of the population health outcomes in the
model.

FIGURE 2. Variable selection using the PVS-MR method. The training error
and test error are the averaged RMSE across all response variables. The
blue vertical line indicates the optimal number of variables selected by
PVS-MR model with the minimal generalization error.

C. STATISTICAL INFERENCING
1) VARIABLE IMPORTANCE
Fig. 3 presents the heat-map of relative importance of
the selected 29 key predictor variables (indicated on the
horizontal axis) to health outcomes (indicated on the vertical
axis). Each number in the heat-map indicates the relative
importance obtained from (5), as a fraction out of 100 for
each health outcome variable. The larger numbers associated
with the darker blue in grid cells, indicate higher degree of
importance, while smaller numbers displayed in the lighter
blue grid cells, represent lower degree of importance. For
example, two most influencing factors for HIV prevalence
are female population (with a relative importance of 68)
and African American (with a relative importance of 14.8),
which are consistent with the previous research findings [75],
[76]. Even though some of the health factors have relatively
small importance scores to the response variables such as
excessive drinking and preventable hospital stays (as shown
in the last two columns in the heat-map), these predictors
are deemed to be important for the overall population health
of a region, as they contribute to the overall performance of
the multivariate model. This is established by the fact that
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FIGURE 3. Relative importance of the key predictors on the multivariate health outcomes.

deletion of these variables can deteriorate the overall model
generalization performance as depicted in Fig. 2.

FromFig. 3, the key factors that are significantly associated
with more than one health outcome can be also identified.
For example, the median household income is the most
significant factor in contributing to both infant mortality
and YPLL, indicating that economic condition is strongly
linked to the length of life of the population, on average.
Another health variable, teen birth rate, plays the most
critical role in predicting both poor physical health days and
child mortality. This highlights that adolescent pregnancy
significantly affects both quality of life and length of life.

2) PARTIAL DEPENDENCE ANALYSIS
To quantify the association of the health determinants with the
population health outcomes, partial dependence plot (PDP)
is implemented. PDP is used to unravel the marginal effect
of a particular variable by keeping other variables constant
(ceteris paribus condition). Note that, there is a total of
261 potential combinations (i.e., 29 predictors variables for
each of the nine outcome variables) of PDPs, that can be
constructed. For the sake of brevity, we only explained the
PDPs of the top two key predictors for each of the nine
population health outcome variables, based on the relative
importance scores in Fig. 3. Figs.4–12 depict the PDPs of
the top two important predictors for each of the nine health
outcome variables.

a: DIABETES
Fig. 4(a) exhibits that the number of people diagnosed with
diabetes is positively correlated with adult obesity, i.e., as the

FIGURE 4. Partial dependence plots of top two factors (adult obesity and
free lunch) on diabetes in population.

percentage of adults with obesity problem increases, the
prevalence of diabetes in the community also increases. This
finding is consistent with the previous studies where the
prevalence of obesity and overweight is closely linked to the
diabetes [77]–[79]. In addition to the correlation, our analysis
reveals that this relationship is nonlinear. We observe that
when the adult obesity rate≤25%, the prevalence of diabetes
is insensitive to the obesity rate within the community.
However, the diabetes prevalence rate sharply increases at
adult obesity rate ≥25%. Thus, threshold for adult obesity
rate can be considered to be 25%, i.e., efforts to be given
such that the overall percentage of the population suffering
from obesity is <25%. Another second-most important
predictor of diabetes is free lunch. This predictor describes
the percentage of children enrolled in public school who are
eligible for free or reduced priced lunch; thus, it is often used
as an indicator for family poverty levels [80]. From Fig. 4(b),
we observe that the prevalence of diabetes in a community
increases as the percentage of school children eligible to
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FIGURE 5. Partial dependence plots of top two factors (year and free
lunch) on poor mental health.

FIGURE 6. Partial dependence plots of top two factors (children in
poverty and African American) on poor or fair health.

get free meals crosses the 30% threshold. This finding is in
line with a previous study showing that children attending
schools located in deprived areas had the higher prevalence of
diabetes compared to those in non-deprived areas [81]. In this
study, schools were viewed as being situated in a deprived
region, if over 21% of children received free lunch [81].

b: POOR MENTAL HEALTH
Our results shows that the two most significant predictors
of poor mental health days are the variables ‘‘year’’ and
‘‘free lunch’’. Fig. 5(a) shows that the population mental
health is worsening over time. Especially after the year of
2017, prevalence of poor mental health has significantly
increased within the communities. This re-establishes the
fact that mental health burden is crippling the established
market economies such as the US, where an estimated 26% of
Americans aged 18 and older—about 1 in 4 adults—suffers
from a clinicalmental disorder in a given year [82]. Free lunch
as another important predictor of poormental health. Fig. 5(b)
displays the positive association between poor mental health
days and the percentage of children receiving free lunch
in their schools. As the percentage of children receiving
free lunch ≥20% in a community, the mental health days,
on average, increases from 3.45 days to 3.75 days. Since
higher values of free lunch indicates higher poverty rates in
a community, our results indicate that population in deprived
areas suffer from poor mental health. In fact, a previous study
found that children receiving free or reduced-priced lunch
were more likely to suffer mental illness such as depression,
anxiety and pessimism [83].

FIGURE 7. Partial dependence plots of top two factors (teen birth rate
and children in single-parent households) on poor physical health days.

c: POOR OR FAIR HEALTH
Our analysis indicate the two most important predictors of
the poor or fair population health to be ‘‘the percentage of
children in poverty’’ and the ‘‘African American population’’.
It can be observed from Fig. 6(a) that as the percentage of
children in poverty increases to ≥15%, the percentage of
overall population in a community suffering from poor/fair
health condition increases to 14.8%, from 14.0%. This
finding is in line with the existing study that shows poverty to
be the key risk factor of child health and development [84],
which in turn is a key determinant of the overall poor health of
a population in a community. Racial disparities in population
health is a well-studied area. Our results show that higher
percentages of people reporting poor or fair health are from
communities having higher percentages of African American
population (≥15%) on average. Fig. 6(b) re-emphasizes that
racial health disparities exist in population health.

d: POOR PHYSICAL HEALTH
Our results indicate that the number of poor physical health
days reported by the population in a county is positively
associated with ‘‘teen births’’, (i.e., adolescent pregnancy)
(see From Fig. 7(a)) and ‘‘percentages of children from
a single-parent family’’ (see Fig. 7(b)). More specifically,
communities with ≥1500 teen births per 100K of the
population or number of children from single-parent families
≥30% of the population, witness a sharp increase in the
number of poor health days experienced by the population
on average. It is established in literature that adolescent
pregnancy could have adverse social and economic impacts
on mothers, children, their families [85], [86], which can be
linked to the overall poor physical wellbeing of a population
in that community, on average. In addition, as the percentage
of children living with their single parent increases in
a community, the number of poor physical health days
reported by the population in a community on average also
increases. This finding is also consistent with the previous
studies [87], [88].

e: CHILD MORTALITY RATE
The top two predictors of child mortality rate are found to be
‘‘teen births’’ and ‘‘Chlamydia rate’’. Fig. 8(a) shows that the
child mortality rate is positively associated with the teen birth
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FIGURE 8. Partial dependence plots of top two factors (teen birth rate
and chlamydia rate) on child mortality.

FIGURE 9. Partial dependence plots of top two factors (homicides and
population) on low birthweight.

rate, which is consistent with the previous studies [89], [90].
We found that as the teen birth rate increases to ≥500 per
100K population in a community, the child mortality rate
increases from 35—50 per 100K of the population. In fact, the
burden of child mortality still remains unevenly distributed
globally [91]. On the other hand, chlamydia rate is also found
to be positively correlated with child mortality. As observed
from Fig. 8(b), with increasing Chlamydia rate, the child
mortality rate increases monotonically from 40—48 per
100K of the population in a community, on average. Our
finding is in line with the previous research outcomes
that established chlamydia infection to be the most widely
reported sexually transmitted disease in the US, especially
among females aged from 15 to 24 [92]. Chlamydia infection
increases the risk of still births and infant mortality rates
significantly [93], [94].

f: LOW BIRTH WEIGHT
The two most important factors of low birth weight—
one of the dimensions of population health—are found to
be ‘‘rates of homicides’’ and ‘‘population of a county’’.
The positive association between low birth weight and
homicide is exhibited in Fig. 9(a). We found that as
the prevalence of homicide increases beyond 2 per 100K
population in a county, the percentage of low birth weight
grows rapidly from 6.8% to 7.8%. This positive correlation
between the homicide rate and low birth weight can be
attributed to the presence of a confounding variable such
as socioeconomic condition of a region that influences both
low birthweight and homicides. For example, communities
with lower socioeconomic status have been witnessing higher

FIGURE 10. Partial dependence plots of top two factors (median
household income and Asian population) on infant mortality.

homicide rates in general [95]. On the other hand, low birth
weight babies are mostly outcomes of adolescent pregnancy
or poor socioeconomic status of a region [96]. Prenatal
poverty, in fact, is a key determinant of low birthweight
[97]–[99]. Population size is also strongly correlated with
low birth weight rate, which is displayed in Fig. 9(b). This
strong correlation between low birthweight and population
density may arise due to a confounding factor such as
air pollution. Higher population density is a surrogate for
urban and suburban areas which experience higher levels
of air pollution. Air pollution, in turn, has a confounding
effect on public health and has a strong link with low birth
weight [100], [101].

g: INFANT MORTALITY RATE
Factors such as ‘‘median household income’’ and ‘‘per-
centage of Asian population’’ are found to be the top two
predictors of infant mortality rate. Fig. 10(a) shows that
the median household income has negative correlation with
the infant mortality rate, indicating that income inequality
plays a critical role in affecting the survival and health of
newborns. Specifically, communities with median house-
hold income ≤80, 000 USD, witness a sharp increase in
infant mortality rates from 500—640 per 100K population,
on average. This finding is in line with a meta-analysis
study which found that a significant inverse relationship
exists between household income and mortality rate among
infants and children [102]. Similarly, proportion of Asian
population in a community is another key predictor showing
negative association with infant mortality rate, as shown
in Fig. 10(b). This observation is consistent with findings
from an existing study that shows infant mortality rate
is lower among Asian population, compared to the White
population [103].

h: YEARS OF POTENTIAL LIFE LOST (YPLL)
This dimension of population health is a measure of
premature mortality, that provides an estimate of the average
years a person would have lived if they had not died
prematurely [104]. Our analysis indicates that ‘‘median
household income’’ and ‘‘injury deaths (per 100K)’’ are the
top two significant predictors of YPLL. Fig. 11(a) shows
negative relationship between median household income and
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FIGURE 11. Partial dependence plots of top two factors (median
household income and injury deaths) on YPLL.

FIGURE 12. Partial dependence plots of top two factors (female
population and African American) on HIV prevalence.

YPLL, indicating that prevalence of premature death is less in
families from high income group. Specifically, communities
with median household income ≤80, 000 USD witness
higher risk of premature deaths; however, risk of premature
death is insensitive to median household income ≥80, 000
USD. In fact, previous studies indicated that higher rates of
income inequality is strongly linked to the preventable or
immediate death rates across the US cities [105]. Number of
injury deaths is another key predictor of premature deaths.
As can be observed from Fig. 11(b), as the number of injury
deaths increases, the prevalence of YPLL in the community
also increases monotonically, which is expected. In fact, the
unintentional injury deaths contribute to be the number one
leading cause of premature death among people aged below
44 years, in the US [106].

i: HIV PREVALENCE
Prevalence of HIV is one of the key dimensions of population
health. Our analysis indicates that female population is
strongly associatedwith the HIV prevalence. From Fig. 12(a),
it can be noticed that communities with higher proportions of
females (≥52%), witness a sharp increase in HIV prevalence.
This sharp increase can be attributed to the right-skewed
distribution of HIV prevalence in the state of NY (see Fig. 13
in Appendix B). In fact, NY is ranked top in the US with
the highest female HIV infection rate in 2017, where the
Bronx County in NY alone contributes to the 27% of the
total HIV cases in the state of NY [107]. In addition, racial
disparity is again observed where the African American
population is significantly affected by the HIV. Fig. 12(b)

shows that increased prevalence of HIV is associated with
higher percentages of African Americans in a community,
which is in line with the previous findings [108].

VI. DISCUSSIONS
The data-driven framework developed in this paper could
potentially help enhance the overall population health of a
community (e.g., county), by transforming information from
routinely collected data into informed decisions. To facilitate
decision making, this paper provides variable importance
heat-map and partial dependence plots to identify and assess
the associations of the various factors with the multidimen-
sional population health that would help communicate data-
driven results to the policy makers. The heat-map of variable
importance reveals the key health inputs that jointly influence
various dimensions of population health. It is beneficial for
state and federal health agencies to identify focal variable(s)
and develop informed public health intervention strategies to
enhance the overall population health considering its various
dimensions. For example, teen birth rate needs to pay more
attention, because it is strongly associated with both the
quality of life (e.g., poor physical health) and length of
life (e.g., child mortality). Similarly, the free lunch variable
(i.e., the percentage of children who are eligible for free
lunch) significantly correlates with both the incidence of
diabetes and poor mental health in a community. The partial
dependence plots are used to assess the marginal effects and
quantify the complex nonlinear relationships of the essential
health determinants and the various dimensions of population
health. It could provide a holistic picture of the overall
trend in population health with respect to changes in specific
health determinant, given all the other factors remain constant
(ceteris paribus condition). For instance, child mortality is
more sensitive to an increase in teen births compared to
other factors such as chlamydia rate in the community.
Additionally, years of potential life loss (YPLL) is highly
correlated with injury deaths in a nonlinear form, where the
growth rate of the YPLL becomes faster as the number of
injury deaths increases. The racial disparity gap still persists
in New York State. African American groups are more likely
to suffer from poor of fair health and high HIV infections,
which could further deteriorate their quality of life. This
finding is consistent with the previous research [108].

Although we applied our framework to the New York
State, our framework is generalized enough that can be
easily applied to other regions of interest, provided ade-
quate data is available. The model selection and variable
selection techniques will also remain unchanged. However,
the associations between the health determinants and the
health outcomes might be different in reflection of the
regional health disparities. To validate different statistical
learning models, we implemented a robust cross-validation
technique to evaluate the generalization performance of the
models which is used as an input of the model selection
process. Our hypotheses of the superior performance of
multivariate tree boosting model over linear method and
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TABLE 5. Description of variables used in the model.

univariate model are being validated by conducting statistics
significance tests. This model selection process ensures that
the model results have low bias as well as low variance, and

are generalized enough to be equally valid for any future
data provided that the unobserved heterogeneities remain the
same [57], [58].
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FIGURE 13. Dependencies among multivariate response variables. The numbers are the Spearman correlation coefficients, indicating the
degree of two variables are correlated.

VII. CONCLUSION
Accurate prediction and evaluation of population health plays
a vital role in the development of a thriving and equitable
society. In this paper, we propose a data-driven multivariate
framework to simultaneously model nine dimensions (out-
comes) of population health—characterizing the length of
life and quality of life—as a nonlinear function of health
behaviors, clinical care, socioeconomic factors, physical
environment and demographics. We also developed a novel
percentile-based variable selection formultivariate regression
(PVS-MR) method for dimension reduction, without com-
promising model’s generalization performance. To validate
different statistical learning models, we implemented an
iterative cross validation approach to generalize model’s
performance, and a statistical significance test for model’s
results. Furthermore, variable importance heat-map and
partial dependence plots are provided to inform decision
makers for understanding underlying health determinants and
pathways in population.

Using NY state as a case study, we established the
applicability of the framework, and quantified the asso-
ciations linking mortality and mobility to some of key
influencing factors in NY. Our numerical analyses suggest

that the multivariate tree boosting algorithm best captures
non-linearity relationships and interdependence of popula-
tion health across multiple dimensions. Our findings also
indicate that socioeconomic factors and health behaviors are
the most predictors of population health in NY.

This study is focused towards modeling various aspects
of population health and assessing the key determinants of
population health at county-level. Clearly there are some
future work directions for multidimensional health studies.
First, as individual-level relevant data become available, sim-
ilar data-driven methodological frameworks can be applied
to further study the key determinants of individual health.
Such studies can help the state and federal health agencies to
design individual-level health intervention strategies. Second,
the correlations between health factors and health outcomes
revealed in this paper only imply association, and not
causation. Future research could utilize the key influencing
factors identified in this work along with longitudinal studies,
to better examine the casual mechanism of how the key
factors affect population health.

.
APPENDIX A VARIABLES DESCRIPTION
See Table 5 for description of all variables in the model.
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TABLE 6. Hypothesis testing results of model selection for all response variables.

APPENDIX B CORRELATIONS BETWEEN
RESPONSE VARIABLES
See Fig. 13 for the correlation and distribution for nine
multivariate response variables.

APPENDIX C HYPOTHESIS TESTING
See Table 6 for the statistical results for our two hypotheses.
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