
Received January 25, 2022, accepted February 17, 2022, date of publication February 22, 2022, date of current version March 2, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3153331

A Deep Learning Approach for IoT Traffic
Multi-Classification in a Smart-City Scenario
AROOSA HAMEED, JOHN VIOLOS, AND ARIS LEIVADEAS , (Senior Member, IEEE)
Department of Software and Information Technology Engineering, École de Technologie Supérieure, Montreal, QC H3C 1K3, Canada

Corresponding author: Aris Leivadeas (aris.leivadeas@etsmtl.ca)

This work was supported in part by the CHIST-ERA-18-SDCDN-003-DRUID-NET Project ‘‘eDge computing ResoUrse
allocatIon for Dynamic NETworks (DRUID-NET).’’

ABSTRACT As the number of Internet of Things (IoT) devices and applications increases, the capacity
of the IoT access networks is considerably stressed. This can create significant performance bottlenecks in
various layers of an end-to-end communication path, including the scheduling of the spectrum, the resource
requirements for processing the IoT data at the Edge and/or Cloud, and the attainable delay for critical
emergency scenarios. Thus, a proper classification or prediction of the time varying traffic characteristics
of the IoT devices is required. However, this classification remains at large an open challenge. Most of the
existing solutions are based on machine learning techniques, which nonetheless present high computational
cost, whereas they are not considering the fine-grained flow characteristics of the traffic. To this end, this
paper introduces the following four contributions. Firstly, we provide an extended feature set including,
flow, packet and device level features to characterize the IoT devices in the context of a smart environment.
Secondly, we propose a custom weighting based preprocessing algorithm to determine the importance of the
data values. Thirdly, we present insights into traffic characteristics using feature selection and correlation
mechanisms. Finally, we develop a two-stage learning algorithm and we demonstrate its ability to accurately
categorize the IoT devices in two different datasets. The evaluation results show that the proposed learning
framework achieves 99.9% accuracy for the first dataset and 99.8% accuracy for the second. Additionally,
for the first dataset we achieve a precision and recall performance of 99.6% and 99.5%, while for the second
dataset the precission and recall attained is of 99.6% and 99.7% respectively. These results show that our
approach clearly outperforms other well-known machine learning methods. Hence, this work provides a
useful model deployed in a realistic IoT scenario, where IoT traffic and devices’ profiles are predicted and
classified, while facilitating the data processing in the upper layers of an end-to-end communication model.

INDEX TERMS Deep learning, edge computing, Internet of Things, machine learning, neural networks,
traffic classification.

I. INTRODUCTION
Internet of Things (IoT) allows tens of billion devices to be
connected over the Internet. Nonetheless, the rapid increase
of IoT devices has also resulted in a colossal increase of the
data generated by IoT devices. Specifically, the total data
has quadrupled in just five years from 145 ZB in 2015 to
600 ZB in 2020 [1]. Furthermore, IoT not only enables new
applications, but introduces new types of devices as well. For
example, in the context of a smart environment, thousands
of non-traditional Internet devices are used including smart
sensors, alarms, traffic lights, cameras, weather stations, etc.

The associate editor coordinating the review of this manuscript and

approving it for publication was Chunsheng Zhu .

generating an unprecedented volume of data for a variety
of smart applications such as healthcare, industrial control,
transportation and so on. However, these IoT devices are
usually of limited computational abilities [2] and cannot
manipulate locally the data generated.

This often urges the offloading of computational hefty
IoT tasks to a remote infrastructure, a process called task
offloading [3]. Edge Computing [4] is a viable solution for
the task offloading as it allows to offer the necessary network-
ing and computational resources at the edge of the network
enabling at the same time the real time processing of the IoT
data. However, as explained in [5], it is extremely difficult to
estimate the edge resources needed due to the fact that (i) the
IoT data are randomly generated, as a consequence of the

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 21193

https://orcid.org/0000-0002-2996-6824
https://orcid.org/0000-0001-8041-0197


A. Hameed et al.: Deep Learning Approach for IoT Traffic Multi-Classification in Smart-City Scenario

different types of devices and their dynamic cycle activity;
and (ii) when there is a large number of IoT devices, the
total communication delay may be affected on account of the
constrained nature of the IoT access networks.

Hence, the importance to predict the time varying charac-
teristics of the IoT devices (such as activity patterns, signaling
patterns etc.) becomes evident. Furthermore, the classifica-
tion of similar devices facilitates the estimation of the gen-
erated workload and can better guarantee a specific level
of Quality of Service (QoS). Therefore, by classifying the
IoT devices into different categories, the prediction of traffic
characteristics can be more efficiently done. Additionally,
a more accurate prediction of the resource requirements at the
IoT access network (i.e. spectrum) and Edge infrastructures
(i.e. computational and communication resources), can be
achieved.

However, such an IoT device classification, often called
device fingerprinting [6], presents several challenges. In par-
ticular, the existing IoT classification techniques do not
consider the fine-grained characterization of IoT traffic,
while they suffer from high computational cost for the
data extraction and processing, and are often affected by
high dimensional data and complexity. Accordingly, in this
paper, we propose a two-stage based deep learning archi-
tecture in order to classify the IoT devices by considering a
fine-grained set of network characteristics (features). To do
so, firstly, we propose a two-step preprocessing algorithm
while employing a feature selection and prioritization tech-
nique for the feature set under consideration. Our approach,
facilitates the distribution of the features in the two stages
avoiding the high dimensionality and overfitting problems of
the training data.

The novelty of this paper lies in proposing a very accurate
but considerably more lightweighted approach than the exist-
ing ones. Furthermore, the feature selection and prioritazion
along with the combination of a deep learning model creates
a unique and innovative approach for the problem of the
IoT device classification. The novelty of our approach is
strengthened by the fact that it can be generalized and applied
in different datasets without losing any accuracy. Thus, the
reproducability of the results and the stability of our approach
in different IoT contexts fortify the originality introduced.

In particular, the major contributions and novelty of this
paper can be summarized as follows:

1) In order to perform a classification of the IoT devices,
we have suggested an extended feature set compris-
ing of flow, device, and packet level features. This
approach provides a fine grained characterization of the
traffic flow with less computational complexity for the
classification.

2) A two step preprocessing algorithm is proposed that
assigns relevance weights to the nominal (representing
the qualitative data with numeric codes) features and
provides scaling of the dataset using a MinMaxScaler
method.

3) A statistical feature selection technique is employed to
select the features with regard to their contribution to
the classification of IoT devices. Furthermore, an inves-
tigation of correlated features at each level is provided
using the Pearson correlation coefficient.

4) A two stage learning framework is presented with
99.9% accuracy for the first dataset under consideration
and 99.8% for the second one, which proves the gener-
alization of our approach. To determine the IoT device
classification, we compute the classes for certain nom-
inal and multivalued attributes at learning stage 0 using
logistic regression. Following, we perform the final
classification for numerical and single-valued features
at stage 1 using a multilayer perceptron (MLP) neural
network. The MLP network takes as an input a feature
subset at each time and classifies IoT devices in a con-
text of a smart environment. Furthermore, to achieve
the optimal or near optimalMLP architecture, a random
search based keras tuner is employed.

The rest of the paper is structured as follows: Section II
highlights the related work in traffic classification, covering
the most important methods and technologies applied in the
IoT traffic classification domain. Section III provides the sys-
tem model and necessary preliminaries for comprehending
the classification problem in the context of the IoT domain.
Additionally, this Section covers the description of the feature
sets, their statistical characteristics and feature correlation,
information that is necessary for the domain of data anal-
ysis that our paper touches upon. Section IV presents the
two-stage proposed learning framework for the IoT device
classification problem. Section V explains the algorithmic
form of proposed preprocessing and learning model along
with their asymptotic analysis. Sections IV and V fall under
the domains of deep learning, machine learning and problem
complexity, presenting all the necessary technical details.
Section VI provides the performance evaluation results for
both datasets under consideration. The conclusions and the
future directions of this work are presented in Section VII.
Finally, Table 1 presents the set of abbreviations used in this
paper.

II. RELATED WORK
For the IoT device classification, significant emphasis has
been given into aggregated traffic models, fingerprinting,
and machine learning based solutions. The aggregated traffic
models resort to mathematical and statistical distribution-
based methods, which involve several probability distribu-
tions and mathematical techniques like stochastic processes
tomodel the traffic. Following, the fingerprintingmethods are
used to identify the IoT devices leveraging information from
network traces in order to correlate datasets. In particular,
this category of classification identifies a device using infor-
mation from the network packets during the communication
over the network.

21194 VOLUME 10, 2022



A. Hameed et al.: Deep Learning Approach for IoT Traffic Multi-Classification in Smart-City Scenario

FIGURE 1. Overview of our previous work vs. proposed work contributions (shown in the purple boxes).

TABLE 1. List of abbreviations.

Regarding the Machine Learning (ML) based schemes,
they utilize existing algorithms to automatically learn com-
plex patterns from the IoT traffic data. The algorithms used
in these schemes are classified according to how the learning
process is conducted. Four main classes are used to group

ML algorithms: supervised learning, unsupervised learning,
semi-supervised learning, and reinforcement learning. How-
ever, in the current literature, mostly supervised learning,
unsupervised learning or a combination of these two are
utilized in order to analyze, predict and model the IoT traffic
and device characteristics.

With respect to aggregated traffic models, Laner et al. [7]
proposed a Coupled Markov Modulated Poisson Pro-
cesses (CMMPP) framework to capture the traffic behav-
ior of a single machine-type communication along with
the collective behavior of tens of thousands of devices.
In [8] a classification strategy is designed for a fleet
management use case incorporating three classes of M2M
traffic states, namely periodic update, event-driven, and pay-
load exchange. The authors in [9] proposed a model that
estimates the M2M traffic volume generated in a wire-
less network-enabled connected home. However, the above
works do not consider the fine-grained characterization of
the IoT traffic, whereas the complexity of such methods
grows linearly with the number of the devices. Further-
more, common communication patterns identified can be
attributed to any sensing device under a specific use case
(limitation 1).

There is also a significant effort to identify the type of the
IoT devices using the fingerprinting method. For example,
‘‘IoT Sentinel’’ [10] is a classification system that can rec-
ognize and identify the IoT devices immediately after they
are connected to a network using a single attribute vector
with 276 network features. The ‘‘IoT Sentinel’’ framework
can be further improved by extracting additional network
features such as payload entropy, TCP payload length, and
TCP window size [11]. Similarly, in [12] almost 300 network
attributes are used from each TCP traffic session to classify
the devices, using a majority voting for every 20 consecutive
sessions.

The work in [13] utilized a deep learning approach in
order to perform the device fingerprinting using the packet

VOLUME 10, 2022 21195



A. Hameed et al.: Deep Learning Approach for IoT Traffic Multi-Classification in Smart-City Scenario

TABLE 2. Comparison of related works.

interarrival time. However, this approach is computationally
intensive as all packet level information is utilized with-
out any selection strategy. In [14], the traffic patterns of
encrypted network flows are used to reveal the existence of
a specific device inside a home network. However, obtain-
ing such a great number of features require specialized
hardware accelerators, thus resulting in high computational
cost, longer classification duration and limited scalability
due to the need of a deep packet inspection functionality
(limitation 2).

Some related works also employed machine learn-
ing in order to perform traffic and device classifica-
tion. Lippmann et al. [15] compared the K-nearest neighbor
(KNN), Support Vector Machine (SVM), Decision Tree (DT)
and Multilayer Perceptron (MLP), using the packet header
information and concluded that KNN and DT provide bet-
ter results. Kotak and Elovici [16] classified nine different
device flows based on the device type using artificial neuron
network. Regarding traffic classification, the authors in [17]
predicted the QoS behavior of five different IoT applications
in a smart building context, using several regression based
ML approaches.

The work in [18] shows how to classify traffic and perform
device identification using random forest. The list of key
features used in the classification included the packet size,
volume of packets, inter-arrival time, duration, urgent and
push flags. Additionally, the authors in [19] performed a
prediction of the IoT network traffic using Long Term Short
Memory (LSTM). The features of dataset consisted of the
timestamp, bytes count, and the packet count. A more com-
parative approach, was introduced in [20], where the authors
presented a method to recognize the IoT devices using ran-

dom forest, decision tree, SVM, k-nearest neighbors, simple
neural network and naive bayes approaches.

Lopez-Martin et al. [21] classified the traffic applications
using a multi-class neural network, which is proven to be
effective in complex data structures. The authors in [22]
proposed an individual binary classification model for each
class in order to eliminate the complexity issue of multi-class
classification. Sivanathan et al. [23] utilized the statistical
attributes, signaling patterns and cipher suites along with
machine learning for IoT device classification.

Nonetheless, these ML approaches are affected by the high
data dimensionality, they are sensitive to the hyper-parameter
tuning and they require a large number of training data.
Moreover, the main constraint of the multi-class classifica-
tion is scalability, as the high number of classes makes the
classifier more complex and updating requires full retraining
(limitation 3). A summary of the papers reviewed in this
section is given in Table 2.

In our preliminary work [24], we tried to address some
of these limitations by relying on typical machine learning
techniques, such as logistic regression and gradient boosting.
In this paper, we extend our preliminary framework to pro-
vide a more complete and detailed IoT multi-classification
approach based on a deep learning solution. As this research
is an extension of our previous study, we used the same IoT
dataset [23]. However, in order to prove the generalization
of our proposed methodology we also performed our exper-
iments with a second IoT dataset [25]. Additionally, herein,
we include amore extended feature set at three different levels
such as: device, flow and packet.

This work also introduces a feature correlationmechanism,
whereas specific features are selected for training models

21196 VOLUME 10, 2022



A. Hameed et al.: Deep Learning Approach for IoT Traffic Multi-Classification in Smart-City Scenario

which is not included in our previous work. Furthermore, for
the new two stage learning framework, we apply an optimal
searched neural network architecture at the second stage.
Finally, a completely new performance evaluation section is
presented. The particular section includes a new set of results
for both datasets, new experiments, and additional compar-
isons with machine learning and deep learning approaches.
The differences between our previous and proposed work are
given in Fig. 1.

The extensionsmade in this paper are aligned in such a way
to address the above cited limitations:

• To overcome limitation 1, we incorporate a fine-grained
feature set at different network levels i.e., flow, device
and packet level.

• To address limitation 2 and the high computational costs
of complex features, we employ a statistical feature
selection (i.e., ANOVA score) to select a subset of the
available features at a time instance t .

• To address limitation 3, we propose a two-stage learning
framework. Firstly, a relevance weighting-based prepro-
cessing is performed for the available features, whereas
different subsets of the selected features are utilized
across these two stages to avoid the high dimensionality
issue. Finally, the tuned hyperparameters are utilized in
a neural network that achieves 99.9% accuracy for the
first dataset and 99.8% for the second.

III. PROBLEM SETUP
In this section, we describe and formulate the IoT traffic
classification problem, where different IoT devices are com-
bined to their respective classes according to their distinctive
characteristics. To help the reader follow the modeling of our
work, Table 3 summarizes the key notation used throughout
this paper.

In particular, a smart environment (e.g. smart city, home,
grid, etc.) can be modeled as a network of S smart devices,
generatingM traffic flows. The devices are represented by the
setD = {d1, d2.., ds}, where ds indicates the sth smart device,
where 1 ≤ s ≤ S. Similarly, the set T = {t1d1 , t

2
d2
, . . . , tmds}

represents the generated traffic flows, where tmds denotes the
mth traffic flow in T generated by the sth device, with 1 ≤
m ≤ M such that M ⊆ S. Furthermore, each traffic flow
is constituted by a number of packets denoted by P =
{p1m, p2m, . . . , pkm} where pkm represents the k th packet of
the mth flow.
Regarding the features, the set F denotes the distinctive

properties of the traffic flow tmds which we want to classify.
Each packet in P is a D-dimensional set of the network ele-
ments under consideration. These elements are represented
as a feature space F , such that F = {f1, f2, f3, .., fi}, where fi
represents the ith feature in the feature space F with 1 < i ≤
11 (in this work we assume 11 distinctive features).

The setF consists of device, flow and packet level features,
where f1 represents the interarrival time, f2 denotes the source
IP address, f3 is the destination IP address, f4 shows the

TABLE 3. Summary of the key notation.

transport protocol used by each flow, f5 is the source port
number, f6 denotes the destination port number, f7 is the Time-
to-Live (TTL) information, f8 denotes the window size used
by the transport layer, f9 indicates the length of a packet,
and f10 denotes the source Ethernet address, and f11 is the
destination Ethernet address.

Furthermore, we assume that we have a given training set
G, including pairs of input samples along with their class
labels as G = {(x1, c1), (x2, c2), . . . , (xr , cq)}. Accordingly,
the set C = {c1, c2, . . . , cq} denotes the available classes,
where cq ∈ C represents the qth class in C , while C ⊂ D and
q ≤ n. Furthermore, xr ∈ X is the r th input sample of the
total set of samples X = {x1, x2, . . . , xr }, such that X ⊂ P
and r ≤ k . Hence, the IoT Traffic Classification problem is
defined as the task of estimating the class label cq to the input
vector xr , where xr belongs to a subset of a feature space F ,
xr ∈ X ⊂ F . This task is accomplished using a classification

VOLUME 10, 2022 21197



A. Hameed et al.: Deep Learning Approach for IoT Traffic Multi-Classification in Smart-City Scenario

TABLE 4. Description of features in both datasets.

rule or function f (x) : XD → C that can predict the label C
of unseen D dimensional input vector xr .

A. FEATURE DESCRIPTION
As mentioned earlier, the available features can be catego-
rized as follows:

1) DEVICE LEVEL FEATURES
In this category we consider the source and destination MAC
addresses of the devices. Such features are extracted directly
from the traffic traces. These features offer a characterization
of the IoT traffic independent of the other two levels of
features.

2) FLOW LEVEL FEATURES
This includes features such as source and destination IP
addresses, protocol type of a flow, source and destination port
numbers, the TTL information of a flow, and the window size
used by the flow. This set can be used to extract the packet
level features of a flow described below.

3) PACKET LEVEL FEATURES
This category includes the timestamp, the interarrival time
(IaT), and the length of the packets. The interarrival time is
the amount of time that elapses between a packet reception
and the arrival of the one following it. As timestamp follows
the normal (guassian) distribution, to calculate the interarrival
time feature, we analyzed and extracted the time between the
successive incoming traffic packets following a Gaussian’s
distribution with an average rate of 1 (since at each time unit
one packet arrives). All of the above features along with their
description are illustrated in Table 4. To prove the generality
of our approach, we used the same feature sets for both
datasets under consideration.

B. STATISTICAL CHARACTERISTICS OF THE FEATURES
Each feature fi in the feature space F has its own distribution,
which is represented by the number of different statistical
characteristics over different smart devices. The analysis of
such distributions can be useful in order to identify which
features aremost important for the classification. In this work,

TABLE 5. Statistical characteristics of IoT traffic features.

we considered three statistical characteristics of the distri-
bution of each feature, such as: mean, median and standard
deviation. Table 5 summarizes the statistical characteristics
of each feature for both datasets. However, for illustration
purposes we plot the probability distribution of the features
under consideration for the first dataset only, as shown in
Fig. 2. As can be seen, the interarrival time shows a Gaussian
distribution (as explained in the previous subsection), while
all other features illustrate an exponential distribution.

C. FEATURE CORRELATION
One very important aspect of the performance of the classifi-
cation is the correlation between the features. Hence, in this
work we consider the feature correlation from two perspec-
tives. Firstly, we examinewhich features are correlatedwithin
the feature space. The correlation between two features say, fi
and fj, is calculated using the Pearson’s correlation coefficient
which is given as:

ρ(fi,fj) =
cov(fi, fj)
σfiσfj

(1)

where cov(fi, fj) is the covariance between features fi and
fj, whereas σ(fi) and σ(fj) represent the standard deviation of
the ith and jth feature respectively. The value of correlation
coefficient lies between −1 and 1. If there is no correlation
between the features fi and fj then ρ(fi,fj) = 0. A perfect
negative correlation is found if ρ(fi,fj) = −1 and a perfect
positive correlation is found if ρ(fi,fj) = 1. We plot the
correlation between features for the first dataset as a heatmap,
which is shown in Fig. 3.

As it can be seen, the source IP address is more correlated
to TTL, destination port number, source MAC addresses
and destination IP addresses. Furthermore, the destination IP
address and source port number, the destination IP address
and destination MAC address, the packet length and destina-
tion MAC address, the source MAC address and source port
number, the source port number and destination port number
are also highly correlated features.

Secondly, we find the correlation between the input vector
features and the target class labels. Then based on the rela-
tionship between independent variables (i.e., feature space)
and dependent variable (i.e., class label) we select the features
for our learning (classification) framework. This is further
discussed in Section IV-C.

IV. PROPOSED CLASSIFICATION FRAMEWORK
A. OVERVIEW
The proposed classification framework consists of three key
steps as shown in Fig. 4 and discussed in the following
sections.

21198 VOLUME 10, 2022



A. Hameed et al.: Deep Learning Approach for IoT Traffic Multi-Classification in Smart-City Scenario

FIGURE 2. Probability distributions of IoT traffic flow features of Dataset 1.

FIGURE 3. Correlation between IoT traffic features of Dataset 1.

1) Preprocessing the IoTTraffic (Section IV-B): It is the
first step executed and it aims at providing the weighted
preprocessing of dataset along with the rescaling,
imputation and transformation of traffic traces.

2) Selecting the most relevant features (Section IV-C):
It consists of the selection of the most important fea-
tures, which are highly correlated to the class labels,
using the ANOVA filter based selection method.

3) Two-stage learning model (Section IV-D): Here the
classification of the IoT traffic traces is done using

the proposed two stage learning model. At stage 0,
the classification is performed by applying a logistic
regression technique, while the tentative classes are
provided. At stage 1, a neural network is applied to
provide the final classes.

The operational flow of the proposed work is provided in
Fig. 5.

B. DATA PREPROCESSING
During the data preprocessing, a basic filtering of the dataset
is performed in order to remove some of the non-meaningful
packets such as ping, DNS requests, etc. The features such
as TTL, window size, packet length are already numerical,
whereas the interarrival time feature is converted to seconds.
Following, we observed that some of the features such as ‘‘set
of port numbers (f5 and f6)’’, ‘‘set of IP addresses (f2 and f3)’’
and ‘‘set of MAC addresses (f10 and f11)’’ are nominal and
multi-valued (having more than one value with a single data
instance). As machine learning classifiers cannot deal with
such data, we converted these features into a numerical form
using a two-step procedure.

Firstly, we perform the data cleaning by passing the nomi-
nal vectors to the Bag-of-Word (BoW) model [26]. Secondly,
as the BoW assigns the same importance to each vector
word, we have proposed a relevance weighting to assign
a prioritized importance to each word within each vector.
These relevance weights, attributed to each feature vector, are
passed to the stage 0 classifier and is given by Eq. (2):

RelevanceWeight = wfw,v × vfw,v (2)

VOLUME 10, 2022 21199



A. Hameed et al.: Deep Learning Approach for IoT Traffic Multi-Classification in Smart-City Scenario

FIGURE 4. Overview of proposed two-stage classification framework.

FIGURE 5. Operational flow of the proposed work.

where wfw,v denotes the word frequency of a word w within
a vector v and vfw,v represents the total vector frequency.
Herein, the vectors consist of the ‘‘port numbers vector’’,
‘‘IP addresses vector’’, and ‘‘MAC addresses vector’’. The
word frequency wfw,v is defined as the number of times that
w occurs in v and is given using Eq. (3):

wfw,v =
number of occurrence of a word in a vector

number of words in that vector
(3)

Because frequent words are less informative than rare
words, the vector frequency, vfw,v is given as Eq. (4).

vfw,v = log
number of vectors

number of vectors containingword w
(4)

After this step, we impute the missing values of features
using their mean value and re-scale the dataset between 0 and
1 using the MinMaxScaler technique.

C. FEATURE SELECTION
The supervised feature selection is a way to choose the input
features that are believed to be the most useful to a model
in order to predict the target variable. For our supervised
feature selectionmethod, we resort to either wrapper methods
or filter based methods. A wrapper based method, such as
Recursive Feature Elimination (RFE), selects the features that
are performing well.

However, for the selection of features from our feature
space F , we employed the filter-based feature selection tech-
nique [27] which uses the statistical methods to score the rela-
tionship between the features and the target labels i.e., class
labels. Specifically, we have selected the ANOVA (Analysis
of Variance) F-value feature selection technique because our
input features are quantitative or become quantitative after
preprocessing and the target class labels are of categorical
nature (i.e. c1 indicates a belkin wemo switch, c2 represents
smart cam and so on).

D. PROPOSED TWO-STAGE LEARNING MODEL
1) STAGE 0 CLASSIFIER
The Logistic Regression method is employed at stage 0,
which takes the selected set of features for the training,
as given by the ANOVA F-value. The reason that we have
selected this classifier is that it has been proven to perform
well for very large data sets [28], as in the case of a smart envi-
ronment. The logistic regression technique investigates the
association among the independent variables and the depen-
dent variables of the problem. In our scenario, the selected
features are the independent variables and the device cate-
gories (e.g. hubs, cameras, etc.) are the dependent variables.

21200 VOLUME 10, 2022



A. Hameed et al.: Deep Learning Approach for IoT Traffic Multi-Classification in Smart-City Scenario

The goal is to estimate the probability p for a combination of
independent variables using the following logit function:

logit(p) = ln
p

1− p
(5)

where ln is the natural logarithm and p denotes the probability
of an independent variable. The anti log of (5) allows us to
find the estimated regression equation given by Eq. (6):

logit(p) = ln
p

1− p
= β0 + β1 ∗ x1 + β2 ∗ x2 + . . .+ βn ∗ xn ⇒

p =
eβ0+β1∗x1+β2∗x2+...+βn∗xn

1+ eβ0+β1∗x1+β2∗x2+...+βn∗xn
(6)

where β0 is an intercept, β1, β2, and βn are the regression
coefficients, x1 is the first independent variable, x2 is the
second independent variable, and xn is the nth selected feature.
In order to calculate β coefficients, we employed the Gradient
Descent method [29]. The general form of Eq. (6) is given as:

p(yi|x1, x2, . . . , xn) =
1

1+ e−(β0+β1∗x1+β2∗x2+...+βn∗xn)
(7)

where yi represents the dependent variable i.e., the ith IoT
device class, which we predict based on x1, x2, and xn. After
calculating the regression coefficients the testing component
comes into effect, where the classifier uses the regression
coefficients and computes the estimated regression for each
testing instance using Eq. (7). Finally, stage 0 classifier per-
forms a first tentative prediction.

2) STAGE 1 CLASSIFIER
In order to optimally classify the IoT devices, we architect
theMulti-Layer Perceptron Artificial Neural Network (MLP-
ANN) [30] based classification as our stage 1 classifier.MLP-
ANNs are composed of multiple neurons that are arranged
in the form of an input, output, and hidden layers. In this
work, the architecture of MLP-ANN consists of one input
layer with 11 neurons, because we have 11 different features
to be passed as an input to the neural network. Following,
we optimize the number of hidden layers, while the output
layer consists of n number of neurons depending on the
number of labelled classes n found in each of the dataset.
MLP-ANN provides two major processes for the classi-

fication task. Firstly, it performs the forward propagation
process, which feeds the features to the input layer neurons.
In our case, all quantitative features along with the output
from stage 0 classifier (i.e., tentative classes) are fed to an
input layer. Following, the input layer propagates these data
to the hidden layers and then to the output layer. The neurons
in each of the neural network layer calculates the weighted
sum as output which is then passed to the activation function
and is given by Eq. (8).

O(l)
i = V (l)(

∑
j

w(l)
(i,j) × O

(l−1)
j + B(l)i ) (8)

where the superscripts on variables represent the layer num-
ber and the subscripts represent the neuron numbers in the

respective layer. The w(l)
(i,j) denotes the weight of a connection

between the ith neuron of layer l and the jth neuron of layer
l− 1; B(l)i represents the bias value applied at the l th layer for
the ith neuron; O(l)

i denotes the output of the the ith neuron
at the l th layer and V l represents the nonlinear activation
function applied at layer l. This work applied the Rectified
Linear Units (ReLU) activation function at the input layer and
the softmax activation function at the output layer.

The above process continues till the output layer predicts a
label, i.e., class of an IoT device, which is then compared with
the actual label and a loss value is calculated using a loss func-
tion based on the categorical cross entropy. Secondly, a back
propagation is done in which weights are updated using the
predicted output, desired output and their difference. The goal
is to minimize the loss by finding the optimal weights value.
The optimization function that we applied is based on the
Adaptive Moment Estimation (Adam) because it is proved to
be very robust for large datasets [31].

To model an optimal MLP-ANN, we used the Keras
tuner [32] along with the Random Search technique. For
the hyper parameter optimization, we determine the optimal
number of hidden layers, the optimal number of neurons in
each layer (i.e., a search between 22 and 512 neurons), and
the learning rate (i.e., a search between 1e-2 and 1e-4) using a
random search tuner. Following, these parameters are passed
to the Adam optimizer, since we want to achieve the best
performance along with the least computational complexity.

V. CLASSIFICATION ALGORITHM
A. ALGORITHM DESCRIPTION
The preprocessing algorithm (Algorithm 1) consists of the
PREP procedure, which firstly generates the BoW represen-
tations using the function generate_BOW (). Then, the rele-
vant weights are calculated by employing the word_Freq()
and vector_Freq() functions, which takes BoW as an
input. Following, the features are scaled using the function
MinMaxScaler(). Algorithm 2 depicts the learning model
consisting of two procedures, namely, LOGREG and MLP.
In the LOGREG procedure, the input labels x and output
labels y are split into training and testing data using the func-
tion, split(). Next, the filter-based feature selection is done
using the statistical method called ANOVA score and this
is achieved by employing the SelectKBest() function. Then
the LogisticRegression() generates and fit the model using
the fit() function. The prediction is done using the predict()
which contains the x_tst as testing dataset.

The MLP procedure generates the classification results
based on the MLP-ANN which takes stage’s 0 results
along-with the other features. At this stage, firstly the data
are split using split() and then a sequential model is cre-
ated using the function, build_model(). Following, the keras
tuner is applied to search the number of models using
RandomSearch(), which takes the sequential model, the num-
ber of trials per search, the max trials allowed and the search
objective as an input. Then, the getBestModel() returns the

VOLUME 10, 2022 21201



A. Hameed et al.: Deep Learning Approach for IoT Traffic Multi-Classification in Smart-City Scenario

Algorithm 1 Preprocessing Algorithm
PREP(f2,f3,f5,f6 ,f10,f11,devices)
// f2 and f3 are source and destination IP addresses; f5 and
f6 are source and destination port numbers; f10 and f11 are
source and destination MAC addresses; and devices labels.
1. BOW1← generate_BOW (f2, f3)
2. BOW2← generate_BOW (f5, f6)
3. BOW3← generate_BOW (f10, f11)
4. wf ← word_Freq(BOW1,BOW2,BOW3)
5. vf ← vector_Freq(BOW1,BOW2,BOW3)
6. relweight ← wf × vf
7. set x ← dataset(BOW1,BOW2,BOW3, relweight )
8. set y← dataset(devices)
9. set xnorm← MinMaxScaler(x)
Output: xnorm,y

model with the highest validation accuracy across all models
given by the RandomSearch(). Finally, we fit the model with
fit() for 70 epochs and then call the predict() function.

Algorithm 2 Learning Algorithm
LOGREG(xnorm,y)
// xnorm is the dataset instances and y is the class labels
1. set xtr , xtst , ytr , ytst ← split(x, y, testsize← 0.2)
2. set xtr ← selectKBest(Anovascore, xtr )
3. set xtst ← selectKBest(Anovascore, xtst )
4. set model ← LogisticRegression(maxiter ← 3000)
5. set fit ← model.fit(xtr , ytr )
6. set ypred ← model.predict(xtst )
Output: ypred F Stage 0
MLP(ypred ,f1,f4,f7,f8,f9, devices)
// ypred is the output of Stage 0 classifier; f1 is the interar-
rival time; f4 is the IP protocol used; f7 is the TTL; f8 and
f9 are the window size and packet length; devices are the
class labels.
7. set x ← dataset(ypred , f1, f4, f7, f8, f9)
8. set y← dataset(devices)
9. set xtr , xtst , ytr , ytst ← split(x, y, testsize← 0.2)
10. set m← build_model()
11. set tuner ← RandomSearch(m, tuner .obj(valacc),
maxtr ← 3, searchtr ← 1)
12. set model ← tuner .getBestModel(nummodels← 1)
13. set history← model.fit(xtr , ytr , epochs← 70)
14. set ypred ← model.predict(xtst )
Output: ypred : FS ← devices F Stage 1

B. ASYMPTOTIC ANALYSIS
Proposition 1: The computational complexity of PREP

procedure is O(n)
Proof: The PREP procedure running time depends on

the number of feature vectors, represented as n. Lines 1-3
take a constant time as they split the vectors into words, thus
O(1). Lines 4-5 and 7-8 are assignment statements and each

requires O(1) operations. For the relweight statement (line 6)
the complexity is O(1) ∗ O(n) = O(n). However, line 9
depends on the number of feature vectors n and thus, in the
worst-case scenario needsO(n). Accordingly, the overall time
complexity of PREP procedure is linear i.e., O(1) + O(1) +
O(n)+ O(n) = O(n). �
Proposition 2: The computational complexity of LOGREG

procedure is O(n).
Proof: Line 1 is a simple assignment statement (i.e.,

O(1)) and lines 2-3 require O(n) computation time in the
worst scenario. Regarding the training time (lines 4-5) of
LOGREG the complexity is O(t ∗ n) where t is the number
of training examples and n is the number of selected data
features used for the classifier training. Additionally, the
testing time taken by line 6 isO(n). Thus, the LOGREG takes
O(1)+O(n)+O(t∗n)+O(n) = O(n), which can be beneficial
for low latency applications that require a fast classification
method. �
Proposition 3: The computational complexity of MLP pro-

cedure is O(nd)
Proof: In theMLP procedure, lines 7-9 consist of simple

assignments i.e., O(1). Line 10 indicates the build_model()
function of the neural network and its complexity is O(n ∗
d ∗ t ∗ e), where for proposition 3, n represents the number
of layers, d denotes the number of neurons in each layer,
t is the number of training examples and e is the number
of epochs. Because we are using 80% training examples
i.e., 664796 for 70 epochs, the complexity for this part is
O(n∗d ∗664796∗70) = O(nd). Following, RandomSearch()
(line 11) takes O(n) for the worst scenario and line 12 takes
a constant amount of time i.e., O(1). Line 13 takes O(t) and
testing time taken by the line 14 isO(n). Thus, theMLP takes
O(1) + O(nd) + O(n) + O(1) + O(t) + O(n) = O(nd) time.

�
The overall complexity, T of the proposed learning frame-

work is represented in term of n as: T (n) = O(n) +
O(n) + O(nd) = O(n). Thus, it is a linear time learning
work.

VI. PERFORMANCE EVALUATION
A. MODEL IMPLEMENTATION AND FRAMEWORKS
1) DATASET DESCRIPTION
In this work, we have used two different datasets provided
by [33] and [25] consisting of IoT traffic traces in a smart
environment. The description of both datasets is provided as
follows:

Dataset 1 [33] consists of network traffic traces from
28 smart devices. As we have considered a subset of the
network traffic, which is a total of 12000317 labeled instances
of 22 IoT devices, for this dataset we have 22 distinctive
classes. The devices are namely, smart phone, belkin wemo
switch, belkin wemo motion sensor, dropcam, HP printer,
iphone, laptop, nest protect smoke alarm, netatmo welcome,
netatmo weather station, PIX star photo frame, samsung tab,
samsung smartcam, smart things, TP link camera, TP link

21202 VOLUME 10, 2022



A. Hameed et al.: Deep Learning Approach for IoT Traffic Multi-Classification in Smart-City Scenario

FIGURE 6. Samples of IoT traffic traces from dataset 1.

plug, TP link router, triby speaker, withings smart baby
monitor, withings smart scale, ipv4mcast and amazon echo.

Dataset 2 [25] consists of traffic traces of from 81 IoT
devices which are located at various US and UK locations.
These devices belongs to cameras, smart hubs, home automa-
tion, TVs, audio devices and home appliances categories.
For the second dataset, a total of 40588450 labeled instances
of 68 IoT devices were used in this work.

A sample of the network trace used from the first dataset
is provided in Fig. 6. Nonetheless, since we have used the
same feature space for both datasets, Fig. 6 reflects the traces
from the second dataset as well. The feature called ‘‘MAC
address’’ of each device is used to provide the label to each
network trace in both of the datasets.

2) EXPERIMENT SETUP
The configuration settings used for our experiments and for
both datasets are listed in Table 6. The proposed model was
implemented in Python (version 3.8.2). In Table 6, the No.
of architectures represents the number of different classi-
fication solutions used during our experimentation. These
architectures/solutions are further explained in section VI.3.
Following, the total number of instances provides the number
of labelled instances used from each dataset and the total
number of classes represents the total number of distinct
device types. The reason that we have selected a subset of the
labelled instances for each dataset, is because these datasets
span over a period of about two months and the training
of such a large amount of data can create several big data
challenges. Furthermore, as shown later, we also managed to
achieve a very good performance by using only the specific
subset of these datasets. Accordingly, the selected subset of
data under evaluation resulted in a slightly reduced number
of classes for each dataset.

Regarding the number of tuner trials, this value represents
the keras tuner trials that we executed for our proposedmodel.
In more details, for the first dataset, we noticed that after
5 trials we have achieved the best hyperparameter configu-
ration and for the second dataset after 3 trials. The reason
for executing several trials, is that the keras tuner uses a
different set of parameters (i.e. learning rate, number of layers
and number of neurons in each layer) at each trial and then
it selects the best performing configuration. Nonetheless,
we have not seen a significant variation between the accuracy
of the different trials. Lastly, we split both of the dataset
instances into three groups as: 60% training instances, 20%
validation and 20% testing instances, which is a common split
ratio in the machine learning domain.

For the evaluation of the classification performance,
we have considered the following well known classification
metrics:

1) Precision: It is the ability of a classifier to not label an
instance that is actually negative as positive and is given
as:

Precision =
TruePositive

TruePositive+ FalsePositive
(9)

2) Recall: Recall calculates the rate of all the positive
instances, which is also called true positive rate and is
given as:

Recall =
TruePositive

TruePositive+ FalseNegative
(10)

3) F1-score: It is the harmonic mean of the precision and
recall metrics and is given as:

F1 =
2 ∗ Precision ∗ Recall
Precision+ Recall

(11)

4) Accuracy: It is the proportion of correctly classified
instances and is given as:

Accuracy =
CorrectPredictions
TotalPredictions

(12)

5) Confusion matrix: It is a table that is used to describe
the classifier performance on a set of test data for which
the true values are known.

The values of recall, precision, F1-score, confusion matrix
and accuracy are calculated between [0,1] with 1 indicating
the best and 0 the worst performance. However, a decrease
from 1 towards 0 is good for the loss function of the network.

3) ARCHITECTURE MODELS
We have applied different composite models consisting of
neural networks along with traditional machine learning
algorithms to see their suitability for the IoT traffic multi
classification problem. Table 7 provides the description of
the different network architectures. The LR represents the
logistic regression algorithm and GB denotes the gradient
boosting algorithm (architecture I) [24]. The NB is Naive
Bayes algorithm at stage 0 and RF denotes applying random
forest at stage 1 (architecture II) [23]. IP(x) stands for the
input layer of neural network with x number of neurons.
FC(x) denotes the fully connected layer of neural network
with x number of nodes (or neurons). OP(x) represents the
output layer of neural network with x number of classes i.e.,
neurons.

MLP represents the multi layer Perceptron neural network
with an input layer consisting of 11 neurons, two fully con-
nected layer and one output layer with 22 classes (architec-
ture III). LR(RFE)+MLP denotes the logistic regression at
stage 0 with recursive feature elimination method and MLP
at stage 1 with one input layer, two fully connected layers
and one output layer (architecture IV). LR(Anova)+MLP
(keras tuner) denotes the logistic regression at stage 0 with

VOLUME 10, 2022 21203



A. Hameed et al.: Deep Learning Approach for IoT Traffic Multi-Classification in Smart-City Scenario

TABLE 6. Configurations used in the experiments.

TABLE 7. Description of model architectures applied to the multi-classification problem.

the Anova based feature selection and MLP at stage 1 (archi-
tecture V), which is the two-stage learning model proposed
in this paper.

For comparison purposes, it is important to mention that
the accuracy of existing works are less than the proposed
framework, as shown in the following subsection. For exam-
ple, the proposed framework in [16] achieves an accuracy
of 99.0%, the authors in [21] achieve 96% accuracy, while
in [22] the accuracy is 99.2%. However, for our evaluation,
we compared the proposed framework with the architecture
I [24] and architecture II [23], which both use the first dataset.

Additionally, to better illustrate the efficiency of our work,
we also compare our proposed architecture V with the archi-
tectures III and IV which are based on the MLP neural net-
work. For all the neural network-based architectures (i.e. III
to V), the training was done with a number of epochs between
50 and 100. The training was stopped earlier if an increase in
the number of epochs did not lead into an improvement of the
loss function.

Furthermore, for the activation functions we used the
ReLU along with the softmax activation which was applied
at the last output layer. The loss functions used was the
categorical cross entropy. Finally, the optimization was done
with the Adaptive Gradient (AdaGrad) for the architectures
III and IV and with Adam for architecture V. The particular
configurations gave the best results for each of the examined
architectures.

We have also experimented with different LSTM configu-
rations. In particular, we executed five tuner trials to find the
best hyperparameters such as number of layers, LSTM units,
learning rate, etc. However, these models gave less accurate
results, (i.e., 70% of accuracy). Moreover, we also considered
the AdaGrad optimizer for the architecture V but it produced
an accuracy of 85% and we decided to show only the results
of the best configuration, which uses the Adam optimizer.

B. RESULTS
1) IMPACT OF ARCHITECTURES
a: STAGE 0
Fig. 7 illustrates the performance of the different network
architectures at stage 0, in terms of precision, recall and
F1 score for both datasets. We have only considered the

FIGURE 7. Performance comparison at stage 0.

architectures I, II, IV, and V for this part, because architecture
III i.e., MLP does not consist of two stages. In terms of the
precision, our proposed architecture V provides the highest
value i.e., 0.74 followed by LR(RFE) + MLP with 0.72 and
LR+GB with 0.69 value for the first dataset. Regarding the
second dataset, the same trend is noticed, as architecture V
provides the highest value i.e., 0.87 followed by LR(RFE) +
MLP with 0.83 and LR+GB with a value of 0.79.

In contrast, NB + RF performed poorly for both datasets,
i.e., 0.6 for the first dataset and 0.4 for the second. This means
that 40% of the labelled instances were wrongly classified as
positive for the first dataset and 60% were wrongly classified
as positive for the second. This can be attributed to the fact
that the precision values of some devices were zero and less
than 0.17 for many other. As an example, in the first dataset
the most misclassified devices for the NB+RF were the
Belkin Switch, HP printer, Netatmo Welcome, PIX-STAR,
Samsung tab and TP link camera.

When looking into the recall metric, we see that the
proposed architecture V also outperformed the rest of the
models, followed by the LR+GB and LR(RFE)+MLP
for the first dataset. However, for the second dataset,
LR(RFE)+MLP(KT) is followed by LR(RFE)+MLP and
LR+GB, while architecture V remains the most efficient
solution. Once again NB+RF gives the least average recall
for both datasets, with 0.61 and 0.29 for dataset 1 and 2. The
reason for this behavior is that the majority of instances were

21204 VOLUME 10, 2022



A. Hameed et al.: Deep Learning Approach for IoT Traffic Multi-Classification in Smart-City Scenario

100% misclassified. For instance, for the first dataset, out
of 22 classes, instances of 8 classes were 100% incorrectly
classified.

Lastly, we observe that the architecture V gives the highest
value of F1 score among all architectures at stage 0, with a
value of 0.7 for the first dataset, followed by LR+GB and
LR(RFE)+MLPwhich both give an F1-score of around 0.65,
whereas NB+RF achieves only 0.6. For the second dataset,
our proposed architecture presents a F1-score of 0.89 fol-
lowed by LR(RFE)+MLP, LR+GB, and NB+RFwhich give
a F1-score of 0.85, 0.80, and 0.28 respectively.

b: STAGE 1
At this stage all five network architectures are considered
as shown in Fig. 8 for both datasets. Moreover, we also
included the accuracy in our evaluation metrics, since the
output of Stage 1 is our final classification. As it can be seen,
our proposed architecture (LR(Anova)+MLP(KT)) attained
an accuracy of 0.999, a precision of 0.996, a recall of
0.995 and a F1-score of 0.996 for the first dataset. Regard-
ing, the second dataset, it achieved an accuracy of 0.998,
a precision of 0.996, a recall of 0.997 and a F1-score of
0.997. Furthermore, LR(RFE)+MLP(KT) provided reason-
able results followed by the other architectures for both of the
datasets.

Once again, NB+RF continued to under-perform for both
datasets at stage 1. Specifically, for the dataset 1, the NB+RF
achieved a performance of only 0.78 for recall, 0.8 for preci-
sion and 0.77 for F1-score because 3335 training instances
of Belkin switch class, 374 instances of HP printer class,
262 instances of the TP link camera class and 31 iPhone
class instances were incorrectly classified. Similarly, for the
dataset 2, the particular model achieved a performance of
only 0.33 for recall, 0.29 for precision and 0.31 for F1-score
because many instances of devices such as Tphilips Hub US,
TP link bulb US, Sousvide US, TP link plug UK, T wemo
plug UK, T wemo plug US, Wans view cam wired US, wans
view cam wired UK, smart thing hub UK,sousvide UK,T
philips hub UK,TP link bulb UK,TP link plug US were
incorrectly classified.

Additionally, the NB+RF provided an accuracy of 0.77 for
dataset 1 and 0.92 for dataset 2. Further analysis showed
that for the first dataset, there were 5 classes incorrectly
classified out of 22 and for the second dataset, there were
13 misclassified classes out of 68. As accuracy is the ratio
of these numbers, we corroborate the poor performance of
architecture II as shown in Fig. 8.
After analyzing the results of stage 1, we conclude that our

architecture V and its variation (architecture VI) provide the
best classification results in terms of all performance metrics
for both of the datasets. This is a significant observation that
proves the robustness of our framework that works equally
well for different datasets with different number of classes.
That is not the case for architectures I-III, which presented
a great deviation in the attained results between the two
datasets.

FIGURE 8. Performance comparison at stage 1.

FIGURE 9. Feature ranks provided by the feature selection methods.

2) IMPACT OF FEATURES
Fig. 3 illustrated the correlation of the full set of features for
the first dataset. However, it is critical to understand which
features have a higher importance (rank value) provided by
the feature selection method in the classification process.
For this purpose, we provide the full set of features along
with their ranks, as calculated by Anova score and RFE for
dataset 1, in Fig. 9. The most important features selected for
both datasets are provided in Table 8.
For the architectures I, II, III, we have used all features

during the training and testing phases, thus, we only compare
the architectures IV and V to see the feature importance.
Specifically, we illustrate the ranks provided by the RFE for
architecture IV and the ranks provided by the Anova score for
architecture V. The rank values are between 0 and 1. It can be
seen that the highest rank provided by Anova was 0.8 given to
the feature 2 i.e., source IP address and the least rank given by
Anova score was 0.14 for feature 4 i.e., IP protocol used by
device. For the RFE method, the highest rank was provided
to feature 2 i.e., 0.7 and the least to the feature 7 i.e., TTL
information. The features were selected in decreasing order
of their ranks by the architectures.

In more details, Table 8 provides the information about
the features utilized by each architecture along with the
performance metrics of each architecture for both datasets.
The first three architectures used all 11 features. However,

VOLUME 10, 2022 21205



A. Hameed et al.: Deep Learning Approach for IoT Traffic Multi-Classification in Smart-City Scenario

TABLE 8. Classification performance metrics vs features employed.

as mentionned earlier, architecture IV selected the features
by RFE and architecture V selected the features by ANOVA
method. For the first dataset, the selected features by RFE
for architecture IV consists of the source IP address (f2),
interarrival time (f1), source port number (f5), destination Eth-
ernet address (f11), window size (f8), destination port number
(f6), source Ethernet address (f10) and IP protocol used (f4).
In contrast, the selected features by Anova for architecture V
consists of source IP address (f2), packet length (f9), window
size (f8), source Ethernet address (f10), destination port num-
ber (f6), TTL (f7), destination IP address (f3), and source port
number (f5).
For the second dataset, the selected features by RFE in

architecture IV are the source port number (f5), destination
port number (f6), window size (f8), MAC address of source
(f10) and MAC address of destination (f11). For the archi-
tecture V, the selected features are the type of protocol (f4),
port number of source (f5), port number of destination (f6),
TTL (f7) and window size (f8). Therefore, source IP address,
packet length, window size, source Ethernet address, destina-
tion port number, TTL, destination IP address, and source port
number are more relevant to classify labels for dataset 1 and
the features as protocol, port number of source, port number
of destination,TTL and window size are more important for
the classification in the second dataset.

To better illustrate the impact of feature selection in the
resulted accuracy, we provide the following formal logic
representation for the first dataset. Nonetheless, the same
logic can be easily applied for the second dataset as well.

In more detail, we are representing the actual and selected
feature sets of dataset 1 as: R = {f2, f1, f5, f11, f8, f6, f10, f4}
and A = {f2, f9, f8, f10, f6, f7, f3, f5} respectively. According
to these sets, we model R ∩ A as follows:

R ∩ A = {x|x ∈ R : x ∈ A} ⇔ {f2, f5, f8, f6, f10} (13)

The intersection R∩A gives the features that were used by
both architectures. However, in order to evaluate the impact
of the feature selection in the overall performance, we need
to identify the features that were not included in both archi-
tectures, which is captured as follows:

R− A = {x|x ∈ R ∧ x /∈ A} ⇔ {f1, f11, f4} (14)

FIGURE 10. Performance comparison per device for architecture V.

Equation (14) provides the features that are only included
by RFE and these are the interarrival time, the destination
MAC address and the IP protocol used. Since, architecture
IV presented an inferior performance than architecture V,
we can safely say that these three features did not provide a
well aligned information with the features given by R ∩ A.
Following, we extract the features included by the Anova
score method but not from the RFE:

A− R = {x|x ∈ A ∧ x /∈ R} ⇔ {f9, f7, f3} (15)

As (15) suggests, the packet length, TTL and destination
IP address are the features that they are only considered
by Anova and thus, by architecture V. Interestingly, we see
that when these features are included in R ∩ A such that
(R∩A)∪(A−R) = A, the performance increased significantly.
Thus, the features {f9, f7, f3} have a positive impact in the
performance of architecture V as they increased the accuracy
to 99.9%, precision to 99.6%, recall to 99.5% and f1- score
to 99.6% for dataset 1.

3) PERFORMANCE OF ARCHITECTURE V
In this part of the evaluation, we present the detailed results
of the proposed architecture V for the first dataset, however,
the accuracy, precision, recall and F1 score for both datasets
can be found in Table 8, as shown earlier.

a: PERFORMANCE OF STAGE 0
As we have proved the superior performance of our proposed
two-stage classifier (architecture V), in this part of the section

21206 VOLUME 10, 2022



A. Hameed et al.: Deep Learning Approach for IoT Traffic Multi-Classification in Smart-City Scenario

FIGURE 11. Confusion matrix for stage 0 of architecture V of dataset 1.

we delve into the details of the performance of the particular
framework.

Accordingly, for the first dataset, Fig. 10 illustrates the
performance metrics per device for stage 0. Some devices
such as Belkin sensor, Dropcam and TP link router presents
the highest performance, i.e., recall=1; precision=1 and F1-
score=1, all aggregated to 3. The lowest precision is noticed
for the belkin wemo switch i.e., 0.61, while the lowest recall
and F1-score are observed for the Samsung smartcam i.e.,
0.53 and 0.65 respectively. Furthermore, for the SmartCam
the aggregated value is 2.04 since the F1 score is 0.65, the
recall is 0.53, whereas the precision is significantly high, i.e.,
0.86. For the Netatmo weather station device, the aggregated
value is 2.09 as the precision is reasonably good, i.e., 0.88 but
the recall and F1 score are relatively low i.e., 0.54 and 0.67.
However, there were some devices such as withings scale,
triby speaker, nest alarm, and iPhone for which precision,
recall and F1-score were zero. The reason is that the instances
of such devices were misclassified in other categories.

Following, we plot the confusionmatrix of dataset 1 to give
the overall performance of stage 0 as shown in Fig. 11. The
row entries of a confusion matrix depict the actual values
and the column entries depicts the predicted values for the
22 classes. All the diagonal entries correspond to correct
classification whereas entries above diagonal are all Type I
error (also called False Positive Rate (FPR)) and entries below
are Type II error (also called False Negative Rate (FNR)). The
goal is tominimize the Type I and Type II errors close or equal
to zero.

At the main diagonal there are four exception cases: (i) the
worst classification is noticed for the iPhone device, since
58% instances of the particular device were classified as
Samsung galaxy tab, 22% instances were misclassified as TP
link router, and 20% were misclassified as amazon echo thus
depicting 100% FPR; (ii) for the nest protect smoke alarm
the classification value is 0% with 100% FPR because it
was misclassified as Samsung tab; (iii) for the triby speaker,
we notice a 28% of misclassification as laptop (Type II
error), and 72% of misclassification as netatmo welcome
(Type II error); (iv) for the withings smart scale, we noticed
87% of misclassification as baby monitor (Type II error),
9.6% of misclassification as Samsung smartcam (Type II
error), 1.9% of misclassification as Netatmo welcome, and
1.9% instances were incorrectly classified as belkin wemo
switch.

This behavior is attributed to the following reasons:
(a) there were 50 instances of iPhone compared to 3242,
87580 and 6231 of galaxy tab, TP link router and amazon
echo instances; (b) 41 nest protect smoke alarm instances
compared to 3242 instances of Samsung galaxy tab; (c)
771 triby speaker instances compared to 21815 laptop
instances and 3995 instances of netatmo welcome; and (d)
52 withings smart scale instances compared to 5912, 4895,
3995 and 4407 instances of baby monitor, Samsung smart-
cam, Netatmowelcome and belkin wemo switch respectively.
Thus, the prediction value for these devices is much higher as
compared to iPhone, nest protect smoke alarm, triby speaker
and withings scale.

VOLUME 10, 2022 21207



A. Hameed et al.: Deep Learning Approach for IoT Traffic Multi-Classification in Smart-City Scenario

FIGURE 12. Training vs. validation accuracy of architecture V for
100 epochs.

FIGURE 13. Training vs. Testing loss functions for stage 1 of architecture V.

b: PERFORMANCE OF STAGE 1
Fig. 12 depicts the training and testing accuracy, over the
100 epochs for the first dataset. The network model, i.e.,
optimizedMLP at stage 1 of LR(Anova)+MLP (keras tuner),
achieves better training accuracy i.e., 0.9997292 and vali-
dation accuracy i.e., 0.99962693 as the number of epochs
increases. The initial accuracy values start from 0.998 at
epoch 1 and the accuracy value does not change significantly
after epoch 60. Regarding the spikes noticed, Keras Tuner
estimates a close to optimal neural network topology using
an exploitation versus exploration approach.

In the exploitation stage, it tries to improve the neural
network topology, which output the most accurate results.
In the exploration stage, it tries to randomly examine new
neural network topologies that have not been explored yet.

FIGURE 14. Comparison of performance metrics for stage 1 of
architecture V over 100 epochs.

The exploration may help the optimisation process to escape
from a local optimal, resulting however to the spikes noticed
in Fig. 12. Yet, the optimisation process manage to converge
due to this exploitation stage.

Following, we have plotted the loss function for the train-
ing and testing datasets across the 100 epochs as shown in
Fig. 13. The learning curve shows the decay of the categor-
ical cross entropy loss function with respect to the number
of epochs. This curve is helpful in predicting whether our
model is overfitted, underfitted or is fit to testing and training
datasets. We see that the loss function for both training and
testing decays to low values i.e., 0.001193 for training and
0.001516 for the testing datasets at epoch 100. The spikes
are due to the use of a random search hyper tuner and the
reasons discussed above. Furthermore, training and testing
losses decrease and are stabilized around the same point i.e.,
after epoch 80 for training data. The model thus successfully
captures the classification patterns.

Next, Fig. 14 depicts the performance metrics for
100 epochs at stage 1. The precision is high as compared to
the other two performance metrics i.e., 0.996923 at the epoch
100. It can also be observed that the precision metric for
the neural network does not exhibit significant changes after
the epoch 80. Regarding the recall, it is lower compared to the
precision and F1-score i.e., 0.9957 at epoch 100 and it shows
a constant behavior after the epoch 95. For the F1-score, the
value is 0.9964 at the epoch 90 and it does not present any
significant changes after this point.

C. LIMITATIONS
Even though our framework provides very encouraging
results, it still presents some limitations that stem from the
intrinsic data nature of the IoT traffic multi-classification
problem. This includes the extra overhead of monitoring
the infrastructure to collect the traces, the construction of

21208 VOLUME 10, 2022



A. Hameed et al.: Deep Learning Approach for IoT Traffic Multi-Classification in Smart-City Scenario

a training dataset, and the computational overhead for the
model training. In addition to that a classification task is a
supervised learning approach. This means that if new types of
IoT devices are connected in the local network a new cycle of
data collection, annotation and training should begin in order
to update the model.

VII. CONCLUSION
In this work, we studied the problem of IoT traffic classifica-
tion. To solve this problem we have proposed a composite
learning framework that consists of two stages. After an
initial data preprocessing, the network traces are passed to
stage 0, where a feature selection mechanism and a Logistic
Regression classifier are applied. In particular, an ANOVA
filter based selection technique decides on the most important
features to be used by the stage 0 classifier. The tentative clas-
sification of the stage 0 classifier along with the remaining
features were then passed to the stage 1 classifier, which used
an optimalmulti-layer perceptron neural network architecture
that provides the final classification.

Following, a detailed experimentation and comparison
with various composite architectures on two different IoT
datasets have been performed. We concluded that the pro-
posed framework can considerably increase the performance
of the classification in terms of recall, precision, F1-score,
accuracy and confusion matrix metrics. Regarding the accu-
racy, our proposed model achieved a 99.9% accuracy for the
first dataset and a 99.8% accuracy for the second dataset,
proving the generalization aspects of our approach.

The particular model is of utmost importance in an IoT
to Cloud continuum communication model, where different
IoT devices need to be classified and their traffic profiles
be accurately predicted. This precise classification can pos-
itively contribute to the proper estimation of the required
resources from the subsequent Edge and Cloud layers where
the IoT traffic will be processed and analyzed.

The future direction of this work lies in the combination of
our proposed model with a resource allocation mechanism
that will be able to leverage this workload estimation and
dynamically change the allocation strategy at the access and
Edge networks. Finally, we aim to include other machine
learning techniques such as K-means clustering along with
unsupervised methods to address the limitations of classify-
ing new and unknown types of IoT devices.

REFERENCES
[1] N. Ivanov. (2019). Unleashing the Internet of Things With In-Memory

Computing—IoT Now—How to Run an IoT Enabled Business.
Accessed: Jul. 7, 2021. [Online]. Available: https://www.iot-now.
com/2019/01/17/92200-unleashing-internet-things-memory-computing

[2] S. C. Mukhopadhyay and N. K. Suryadevara, ‘‘Internet of Things: Chal-
lenges and opportunities,’’ in Internet of Things. Springer, 2014, pp. 1–17,
doi: 10.1007/978-3-319-04223-7_1.

[3] F. Saeik, M. Avgeris, D. Spatharakis, N. Santi, D. Dechouniotis, J. Violos,
A. Leivadeas, N. Athanasopoulos, N. Mitton, and S. Papavassiliou, ‘‘Task
offloading in edge and cloud computing: A survey on mathematical, arti-
ficial intelligence and control theory solutions,’’ Comput. Netw., vol. 195,
Aug. 2021, Art. no. 108177, doi: 10.1016/j.comnet.2021.108177.

[4] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, ‘‘A survey on
mobile edge computing: The communication perspective,’’ IEEE Com-
mun. Surveys Tuts., vol. 19, no. 4, pp. 2322–2358, 4th Quart., 2017, doi:
10.1109/COMST.2017.2745201.

[5] D. Dechouniotis, N. Athanasopoulos, A. Leivadeas, N. Mitton, R. Jungers,
and S. Papavassiliou, ‘‘Edge computing resource allocation for dynamic
networks: The DRUID-NET vision and perspective,’’ Sensors, vol. 20,
no. 8, p. 2191, Apr. 2020, doi: 10.3390/s20082191.

[6] Q. Xu, R. Zheng, W. Saad, and Z. Han, ‘‘Device fingerprinting
in wireless networks: Challenges and opportunities,’’ IEEE Commun.
Surveys Tuts., vol. 18, no. 1, pp. 94–104, 1st Quart., 2016, doi:
10.1109/COMST.2015.2476338.

[7] O. N. Osterbo, D. Zucchetto, K. Mahmood, A. Zanella, and O. Grondalen,
‘‘State modulated traffic models for machine type communications,’’ in
Proc. 29th Int. Teletraffic Congr. (ITC), Ilmenau, Germany, Sep. 2017,
pp. 1–5.

[8] M. Laner, N. Nikaein, P. Svoboda, M. Popovic, D. Drajic, and S. Krco,
‘‘Traffic models for machine-to-machine (M2M) communications: Types
and applications,’’ in Machine-to-Machine (M2M) Communications:
Architecture, Performance and Applications, C. Antón-Haro and
M. Dohler, Eds. Sawston, U.K.: Woodhead Publishing, 2020,
pp. 133–154.

[9] A. Orrevad, ‘‘M2M traffic characteristics: When machines participate in
communication,’’ Ph.D. dissertation, KTH Inf. Commun. Technol., Stock-
holm, Sweden, 2009.

[10] M. Miettinen, S. Marchal, I. Hafeez, T. Frassetto, N. Asokan,
A.-R. Sadeghi, and S. Tarkoma, ‘‘IoT Sentinel demo: Automated
device-type identification for security enforcement in IoT,’’ in Proc.
IEEE 37th Int. Conf. Distrib. Comput. Syst. (ICDCS), Atlanta, GA, USA,
Jun. 2017, pp. 2511–2514.

[11] B. Bezawada, M. Bachani, J. Peterson, H. Shirazi, I. Ray, and I. Ray,
‘‘Behavioral fingerprinting of IoT devices,’’ in Proc. Workshop Attacks
Solutions Hardw. Secur., Jan. 2018, pp. 41–50.

[12] Y. Meidan, M. Bohadana, A. Shabtai, M. Ochoa, N. Ole Tippenhauer,
J. Davis Guarnizo, and Y. Elovici, ‘‘Detection of unauthorized IoT
devices using machine learning techniques,’’ 2017, arXiv:1709.04647.
Accessed: Jul. 27, 2021.

[13] S. Aneja, N. Aneja, and M. S. Islam, ‘‘IoT device fingerprint using deep
learning,’’ in Proc. IEEE Int. Conf. Internet Things Intell. Syst. (IOTAIS),
Nov. 2018, pp. 174–179.

[14] N. Apthorpe, D. Reisman, and N. Feamster, ‘‘A smart home is no castle:
Privacy vulnerabilities of encrypted iot traffic,’’ 2017, arXiv:1705.06805.
Accessed: Jul. 27, 2021.

[15] R. Lippmann, D. Fried, K. Piwowarski, and W. Streilein, ‘‘Passive oper-
ating system identification from TCP/IP packet headers,’’ in Proc. ICDM
Workshop Data Mining Comput. Secur. (DMSEC), 2003, pp. 1–10.

[16] J. Kotak and Y. Elovici, ‘‘IoT device identification using deep learning,’’
in Proc. 13th Int. Conf. Comput. Intell. Secur. Inf. Syst. (CISIS), 2020,
pp. 76–86.

[17] A. Hameed, J. Violos, N. Santi, A. Leivadeas, and N. Mitton, ‘‘A machine
learning regression approach for throughput estimation in an IoT environ-
ment,’’ in Proc. 14th IEEE Int. Conf. Internet Things, Melbourne, VIC,
Australia, Dec. 2021, pp. 29–36.

[18] M. R. P. Santos, R. M. C. Andrade, D. G. Gomes, and A. C. Callado,
‘‘An efficient approach for device identification and traffic classification
in IoT ecosystems,’’ in Proc. IEEE Symp. Comput. Commun. (ISCC),
Jun. 2018, pp. 304–309.

[19] A. Abdellah, V. Artem, A. Muthanna, D. Gallyamov, and A. Koucheryavy,
‘‘Deep learning for IoT traffic prediction based on edge computing,’’ in
Proc. Int. Conf. Distrib. Comput. Commun. Netw., Moscow, Russia, 2020,
pp. 18–29.

[20] M. R. Shahid, G. Blanc, Z. Zhang, and H. Debar, ‘‘IoT devices recognition
through network traffic analysis,’’ in Proc. IEEE Int. Conf. Big Data (Big
Data), Dec. 2018, pp. 5187–5192, doi: 10.1109/BigData.2018.8622243.

[21] M. Lopez-Martin, B. Carro, A. Sanchez-Esguevillas, and J. Lloret, ‘‘Net-
work traffic classifier with convolutional and recurrent neural networks
for Internet of Things,’’ IEEE Access, vol. 5, pp. 18042–18050, 2017, doi:
10.1109/ACCESS.2017.2747560.

[22] Y. Meidan, M. Bohadana, A. Shabtai, J. D. Guarnizo, M. Ochoa,
N. O. Tippenhauer, and Y. Elovici, ‘‘ProfilIoT: A machine learning
approach for IoT device identification based on network traffic analysis,’’
in Proc. Symp. Appl. Comput. (SAC), Marrakech, Morocco, Apr. 2017,
pp. 506–509.

VOLUME 10, 2022 21209

http://dx.doi.org/10.1007/978-3-319-04223-7_1
http://dx.doi.org/10.1016/j.comnet.2021.108177
http://dx.doi.org/10.1109/COMST.2017.2745201
http://dx.doi.org/10.3390/s20082191
http://dx.doi.org/10.1109/COMST.2015.2476338
http://dx.doi.org/10.1109/BigData.2018.8622243
http://dx.doi.org/10.1109/ACCESS.2017.2747560


A. Hameed et al.: Deep Learning Approach for IoT Traffic Multi-Classification in Smart-City Scenario

[23] A. Sivanathan, H. H. Gharakheili, F. Loi, A. Radford, C. Wijenayake,
A. Vishwanath, and V. Sivaraman, ‘‘Classifying IoT devices in smart
environments using network traffic characteristics,’’ IEEE Trans.
Mobile Comput., vol. 18, no. 8, pp. 1745–1759, Aug. 2019, doi:
10.1109/tmc.2018.2866249.

[24] A. Hameed and A. Leivadeas, ‘‘IoT traffic multi-classification using net-
work and statistical features in a smart environment,’’ in Proc. IEEE 25th
Int. Workshop Comput. Aided Modeling Design Commun. Links Netw.
(CAMAD), Pisa, Italy, Sep. 2020, pp. 1–7.

[25] J. Ren, D. J. Dubois, D. Choffnes, A. M. Mandalari, R. Kolcun, and
H. Haddadi, ‘‘Information exposure from consumer IoT devices: A multi-
dimensional, network-informed measurement approach,’’ in Proc. Internet
Meas. Conf., New York, NY, USA, Oct. 2019, pp. 267–279.

[26] C. Zong, R. Xia, and J. Zhang, ‘‘Text representation,’’ in Text Data Mining,
1st ed. Singapore: Springer, 2021.

[27] J. Brownlee, ‘‘How to choose a feature selection method for machine
learning,’’Mach. Learn. Mastery, 2020. Accessed: Jul. 27, 2021. [Online].
Available: https://machinelearningmastery.com/feature-selection-with-
real-and-categorical-data/

[28] K. Backhaus, B. Erichson, S. Gensler, R. Weiber, and T. Weiber, ‘‘Logis-
tic regression,’’ in Multivariate Analysis, K. Backhaus, B. Erichson,
S. Gensler, R. Weiber, and T. Weiber, Ed. Wiesbaden, Germany: Springer,
2021, pp. 267–354.

[29] M. Henry, ‘‘Review on gradient descent algorithms in deep learning
approaches,’’ J. Innov. Develop. Pharmaceutical Tech. Sci., vol. 4, no. 3,
pp. 91–95, 2021.

[30] M. Okwu and L. Tartibu, ‘‘Artificial neural network,’’ in Metaheuris-
tic Optimization: Nature-Inspired Algorithms Swarm and Computational
Intelligence, Theory and Applications, M. Okwu and L. Tartibu, Eds.
Cham, Switzerland: Springer, 2021, pp. 133–145.

[31] Scikit Learn, Neural Network Models (Supervised).
Accessed: Jul. 27, 2021. [Online]. Available: https://scikit-learn.org/stable/
modules/neural_networks_supervised.html

[32] (2020). Keras Tuner. Accessed: Jul. 27, 2021. [Online]. Available:
https://keras-team.github.io/keras-tuner/

[33] University of New SouthsWales. IoT Traffic Traces.
Accessed: Jul. 27, 2021. [Online]. Available: https://iotanalytics.unsw.
edu.au/iottraces

AROOSA HAMEED received the master’s degree
in computer science from Quaid-i-Azam Univer-
sity, Islamabad, Pakistan, in 2018. She is currently
pursuing the Ph.D. degree with the Department
of Software and Information Technology Engi-
neering, Ecole de Technologie Superieure (ETS),
Montreal. Her main research interests include the
Internet of Things (IoT), traffic analytics, the IoT
services, the IoT security, and machine learning.

JOHN VIOLOS was a Research Associate at the
National Technical University of Athens, a Ses-
sional Lecturer at the Harokopio University of
Athens, and a Visiting Lecturer at the National and
KapodistrianUniversity of Athens. Hewas amem-
ber of the European Commission’s Digital Single
Market working group on the code of conduct for
switching and porting data between cloud service
providers. He is currently a Research Associate
with the Department of Software Engineering and

Information Technology, ETS. His research interests include deep learning,
machine learning, and cloud and edge computing.

ARIS LEIVADEAS (Senior Member, IEEE)
received the Diploma degree in electrical and
computer engineering from the University of
Patras, Greece, in 2008, the M.Sc. degree in
engineering from King’s College London, U.K.,
in 2009, and the Ph.D. degree in electrical and
computer engineering from the National and Tech-
nical University of Athens, Greece, in 2015.
From 2015 to 2018, he was a Postdoctoral
Researcher with the Department of Systems and

Computer Engineering, Carleton University, Ottawa, ON, Canada. In par-
allel, he worked as an Intern at Ericsson and then at Cisco, Ottawa. He is
currently an Associate Professor with the Department of Software and
Information Technology Engineering, Ecole de Technologie Superieure
(ETS), University of Quebec, Canada. His research interests include cloud
computing, the IoT, and network optimization and management. He received
the Best Paper Award in ACM ICPE 2018 and IEEE iThings 2021 and the
Best Presentation Award in IEEE HPSR 2020.

21210 VOLUME 10, 2022

http://dx.doi.org/10.1109/tmc.2018.2866249

