IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received December 30, 2021, accepted January 25, 2022, date of publication February 21, 2022, date of current version March 1, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3153075

A Graph Convolution Network-Based Bug Triage
System to Learn Heterogeneous Graph
Representation of Bug Reports

SYED FARHAN ALAM ZAIDI''2, HONGUK WOO 3, AND CHAN-GUN LEE 2

ICAU Institute of Innovative Talent of Big Data, Department of Computer Science and Engineering, Chung-Ang University, Seoul 06974, South Korea
2Department of Computer Science and Engineering, Chung-Ang University, Seoul 06974, South Korea

3Department of Software, Sungkyunkwan University, Suwon 16419, South Korea

Corresponding author: Chan-Gun Lee (cglee @cau.ac.kr)

This work was supported by the National Research Foundation of Korea (NRF) under Grant NRF-2021R1F1A1059492.

ABSTRACT Many bugs and defects occur during software testing and maintenance. These bugs should be
resolved as soon as possible, to improve software quality. However, bug triage aims to solve these bugs by
assigning the reported bugs to an appropriate developer or list of developers. It is an arduous task for a human
triager to assign an appropriate developer to a bug report, when there are several developers with different
skills, and several automated and semi-automated triage systems have been proposed in the last decade. Some
recent techniques have suggested possibilities for the development of an effective triage system. However,
these techniques require improvement. In previous work, we proposed a heterogeneous graph representation
for bug triage, using word—word edges and word-bug document co-occurrences to build a heterogeneous
graph of bug data. Cosine similarity is used to weight the word—word edges. Then, a graph convolution
network is used to learn a heterogeneous graph representation. This paper extends our previous work by
adopting different similarity metrics and correlation metrics for weighting word—word edges. The method
was validated using different small and large datasets obtained from large-scale open-source projects. The
top-k accuracy metric was used to evaluate the performance of the bug triage system. The experimental
results showed that the point-wise mutual information of the proposed model was better than that of other
word—word weighting methods, and our method had better accuracy for large datasets than other recent state-
of-the-art methods. The proposed method with point-wise mutual information showed 3% to 6% higher top-1
accuracy than state-of-the-art methods for large datasets.

INDEX TERMS Bug triage, bug report, software maintenance, defect triage, bug assignment, bug report,

bug fixer recommendation.

I. INTRODUCTION

Bug triage is a difficult task in software maintenance.
It requires the allocation of a suitable developer to a bug
report. Bugs are faults, mistakes, or gaps in software that
should be addressed with a specific priority, to improve soft-
ware quality. Testing engineers or quality assurance engineers
detect flaws and gaps during testing and maintenance of
the software. Developers and engineers use open-bug repos-
itories (JIRA or Bugzilla) for assistance in fixing issues.
Mozilla, Eclipse, and Net-Beans are examples of well-known
large-scale open-source projects that use open bug reposi-
tories to submit issues. A developer is assigned to a bug
reports—a document that is used to report a problem—by a

The associate editor coordinating the review of this manuscript and

approving it for publication was Roberto Nardone

VOLUME 10, 2022

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

manual triager or a triage manager, a process which is time
consuming. It is stressful for a triage manager to evoke the
developer’s expertise and allocate a bug to the most suitable
developer.

Many automated bug triage approaches have been devel-
oped to overcome the manual triage problem in the last
decade. However, these approaches are still producing unsat-
isfactory outcomes. Many researchers have used mining
repositories, social network analysis, topic modeling, statis-
tical approaches, and classic machine learning methods to
solve bug triage problems. However, these techniques have
yielded good results only for small datasets.

Recently, many deep learning methods, along with Natural
Language Processing (NLP) methods, have shown promis-
ing results for bug triage. Word representation and word
embedding are NLP techniques, used for converting text into

20677

https://orcid.org/0000-0003-2257-290X
https://orcid.org/0000-0001-6948-3440
https://orcid.org/0000-0001-9734-4456
https://orcid.org/0000-0003-4938-9216

IEEE Access

S. F. A. Zaidi et al.: Graph Convolution Network-Based Bug Triage System

vectors. Then, these vectors are fed to deep neural networks,
convolution neural networks (CNNs), or recurrent neural net-
work (RNNs). Lee et al. [1] were the first to use CNN-based
dense neural networks along with Word2Vec word embed-
ding. Guo et al. [2] proposed a word2vec and CNN-based
architecture for bug triage. However, their technique assigned
the developer to a task based on their activities.

Mani et al. [3] proposed an attention-based bidirectional
recurrent neural network that also used word2vec embedding.
Zaidi et al. [4] used different context-aware and context-
insensitive techniques for word-representation with a CNN
model. They produced promising results compared to pre-
vious methods. However, the accuracy of these models is
unsatisfactory and requires improvement.

Graph neural networks (GNNs) and graph embeddings are
new research directions that have been used for various clas-
sification and categorization tasks. A GNN effectively learns
a deep relational structure, and can maintain a graph’s global
structure information in graph embedding. Kipf et al. [5] pro-
posed a graph convolution network (GCN), which under-
stands the neighborhood information. Their model learns
hidden layer representations, which encode local structures
of graphs and the features of nodes.

Recently, Wu et al. proposed a spatial-temporal dynamic
graph neural network (ST-DGNN)-based automated bug
triage method that considered the activity of developers when
assigning bug reports. They considered the bug report sum-
mary, developers’ activity, and their comments to triage the
bug. They used joint random walk (JRWalk) for topolog-
ical sampling and a graph recurrent convolutional neural
network (GRCNN) to learn the spatial-temporal features of
dynamic developer collaboration networks (DCN). [6].

Previous work [7] reported a heterogeneous graph rep-
resentation of bug reports that builds heterogeneous graphs
from summaries and description of bug reports. The hetero-
geneous graph has word-to-word co-occurrences and word-
to-bug document co-occurrences. The technique uses term
frequency-inverse document frequency (TF-IDF) for weight-
ing words to bug document edges, and cosine similarity
calculated for weighting word—-word edges. Then, a simple
two-layer GCN was trained on a heterogeneous graph.

In this study, we extended our previous work using dif-
ferent similarity and co-occurrence measures for weighting
word—word edges. We adopted Jaccard similarity, Euclidean
similarity, Pearson correlation, dice similarity, Hellinger sim-
ilarity, and point-wise mutual information instead of the
cosine similarity used in our previous work. The proposed
method does not consider the developers’ comments or activ-
ity, and so the proposed method does not rely on social
graphs. It considers the summary and description, and builds
a heterogeneous graph representation of the bug reports. ST-
DGNN uses JRWalk, which aims to embed nodes or vertices
in a homogeneous graph. In contrast, we use a heterogeneous
graph with graph convolution network for bug triage.

Specifically, we raise the following research questions in
the context of bug triage:

20678

« Which method is effective for weighting the word—word
edges?

o Is the graph embedding better than context-insensitive
word-embeddings?

o Is the proposed triage technique faster than the word
representation-based approaches?

« Is the graph representation memory efficient for bug
reports?

The main contributions of the research are as follows:

« To the best of our knowledge, the proposed bug triage
method is the first that solves bug triage problems using
a heterogeneous graph with a graph convolution net-
work. The previous graph-based methods used social
network analysis techniques and dynamic graph tech-
niques, and did not use heterogeneous graphs. More-
over, previous methods created relational graphs based
on developers’ activities using summaries, descriptions,
and comments. The proposed method only uses sum-
maries and descriptions to build a heterogeneous graph.

o The performance of the proposed method was validated
on several large datasets from open-source projects.

o The proposed method was compared with some recent
deep learning-based triage methods such as Deep
triage [3], DA-CNN [2], Glove-CNN [4], ELMo-
CNN [4], and ST-DGNN [6], which have used the pub-
licly available datasets or have published their datasets.

Il. RELATED WORK

Many recent studies have addressed the issue of bug triage.
Researchers initially used non-machine learning methods
for bug triage. They used entropy-based, ranking-based,
and statistical methods. Between 2013 and 2017, many
machine learning-based methods were proposed for bug
triage. These methods used conventional machine learning
methods. A deep learning-based method for bug triage was
proposed for the first time in 2017.

Non-machine learning strategies included mining soft-
ware repositories (MSR), social network analysis, and activ-
ity models. Historical information on system development
and maintenance can be found in software repositories.
Researchers used information retrieval techniques to extract
the important information as features. Researchers have
mined this historical information, including source code and
version control repositories, to identify suitable developers to
address bug reports.

Kagdi et al. [8] used source files to create a dataset, and
used latent semantic indexing (LSI) to retrieve the infor-
mation. They computed the similarity of the bug reports,
to predict the relative source file using the indexed corpus.
Then, their algorithm assigns developers based on their activ-
ity for the related source file. Shokripour et al. [9], [10] pro-
posed two different methods. Firstly, they applied the phrase
composition technique on commit and description to extract
the information from repositories. This method suggests a
developer based on their activity with the file and most similar
phrase composition score. Secondly, they extracted nouns

VOLUME 10, 2022

S. F. A. Zaidi et al.: Graph Convolution Network-Based Bug Triage System

IEEE Access

from the commit message, source code, and description that
determined the bug’s location. Then, the term-weighting
scheme was used to identify the files belonging to the new bug
report, and assign developers based on their expertise with the
predicted files.

Banitaan et al. [11], Zhang et al. [12], and Hu et al. [13]
proposed social network analysis-based approaches for triag-
ing bugs. They built social networks of developers’ collabo-
rations using the comments on bugs, and then calculated the
fixing probability and associations scores for assigning the
developers.

A few approaches have used the developers’ knowledge
to triage problems by modeling their commenting, report-
ing, and fixing activities. Some researchers assigned suitable
developers based on association scores and correlation scores
determined by the developer activity and related topics,
using a topic modeling technique [14], [15]. Zhang et al. [16]
enhanced work by combining the topic model with developer
and reporter relations, based on their history.

Wang et al. [17] proposed an unsupervised method that
groups the developers based on their component-level activi-
ties. The approach calculates the score of activity for specific
periods in the group, and then assigns an appropriate devel-
oper to a bug report using the activity score. Xia et al. [18]
and Zhang et al. [19] enhanced the latent Dirichlet allo-
cation (LDA) model using a multi-feature approach and
entropy-based optimization, respectively. Then, the method
assigned developers based on their affinity scores.

Recently, Yadav et al. [20] proposed a technique that ranks
developers according to their expertise in triaging bugs. They
decreased the bug tossing length. They constructed develop-
ers’ profiles dependent on their commitment and collabora-
tion. The developer expertise scores are produced by utiliz-
ing fixing time, priority weighted fixed issues, and indexed
metrics. Then the component-based, cosine, and Jaccard sim-
ilarity are determined to calculate the expertise score. Based
on the expertise score, the method recommends a ranked
list of suitable developers. Kumari et al. [21] tackled the bug
triage problem with a bug dependency-based mathematical
model. The bug dependency exists due to coding mistakes,
deficiencies in design, and misconceptions among users and
developers. The entropy was calculated from the summary,
description, and comments from the bug reports. The devel-
oper’s assignment was dependent on the entropy.

Many studies were proposed for bug triage using
well-known machine learning algorithms between 2010 and
2017. These methods used term frequency-inverse document
frequency (TF-IDF) for feature extraction from bug reports,
such as summary description, comments, and source code.
The studies [22]-[26], and [27] used TF-IDF for feature
extraction and vectorization. These studies used machine
learning algorithm such as support vector machines (SVMs),
naive Bayes, decision trees, k-nearest neighbors (KNN), and
logistic regression. Logistic regression showed better perfor-
mance than the other machine learning algorithms for the bug
triage problem.

VOLUME 10, 2022

Alenezai et al. [28] built a model using a naive Bayes
classifier to assign a fixer to a newly reported bug. They
used five term-selection methods: chi-square, log odds ratio,
term frequency relevance frequency, mutual information, and
distinguishing feature selector, to choose the discriminatory
terms to engineer features for learning the prediction model.
Alenezai et al. [29] considered categorical features and meta-
data from bug reports with textual attributes for feature
extraction. They used the gain ratio to find the essential
features that provided the normalized measure of each feature
which contributed to the classification. The use of categorical
data with text data produced slightly better results than only
using test data. Only the use of categorical features produced
a deficiency in the triage performance.

Zhao et al. [30] combined a topic model and a vector space
model for triage data. The TF-IDF vectorizer was used to
build a vector space model, and LDA was used to create
a topic model. Two different machine learning algorithms,
an SVM and a neural network, were used for classification
tasks, and the SVM was found to perform better than the
neural network.

Since 2017, deep learning techniques using NLP
word-embedding or word representation techniques have
been proposed to advance bug triage research. The word
embedding techniques convert the text data into vectors
which are fed into a deep learning model. The word2vec
embedding is the most used technique for text classi-
fication tasks. Leeeral [1] were the first to propose a
deep learning-based solution for bug triage. They used the
word2vec embedding model for vectorizing text, and a CNN
model to predict the appropriate fixer. They calculated the
top-1 to top-5 accuracy to evaluate the performance of 5 suit-
able developers against one bug report.

Mani et al. [3] proposed a bi-directional recurrent neural
network-based technique for automatic bug triage. They used
word2vec embedding for text vectorization and an attention
mechanism that learns the syntactic and semantic features of a
long word sequence. The approach was shown to be superior
to traditional machine learning methods. Guo et al. [2] pro-
posed a CNN-based method and also considered developer
activities. They used time-split validation to make a real
scenario, used word2vec embedding for vectorization, and
validated their method with large datasets from open-source
projects.

Zaidi et al. [4] also proposed a CNN-based bug triage sys-
tem that recommends a list of ten developers. Three different
word-embedding techniques (word2vec, GloVe, and ELMo)
were used for vectorization. The ELMo-based CNN model
performed better than the others. Mian et al. [31] proposed a
bi-LSTM-DA based triage method with GloVe word embed-
ding for efficient word representation. The method was com-
pared with [2] and showed comparable results.

Recently, Aung et al. [32] proposed a multi-triage model
that assigns developers and issue types simultaneously. They
used two different deep learning models for feature extrac-
tion. The text encoder module was based on a CNN model,

20679

IEEE Access

S. F. A. Zaidi et al.: Graph Convolution Network-Based Bug Triage System

and an abstract syntax tree encoder module was based on
biLSTM. The researchers then concatenated the features of
both encoders and trained the two different classifiers for
the developer assignment and bug issue type tasks. Their
model produced good accuracy and performed both tasks
simultaneously, but required more training time than other
methods, due to the need to train two different encoders and
models.

Very few studies have been performed for bug triage
using graph-based neural networks. Wu et al. [6] proposed
a spatial-temporal graph-based dynamic graph neural net-
work in which they used joint random walk (JRWalk) and
a graph recurrent convolutional neural network (GRCNN).
Thr JR walk was used for topological sampling, and the
GRCNN was used to learn the spatio-temporal features of
dynamic developer collaboration networks. The researchers
used descriptions and comments to build the developer col-
laboration networks. Alazzam et al. [33] proposed a feature
augmentation approach based on relationships in a social
graph. They used frequency, correlation, and neighborhood
overlap techniques to build an augmentation approach. They
used the term “‘bug triage™ in the context of correctly assign
priority to new bugs.

Most recently, researchers have proposed triage meth-
ods based on dependencies. Almhana ef al. [34] proposed
an automated bug triage method that considers dependen-
cies between bug reports, and then localizes the files to be
inspected for each open bug report. Multi-objective search
is used to rank the bug reports for programmers, based on
dependencies for other reports and priorities. Their approach
produced a significant time reduction, of over 30%, in localiz-
ing bugs, compared to traditional bug prioritizing techniques.

Jahanshahi et al. [35] proposed a dependency-aware bug
triage method unlike previous dependency-based methods.
They used NLP and integer programming to assign bugs
appropriately. Their method incorporated textual informa-
tion, dependency between bugs, and the cost associated with
each bug. The technique reduced the number of overdue bugs,
and improved the bug-fixing time. However, they limited
their work by assuming that each developer can work on only
a single report at a time, which is not a realistic scenario in
practice.

Software defect prediction is a similar problem to bug
triage. Khurma et al. [36] proposed an island binary moth-
flame optimization (IsSBMFO) base model that divides the
solution in the population into subpopulations called islands.
Then, each island is treated independently. They used
IsBMFo for feature selection and three different classifiers,
SVM, KNN, and naive Bayes, for classification. The SVM
with IsSBMFO performed better than KNN and naive Bayes.

Ill. MOTIVATION AND PREVIOUS WORK

A significant number of bugs are reported daily, and these
bugs should be fixed as soon as [possible, to improve the
quality of the software. It is very difficult to triage bugs using
a manual triage manager. To overcome these issues, many

20680

triage systems have been proposed in the last decades, which
are discussed in Section II. However, the existing methods
have some limitations.

Early research into the bug triage problem involved min-
ing repositories, social network analysis, and activity model-
ing/topic modeling. These methods showed good results at
that time. However, these methods were not scalable, and
were tested only on small datasets with limited fixer informa-
tion. In reality, open-source projects have significant numbers
of developers.

The field evolved when researchers used machine learning
techniques and treated bug triage problem as a classification
problem. Machine learning has been used in various software
engineering problems. Researchers have used summaries,
descriptions, and comments for feature extraction. Then, they
used well-known classifiers to assign a fixer to each reported
bug. These triage methods showed good performance for
small datasets, and in situations in which the number of
developer classes is limited. In reality, open-source projects
have many developers. The performance of these methods
decreased with increasing dataset size and developer classes.
Nevertheless, these methods achieved higher accuracy than
previous mining and social network analysis-based triage
techniques.

Recently, most researchers have used NLP techniques for
word representation and have applied deep learning models
such as CNNs and RNNs for training and assigning appro-
priate fixers. Deep learning requires a large amount of data
for efficient training. The researchers used large datasets
from large-scale open projects to train their CNN and RNN
models. These triage techniques produced higher accuracy
than previous machine learning methods. However, the top-k
accuracies are still very far from satisfactory. Deep learning
methods require a significant time for training models using
parallel-processing graphical processing unit (GPUs).

Since graph convolution networks have produced good
performance in classification tasks, heterogeneous graphs
have also attracted more attention recently. Yao et al. [37]
proposed a GCN-based method for classification. The 20
Newsgroup (20NG), Reuters-8 (R8), Reuters-52 (R52), and
Movie Review (MR) datasets were used. The R52 dataset has
52 classification classes. Their GCN technique showed good
accuracy on benchmark datasets compared to CNN, LSTM,
and Bi-LSTM.

We found the work of Yao et al. to be highly relevant to
our research. Consequently, we proposed a heterogeneous
graph-based bug triage method that used GCN for learning
a graph to predict the allocation of appropriate develop-
ers to bug reports [7]. A heterogeneous graph was built
using the summaries and descriptions of the bug reports.
Each bug report and the unique words (vocabulary) from the
summary and description were used as nodes. The TF-IDF
score was used to compute the co-occurrences between
bug document (i) and word (j). The cosine similarity (CS)
was used to weight the edges between words. Equation 1
shows the mathematical notation for calculating the cosine

VOLUME 10, 2022

S. F. A. Zaidi et al.: Graph Convolution Network-Based Bug Triage System

IEEE Access

similarity between two words i and j. A heterogeneous graph
was represented by an adjacency matrix A, as shown in
Equation 2. A two-layer GCN was used to train the graph
representation using a softmax classifier for the prediction
task.

The proposed method is different from other proposed
graph-based triage techniques. The studies [6] and [33] use
social graphs for feature extraction and feature augmentation,
respectively. Both studies used comments and summaries
from the bug reports, and make relations between developer
and bug reports according to their activities. In our work,
we only used summaries and descriptions to obtain the unique
words and terms to make a model in the graph. Then, different
edges were created according to the correlation and similarity
scores.

CSGi,j) = —L (1)
2] 1j]
1 ifi=j.
TF — IDF (i, j), ifiisadocument,

and j is word.
Ay = / @)

CS(@,)), if CS(i,j) > 0.9
and i, j are words.
0, otherwise.

IV. METHODOLOGY

A relatively large amount of data is included in bug reports.
Each report was treated as a separate document. The bug
report includes text and categorical attributes, as well as other
details regarding the bug. The summary and description are
the text attributes utilized from bug reports for training the
model. The text attributes needed to be cleaned before feeding
into the recommendation system. Our bug triage process has
three main phases: preprocessing, a graph representation of
bug reports, and a graph convolution network. Figure 1 shows
the schematic diagram of the proposed bug triage method.

A. PREPROCESSING

We use the summary and description from the bug reports as
input information. The information about the fixer is utilized
as a label or a class attribute. The textual attributes, such
as summary and description, are unstructured data in the
triage system. Therefore, whitespace, stack traces, URLs,
special characters, hexadecimal codes, punctuation marks,
code snippets, and directory paths from the description are
removed in the preprocessing step. Stopwords are removed
from the summary and description using Stanford’s NLTK
library. Finally the vocabulary (unique words) is created from
the clean data.

B. GRAPH REPRESENTATION OF BUG REPORTS

A graph G has vertices V and edges E. The cleaned data is
used to create the graph. As mentioned in previous work,
we generated a heterogeneous graph for training the triage
system. The graph’s vertices are based on the vocabulary

VOLUME 10, 2022

size and the number of bug reports. The adjacency matrix
describes the heterogeneous graph, which is used as a fea-
ture matrix. The adjacency matrix is estimated to identity
matrix / initially, representing a self-loop of vertices. The
heterogeneous graph has two types of edges: the word-to-bug
document edge, which uses the TF-IDF score for weighting
the edges, and the word-to-word co-occurrence, weighted by
calculating a similarity measure between two words.

We adopted different methods for weighting word-to-word
edges. We used Jaccard similarity (JS), Euclidean similarity,
Pearson correlation, dice similarity, Hellinger similarity, and
point-wise mutual information instead of cosine similarity.
The Similarity(i, j) in equation 4 shows the generalization that
can be replaced by any of the above word—word weighting
techniques with the relative threshold value.

1, ifi =j.
TF — IDF,
Similarity(i, j),

if i is a document, and j is word.
if Similarity(i, j) > Th

and i, j are words.

0, otherwise.

3)

1) JACCARD SIMILARITY (JS)

JS is a statistical way in which to determine the similarity
and diversity between two finite sample sets. We used JS to
find the similarity between two words (i and j) and make an
edge between words if the similarity is >= 0.5. The JS is
calculated by Equation 4, which was also used by [38] for
keywords similarity.

il lingl
Ul lil+ = 1ing]

N “)
2) EUCLIDEAN SIMILARITY (ES)

We calculate Euclidean similarity by subtracting the
Euclidean distance (ED) from 1. The same threshold value
as JS is used to make edges between the words. The ES is
calculated using Equation 5.

ESG,j) = 1 — ED(,))
ESGi,j) = 1 = /1G = pI? &)

3) PEARSON CORRELATION (PC)

We carried out experiments using correlation instead of sim-
ilarity. We used Pearson correlation to determine the linear
relationship between two words. An edge was only made
if the words were highly correlated (where the correlation
value was greater than 0.5 and close to 1). We used Scipy’s
“Pearsonr” function to calculate the Pearson correlations
between words.

4) DICE SIMILARITY (DS)
Dice similarity (DS) was used to calculate the similarity
between two words. Edges were established if the similarity

20681

IEEE Access

S. F. A. Zaidi et al.: Graph Convolution Network-Based Bug Triage System

Extract
Summary &
Description

Training

Bug
Reports

’_I:
Testing

Bug
Reports

Building
Heterogeneous
Graph

Pre-
processing

. Graph
Ranked List Embedding
of Predict (E2)

Developers

7 _ Softmax

Tralnlng

FIGURE 1. Proposed graph convolution based bug triage system.

threshold was >= 0.5. The DS was calculated according to
Equation 6, which is a widely used metric.

2]iNj

lil + Ul

5) HELLINGER SIMILARITY (HS)

Hellinger Distance (HD) is the probabilistic analog of ED.
Hellinger similarity is calculated by 1 — HD. Hellinger sim-
ilarity was calculated using Equation 7. Two words were
linked if the Hellinger similarity was >= 0.5.

(Vi — D2 @)

DS(i,j) = (6)

1
HS(G,j)=1 7
6) POINT-WISE MUTUAL INFORMATION (PMI)
PMI is a popular statistical measure for determining the asso-
ciation between two words. In a text corpus, co-occurrences
and occurrences of words may be used to estimate the proba-
bilities p(i, j) and p(7), respectively. Edges were established if

20682

Classmer :
0 ~~~~~~~~ @9

Inputtoggml
-0 -0
- - - -
o000 © o000
©/ ©
00,0 °° J
RelU
o °° Activation (=] °°
o o o e
o0 o0
@ @/
Oo_o 00_0

the threshold was greater than zero. It is computed as follows:
- pG.J)

PMI(i, j) = log OP0) 8)
C. GRAPH CONVOLUTION NETWORK (GCN)
A GCN is a multi-layer neural network that directly acts
on graphs and generates embedding vectors based on their
neighborhood properties. We use a simple two-layer GCN
for our work, as Yao et al. used for the text classification
tasks. The heterogeneous graph was fed into a GCN, and
a normalized symmetric adjacency matrix (A) was used for
better computation and results. A was computed as follows:

A=D"12AD71/2 ©)

where D is the degree of matrix A. So, The output of the first
layer is the new feature matrix £ or the word embedding of,

which is computed as follows:
E; = ReLU(AXWj) (10)

VOLUME 10, 2022

S. F. A. Zaidi et al.: Graph Convolution Network-Based Bug Triage System

IEEE Access

where X is the input feature matrix, Wy is the initial weights,
and ReLU was used as the activation function. The second
layer is fed to the softmax classifier. Therefore, we used the
softmax activation function in layer two instead of ReLU. The
number of nodes was the same as the number of labels in the
second layer. So, the output (O) is calculated as follows:

E, = AE\W, (1)
O = softmax(E>) (12)

E5 is the embedding and new feature matrix for the second
layer, and W is the first layer’s weight.

V. EVALUATION AND RESULTS

This section evaluates the proposed bug triage system and
addresses the research questions mentioned in the Introduc-
tion section.

A. DATA COLLECTION

Data from the large-scale open-source projects was used to
evaluate the performance of the proposed bug triage system.
Lee [1], and Zaidi [4] used two datasets, Eclipse Platform
and Mozilla Firefox, to evaluate the performance of their
triage system. Mani [3] and Zaidi [4] used another Mozilla
Firefox dataset, including variants with minimum 0, 5, 10,
and 20 numbers of bug reports per developer. We used the
same datasets to evaluate and validate our proposed bug
triage system. Guo et al. [2] and Zaidi et al. [4] used a mas-
sive Mozilla dataset for their experimentation. We used this
dataset to validate the performance of our proposed approach.
The datasets are publicly available on GitHub.!

Wu et al. [6] built an Eclipse dataset, which contains 200K
solved bug reports from 81 components between October
2001 and November 2011. The dataset has 3,893 developers
who participated in the bug fixing process. The dataset is
publicly available at GitHub.?

B. EVALUATION MEASURE

The top-k accuracy is used to evaluate the proposed bug
triage system. We calculated the top-1 to top-10 accuracy and
compared it with state-of-the-art triage methods. Equation 13
was used to calculate the top-k accuracy.

Zi’i] I(rec; @k, dev;)

Top — k accuracy = N

13)

Ten-fold cross-validation and time-split validation were
used to evaluate the method. Ten-fold cross-validation was
used to evaluate the proposed triage system’s performance
on the Eclipse’s JDT, Eclipse’s Platform, and Mozilla Firefox
datasets. Time-split validation was used to evaluate the model
with the thresholded Mozilla Firefox dataset.

! https://github.com/farhan-93/bugtriage
2https://github.com/ssea—lab/BugTriage/tree/master/ (The GitHub link is
taken from their own paper.)

VOLUME 10, 2022

C. EXPERIMENTAL RESULTS

We used the datasets described above for the experiments.
Table 1 shows the experimental results of the Platform [1],
Firefox-small [1], Firefox-thresholded [3], and Firefox [2]
datasets. The reported results are the average of five trials.
The experimental results show the superiority of the proposed
method with the PMI method for weighting the word—word
edges for most cases. The platform was a small dataset with
a small number of developers compared to other Firefox
datasets. Our GCN-PMI performs better for the Platform
dataset than previous work, and ELMo-CNN for the top-1 to
top-4 accuracy. However, ELMo-CNN shows better results
for thr top-5 to top-10 accuracies. However, our proposed
method produced better performance than all other methods
for the Firefox [1] dataset, which is a larger dataset than the
Platform.

The Firefox thresholded [3] dataset is large. The
ELMo-CNN produced better results for the top-1 to top-6
accuracies on the O-threshold dataset. However, PMI-GCN
performed well for the top-7 to top-10 accuracies. In contrast,
our PMI method performed more effectively on a threshold
of 10, indicating that when a fixer has a good triage history,
it can build a good prediction model.

Similarly, Guo et al. [2] cleaned the datasets with
10-threshold—that is, they selected only those developers
who had fixed at least 10 bugs. Our previous work and
our-PMI methods show a noticeable improvement in perfor-
mance from top-1 to top-10 accuracy compared to DA-CNN,
Word-2Vec-CNN, GloVe-CNN, and ELMo-CNN.

D. ADDRESSING THE RESEARCH QUESTIONS
RQ 1: Which method is effective for weighting the
word-word edges?

As mentioned in Section IV-B, different methods were
used to weight the word—word edges: JS, Euclidean similar-
ity, Pearson correlation, dice similarity, Hellinger similarity,
and point-wise mutual information. The cosine similarity was
used in previous work [7] for word—word edges weighting.
The experimental results demonstrate the superiority of PMI
compared to the other methods on all five datasets. The
detailed experimental results are shown in Table 2.

To check the significance of the results, we performed
Friedman’s test. The Friedman’s test has a p-value < 0.05,
that confirms the significance of the results. A post-hoc
Nemenyi test was performed to check the significant differ-
ence between the different word—word weighting based GCN
methods with a 95% confidence interval. Overall, the PMI
based GCN method showed higher accuracy. The Nemenyi
test confirmed the significant difference between the PMI
based GCN method and CS-GCN, JS-GCN, and ES-GCN.
The PC-GCN, HS-GCN, and Dice-GCN had negligible dif-
ferences.

Figure 2 is the DemSar diagram that shows the average rank
of the proposed methods with different word—word weight-
ing schemes. The horizontal line shows the average rank.

20683

I E E E ACC@SS S. F. A. Zaidi et al.: Graph Convolution Network-Based Bug Triage System

TABLE 1. Average top-1 to top-10 accuracy obtained on platform, Firefox-small [1], Firefox-thresholded [3] and Firefox [2] datasets with different
word-word weighing scheme based GCN.

Dataset Techniques | top-1 top-2 top-3 top-4 top-5 top-6 top-7 top-8 top-9 top-10
Acc. % | Acc. % | Ace. % | Ace. % | Acc. % | Acc.% | Acc.% | Acc. % | Acc. % | Acc. %
csS 39.54 50.00 56.09 59.90 62.01 64.40 65.42 67.49 69.87 72.11
IS 41476 | 49.482 | 53.727 | 56.729 | 60.041 | 62.112 | 65217 | 67.495 | 69.669 | 71.222
Platform [1] ES 42,029 | 51449 | 56.624 | 59.627 | 61.077 | 63.665 | 66.046 | 69.255 | 70.807 | 72.36
PC 39.027 | 48.654 | 54.451 | 57.453 | 60.87 63251 | 65321 | 67.184 | 68.427 | 69.876
HS 42754 | 51.553 | 55.28 58.075 | 62.629 | 65224 | 68323 | 69.876 | 71.222 | 72.05
DS 42961 | 50414 | 55.072 | 59.731 | 62.112 | 63.768 | 67.081 | 68.944 | 70.393 | 72.464
PMI 44410 | 52.588 | 57.35 60.559 | 63.458 | 64.7001 | 67.495 | 70.001 | 70222 | 73.188
Cs 29.37 41.81 47.84 53.89 57.03 59.52 61.91 63.82 68.16 66.5
IS 32177 | 44.158 | 51.526 | 56.077 | 58373 | 61.627 | 64.402 | 66.699 | 69.038 | 70.378
Firefox [1] ES 29378 | 40.67 47177 | 52249 | 55502 | 58756 | 61.244 | 62775 | 64.402 | 66.22
PC 32345 | 45933 | 51.962 | 55.885 | 60.383 | 63.254 | 65742 | 67.751 | 68.889 | 70.239
HS 30.048 | 44.115 | 51.196 | 56.651 | 61.053 | 63.158 | 64.21 66.029 | 68.134 | 69.569
DS 30335 | 41.914 | 50.813 | 56.364 | 60.67 64.115 | 65.55 67273 | 68.995 | 69.761
PMI 35.120 | 48.705 | 55.024 | 59.904 | 63349 | 65.550 | 67.751 | 69.856 | 71.866 | 73.11
Cs 15.48 22.18 27.67 30.89 34.03 36.63 38.49 40.68 42.09 43.60
IS 16.853 | 24.081 | 29.616 | 33.416 | 36.142 | 38455 | 40.81 42173 | 43.536 | 45.188
Firefox [3] ES 16894 | 24.122 | 29951 | 33456 | 36.349 | 38.993 | 41.983 | 42667 | 44.123 | 44.857
0-Threshold
PC 17.266 | 24.411 | 29.451 | 33251 | 35812 | 38.125 | 40.107 | 41.883 | 43.04 44.692
HS 17.203 | 24751 | 30.051 | 33.548 | 36.316 | 39.538 | 42.021 | 43.04 44.94 46.799
DS 16.02 24.081 | 29.781 | 33292 | 36.101 | 38.001 | 39.901 | 41.925 | 43.412 | 45.188
PMI 19.849 | 28.414 | 34.041 | 37.544 | 40.784 | 43.51 46.014 | 47.941 | 50.248 | 51.216
CsS 25.661 | 3455 36.458 | 40.004 | 44.078 | 48415 | 52.845 | 56.474 | 60.78 63.14
IS 21982 | 28735 | 34.765 | 38.056 | 41.733 | 44917 | 47.317 | 52178 | 56.716 | 59.746
Firefox [3] ES 26806 | 33451 | 3682 | 40327 | 43281 | 47.311 | 51296 | 54.154 | 58.879 | 62.27
10-Threshold
PC 29984 | 40.177 | 46.288 | 50.006 | 52735 | 56.735 | 59.507 | 62.048 | 64.041 | 65.055
HS 26.811 | 33.456 | 36.825 | 40332 | 43286 | 47.316 | 51.266 | 54.024 | 58749 | 62.14
DS 26914 | 34578 | 36914 | 40.128 | 42.845 | 46214 | 52266 | 55.014 | 58.965 | 61.746
PMI 32343 | 44.639 | 51.390 | 56.318 | 61.374 | 63.197 | 65.559 | 68.304 | 69.998 | 71.008
Cs 18.126 | 27.035 | 32.719 | 36.866 | 40.015 | 42.704 | 45.161 | 46237 | 47.619 | 48.201
IS 17.626 | 26.535 | 32219 | 36366 | 39.515 | 42.204 | 44.661 | 45737 | 47.119 | 47.701
Firefox [2] ES 19.906 | 28.501 | 33.965 | 38.016 | 42.885 | 44.295 | 46.475 | 48295 | 49.797 | 53.055
PC 19.811 | 28401 | 33.890 | 37.990 | 42770 | 44.120 | 46390 | 47.970 | 49.540 | 53.010
HS 20.001 | 28.601 | 34.040 | 38.041 | 43.000 | 44.470 | 46.560 | 48.620 | 50.053 | 53.100
DS 20.110 | 29.010 | 34.010 | 38.140 | 43.010 | 44.610 | 46.890 | 48.990 | 50.001 | 52.987
PMI 21.352 30.031 35.714 39.555 43.395 45.852 47.542 50.693 52.845 54.379
The connection between the word—word weighting methods confidence interval. As in the Nemenyi test, the PMI-based
shows an insignificant difference. The critical distance cal- GCN method was significantly different from the cosine,

culated for the data of five datasets was 3.209, with a 95% Jaccard, and Euclidean similarity-based GCN methods. The

20684 VOLUME 10, 2022

S. F. A. Zaidi et al.: Graph Convolution Network-Based Bug Triage System

IEEE Access

D

PMI - ——— Cosine
diceg ——8MM — | L Jaccard
Euclidean

Pearson C

1
Hellinger

FIGURE 2. Demsar diagram compares different word-word weighing
techniques for top-1 accuracy. They horizontal line shows the average
rank scale. The critical distance (CD) is calculated with 95% confidence
interval, which is 3.290.

PMI-GCN showed high accuracy results over the dice sim-
ilarity, Pearson correlation, and Hellinger similarity based
GCN methods; however, no significant difference was found.
The Pearson correlation and Hellinger had the same aver-
age ranks. There was no significant difference between the
dice, Pearson correlation, Hellinger, Cosine, Jaccard, and
Euclidean based GCN.

RQ 2: Is the graph embedding better than context-
insensitive word-embeddings?

Graph embedding is the transformation of a graph into a
vector or set of vectors. The context-insensitive word embed-
dings have a constant vector for a word in any context.
In contrast, the graph embedding technique comprehends the
vertex-to-vertex relationship and other relative properties in
graph representation or graph embedding. The graph repre-
sentation of bug reports has bug documents and unique words
as vertices or nodes. The context-insensitive embeddings do
not take into account the context when converting a word into
a vector. In the graph representation, the embedding trans-
forms the word into vectors by learning the relation of ver-
tices, which shows the relation of words with a bug document
and other words. Therefore, a graph representation is a better
option than context-insensitive embedding techniques such as
GloVe and Word2vec. The experimental results in Table 1
also support our findings, which show that the proposed
method with PMI outperforms all the context-insensitive
embedding methods: Word2Vec-CNN, GloVe-CNN, DA-
CNN, and Deeptriage.

Friedman’s test was performed to check the significance of
the experimental results. Then, Nemenyi post-hoc tests were
performed to identify significant differences between the
proposed method and other context-insensitive based triage
methods (word2vec-CNN and GloVe-CNN). The test was
performed for the top-1, top-5, and top-10 accuracies with
a 95% confidence interval. The significance test showed a
p value of less than 0.05, that indicated significance in the
accuracy results. The Nemenyi test showed a significant dif-
ference between the proposed triage method and word2vec-
CNN. The proposed method had better accuracy than the
Glove-CNN. However, the Nemenyi test did not show a sig-
nificant difference between the proposed triage method and
GloVe-CNN, because the testing was conducted using limited
datasets.

Thus, the significance test partially supports this research
question. Overall, the proposed method showed good accu-

VOLUME 10, 2022

racy compared to GloVe-CNN and Word2Vec-CNN. How-
ever, the proposed triage system only showed significant
differences from the word2vec-CNN triage method.

RQ 3: Is the proposed triage technique faster than the
word representation-based approaches?

The graph has nodes and edges, where nodes are words and
documents, and edges represent the relationships between
them. Word vectors are generated against each word in
context-aware and context-insensitive word representations.
Each vector dimension is fixed; for example in the case of
word2vec and Glove, the dimensions are 100 or 300, and in
case of ELMo we can get 512 and 1024 dimensions. These
methods require a large corpus of text data for efficient train-
ing. After training on a large corpus, these methods produce
a vector in which each unique word is represented by a real
valued vector.

Embedding approaches in graph learning move nodes to
a high-dimensional vector space to optimize the chance of
retaining node neighbors. One approach to do this is to estab-
lish an acceptable neighborhood by performing random walks
starting from each node [39]. Another approach is to establish
neighborhoods by edge creation between two nodes if both
words/nodes are similar.

The graph embedding approach is faster than word repre-
sentation techniques. As mentioned earlier, word represen-
tation techniques require large amounts of data for train-
ing. However, heterogeneous graph learning methods do not
require much data for training. These methods calculate
TF-IDF for word to document relation and similarity for
word2word relation using existing information, which is a
faster process than word embedding or word representation.
It does not take significant time to build heterogeneous graph
and learn the graph by GCN. The proposed method took
on average of 35—40 minutes to build a graph and train for
the Firefox [1] dataset, and 1 hour and 30 minutes for the
Firefox [2] dataset. On a core i7 machine with 64 GB RAM
and a Graphical Processing Unit (GPU), the recorded execu-
tion time decreased to 20 minutes for the Firefox [1] dataset.
The heterogeneous graph generation task was performed on
the central processing unit (CPU). The training task can be
performed on either CPU or GPU.

RQ 4: Is the graph representation memory efficient for
bug reports?

The experiments were carried out on a Core i7 machine
with a GTX 1080Ti Nvidia GPU and 64GB RAM. The
GPU had 12 GB dedicated memory. The proposed GCN
based method was executed on a GPU for the Platform [1]
and Firefox [1] datasets. The memory insufficient error
occurred when the proposed method was executed for the
large datasets, such as the Firefox threshold [3] and the
Firefox [2] datasets. The heterogeneous graph is very large
and requires a considerable amount of memory for execution.
The GPU memory is limited; therefore, we cannot run the
proposed method for large datasets.

The proposed method was executed on the CPU and pro-
duce results. We observed that the proposed method required

20685

IEEE Access

S. F. A. Zaidi et al.: Graph Convolution Network-Based Bug Triage System

TABLE 2. Average top-1 to top-10 accuracy obtained on platform, Firefox-small [1], Firefox-thresholded [3] and Firefox [2] datasets.

Dataset Techniques top-1 top-2 top-3 top-4 top-5 top-6 top-7 top-8 top-9 top-10
Acc. % | Acc. % | Acc. % | Ace. % | Acc. % Acc. % | Acc. % | Ace. % | Acc. % | Acc. %
Lee et al. [1] 36.1 458 50.5 53.7 56.7 - - - - -
Platform [1] | Word2Vec-CNN [4] | 38.036 | 48.870 | 55.160 | 58.220 | 62492 | 65604 | 67.632 | 69.324 | 70.832 | 71.714
GloVe-CNN [4] 40.132 | 51.004 | 56.234 | 60.318 | 63.770 | 65964 | 68252 | 70.058 | 71.554 | 72.930
ELMo-CNN [4] 43622 | 51.830 | 56366 | 60.704 | 63.822 | 66.528 | 69.068 | 70.964 | 72.794 | 74.264
Previous Work [7] 39.54 50.00 56.09 59.90 62.01 64.40 65.42 67.49 69.87 72.11
Our-PMI 44.410 | 52.588 | 57.35 60.559 | 63.458 | 64.7001 | 67.495 | 70.001 | 70222 | 73.188
Lee et al. [1] 27.1 36.7 428 47.1 50.5 - - - - -
Firefox [1] | Word2Vec-CNN[4] | 27.396 | 37.894 | 44256 | 48.346 | 51.604 | 54422 | 57.006 | 58.858 | 60.430 | 61.750
GloVe-CNN [4] 28.614 | 38.660 | 45062 | 50.094 | 53.024 | 56.374 | 58.496 | 60.522 | 62.410 | 64.224
ELMo-CNN [4] 30418 | 41.104 | 47.81 52508 | 55.738 | 58.362 | 60.404 | 62314 | 63.598 | 64.696
Previous Work [7] 29.37 41.81 47.84 53.89 57.03 59.52 61.91 63.82 68.16 66.50
Our-PMI 35120 | 48.705 | 55.024 | 59.904 | 63.349 | 65550 | 67.751 | 69.856 | 71.866 | 73.110
Deep Triage [3] - - - - - - - - - 38.1
Firefox [3] | Word2Vec-CNN [4] 15.2 23.52 28.77 32.07 35.15 37.34 39.56 4137 42.89 43.63
O-Threshold | G15ve CNN [4] 1684 | 2522 | 3178 | 3378 | 3576 | 3919 | 4219 | 4396 | 4396 | 4532
ELMo-CNN [4] 20.86 29.04 34332 | 38.03 41.18 43.57 45.72 47.68 49.28 50.73
Previous Work [7] 15.48 22.18 27.67 30.89 34.03 36.63 38.49 40.68 42.09 43.60
Our-PMI 19.849 | 28414 | 34041 | 37.544 | 40.784 | 4351 46.014 | 47.941 | 50.248 | 51.216
Deep Triage [3] - - - - - - - - - 51.4
Firefox [3] | Word2Vec-CNN [4] 19.19 27.55 33.58 39.05 41.41 43.85 45.13 46.02 47.90 51.06
10-Threshold |- 1, ve NN [4] 1925 | 2069 | 3465 | 4023 | 4264 | 44.68 | 46.68 | 4835 | 4944 | 51.67
ELMo-CNN [4] 31.01 4285 49.83 54.50 57.96 60.77 63.78 64.92 66.62 67.90
Previous Work [7] 25661 | 34.55 36.458 | 40.004 | 44.078 | 48415 | 52.845 | 56.474 | 60.78 63.14
Our-PMI 32343 | 44.639 | 51.390 | 56.318 | 61.374 | 63.197 | 65559 | 68.304 | 69.998 | 71.008
DA-CNN [2] 12.44 19.09 22.54 24.91 26.93 28.26 30.17 31.71 33.00 34.46
One-Hot+CNN [2] 8.16 15.69 19.67 20.768 | 23.57 25.19 27.18 28.35 30.11 32.86
Firefox [21 | ow+NB [2] 8.15 11.43 13.69 15.78 17.49 18.68 19.76 21.29 22.65 23.69
Word2Vec-CNN [4] 12.74 17.83 21.96 25.70 27.41 2931 31.24 32.92 34.53 35.76
GloVe-CNN [4] 16.09 24.12 29.02 31.82 34.11 36.31 38.47 40.08 4127 42.63
ELMo-CNN [4] 16.73 25.18 30.15 33.98 36.47 38.95 40.89 4237 44.05 45.40
Previous Work [7] 18.126 | 27.035 | 32719 | 36.866 | 40.015 | 42,704 | 45.161 | 46237 | 47.619 | 48.201
Our-PMI 21.352 | 30.031 | 35714 | 39.555 | 43395 | 45.852 | 47.542 | 50.693 | 52.845 | 54.379

more memory. However, it is computationally more efficient
than the other CNN-based and RNN-based triage methods,
because they require a GPU f or quick training. Otherwise,
the CNN and RNN take a significant amount of time to train
the models and are very slow to train on a CPU.

In summary, the proposed method required a significant
amount of main memory for large-scale datasets because the

20686

whole heterogeneous graph has to be loaded into the main
memory. However, it trains rapidly and does not require the
GPU for training on large datasets.

E. COMPARISON WITH OTHER RESEARCH

We compared out method with some state-of-the-art meth-
ods using the same datasets. The comparison with the other

VOLUME 10, 2022

S. F. A. Zaidi et al.: Graph Convolution Network-Based Bug Triage System

IEEE Access

TABLE 3. The average top-1 to top-10 accuracy obtained on Wu et al.’s
Eclipse dataset [6]. The dataset is split and 80:20 ratio for training and
testing. The best performing values are shown in bold.

Top-k ITriage [6] ST-DGNN [6] Our PMI
Accuracy

Top-1 0.407 + 0.013 0.680 + 0.017 0.6954 £+ 0.010
Top-2 - - 0.8091 +0.013
Top-3 0.611 +0.016 0.774 £ 0.018 0.8517 £+ 0.011
Top-4 - - 0.8773 £ 0.010
Top-5 0.642 +0.014 0.875 £+ 0.012 0.8917 + 0.009
Top-6 - - 0.9011 £ 0.007
Top-7 - - 0.9181 £ 0.007
Top-8 - - 0.9317 £ 0.006
Top-9 - - 0.9353 £ 0.005
Top-10 - - 0.9483 £ 0.005

papers is very complicated, because every researcher used
different datasets, and their datasets are not publicly avail-
able. Although they described the data collection and clean-
ing process, it is difficult to get the same data used in their
research.

We used a cosine similarity metric in previous work. How-
ever, different similarity matrixes are used in current research
for word—-word edge weighting. Our proposed triage method
with PMI showed results superior to the comparative studies.
For the Platform dataset, the proposed method showed good
results for top-1 to top-3 accuracy. From top-4 to Top-10,
ELMo-CNN [4] beat the proposed triage method with PMI.
Firefox [1] is a larger dataset than the Platform, with a large
number of developers, and in this case the proposed method
beat other methods with a noticeable difference. These obser-
vations show that the proposed method performed well for
large datasets where the average ratio of bug reports per
developer was at least 20. The Firefox-0 Threshold data is a
very big dataset, and includes developers that have at least one
bug report in the history. The proposed method demonstrated
lower performance than ELMo-CNN method for top-1 to
top-6 accuracy. After top-6 accuracy, the proposed method
showed good performance up to the top 10 accuracy, with
a noticeable difference. Similar findings were found for the
10 threshold and other datasets.

The Eclipse dataset [6] is a massive dataset that has a
significant number of bug reports and has many developer
classes. The proposed method had good top-k accuracy com-
pared to a spatial-temporal dynamic graph neural network
(ST-DGNN) [6] and ITriage [40]. In ST-DGNN, the authors
used the JRWalk mechanism to embed nodes in homogeneous
networks. Thus, their approach was limited to homogeneous
dynamic graph networks, and could not be directly applied
to heterogeneous graph networks. In contrast, the proposed
approach used a heterogeneous graph, which has recently
attracted more attention.

VOLUME 10, 2022

In summary, the proposed method demonstrated better per-
formance than the comparative studies. The proposed method
achieved better top-k accuracy than comparative studies for
all datasets. The proposed method showed top-1 to top-5
accuracy comparable to that of other studies for datasets with
a smaller number of bug reports per developer, while a notice-
able difference was found in top-6 to top-10 accuracy for all
datasets. The proposed method shows better top-10 accuracy
than other considered methods. However, the Friedman test
and Nemenyi post hoc test shows insignificant difference
between the proposed method and ELMo-CNN.

VI. LIMITATIONS

Different types of graph-based approaches, including toss-
ing, dynamic, relational, and homogeneous approaches, have
been proposed for bug triage. To the best of our knowl-
edge, no heterogeneous graph-based approach has been pro-
posed until the present study. However, he proposed approach
is limited because it cannot add new developers to the
trained model without retraining from scratch. Retraining
from scratch is required to build a new model to add new
developers/classes, a process which is very time consuming.
In the future, we intend to find a solution based on a heteroge-
neous graph for bug triage that can add new developer classes
without retraining from scratch.

The proposed approach is not cost-effective. It requires
significant memory and time for very large datasets. The
heterogeneous graph has word-to-word and word-to-report
associations, which make the graph significantly giant. The
entire graph is loaded into memory for training the GCN,
which entails significant memory costs for massive datasets.
Moreover, the proposed approach requires significant train-
ing time for significantly large datasets, because training is
not possible on GPU systems. The GPU has limited memory
and cannot be extended externally. Furthermore, we cannot
load heterogeneous graphs in chunks to GPU memory. There-
fore, the proposed approach takes considerable time to train
on the CPU.

VII. THREATS TO VALIDITY

A. CONSTRUCT VALIDITY

Bug reports are publicly available in a bug repository.
Researchers download bug reports from repositories using
REST API to make a dataset. Then, they filter or clean
the dataset. Reproducing data is difficult, because some bug
reports are duplicated, and their status changes over time.
Therefore, we used publicly available or published datasets
to estimate the performance of the proposed bug triage
method. The same protocols used in other studies were used
for splitting datasets into training and test sets. Therefore,
we expected no threats to construct validity for this research.

B. INTERNAL VALIDITY

The performance of the method was validated on published
data by comparative studies. No new data were collected
for this research. Previous studies’ researchers collected data

20687

IEEE Access

S. F. A. Zaidi et al.: Graph Convolution Network-Based Bug Triage System

from open bug repositories with closed and fixed status.
They ensured that all bug reports were publicly available.
We also ensured that the bug reports were publicly available
for the specific open-source large-scale projects. Therefore,
we expected no internal threats to validity.

C. EXTERNAL VALIDITY

Only a few open-source projects were used in our research.
Therefore, the result may not be applicable to all open-source
and industrial projects. The datasets were collected from
the Bugzilla open bug repository. Therefore, we can say the
proposed method is scaleable for those projects which use the
Bugzilla repository. However, industrial projects are entirely
different, and their triage process may also differ from
that applicable to other open-source projects. The proposed
method was not tested on industrial projects. Nevertheless,
we hope that the method can be applied to industrial projects,
because every bug report has a summary and description
across the platforms. Thus, we hope that there is no external
threats to the validity of this research.

Another limitation of this research is the comparison with
few studies and datasets. The comparison of the proposed
method with all the recent studies was impossible because
most researchers use their own datasets, which are not pub-
licly available to other researchers. Most researchers provide
the data source URL, time interval, resolution status, and the
number of bug reports. They often do not explain the data
cleaning process and parameters, which makes it challenging
to reproduce the same dataset. Also, no one can prove the
authenticity of the dataset. Therefore, we only used publicly
available datasets to evaluate the performance of the methods,
despite limited comparison to those studies with published
data.

VIIl. CONCLUSION

This paper extends our previous work by adopting JS,
Euclidean similarity, dice similarity, Hellinger similarity,
Pearson correlation, and point-wise mutual information
for weighting word-word edges. TF-IDF was used for
word-document edge weighting. Then, a simple GCN was
used to learn the heterogeneous graph of bug reports that
generated a graph representation of bug data and assigned a
list of developers to a reported bug.

The experimental results suggest that point-wise mutual
information is the best method for weighting the word—word
edges. Experimental results with PMI showed significant
distance with cosine, Jaccard, and Euclidean similarities. PMI
was not found to be significantly different from Pearson cor-
relation, dice similarity, and Hellinger similarity according
to the calculated critical distance. However, PMI showed the
best results on all datasets and showed 3 to 6% higher top-1
accuracy and 5 to 8% top-10 accuracy than state-of-the-art-
methods.

The platform dataset is the smallest dataset. The proposed
method showed results comparable to those of ELMo-CNN.
The other datasets are larger than the platform dataset. The

20688

proposed method showed better top-k accuracy on all other
datasets. The proposed method showed a slight difference in
top-1 accuracy; however, it showed a very large difference
from the other methods on all datasets except the Platform
data for top-10 accuracy.

The proposed method was found to be faster than the other
deep learning methods, because graph embedding techniques
do not require as much data for training as CNN and RNN
techniques. Moreover, sophisticated GPUs are not required
to train a GCN, because it can be easily trained on a CPU.
In contrast, the proposed method requires more primary
memory, because the whole heterogeneous graph is loaded
into memory for execution. The heterogeneous graph is large
for massive datasets, and GPUs have limited dedicated mem-
ory; therefore, we could not train the heterogeneous graph of
large datasets on GPUs.

The proposed method is not memory efficient, because it
requires significant memory and time for very large datasets.
We intend to find a possible solution to make it cost-effective
in the future. We also intend to extend our work to add new
developer classes to the existing model without retraining
from scratch.

REFERENCES

[1] S.-R. Lee, M.-J. Heo, C.-G. Lee, M. Kim, and G. Jeong, “Applying deep
learning based automatic bug triager to industrial projects,” in Proc. 11th
Joint Meeting Found. Softw. Eng., New York, New York, USAs, 2017,
pp. 926-931.

[2] S. Guo, X. Zhang, X. Yang, R. Chen, C. Guo, H. Li, and T. Li, “Developer
activity motivated bug triaging: Via convolutional neural network,”” Neural
Process. Lett., vol. 51, no. 3, pp. 2589-2606, 2020.

[3] S. Mani, A. Sankaran, and R. Aralikatte, “DeepTriage: Explor-
ing the effectiveness of deep learning for bug triaging,” in Proc.
ACM India Joint Int. Conf. Data Sci. Manage. Data, Jan. 2019,
pp. 171-179.

[4] S.F. A.Zaidi, F. M. Awan, M. Lee, H. Woo, and C. G. Lee, “Applying con-
volutional neural networks with different word representation techniques
to recommend bug fixers,” IEEE Access, vol. 8, pp.213729-213747,
2020.

[5] T. N. Kipf and M. Welling, ““Semi-supervised classification with graph
convolutional networks,” 2016, arXiv:1609.02907.

[6] H. Wu, Y. Ma, Z. Xiang, C. Yang, and K. He, “A spatial-temporal graph
neural network framework for automated software bug triaging,” 2021,
arXiv:2101.11846.

[7] S.F A.Zaidiand C.-G. Lee, “Learning graph representation of bug reports

to triage bugs using graph convolution network,” in Proc. Int. Conf. Inf.

Netw. (ICOIN), Jan. 2021, pp. 504-507.

H. Kagdi, M. Gethers, D. Poshyvanyk, and M. Hammad, “Assigning

change requests to software developers,” J. Softw., Evol. Process, vol. 24,

no. 1, pp. 3-33, Jan. 2012.

[9] R. Shokripour, Z. M. Kasirun, S. Zamani, and J. Anvik, “Automatic bug
assignment using information extraction methods,” in Proc. Int. Conf. Adv.
Comput. Sci. Appl. Technol. (ACSAT), Nov. 2012, pp. 144-149. [Online].
Available: http://ieeexplore.ieee.org/document/6516342/

[10] R. Shokripour, J. Anvik, Z. M. Kasirun, and S. Zamani, “Why so com-
plicated? Simple term filtering and weighting for location-based bug
report assignment recommendation,” in Proc. 10th Workshop Conf. Min-
ing Softw. Repositories (MSR), May 2013, pp. 2-11. [Online]. Available:
http://ieeexplore.ieee.org/document/6623997/

[11] S. Banitaan and M. Alenezi, “DECOBA: Utilizing developers commu-
nities in bug assignment,” in Proc. 12th Int. Conf. Mach. Learn. Appl.
(ICMLA), vol. 2, Dec. 2013, pp. 66-71.

[12] T. Zhang and B. Lee, ““A hybrid bug triage algorithm for developer rec-
ommendation,” in Proc. 28th Annu. ACM Symp. Appl. Comput., 2013,
pp. 1088-1094.

[8

—

VOLUME 10, 2022

S. F. A. Zaidi et al.: Graph Convolution Network-Based Bug Triage System

IEEE Access

[13] H. Hu, H. Zhang, J. Xuan, and W. Sun, “Effective bug triage, based
on historical bug-fix information,” in Proc. IEEE 25th Int. Symp.
Softw. Rel. Eng. (ISSRE), Nov. 2014, pp. 122-132. [Online]. Available:
http://ieeexplore.ieee.org/document/6982620/

[14] H. Naguib, N. Narayan, B. Brugge, and D. Helal, “Bug report assignee
recommendation using activity profiles,” in Proc. 10th Work. Conf. Mining
Softw. Repositories (MSR), May 2013, pp. 22-30.

[15] G. Yang, T. Zhang, and B. Lee, “Towards semi-automatic bug triage
and severity prediction based on topic model and multi-feature of bug
reports,” in Proc. IEEE 38th Annu. Comput. Softw. Appl. Conf., Jul. 2014,
pp. 97-106.

[16] T.Zhang, G.Yang, B.Lee, and E. K. Lua, “A novel developer ranking algo-
rithm for automatic bug triage using topic model and developer relations,”
in Proc. 21st Asia—Pacific Softw. Eng. Conf., Dec. 2014, pp. 223-230.

[17] S. Wang, W. Zhang, and Q. Wang, “FixerCache: Unsupervised caching
active developers for diverse bug triage,” in Proc. 8th ACM/IEEE Int.
Symp. Empirical Softw. Eng. Meas. (ESEM), 2014, pp. 1-10.

[18] X. Xia, D. Lo, Y. Ding, J. M. Al-Kofahi, T. N. Nguyen, and X. Wang,
“Improving automated bug triaging with specialized topic model,” IEEE
Trans. Softw. Eng., vol. 43, no. 3, pp. 272-297, Mar. 2017.

[19] W. Zhang, Y. Cui, and T. Yoshida, “En-LDA: An novel approach to
automatic bug report assignment with entropy optimized latent Dirichlet
allocation,” Entropy, vol. 19, no. 5, p. 173, Apr. 2017.

[20] A. Yadav, S. K. Singh, and J. S. Suri, “Ranking of software developers
based on expertise score for bug triaging,” Inf. Softw. Technol., vol. 112,
pp. 1-17, Aug. 2019.

[21] M. Kumari, A. Misra, S. Misra, L. F. Sanz, R. Damasevicius, and
V. B. Singh, “Quantitative quality evaluation of software products by con-
sidering summary and comments entropy of a reported bug,” Entropy,
vol. 21, no. 1, p. 91, Jan. 2019.

[22] P. Bhattacharya and I. Neamtiu, “Fine-grained incremental learning and
multi-feature tossing graphs to improve bug triaging,” in Proc. IEEE Int.
Conf. Softw. Maintenance, Sep. 2010, pp. 1-10.

[23] J. Anvik and G. C. Murphy, “Reducing the effort of bug report triage:
Recommenders for development-oriented decisions,” ACM Trans. Softw.
Eng. Methodol., vol. 20, no. 3, pp. 1-35, Aug. 2011.

[24] J. Xuan, H. Jiang, Z. Ren, and W. Zou, ““Developer prioritization in bug
repositories,” in Proc. 34th Int. Conf. Softw. Eng. (ICSE), 2012, pp. 25-35.

[25] S. Banitaan and M. Alenezi, “TRAM: An approach for assigning bug
reports using their metadata,” in Proc. 3rd Int. Conf. Commun. Inf. Technol.
(ICCIT), Jun. 2013, pp. 215-219.

[26] R. Johnson and T. Zhang, “Supervised and semi-supervised text catego-
rization using LSTM for region embeddings,” 2016, arXiv:1602.02373.

[27] A. C. Florea, J. Anvik, and R. Andonie, ‘““Spark-based cluster implemen-
tation of a bug report assignment recommender system,” in Artificial
Intelligence and Soft Computing (Lecture Notes in Computer Science),
vol. 10246, L. Rutkowski, M. Korytkowski, R. Scherer, R. Tadeusiewicz,
L. Zadeh, and J. Zurada, Eds. Cham, Switzerland: Springer, 2017, doi:
10.1007/978-3-319-59060-8_4.

[28] M. Alenezi, K. Magel, and S. Banitaan, “Efficient bug triaging using text
mining,” J. Softw., vol. 8, no. 9, pp. 2185-2191, 2013. [Online]. Available:
http://www.jsoftware.us/vol8/jsw0809-12.pdf

[29] M. Alenezi, S. Banitaan, and M. Zarour, “Using categorical fea-
tures in mining bug tracking systems to assign bug reports,” 2018,
arXiv:1804.07803.

[30] Y. Zhao, T. He, and Z. Chen, “A unified framework for bug report
assignment,” Int. J. Softw. Eng. Knowl. Eng., vol. 29, no. 4, pp. 607-628,
Apr. 2019.

[31] T.S.Mian, “Automation of bug-report allocation to developer using a deep
learning algorithm,” in Proc. Int. Congr. Adv. Technol. Eng. (ICOTEN),
2021, pp. 1-7.

[32] T. W. W. Aung, Y. Wan, H. Huo, and Y. Sui, “Multi-triage: A multi-task
learning framework for bug triage,” J. Syst. Softw., vol. 184, Feb. 2022,
Art. no. 111133.

[33] I. Alazzam, A. Aleroud, Z. Al Latifah, and G. Karabatis, ‘“‘Automatic
bug triage in software systems using graph neighborhood relations for
feature augmentation,” IEEE Trans. Computat. Social Syst., vol. 7, no. 5,
pp. 1288-1303, Oct. 2020.

[34] R. Almhana and M. Kessentini, “Considering dependencies between bug
reports to improve bugs triage,” Automated Softw. Eng., vol. 28, no. 1,
pp. 1-26, May 2021.

[35] H. Jahanshahi, K. Chhabra, M. Cevik, and A. Bapar, “DABT:
A dependency-aware bug triaging method,” in Proc. Eval. Assessment
Softw. Eng., 2021, pp. 221-230.

VOLUME 10, 2022

[36] R. A.Khurma, H. Alsawalqah, I. Aljarah, and M. A. Elaziz, “‘An enhanced
evolutionary software defect prediction method using island moth flame
optimization,” Mathematics, vol. 9, no. 15, p. 1722, Jul. 2021.

[37] L. Yao, C.Mao, and Y. Luo, ““Graph convolutional networks for text classi-
fication,” in Proc. AAAI Conf. Artif. Intell., vol. 33, 2019, pp. 7370-7377.

[38] S. Niwattanakul, J. Singthongchai, E. Naenudorn, and S. Wanapu, “Using
of Jaccard coefficient for keywords similarity,” in Proc. Int. Multiconf.
Eng. Comput. Sci., 2013, vol. 1, no. 6, pp. 380-384.

[39] R. Cappuzzo, P. Papotti, and S. Thirumuruganathan, “Creating embed-
dings of heterogeneous relational datasets for data integration tasks,” in
Proc. ACM SIGMOD Int. Conf. Manage. Data, Jun. 2020, pp. 1335-1349.

[40] S.-Q. Xi, Y. Yao, X.-S. Xiao, F. Xu, and J. Lv, “Bug triaging based on
tossing sequence modeling,” J. Comput. Sci. Technol., vol. 34, no. 5,
pp. 942-956, Sep. 2019.

SYED FARHAN ALAM ZAIDI was born in
Lahore, Pakistan, in 1993. He received the B.S.
degree in information technology from the Univer-
sity of Education, Lahore, Pakistan, in 2014, and
the M.S. degree in computer science from COM-
SATS University Islamabad, Pakistan, in 2017.
He is currently pursuing the Ph.D. degree in com-
puter science and engineering with Chung-Ang
University, Seoul, South Korea. After completing
- il the B.S. degree, he worked as a Web Developer
with a software development company in Pakistan. After completing the
M.S. degree, he involved with teaching as a Visiting Lecturer in various
universities. Along with the Ph.D. degree, he is also working as a Research
Assistant with the Real-Time Software Engineering Laboratory. His research
interests include software engineering-based problems, natural language pro-
cessing, deep/machine learning, data mining, image processing, and medical
imaging.

HONGUK WOO was born in Seoul, South Korea.
He received the B.S. degree in computer sci-
ence from Korea University, Seoul, in 1995, and
the M.S. and Ph.D. degrees in computer sci-
ences from The University of Texas at Austin,
Austin, TX, USA, in 2002 and 2008, respec-
tively. From 2008 to 2018, he worked at Samsung
Research of Samsung Electronics as a Princi-
pal Engineer and the Vice President. Since 2018,
he has been an Assistant Professor with the Depart-
ment of Software, Sungkyunkwan University, Suwon, South Korea. He is
the coauthor of more than 30 research papers and ten patents. His research
interests include data-centric application, analytic monitoring & intelligence,
and networked cyber-physical systems.

CHAN-GUN LEE was born in Seoul, South Korea,
in 1972. He received the B.S. degree in computer
engineering from Chung-Ang University, Seoul,
in 1996, the M.S. degree in computer science
from the Korea Advanced Institute of Science
and Technology (KAIST), Daejeon, in 1998, and
the Ph.D. degree in computer science from The
University of Texas at Austin, Austin, TX, USA,
in 2005. From 2005 to 2007, he was a Senior
Software Engineer with Intel, Hillsboro, Oregon.
Since 2007, he has been a Professor with the Department of Computer
Science and Engineering, Chung-Ang University. He is the author of more
than 30 articles and conference papers. His research interests include soft-
ware engineering and real-time systems. He was a recipient of the Korea
Foundation of Advanced Studies (KFAS) Fellowship, from 1999 to 2005.

20689

http://dx.doi.org/10.1007/978-3-319-59060-8_4

