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ABSTRACT This paper studies leaderless consensus of semi-linear parabolic partial integro-differential
equations based multi-agent systems (PIDEMASs) with time delays. Making use of the information
interaction and coordination among the neighboring agents, consensus control of the leaderless PIDEMAS
is constructed. Consensus of the leaderless PIDEMAS is analyzed by using a Lyapunov approach. Dealing
with time-invariant delays and time-varying delays, two sufficient conditions for consensus of the leaderless
PIDEMAS are respectively obtained in terms of LMIs. Two examples illustrate the effectiveness of developed
theoretical results.

INDEX TERMS Consensus, multi-agent systems, LMIs, Lyapunov, partial integro-differential equations.

I. INTRODUCTION
Multi-agent systems (MASs) have attracted a great deal of
attention during the last few decades [1], [2]. They have been
widely used in engineering fields, such as secure communica-
tion [3], [4], privacy-preserving [5], ship course-keeping [6],
UAVs formation flying [7]–[9], and traffic flow [10].

In recent years, many important results have been obtained
on consensus of MASs, whose goal is to enable agents to per-
form a designated task synchronously [11], [12]. Tian et al.
proposed output consensus for second-order MASs [13].
Ji et al. studied adaptive learning fault-tolerant consensus
for MASs [14]. Xiao et al. investigated variable impulsive
control for consensus of stochastic perturbed MASs [15].
Yu et al. proposed a finite-horizon H∞ consensus control
method for multi-agent networks under the limited energy
constraint [16]. In these results, time delays have not yet to
be considered.

As well been known, time delays extensively exist in
almost all sorts of systems. Therefore, it is desired to research
consensus of MASs with time delays. Lu et al. investigated
consensus of communication delayed MASs with antagonis-
tic interactions [17]. Li et al. studied a dynamic gain obtained
approach for consensus of delayed MASs [18]. Chen et al.
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studied H∞ containment control for discrete time-varying
linear MASs with multileaders [19]. Shahamatkhah and
Tabatabaei proposed containment control of fractional-order
MASs with time-delays [20].

As a whole, the mentioned literature have obtained impor-
tant results, whereas they assumed the dynamics of agents
relying on only time [21], [22]. Actually, dynamics of all
processes rely on time and space in nature. Therefore, there
is an importance to research MASs with spatio-temporal
structures. Demetriou studied adaptive consensus and spa-
tial SPID for partial differential equation-type MASs (PDE-
MASs) [23], [24]. Yang et al. proposed spatial boundary con-
trol of consensus for nonlinear PDEMASs [25] and boundary
control for output consensus of nonlinear PDEMASs with
input constraint [26]. Iterative learning for consensus of non-
linear PDEMASs was studied without time delays in [27]
and with time delays in [28]. An adaptive unit-vector control
method for consensus of uncertain PDEMASs was proposed
in [29]. Qiu and Su studied distributed adaptive consensus of
switching PDEMASs [30].

The papers [23]–[30] are modeled by PDEs, whereas
there are few works considering models based on partial
integro-differential equations(PIDEs). Numerical solutions
of PIDEs have been studied in [31], [32]. PIDEs have applied
to spread and traveling waves [33], pricing models [34],
reaction–diffusion systems [35], biology [36], [37], pattern
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formation [38], [39], secure communication [40], medical
science [41]. Many dynamical behaviors have been studied
in [42]–[45]. However, there are still technical difficulties on
consensus of PIDEs based MASs (PIDEMASs), like com-
munication between agents and topology structure, which
motives this paper.

This paper aims to research leaderless consensus control
methods of a semi-linear parabolic PIDEMAS with time
delays. The contribution of this paper contains: (1) A class of
PIDEMAS models is built, considering time-invariant delays
and time-varying delays, respectively; (2) A controller based
on communication among agents is given; (3) The topology
structure is analyzed among agents; (4) By choosing suitable
Lyapunov functional, using Lyapunov direct method, two suf-
ficient conditions for consensus of the leaderless PIDEMAS
are respectively obtained in terms of LMIs.
Notations: I means the identity matrix with proper order,

P > 0(P < 0) means symmetric positive definite (negative
definite), and ‖ · ‖ denotes the 2-norm for vectors, or vector

functions like ||y(·, t)|| =
√∫ L

0 yT (ζ, t)y(ζ, t)dζ , λmax(min)(·)
is the maximum (minimum) eigenvalue. The superscript T is
used for the transpose of a vector or a matrix, and the symbol
∗ is used as an ellipsis for terms inmatrix expressions induced
by the symmetry.

II. PROBLEM FORMULATION
This paper studies a class of semi-linear PIDEMASs with
time delays as

∂yi(ζ, t)
∂t

= 21
∂2yi(ζ, t)
∂ζ 2

+22
∂yi(ζ, t)
∂ζ

+Ayi(ζ, t)+ Byi(ζ, t − τ1(t))

+f (yi(ζ, t − τ2(t)))

+C
∫ ζ

0
yi(s, t − τ3(t))ds+ ui(ζ, t),

∂yi(0, t)
∂ζ

= 0,
∂yi(L, t)
∂ζ

= 0,

yi(ζ, t) = y0i (ζ, t), (ζ, t) ∈ [0,L]× [−τ, 0], (1)

where (ζ, t) ∈ [0,L] × [0,∞) are space and time, respec-
tively. yi(ζ, t), ui(ζ, t) ∈ Rn are state and control input,
respectively. 0 < L ∈ R, i ∈ {1, 2, · · · ,N }, A,B,C,22 ∈

Rn×n, 21 ∈ Rn×n is symmetric positive definite, f (·) is a
time and spatial variable nonlinear function, 0 6 τ̇1(t) 6 µ1,
0 6 τ̇2(t) 6 µ2, and 0 6 τ̇3(t) 6 µ3.
Let consensus error to be εi(ζ, t)

1
= yi(ζ, t) −

1
N

∑N
j=1 yj(ζ, t), and the controller is employed as

ui(ζ, t) = c
N∑
j=1

gij0(yj(ζ, t)− yi(ζ, t)), (2)

where c is a control gain to be determined and 0 is symmetric
positive definite. Assume that the topological structure G =
(gij)N×N is defined as: gii = 0; gij = gji > 0(i 6= j) if the
agent i connects to j, otherwise gij = 0(i 6= j).

Remark 1: The topological structure of the controller (2)
is under undirected graph. It can make fully use of relative
information among agents. By choosing suitable control gain
c, the controller (2) drives the PIDEMAS (1) to consensus.

The error system of the PIDEMAS (1) can be obtained
from (1) and (2) as

∂ε(ζ, t)
∂t

= (IN ⊗21)
∂2ε(ζ, t)
∂ζ 2

+ (IN ⊗22)
∂ε(ζ, t)
∂ζ

+(IN ⊗ A)ε(ζ, t)

+(IN ⊗ B)ε(ζ, t − τ1(t))

+F(ε(ζ, t − τ2(t)))

+(IN ⊗ C)
∫ ζ

0
ε(s, t − τ3)ds

−c(L⊗ 0)ε(ζ, t),
∂ε(0, t)
∂ζ

= 0,
∂ε(L, t)
∂ζ

= 0,

ε(ζ, 0) = ε0(ζ ), (3)

where ε0i (ζ )
1
= y0i (ζ ) −

1
N

∑N
j=1 y

0
j (ζ ), ε(ζ, t)

1
=

[εT1 (ζ, t), ε
T
2 (ζ, t), · · · , ε

T
N (ζ, t)]

T , F(εi(ζ, t − τ2(t)))
1
=

f (yi(ζ, t − τ2(t))) − 1
N

∑N
j=1 f (yj(ζ, t − τ2(t))), F(ε(ζ, t −

τ2(t)))
1
= [FT (ε1(ζ, t − τ2(t))),FT (ε2(ζ, t − τ2(t))), · · · ,

FT (εN (ζ, t− τ2(t)))]T , L = D−G, D = diag{d1, d2, ·, dN },
di =

∑N
j=1 gij, and so L is a Laplace matrix.

This paper aims to use the controller (2) to reach consensus
of the PIDEMAS (1). The following definition, assumption
and Lemma are needed.
Definition 1: The PIDEMAS (1) reaches consensus, if

lim
t→∞
||yi(ζ, t)−

1
N

N∑
j=1

yj(ζ, t)|| = 0, i ∈ {1, 2, · · · ,N }.

(4)

Assumption 1: For any a, b, assume there exists a scalar
χ > 0 satisfying

|f (a)− f (b)| 6 χ |a− b|. (5)

Lemma 1 [46]: For any square integrable vector ε with
ε(0) = 0 or ε(L) = 0,∫ L

0
εT (z)ε(z)dz ≤ 4L2π−2

∫ L

0
ε̇T (z)ε̇(z)dz. (6)

If Laplacian matrix L ∈ RN×N is symmetric, then 0 =
λ1(L) < λ2(L) ≤ L ≤ λN (L). The smallest nonzero
eigenvalue of λ2(·) is known as algebraic connectivity of
graphs [47].
Lemma 2 [48]: For Laplacian matrix L, symmetric posi-

tive definite P and x ∈ RNn such that 1TNnx = 0, the following
inequality is satisfied:

λ2(L)xT (IN ⊗ P)x ≤ xT (L⊗ P)x. (7)
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III. CONSENSUS OF THE PIDEMAS WITH
TIME-INVARIANT DELAYS
The error system of the PIDEMAS (1) can be obtained as

∂ε(ζ, t)
∂t

= 21
∂2ε(ζ, t)
∂ζ 2

+22
∂ε(ζ, t)
∂ζ

+(IN ⊗ A)ε(ζ, t)

+(IN ⊗ B)ε(ζ, t − τ1)

+F(ε(ζ, t − τ2))

+(IN ⊗ C)
∫ ζ

0
ε(s, t − τ3(t))ds

−c(L⊗ 0)ε(ζ, t),
∂ε(0, t)
∂ζ

= 0,
∂ε(L, t)
∂ζ

= 0,

ε(ζ, 0) = ε0(ζ ), (8)

where F(εi(ζ, t−τ2))
1
= f (yi(ζ, t−τ2))− 1

N

∑N
j=1 f (yj(ζ, t−

τ2)) and F(ε(ζ, t − τ2))
1
= [FT (ε1(ζ, t − τ2)),FT (ε2(ζ, t −

τ2)), · · · ,FT (εN (ζ, t − τ2))]T .
Theorem 1: Suppose Assumption 1 holds and the commu-

nication graph G is strongly connected. The PIDEMAS (1)
with time-invariant delays reaches consensus under the con-
troller (2), if there exist scalars c > 0 and α > 0 satisfying
the following LMIs:

91 , αχ
2
− 1 < 0, (9)

92 , 4L2π−2α − 1 < 0, (10)

9 ,


911 912 913 I C
∗ 922 0 0 0
∗ ∗ −I 0 0
∗ ∗ ∗ −αI 0
∗ ∗ ∗ ∗ −αI

 < 0, (11)

in which

911 , [IN ⊗ A− cλ2(L)λmin(0)I + ∗]+ 3 I ,

912 , IN ⊗22,

913 , IN ⊗ B,

922 , −[IN ⊗21 + ∗].

Proof: Choose Lyapunov functional candidate as

V (t) =
∫ L

0
εT (ζ, t)ε(ζ, t)dζ

+

∫ L

0

∫ t

t−τ1
εT (ζ, ρ)ε(ζ, ρ)dρdζ

+

∫ L

0

∫ t

t−τ2
εT (ζ, ρ)ε(ζ, ρ)dρdζ

+

∫ L

0

∫ t

t−τ3
εT (ζ, ρ)ε(ζ, ρ)dρdζ . (12)

Taking the time derivative of V (t), we get

V̇ (t) = 2
∫ L

0
εT (ζ, t)

∂ε(ζ, t)
∂t

dζ

= 2
∫ L

0
εT (ζ, t)(IN ⊗21)

∂2ε(ζ, t)
∂ζ 2

dζ

+2
∫ L

0
εT (ζ, t)(IN ⊗22)

∂ε(ζ, t)
∂ζ

dζ

+2
∫ L

0
εT (ζ, t)(IN ⊗ A− cL⊗ 0)ε(ζ, t)dζ

+2
∫ L

0
εT (ζ, t)(IN ⊗ B)ε(ζ, t − τ1)dζ

+2
∫ L

0
εT (ζ, t)F(ε(ζ, t − τ2))dζ

+2
∫ L

0
εT (ζ, t)(IN ⊗ C)

∫ ζ

0
ε(s, t − τ3)dsdζ

+3
∫ L

0
εT (ζ, t)ε(ζ, t)dζ

−

∫ L

0
εT (ζ, t − τ1)ε(ζ, t − τ1)dζ

−

∫ L

0
εT (ζ, t − τ2)ε(ζ, t − τ2)dζ

−

∫ L

0
εT (ζ, t − τ3)ε(ζ, t − τ3)dζ . (13)

Since L is a Laplace matrix and 0 is a symmetric positive
definite matrix, using Lemma 2, one has

−2c
∫ L

0
εT (ζ, t)(L⊗ 0)ε(ζ, t)dζ

6 −2cλ2(L)
∫ L

0
εT (ζ, t)(IN ⊗ 0)ε(ζ, t)dζ

6 −2cλ2(L)λmin(0)
∫ L

0
εT (ζ, t)ε(ζ, t)dζ . (14)

For 21 > 0, employing integrating by parts, one has

2
∫ L

0
εT (ζ, t)(IN ⊗21)

∂2ε(ζ, t)
∂ζ 2

dζ

= −

∫ L

0

∂εT (ζ, t)
∂ζ

[IN ⊗21 + ∗]
∂ε(ζ, t)
∂ζ

dζ . (15)

Using Assumption 1 and Lemma 1, for any α > 0, one has

2
∫ L

0
εT (ζ, t)F(ε(ζ, t − τ2))dζ

6 α−1
∫ L

0
εT (ζ, t)ε(ζ, t)dζ

+α

∫ L

0
FT (ζ, t − τ2)F(ε(ζ, t − τ2))dζ

6 α−1
∫ L

0
εT (ζ, t)ε(ζ, t)dζ

+αχ2
∫ L

0
εT (ζ, t − τ2)ε(ζ, t − τ2)dζ , (16)

and

2
∫ L

0
εT (ζ, t)(IN ⊗ C)

∫ ζ

0
ε(z, t − τ3)dzdζ
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FIGURE 1. ε(ζ, t) of the PIDEMAS without control.

6 α−1
∫ L

0
εT (ζ, t)(IN ⊗ CCT )ε(ζ, t)dζ

+α

∫ L

0

∫ ζ

0
εT (z, t − τ3)dz

∫ ζ

0
ε(z, t − τ3)dzdζ

6 α−1
∫ L

0
εT (ζ, t)(IN ⊗ CCT )ε(ζ, t)dζ

+4L2π−2α
∫ L

0
εT (ζ, t − τ3)ε(ζ, t − τ3)dζ . (17)

Substitution of (14)–(17) into (13) yields,

V̇ (t) 6
∫ L

0
ε̃T (ζ, t)9̄ε̃(ζ, t)dζ

+

∫ L

0
εT (ζ, t − τ2)91ε(ζ, t − τ2)dζ

+

∫ L

0
εT (ζ, t − τ3)92ε(ζ, t − τ3)dζ , (18)

where ε̃(ζ, t) , [εT (ζ, t), ∂ε
T (ζ,t)
∂ζ

, εT (ζ, t − τ1)]T , and

9̄1 , (αχ2
− 1)I , (19)

9̄2 , (4L2π−2α − 1)I , (20)

9̄ ,

 9̄11 IN ⊗22 IN ⊗ B
∗ −[IN ⊗21 + ∗] 0
∗ ∗ −I

 , (21)

in which

9̄11 , [IN ⊗ A− cλ2(L)λmin(0)I + ∗]+ α−1I

+α−1IN ⊗ CCT
+ 3 I .

Using Schur complement, (11) is equivalent to,

9̄ < 0. (22)

Substitution of (9), (10) and (22) into (18), yields V̇ (t) 6
−λ||ε̃(·, t)|| 6 −λ||ε(·, t)||, for all non-zero ε(ζ, t), implying
consensus of the PIDEMAS (1). �
Remark 2: Theorem 1 shows consensus conditions in

terms of LMIs and a suitable gain is obtained. However,
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FIGURE 2. ε(ζ, t) of the PIDEMAS with control.

the result is given in terms of the conditions (9)-(11) given
in Theorem 1 is complex. Now, we show a simple result.
According to (9) and (10), 0 < α < min{χ−2, 0.25L−2π2

}.
Using Schur complement, (11) is equivalent to [IN ⊗ A −
cλ2(L)λmin(0)I + ∗] + α−1I + α−1IN ⊗ CCT

+ 3I +
+IN ⊗ BBT + IN ⊗ 222

−1
1 2T

2 < 0, and it is equivalent

to c > λmax(IN⊗(A+AT )+α−1I+α−1IN⊗CCT+3I+IN⊗BBT+IN⊗2̄)
λ2(L)λmin(0)

,

where 2̄ , 222
−1
1 2T

2 .

IV. CONSENSUS OF THE PIDEMAS WITH TIME-VARYING
DELAYS
This section will study the PIDEMAS (1) with time-varying
delays via the controller (2).
Theorem 2: Suppose Assumption 1 holds and the commu-

nication graph G is strongly connected. The PIDEMAS (1)
with time-varying delays reaches consensus under the con-
troller (2), if there exist scalars c > 0 and α > 0 satisfying
the following LMIs:

41 , αχ
2
− 1+ µ2 < 0, (23)

42 , 4L2π−2α − 1+ µ3 < 0, (24)

4 ,


911 912 913 I C
∗ 922 0 0 0
∗ ∗ 433 0 0
∗ ∗ ∗ −αI 0
∗ ∗ ∗ ∗ −αI

 < 0, (25)

in which

911 , [IN ⊗ A− cλ2(L)λmin(0)I + ∗]+ 3 I ,

912 , IN ⊗22,

913 , IN ⊗ B,

922 , −[IN ⊗21 + ∗],

433 , −(1− µ1)I .

Proof: Choose Lyapunov functional candidate as

V (t) = V1(t)+ V2(t), (26)

where

V1(t) =
∫ L

0
εT (ζ, t)ε(ζ, t)dζ , (27)
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FIGURE 3. The control input of the PIDEMAS.

and

V2(t) =
∫ L

0

∫ t

t−τ1(t)
εT (ζ, ρ)ε(ζ, ρ)dρdζ

+

∫ L

0

∫ t

t−τ2(t)
εT (ζ, ρ)ε(ζ, ρ)dρdζ

+

∫ L

0

∫ t

t−τ3(t)
εT (ζ, ρ)ε(ζ, ρ)dρdζ . (28)

Taking the time derivative of V1(t), we get

V̇1(t) = 2
∫ L

0
εT (ζ, t)

∂e(ζ, t)
∂t

dζ

= 2
∫ L

0
εT (ζ, t)(IN ⊗2)

∂2ε(ζ, t)
∂x2

dζ

+2
∫ L

0
εT (ζ, t)(IN ⊗ A− cL⊗ 0)ε(ζ, t)dζ

+2
∫ L

0
εT (ζ, t)(IN ⊗ B)ε(ζ, t − τ1(t))dζ

+2
∫ L

0
εT (ζ, t)F(ε(ζ, t − τ2(t)))dζ

+2
∫ L

0
εT (ζ, t)(IN ⊗ C)

∫ ζ

0
ε(s, t − τ3(t))dsdζ

+3
∫ L

0
εT (ζ, t)ε(ζ, t)dζ. (29)

Taking the time derivative of V2(t), one has

V̇2(t) = 3
∫ L

0
εT (ζ, t)ε(ζ, t)dζ

−(1− τ̇1(t))
∫ L

0
εT (ζ, t − τ1(t))ε(ζ, t − τ1(t))dζ

−(1− τ̇2(t))
∫ L

0
εT (ζ, t − τ2(t))ε(ζ, t − τ2(t))dζ

−(1− τ̇3(t))
∫ L

0
εT (ζ, t − τ3(t))ε(ζ, t − τ3(t))dζ

≤ 3
∫ L

0
εT (ζ, t)ε(ζ, t)dζ

21216 VOLUME 10, 2022
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−(1− µ1)
∫ L

0
εT (ζ, t − τ1(t))ε(ζ, t − τ1(t))dζ

−(1− µ2)
∫ L

0
εT (ζ, t − τ2(t))ε(ζ, t − τ2(t))dζ

−(1− µ3)
∫ L

0
εT (ζ, t − τ3(t))ε(ζ, t − τ3(t))dζ .

(30)

The later part of the proof is similar to that of Theorem 1,
and so it is omitted. �
Remark 3: Theorem 2 shows consensus conditions in

terms of LMIs and a suitable gain is obtained. However,
the result is given in terms of the conditions (23)-(25) given
in Theorem 2 is complex. Now, we show a simple result.
According to (23) and (24), 0 < α < min{ 1−µ2

χ2 ,
1−µ3
4L2π−2

}.
Using Schur complement, (25) is equivalent to [IN ⊗ A −
cλ2(L)λmin(0) + ∗] + α−1I + α−1IN ⊗ CCT

+ 3I + (1 −
µ1)IN ⊗ BBT + IN ⊗ 222

−1
1 2T

2 < 0, and it is equivalent

to c > λmax(IN⊗Ā+α−1IN⊗(I+C̄)+3I+(1−µ1)IN⊗B̄+IN⊗2̄
λ2(L)λmin(0)

, where

Ā = A+ AT , B̄ = BBT , C̄ = CCT , and 2̄ , 222
−1
1 2T

2 .
Remark 4: Different from the control design for stability

of PIDE systems in [49], [50], this paper deals with consensus
of PIDEs based MASs by using communication between
neighborhood agents.
Remark 5: There are many important results for PDE-

MASs, for example [23]–[30] and the references herein,
while this paper studies MASs based on PIDEs, as well as
multiple time-invariant delays and time-varying delays being
considered.

V. NUMERICAL SIMULATION
Example 1: In practice, there are many reaction-diffusion

phenomena in nature and discipline fields [51]–[53].
Reaction-diffusion neural networks have been application
to biology [36], [37], pattern formation [38], [39], secure
communication [40], medical science [41]. This example
considers a reaction–diffusion integro neural network, as one
kind of the PIDEMAS (1), with the following parameters:

21 =

[
2 0
0 5

]
, 22 =

[
1 0
0 4

]
,

A =
[

2 0.6
−1.5 2.6

]
, B =

[
1.5 0
0 1.5

]
, (31)

C =
[
1 0
0 1

]
, 0 =

[
1 0
0 1

]
,

L = 1, gij = 1, for i, j = 1, 2, 3, 4 and i 6= j,

and with random initial conditions.
From Figure 1, it can be seen that the PIDEMAS (1) cannot

achieve synchronization without control. According to The-
orem 1, solving LMIs (9)-(11) by Matlab, c = 28.4556 and
α = 0.8723 are obtained. It can be shown in Figure 2 that
the PIDEMAS (1) achieves cluster consensus. The control
input (2) with the feedback gain c = 8.3221 is shown in
Figure 3.

Remark 6: Different from difference, bifurcation, and
solution of PIDEs or integro-differential reaction-diffusion
systems [54]–[58], this paper proposed consensus of MASs
basd on PIDEs via constructing a communication based con-
troller.

VI. CONCLUSION
This paper has studied leaderless consensus of a nonlin-
ear PIDEMAS with time delays, modeled by semi-linear
parabolic PIDEs. Making use of the information interaction
and coordination among the neighboring agents, leaderless
consensus control of the PIDEMASwas constructed. Dealing
with the PIDEMAS with time-invariant delays, a Lyapunov
approach was used and one sufficient condition for consensus
was obtained in terms of LMIs. Then, it was extended to the
PIDEMAS with time-varying delays. An example illustrated
the effectiveness of developed theoretical results. Because
there are lots of factors may influence the dynamic behavior
of PIDEMASs, in future work, containment control, event-
triggered control, stochastic disturbance and many other fac-
tors will be studied.
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