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ABSTRACT Pre-alignment filters are useful for reducing the computational requirements of genomic
sequence mappers. Most of them are based on estimating or computing the edit distance between sequences
and their candidate locations in a reference genome using a subset of the dynamic programming table used
to compute Levenshtein distance. Some of their FPGA implementations of use classic HDL toolchains,
thus limiting their portability. Currently, most FPGA accelerators offered by heterogeneous cloud providers
support C/C++ HLS. In this work, we implement and optimize several state-of-the-art pre-alignment filters
using C/C++ based-HLS to expand their portability to a wide range of systems supporting the OpenCL
runtime. Moreover, we perform a complete analysis of the performance and accuracy of the filters and
analyze the implications of the results. The maximum throughput obtained by an exact filter is 95.1 MPairs/s
including memory transfers using 100 bp sequences, which is the highest ever reported for a comparable
system and more than two times faster than previous HDL-based results. The best energy efficiency obtained
from the accelerator (not considering host CPU) is 2.1 MPairs/J, more than one order of magnitude higher
than other accelerator-based comparable approaches from the state of the art.

INDEX TERMS Field programmable gate arrays, hardware, acceleration, OpenCL, bioinformatics,
sequence alignment, pre-alignment filters, read mapping.

I. INTRODUCTION
More than a decade after the irruption of Next-Generation
Sequencing (NGS, [1], [2]), genetic sequencing has become
an indispensable tool in current medical practice and it is
expected to be even more important in the future. DNA is
present in all living organisms and consists of long sequences
of nucleotides which play a fundamental role in biology.
Pseudo-living organisms like viruses contain similar RNA
sequences which are also fundamental for their replication.
The lengths of DNAandRNA sequences range from the 3 kbp
(kilo-base pairs) of the RNA from MS2 virus to the 150 Gbp
of the DNA from Paris Japonica plant. Human genome is
around 3 Gbp.

Current sequencing technologies are not able to extract
the complete genome of complex organisms in one sequence
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but just a large set of small subsequences from them,
called reads. Hence, a post-processing step is required
to assemble multiple reads from the sequencing of the
same sample into a complete genomic sequence. When the
expected complete sequence is unknown, this process is
called De novo assembly. On the other hand, when there
is an existing reference genome, the process consists in
mapping the obtained reads to their best matching locations
in the reference genome. Bioinformatics applications that
solve this problem are calledmappers. The completion of the
first human reference genome [3] in 2003 was a remarkable
achievement that triggered the mass adoption of genomic
analysis and the continuous demand for faster sequence
alignment methods.

The evolution of sequencing technology has derived into
two main classes of systems: short-read and long-read
sequencing. Short-read sequencers typically produce reads
of a few hundred base pairs long and have a very high
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throughput, while long-read sequencers are slower but can
produce reads longer than thousands of base pairs with often
higher sequencing error rates. In this work, we address short
read sequencing.

There are some strategies tomap sequences into a reference
genome [4] based on the fact that all individuals from
the same species share almost all the genome except a
very small percentage due to mutations and evolution.
Read mappers also have to consider sequencing errors
introduced by sequencers, which are usually higher in long-
read sequencers. Considering the differences between the
reads and the reference, themapping cannot be based on exact
string matching. The alternative is to use approximate string
matching algorithms to compute an estimation of the distance
between the strings being compared (the lower the better) or
their alignment or similarity score (the higher the better).

Most frequently used distance, similarity, or alignment
algorithms (such as Levenshtein distance [5], Smith &
Waterman [6], Needleman & Wunsch [7]) are based on
dynamic programming and have a quadratic complexity
with respect to the read length. Smith & Waterman gap-
affine is often assumed to be the best accurate in biological
terms. Other heuristic methods (such as BLAST [8]) are less
accurate in presence of insertion and deletion operations.
There have been many efforts to reduce the complexity
of such algorithms (including our recent optimization [9]),
however, the computational cost of approximate matching is
still super-linear. Due to the excessive computational cost of a
linear approximate search on the whole sequence, a solution
combining exact string matching and approximate string
matching if often used. Themost popular method is seed-and-
extend, which is implemented by mappers like Bowtie2 [10],
BWA-MEM [11], Minimap2 [12], or GEM [13]. In this
approach, some short subsequences, called seeds, are
extracted from the reads. The seeds are used to search for
exact matches in the reference. Many candidate locations
are obtained from this first step, but the number is orders
of magnitude smaller than the original possible locations.
Then, the whole read is compared against the extended search
context around the candidate locations using approximate
matching. The locations from all candidates that match with
a lower distance than a given threshold are finally selected as
possible mappings.

The drawback of this solution is that multiple candidates
are evaluated for every read, and almost all of them (except
the one finally selected) are discarded, incurring in a
considerable computational cost that goes to waste. There are
some proposals to reduce part of this excessive computation
defining a new sequence processing stage commonly known
as pre-alignment filtering. These filters quickly discard pairs
of sequences that are too different and avoid computing the
approximate distance between them.

Given two sequences T and P, pre-alignment fil-
ters are based on the fact that computing the equation
distance (T ,P) > th can be significantly simpler than
computing d = distance(T ,P). Some pre-alignment

filters implement an approximated estimation (inexact) of
the previous expression, while others provide an exact
computation. In any case, the algorithmic simplicity of pre-
alignment filters and the data parallelism of the large number
of candidates’ evaluation makes them very adequate for their
implementation in heterogeneous computing accelerators
such as GPUs and FPGAs.

The main contributions of this paper are: 1) OpenCL
implementions of three state-of-the-art FPGA-based inexact
pre-alignment filters (SHD, Shouji, and Sneaky-Snake) and
two exact pre-alignment filters (Banded-Lev and Banded-
Myers); 2) a frequency-domain analysis of the response of
pre-alignment filters; and 3) an analysis of the relationship
between accuracy and performance of pre-alignment filters.
We present revisions of relevant parts of the algorithms and
optimize the filters to several read lengths (100, 150, 300)
that are illustrative short-read NGS. All filters are tested
in multiple FPGA accelerator boards comparable to those
found in many Data Center environments. The results are
extensible to other accelerating platforms from different
manufacturers as long as they support OpenCL. The resulting
designs achieve the highest filtering performance and energy
efficiency reported to date.

The paper is organized as follows. In section 2, we describe
some basic concepts used along the work. In section 3,
we review the more relevant state-of-the-art pre-alignment
filters having a FPGA implementation. In section 4,
we describe some optimizations, and the implementation of
all the filters using HLS. In section 5, we analyze the results
of all the kernels, both from the performance and filtering
accuracy perspectives. Finally, in section 6, we close with the
concluding remarks.

II. BACKGROUND
The enormous interest of genomic analysis, its introduction as
part of the regular medical practice, and the continuous price
reduction of sequencing machines has produced an enormous
increase in the data loads processed by genomic labs. In this
context, the acceleration of all the processes involved in the
analysis is fundamental to continue the mass deployment of
the technology ([14]). Several pre-alignment filters have been
proposed during the last decade to accelerate the genomic
toolchain ([15]–[23]). They are mostly based on computing
an estimation of the Levenshtein distance [5].

Before describing the algorithms in detail, we should
introduce the used nomenclature to avoid any possible
confusion. We will denote the input pair of base sequences
as T and P, for text and pattern respectively. We assume
that T will be a part from the reference genome and P a
read obtained by NGS. Let the i-th base of sequence T be
denoted as t[i]. The same concept can be rewritten as T =
{t [1] , . . . t [n]}. We denote the subsequence of the sequence
T from index i to index j as t [i : j] = {t [i] , t[i+1], . . . t [j]}.
We use the operator ∧ for bitwise and operation, and ∨
for bitwise or operation. To describe a bitwise or operation
on multiple indexed expressions we write ∨ni=1 instead of
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using the sum symbol
∑n

i=1 to avoid confusing it with the
arithmetic sum of bits. We use the operator ⊕ to denote the
xor function. When used between two sequences, ⊕ will
denote the base-wise xor function, which is 0 if the two
bases are equal and 1 otherwise. We will use the operator
� to denote a shift left operation. To avoid using a different
operator for shift right we assume that � using a negative
index is equivalent to a shift right operation. The Levenshtein
distance between the pair T and P will be denoted by
dLev(P,T ).

In sequence alignment there are three possible alignment
scopes: global, semi-global, and local. For distance estima-
tion we are interested in the global and semi-global scopes.
When using the Levenshtein distance, and assuming T is
longer than P, the global scope refers to compute the distance
between the two sequences dglobal (P,T ) = dLev(P,T ).
On the other hand, the semi-global scope refers to find the
substring of T with minimum distance to P, as defined in (1).

dsemi−global (P,T ) = min
∀T ′⊂T

dLev(P,T ′) (1)

One important factor to consider in genome mappers is
how the seed extension is performed. As described in [24],
different scopes (global, semi-global, or local) can yield
different sensitivities. In any case sequence similarity is often
preferred over distance estimation although distance and
alignment computations are closely related and one can often
be reformulated as the other [25]. Most FPGA-accelerated
pre-alignment filters work with Levenshtein distance at the
global scope, hence comparing strings of the same length.

A. ACCURACY AND PERFORMANCE
The performance and accuracy of the filters have an impact
on the global application performance. A careful analysis of
the key performance drivers is required because the execution
speed of the filter is not the only aspect affecting the execution
time of a mapper. The accuracy of the filter also has an
impact on the overall execution time. Burkhardt [26] already
did some analysis of the performance drivers of the filters.
The execution time for read mappers is affected by Amdahl’s
law [27] and its implications [28]. We will try to shed some
light on the question.

The goal of pre-alignment filters is to quickly discard
the sequence pairs above a certain error threshold th. This
requires to classify each pair of sequences in two classes:
the pairs with a difference below the threshold and the rest.
In a set of M pairs M = {Ti,Pi} |i ∈ [1,M ] a pair
is considered positive if the distance between the pair is
below the threshold, P = {Ti,Pi} ∈ M|dLev (Ti,Pi) <

th. Otherwise it is considered negative, N = {Ti,Pi} ∈
M|dLev (Ti,Pi) ≥ th. Let’s denote N as the number of
elements of the set N , N = |N |, and P the number of
elements of the set P , P = |P|.
If the filter misclassifies a positive pair as a negative one,

we get a false negative. Note that a false negative is a pair
with an error below the threshold (i.e. a good candidate to

be part of the final alignment) that will be discarded. This is
usually non acceptable. Since we must not avoid any good
candidate, we should aim to have zero false negatives. If the
filter function is defined as a distance estimator dest we
can formally define false negatives as FN = {Ti,Pi} ∈
P|dest (Ti,Pi) ≥ th, and its count as FN = |FN |. The only
way to ensure that FN = 0 is ensuring that (2) holds true.

dest (Ti,Pi) ≤ dLev (Ti,Pi) (2)

If the filter misclassifies a negative pair as a positive
we get a false positive, which is a pair with more errors
than the threshold that should have been discarded but has
been not. This is undesirable but still acceptable because the
algorithm will compute the fine-grain pairwise alignment on
all selected positives, and these values will end up being
filtered out in that next phase. The problem with having
false positives is that they will generate useless computation.
Again, we can formally define false positives as FP =

{Ti,Pi} ∈ N |dest (Ti,Pi) < th, and its count as FP = |FP|.
To be independent on the number of elements, classifiers

are usually characterized by their false positive and false
negative rates (FPrate = FP/N , FN rate = FN/P). The
impact in the performance of the filter accelerator should be
analyzed as a speedup factor, i.e. the relation between the
time taken by the function with and without the accelerator
in place. In this case, if no pre-alignment filter is used the
execution time of the extension phase of a mapper will be
given by equation 3, where Tpair is the time to execute a
dynamic programing based distance operation.

Torig = Tpair (P+ N ) (3)

When using a pre-alignment filter, the execution time of the
filtering and extension phases of a mapper will be determined
by equation 4, where Tpre is the time to execute the pre-
alignment filter error estimation on a pair of sequences.
Basically, Tacc considers that all pairs have to be evaluated
by the filter, but only the positives and the false positives will
be evaluated by the dynamic programming distance operation
in the next phase.

Tacc = (P+ N ) · Tpre + (P+ N · FPrate) · Tpair (4)

The speedup factor provided by the accelerator in the filter
and extend phases will be derived from (3) and (4) as (5).

SFalign=
Torig
Tacc
=

Tpair (P+ N )

(P+ N ) · Tpre+(P+ N · FPrate) · Tpair
(5)

The speedup factor achieved by the accelerated version
of the pre-alignment filter with respect to a distance
computation can be defined as SFpre = Tpair/Tpre. For
analysis convenience we can also define the rate of negatives
in the input dataset as Nrate = N/(N + P). Using both
relative terms, we can find another expression (6) which is
conveniently independent on the absolute N and P values.

SFalign =
SFpre

1+ SFpre ((FPrate − 1)Nrate + 1)
(6)
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FIGURE 1. Ideal speedu-factor profiles of filter-and-extend phases of read mapping depending on various factors: (left) acceleration of the
pre- filtering phase SFpre w.r.t. CPU, (center) false positive rate of the filter FPrate, and (right) rate of negative samples in the input set Nrate
(right).

Figure 1 illustrates how the three variables (SFpre, FPrate,
Nrate) affect the final speedup factor. We can see than
increasing SFpre has a logarithmic effect on total speedup,
this means, that improving the speedup of the filter has a
limited effect as we approach the limit imposed by the other
variables. The reduction of FPrate has a more linear impact on
the speedup. Finally, Nrate shows a super-linear speedup; that
is, the more negatives the input set contains, the more visible
are the benefits of using the filter to discard them.

III. PREVIOUS WORK
The dynamic programming approach to compute the Leven-
shtein distance is often perceived as too slow and not scalable
enough for fast evaluation of the similarity between two
strings. However, some implementations of the Levenshtein
distance have been successfully implemented in FPGAs
achieving high performance like [29] and [30].

One of the simplest methods to compare a pair strings T
and P of same length is by using the Hamming distance,
which can be defined as dhamming(T ,P) =

∑
∀i t [i]⊕ p [i].

This distance operator is useful to detect substitution
differences and can be executed in one clock cycle, but it
overestimates differences caused by insertions and deletions.
This limitation is often overcome in some pre-alignment
filters (like [16], [17], [20], [22]) by creating shifted replicas
of the pattern. This approach is analyzed in more depth in the
following subsections. Another technique used in some pre-
alignment filters (like [20]) is the Pigeonhole principle. This
principle comes from the observation that if the hamming
distance between a pair of strings is dhamming (T ,P) = n, then
if we divide the strings into n+ 1 slots, there must be at least
one slot that exactly match between the two strings, otherwise
we can be sure that the number of errors is higher than n.
An alternative approach used in other pre-alignment filters
([15], [19], [21]) is comparing the number of (the 4 possible)
bases present in sequence or the existing combinations of
bases, known as q-grams, or k-mers.

In the following subsections we review some of the
existing algorithms found in the literature that try to get
a fast approximation of the Levenshtein distance and were
successfully implemented in FPGA.

We do not analyze the closely related kmer based filters
GRIM-Filter [19] and QCKer-FPGA [21]. First, because they

are used for the seed phase of the mapper algorithm instead
of the extend phase, which is our focus. Second, because
GRIM-Filter does not provide an FPGA implementation and
the implementation provided by QCKer-FPGA is slower that
the equivalent software solution.

A. GATEKEEPER
In [16] Xin realized that Hamming Distance is an efficient
method to detect substitution errors, and if shifted appropri-
ately could be also used to detect insertion and deletion errors.
If we denote XOi as the bit vector resulting from the xor
between T and P, i.e. XOi = T ⊕ (P � i) we can see that
matching sequences appear as a run of zeros. Substitutions
appear as ones, while insertions and deletions appear as jumps
from a runs of zeros a bit vector, to a consecutive run of zeros
in another bit vector. This is illustrated in Figure 2, whereXO0
starts with a sequence of 3 zeros. When this sequence ends it
is followed by a long sequence of zeros in XO1 caused by an
insertion. The following single 1 is caused by a substitution
error and finally a delete error returns the stream of zeros to
XO0. The bit vectors can be organized in a bit matrix.

FIGURE 2. Analysis of the bit vectors of the xor between T and shifted
versions of P.

To be able to analyze the differences (errors) introduced
by n insert or delete operations the number of shifted (on both
directions) versions must be equal to n, so the total number of
needed bit vectors will be 2n+1. Xin realizes that insertions,
deletions and substitutions generate columns in the bit matrix
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with a large number of ones. In most of the cases the values
that are not 1 in a column affected by an error are caused
by an accidental matching character, not because of a long
sequence of zeros. To remove this effect, he proposes to use a
short zero removal step that removes short sequence of zeros
(1 or 2 consecutive zeros) from the bit vectors. After this step,
all columns are anded into an accumulator bit vector. Finally,
the number of ones in the accumulator bit vector are counted
to get an estimate of the number of errors

We reformulate the SHD algorithm as Algorithm 1, and 2.

Algorithm 1 SHD. Shifted Hamming Distance
Input: P as the pattern sequence, T as the text sequence both
of length n, th the threshold so that the dLev (P,T ) > th can
be quickly discarded.
Output: The estimated minimum number of errors EE , such
that dLev (P,T ) ≥ EE

1 A← 2n − 1
2 for all s ∈ [−th, th] do
3 SP← P� s
4 XO← SP⊕ T
5 XO← RemoveShortZeros(XO)
6 A← A ∧ XO
7 end for
8 EE ← CountOnes(A)

Algorithm 2 RemoveShortZeros. Removes the Short
Sequences of Zeros (One or 2 Consecutive Zeros) From a
Bit Sequence
Input: A sequence X of n bits.
Output: A sequence R of n bits where the short sequences of
zeros of X are removed.

1 A← {1, 1, x[1] . . . x[n], 1, 1}
2 R← X
3 for i← 3 to n+ 2 do
4 if (a [i− 1] = 1 ∧ a[i+ 1] = 1)
5 ∨(a[i− 1] = 1 ∧ a[i+ 2] = 1)
6 ∨(a[i− 1] = 1 ∧ a[i+ 2] = 1) then
7 r[i− 2]← 1
8 end for

The architecture of an FPGA is extremely suitable for
this kind of algorithms. Shifting by a fixed amount is an
inexpensive operation in FPGAs since it is implemented just
by wire connections. The rest of operations are bit-wise
ands, ors and xors and a final CountOnes operation.
If the read length is small enough, all the loops can be
unrolled and all the operations can be all implemented using
combinational logic. Such design would take just one clock
cycle to execute. The long combinational path can limit the
maximum frequency of the system, but this can be solved by
introducing pipeline stages.

Alser et al. [17] provide a FPGA implementation of the
SHD algorithm in GateKeeper. As many works from the
same research group they provide an Open Source accelerator

tested in a Xilinx board. The design is implemented in
Verilog and makes use of the Open Source RIFFA accelerator
interface to interact with the host processor. They report a
fmax of 250 Mhz using the Xilinx Virtex-7 FPGA VC709
Connectivity Kit board. The simplicity of the design allows
for its easy replication. The authors propose to replicate up to
140 units to improve the performance of the system.

As we present in more detail in Section 6, the algorithm’s
accuracy is lower than subsequent proposed filters from the
same group, especially in the presence of insertions and
deletions and when the error threshold is higher than few
edits. As the error threshold is increased, the probability
of having runs of zeros in the shifted hamming versions
increases, reducing the probability of having ones in the
accumulator bit vector, thus, missing some edits.

B. SHOUJI
In [18] Alser et al. realize that a key to find the best alignment
is to find the longest non-overlapping run of zeros in the
shifted xored bit vectors used by SHD. A solution is to find
the longest run first, and then expand the best matching zero
runs from the edges in both directions in an iterative fashion.
However, this iterative approach is not adequate for a FPGA
implementation as data dependencies between loop iterations
prevent unrolling the loop.

Algorithm 3 Shouji
Input: P as the pattern sequence, T as the text sequence both
of length n, th the threshold so the dLev (P,T ) > th are
quickly discarded.WS is the window size.
Output: The estimated minimum number of errors (EE),
such that dLev (P,T ) ≥ EE

1 A← 2n − 1
2 for all i ∈ [1, n−WS] do
3 maxz← CountZeros(a[i : i+WS − 1])
4 for all s ∈ [−th, th] do
5 SP← P� s
6 XO← SP⊕ T
7 cz← CountZeros(xo[i : i+WS − 1])
8 if (cz > maxz) ∨ (cz = maxz ∧ xo [i] = 0) then
9 maxz← cz
10 a[i : i+WS − 1]← xo[i : i+WS − 1]
11 end for
12 end for
13 EE ← CountOnes(A)

As an alternative, in a following work [20], the same
authors propose a newfilter design called Shouji. The concept
of the first step of the algorithm is very similar to the previous
SHD algorithm, to build a matrix with the xored shifted
bit vectors. But in this case, the accumulator bit vector is
computed differently. A window of few columns is slided
along the matrix selecting the row inside the window with
more zeros. The selected row is stored in the accumulator bit
vector. If several rows have the same number of zeros the one
starting with a zero is selected. The paper concludes that the
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best window size is 4 bits. We rewrite the algorithm described
in [20] to unify the notation as Algorithm 3. We obviate
the algorithmic description of count ones and count zeros.
Note that CountOnes is included in many Instruction Set
Architectures (ISAs) as the popcount instruction, and that
CountZeros(x) is equivalent to CountOnes(¬x). Regarding
performance and accuracy, the same paper describes a
successful implementation of the filter in the VC709 Xilinx
board achieving the same single-clock as previous SHD
design. The accuracy of the filter is reported to increase with
respect to SHD.

C. SNEAKY SNAKE
In SneakySnake [22], the authors change the strategy from
selecting the rows of the bit matrix with more zeros (as in
Shouji) to selecting the longest consecutive runs of zeros.
To avoid selecting overlapping runs of zeros, the search for
the next run of zeros must start from the next point after the
end of the previously found run of zeros, i.e. after the one
ending the run of zeros. The first phase of the algorithm is
still shared with previous designs: the rows with the xored
shifted bit vectors.

The algorithm has a clear sequential nature, since the
search of runs of zeros can only start after finding the
finishing point of the previous zero stream. To break this
dependency SneakySnake applies a windowing approach.
The complete sequence pair is split in windows of limited
size. The processing of all the windows to identify the number
of edit operations in them can be done in parallel and a final
step aggregates the results for every window.

Algorithm 4 SneakySnakes
Input: The pattern sequence P, and text sequence T , both of
length n. The error threshold th so that the ED (P,T ) > th
can be quickly discarded. The window sizeWS.
Output: The estimated minimum number of errors (EE),
such that ED (P,T ) ≥ EE

1 EE ← 0
2 for all s ∈ [−th, th] do
3 SP← P
4 XOs← SP⊕ T
5 end for
6 for i← 1 ton/WS do
7 kst ←WS · (i− 1)+ 1
8 ke←WS · i
9 while (ks < ke) do
10 lz← max

∀s∈[−th,th]
CLZ(xos[kst : ke])

11 c← ke − lz
12 if (c < ke) then
13 EE ← EE + 1
14 end if
15 kst ← kst + lz+ 1
16 end while
17 end for

Since the search in one window has a known limit, the
algorithm can be implemented as a loop that can be unrolled
considering the worst case scenario. This means that the
circuit will speculatively compute all the possible zero stream
lengths in a window and finally select the existing one. The
analysis in the paper suggest that a window size of 8 bits
is a good tradeoff between accuracy and hardware resources
utilized. We present the algorithm with the previously used
common notation as Algorithm 4. Because it detects better
the streams of zeros, SneakySnake has a better accuracy than
Shouji. Although is uses more resources than SHD it can still
be implemented in a single cycle throughput design for short
reads as done in [22] for the VC709 Xilinx board.

D. BANDED-LEV
A brute force approach can be used to determine whether the
Levenshtein distance of two sequences P and T of the same
length n is above a threshold th or not. Using the dynamic
programming method, the Levenshtein distance between P
and T is given by equation 7 which requires to build a
dynamic programming table using equation 8.

dLev (P,T ) = Dn,n (7)

Di,j =



i, if j = 0
j, if i = 0

min


Di−1,j + 1
Di,j−1 + 1
Di−1,j−1 + (P[i]⊕ T [i])

(8)

The implementation of the whole table in a FPGA has
usually been dismissed due to the excessive number of
resources consumed. However, with the high resource density
of current FPGA devices, this is now feasible for small
enough sequence lengths.Moreover, additional optimizations
can reduce resource usage. One of those optimizations
is based on the pruning of cells of the matrix that are
irrelevant for the final distance estimation computation. Pre-
alignment filters only need to determine whether the edit
distance is below or above a certain threshold. Since the
dynamic programming matrix is monotonically increasing
in the diagonals, once a cell reaches the threshold error the
computation of its below diagonal values can be avoided
because these values will surely be greater or equal to the
threshold. Based on this observation and the known values of
row and column 0 it is easily derived that we can prune out
the computation of cells that are farther than th from the main
diagonal.

But even more cells can be pruned out. When computing
the distance between pairs of the same length n, the edit path
starts at cell D0,0 and must end at cell Dn,n, which are both
part of the main diagonal. Any turn of the edit path in the
horizontal axis must be compensated later with a turn in the
vertical axis to return to themain diagonal. Similarly, any turn
in the vertical axis, must be compensated later with a turn
in the horizontal axis. The number of horizontal turns must
be equal to the number of vertical turns, and each vertical
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FIGURE 3. Example of the computation of the Levenshtein distance
between two sequences using a banded dynamic programming table.
Dark grey cells represent the cells that are higher than the threshold
value. Light grey cells represent the cells that are higher than halt of the
threshold.

and horizontal turn introduce a cost (error) of 1. Thus, the
maximum number of cells that the edit path of a sequence
pair P,T with dLev (P,T ) < th can separate from the main
diagonal is bth/2c. From this observation, we can obtain an
analytical expression (equation 9) that determines the number
of cells that must be computed.

c = (n+ 1)+ 2
∑bth/2c

i=1
(n+ 1)− 2i

= n+ 2 ·
(⌊

th
2

⌋)(
n−

⌊
th
2

⌋)
(9)

Figure 3 illustrates an example in which we compute the
dynamic programming matrix of the Levenshtein distance
for two sequences with an error threshold th = 5. The
computation of all dark grey cells can be avoided since they
have a higher value than the threshold. Light grey cells can
also be avoided, since going through them and returning to the
main diagonal would require a cost higher than the threshold.
In this example, the length of the sequences is n = 30, so the
number of required cells is c = 30 + 2 · 2 · (30 − 2) = 142,
which is significantly lower than the 961 original cells of the
matrix.

Another possible optimization is the reduction of the
number of bits of the adders. Once we go above the threshold
it is not necessary to keep a good account of the exact value
of the error. If the threshold is th, any number above can be
used to determine that the pair of sequences are above the
threshold. Hence, the dynamic programming table equation

can add a saturating term (th+ 1) as shown in equation 10.

Di,j =



i, if j = 0
j, if i = 0

min


Di−1,j + 1
Di,j−1 + 1
Di−1,j−1 + (P [i]⊕ T [i])
th+ 1

(10)

E. BANDED-MYERS
The Myers algorithm [31] to compute the Levenshtein dis-
tance has been extensively used in parallel implementations
including FPGAs [29], [32]. The Myers analysis starts with
the observation that a cell from the dynamic programming
table can only differ by +1,0,−1 with the preceding cell
in the horizontal or vertical axis. In the diagonal axis, the
possible differences are only 0, or+1 from the preceding cell
of the diagonal. Given this observation the original D table
can be expressed with three alternative differences tables:
1v, 1h, 1d , which can be build from the original D table
by using the differential equations 11,12, and 13.

1vi,j|i > 0 = Di,j − Di−1,j (11)

1hi,j|j > 0 = Di,j − Di,j−1 (12)

1di,j|i > 0, j > 0 = Di,j − Di−1,j−1 (13)

The original D table can easily be reconstructed from any
of the three differences tables. The value of any cell Di,j is
obtained by taking the first (precomputed) cell of the column,
row, or diagonal and aggregating all the elements of the
column, row, or diagonal until Di,j is reached. The equation
14 details the three possible ways to obtain aD cell value from
any of the differences tables.

Di,j = j+
∑i

k=1
1vk,j = i+

∑j

k=1
1hi,k

= |i− j|
∑min(i,j)−1

k=0
1di−k,j−k (14)

The great advantage of the Myers algorithm is that it
finds an alternative way to build the differences tables (1v,
1h, or 1d) by using simple boolean expressions without
computing D. Once the differences tables are build, a final
step is required to recreate one or a small number of
cells from the D matrix by using equation 14. The simple
binary expressions to create the differences tables are built
as follows. First, Myers separates positive and negative
increments (equations 15,16, and 17) and then he obtains
simple boolean expressions to compute the increments
(equations 18,19,20,21, and 22).

1vi,j|i > 0 = VPi,j − VNi,j (15)

1hi,j|j > 0 = HPi,j − HNi,j (16)

1di,j|i > 0, j > 0 = 1− D0i,j (17)

HN i,j = VPi,j−1 ∧ D0i,j (18)

VN i,j = HPi−1,j ∧ D0i,j (19)

HPi,j = VN i,j−1 ∨ ¬(VPi,j−1 ∨ D0i,j) (20)
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VPi,j = HN i−1,j ∨ ¬(HPi−1,j ∨ D0i,j) (21)

D0i,j = ¬(P[i]⊕ T [i]) ∨ VN i,j−1 ∨ HN i−1,j

(22)

Most software and hardware implementations of theMyers
algorithm use a column approach (i.e. computing 1v) to
do semi-global matching by taking advantage of vectorized
bit vector operations available in many computing systems.
For semi-global matching, the first row of the D matrix
is initialized to zero (instead of the increasing values used
when computing global matching) and all the cells of the last
column are computed to find the best alignment (see equation
23).

dsemi−global (P,T ) = min
j∈[1,n]

Dn,j. (23)

Since we address the global matching of sequences of
the same length we use a totally different approach. As we
proposed in [32], we use the diagonal differences matrix 1d
and just aggregate its main diagonal (see equation 24).

dest (P,T ) = Dn,n =
∑n

k=1
1dk,k (24)

Moreover, we know that we can prune out cells that cannot
contribute to the final solution. We substitute the previous
expressions used to compute HN i,j,VN i,j,HPi,j, and VPi,j
by equations 25, 26, 27, and 28. In this step we are hard-
coding positive increments in the cells that are far enough
from the main diagonal. The motivation of this step is to
reduce hardware resources.

HN ′i,j =

{
0, if |i− j| > bth/2c

HN i,j, otherwise
(25)

VN ′i,j =

{
0, if |i− j| > bth/2c

VN i,j, otherwise
(26)

HP′i,j =

{
1, if |i− j| > bth/2c

HPi,j, otherwise
(27)

VP′i,j =

{
1, if |i− j| > bth/2c

VPi,j, otherwise
(28)

Finally, we can also introduce a saturating value in the
distance value above which it has no added value to continue
computing the exact distance value (equation 29).

dest (P,T ) = min(
∑n

k=1
1dk,k , th+ 1) (29)

IV. HLS IMPLEMENTATION
In this section we will present the development strategy and
the details for all studied filters. Some of the previously
analyzed implementations GateKeeper [17], Shouji [20],
and SneakySnake [22] are coded in Verilog and tested
in the same Xilinx FPGA accelerator. The simplicity of
these algorithms and the low level control of the language
makes Verilog a good choice to code the filter units. The
interface with the host in all implementations is done with
RIFFA [33], an Open Source framework to implement the

communication infrastructure between hosts and FPGA co-
processors. RIFFA was presented in 2015 and is supported
in some devices, however its support for future FPGA
devices seems unlikely, especially for the systems used
by Heterogeneous Cloud providers. On the other hand,
Cai [29] already uses an OpenCL approach. Our goal is
to create pre-alignment filters that can be integrated into
genomic datacenters equipped with FPGA coprocessors.
We select OpenCL as a widely available framework for
the implementation of FPGA accelerators. The source code
of the filters is available at https://github.com/davidcastells/
OpenCLPrealignmentFilters

FIGURE 4. Logic diagram of pre-alignment filter accelerators. The same
design is common for all filters, only the yellow part (that estimates the
difference) is customized for every design.

All pre-alignment filters have the same goal, compare the
pattern with a text, and obtain a distance estimation. This
can be implemented in C/C++ by functions with the same
number of parameters and the same return values. We can
take profit of these similarities and implement a common
set of functions for all filters both, at the host side and
the accelerator side. Figure 4 depicts the logic structure of
the approach. Only the filter pair function (in yellow) is
changed among different versions of the filters. Many FPGA
accelerator boards with OpenCL support provide a 512 bit
data bus width to access the device memory. In most cases
the device memory is implemented as DDRmemory external
to the FPGA device, while HBM2 is starting to become
available. As we have seen in previous sections pre-alignment
filters can work with a single clock throughput. This means
that their ideal memory bandwidth requirements would be
512× fmax . For instance, a kernel running at 250 MHz would
require 16 GBps memory bandwidth. In current systems,
an ideal single filtering unit would already saturate the
available memory bandwidth of many accelerator boards.
However, as higher end FPGA accelerators include multiple
memory ports, it might be reasonable to replicate some of
them.

FPGAOpenCL kernels are designed in two possible styles:
single workitem or NDRange. NDRange kernels resemble
GPU kernels, as they are designed to achieve parallelism by
runningmultiple execution threads concurrently. On the other
hand, single workitem kernels are based on a single execution
thread. In this case parallelism is achieved by unrolling loops
or introducing long pipelines. In our case, the regularity of
the memory access pattern and the constant execution time of
loop iterations makes single workitem style more adequate.

In order to provide a flexible solution that can be used
in various applications of a data center, we encapsulate
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FIGURE 5. Some of the possible organizations of device memory to store
the sequence pairs. (left) text and pattern in the same 512 bits word that
can be fetched in a single memory transfer operation. (right) text and
pattern in consecutive words, requiring two memory transfers to fetch.

the communication between the host software application
with the pre-alignment filter executing in the FPGA in a
C++ class that is responsible to load the compiled OpenCL
binaries, marshal and transfer the sequence pairs to the
device memory, invoke the appropriate OpenCL kernels,
and collect the results. We use a 2 bit representation of
the bases to reduce the amount of memory used, and its
associated transfer time. The organization of sequence pairs
in the device memory can also have an impact on the filter
throughput. A pair of short reads of 100 bases can fit in
a single 512 bit word. It seems convenient to place them
consecutively so that they can be both fetched in the same
clock cycle and processed in a single clock throughput
rate. As shown in figure 5, longer reads can be organized
in different ways. In any case we consider the use of
padding to ensure aligned memory transfers. In addition to
the memory organization options, we foresee another source
of variability: the implementation can take profit of some
significant optimizations if the sequence lengths are known
and fixed. On top of that, we can consider the additional
parameters used by the specific algorithms. For instance,
in the analyzed methods from the literature the threshold
value th and sequence lengths n are parameters that should
be fixed which directly influence the resources required by
the hardware implementation.

The dimensions of the design space are considerable, and
its exploration is expected to be easier with HLS rather than
Verilog. One of the reasons for this claim is the existing func-
tional verification that avoids RTL simulation and synthesis
to verify the implemented solutions. In this variable scenario,
with potential multiple design implementations the flexible
circuit loader of OpenCL based on runtime reconfiguration
can offer additional benefits. Thus, the application could
reconfigure the device to adapt to the different characteristics
of the incoming workloads.

A. BASIC OPERATIONS AND ARBITRARY PRECISION
INTEGERS
The details of the necessary Load and Store Memory
Units (LSUs) that are required to implement the memory
access operations are conveniently hidden by HLS frame-
works when using the regular C/C++ language pointer
semantics. The OpenCL __global, __local, or __private
modifiers can be used to specify the use of the DDR memory
external to the device, or the on-chip internal memory. Local

FIGURE 6. Example logic circuit to compute the Hamming distance
between two genomic sequences of 4 bases.

C variables are usually synthesized as FPGA registers, while
local arrays rely on the LLVM optimization phase of the
toolchain to decide whether to implement them as on-chip
memories or registers. Arbitrary precision integer types are
very convenient to define large integers and use them as single
variables rather than arrays. This ensures than they will be
stored in registers rather than memories, potentially having
a big impact on the system performance since LSUs can
become a bottleneck that prevent parallel access to the long
bit vectors.

Basic operations used by the filters can be described with
C/C++ functions and used by the kernels. One fundamental
factor to consider is that function invocations are often inlined
by the compiler. So, multiple invocations in different parts of
the code will end up creating multiple Hardware instances of
the equivalent circuit.

The following example illustrates how to implement the
hamming distance computation between two sequences of
4 bases. This is a very simple example as the length is very
short, but it is still illustrative. Hamming distance between
longer strings using OpenCL on FPGA has been addressed
in [34]. As depicted in figure 6 the circuit has two phases,
the equality check of each base, and the counting of equals.
As shown below, the ideal OpenCL implementation of the
two phases is straight-forward if using arbitrary precision
integer types (ap_int).

ap_uint<4> xorBases(ap_uint<8> a, ap_uint<8> b)
{

ap_uint<4> r;
#pragma unroll
for (int i=0; i < 4; i++)
{

a0 = a.get_bit(i∗2);
a1 = a.get_bit(i∗2+1);
b0 = b.get_bit(i∗2);
b1 = b.get_bit(i∗2+1);
r.set_bit(i, a0^b0 | a1^b1 );

}
return r;

}

int countOnes(ap_uint<4> a)
{

int r = 0;
#pragma unroll
for (int i=0; i < 4; i++)
r += a.get_bit(i);

return r;
}
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However, this simple implementation is not possible in
some platforms due to the differences in the level of support
of the arbitrary precision integer library provided by different
FPGA manufactures. While Intel have a very limited support
for them, Xilinx only allows their use when using C/C++
kernels instead of the standard OpenCL kernels. There
have been some initiatives to overcome these limitations by
creating an additional abstraction layer on top of ap_int
(like HINT [35]) to hide the implementation differences
between the different platforms. However, they are not
universally supported either in different FPGA families.

To overcome these limitations we use C/C++ kernels
in Xilinx platforms and we create our own library of
arbitrary precision integers by using metaprogramming [36]
for Intel platforms. Instead of using a C pre-processor based
metaprogramming approach, we use a syntax similar to Java
Server Pages [37] to annotate the parts of the OpenCL source
code that must be modified before compilation. For example,
the previous countOnes function could be implemented as
below.

int countOnes(ap_uint<4> a)
{

int r = 0;
<%for (int i=0; i < 4; i++){%>
r += (a � <%printf(‘‘%d’’,i);%>) & 1;
<%}%>
return r;

}

It would be translated to the expanded form (see below) by
our metaprogramming infrastructure before compilation.

int countOnes(ap_uint<4> a)
{

int r = 0;
r += (a � 0) & 1;
r += (a � 1) & 1;
r += (a � 2) & 1;
r += (a � 3) & 1;
return r;

}

In this way, the code can be adapted to an arbitrary number
of bit lengths as required. The drawback of this approach
is that the readability of the code is seriously affected.
We expect that the future evolution of the HLS frameworks
makes this step unnecessary.

B. SHIFTED HAMMING DISTANCE
The implementation of the Shifted Hamming Distance design
is straight forward in C/C++. Algorithm 1 (page 5) contains
a single for loop (line 2) that can be unrolled by using
the #pragma unroll clause. Similarly, the removeShortZeros
function can also be easily expressed and parallelized by a
simple loop unrolling as shown in the following code for a
256 bit vector.

ap_uint<256> removeShortZeros(ap_uint<256> x)
{

ap_uint<256> r;
#pragma unroll
for (int i=0; i < 256; i++)
{

xm1 = (i>0) ? x.get_bit(i-1): 1;
xm2 = (i>1) ? x.get_bit(i-2): 1;
xp1 = (i<254) ? x.get_bit(i+1): 1;
xp2 = (i<253) ? x.get_bit(i+2): 1;
xs = x.get_bit(i);
r.set_bit(xs | (xm1 & xp1) | (xm1 & xp2)

| (xm2 & xp1));
}
return r;

}

C. SHOUJI
After an analysis of the algorithm 3 (page 5) we realize that
Shouji is working in windows of 4 bits and the values written
to the accumulator bit vector (line 10 of Algorithm 1) are also
4 bits vectors. Several iterations of the main loop can update
the same accumulator bit vector positions multiple times.
We try to generate each output bit independently removing
the collisions. Following this idea we realize that every output
bit can only depend on the values of the columns of the xored
bit matrix ranging from 3 bits before and 3 bits after the
computed value.

Algorithm 5 Shouji (Proposed Update)
Input: P as the pattern sequence, T as the text sequence
both of length n, th the threshold so that the pairs with
dLev (P,T ) > th are quickly discarded. WS is the window
size.
Output: The estimated minimum number of errors (EE),
such that dLev (P,T ) ≥ EE

1 A← 2n − 1
2 for all i ∈ [1, n] do
3 maxz← 0
4 b← 1
5 for all j ∈ [max (1, i−WS+1) ,min (i, n−WS+1)

do
6 for all s ∈ [−th, th] do
7 SP← P� s
8 XO← SP⊕ T
9 cz← CountZeros(xo[j : j+WS − 1])
10 if (cz > maxz)∨ (cz = maxz ∧ xo[i] = 0) then
11 maxz← cz
12 b← xo[i]
13 end if
14 end for
15 end for
16 a[i]← b
17 end for
18 EE ← CountOnes(A)

We missed this observation in an initial analysis of the
algorithm, but the HLS compiler unveiled it as it was
having problems to parallelize the outer loop due to the
apparent loop carried dependency in line 10. We recoded
the algorithm as Algorithm 5, removing the dependency.
Again, the implementation of this algorithm in C/C++ is
straight forward with good support for arbitrary precision
integers.
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D. SNEAKYSNAKES
The implementation of SneakySnakes is a littlemore complex
compared with previous algorithms. The algorithm 4 creates
the initial bit matrix in the for loop in line 2. This results
in a bidimensional bit-matrix and the OpenCL compiler
will tend to place the structure in local memory. A local
memory storage of thematrix would become a bottleneck that
would prevent the unrolling of the following loops. To solve
these issues we compute the matrix values inside the sliding
window. The read values is used straight away to compute the
necessary intermediate values, removing the need to store the
matrix for later use. An additional inconvenient is the use of
a while loop in line 9. To ease the job of the compiler in
trying to unroll the loops we substitute it for a bounded for
loop.

The original algorithm in [22] uses a tree of comparators
and multiplexors to select the longest value from all the
parallel CountLeadingZeros units working on different
rows of the bit matrix window (see figure 7). If we use the
bit manipulation instruction RFILL(x) to set all the bits
that are right to the highest set bit in x, we observe that
the expression max

∀s∈[−th,th]
CLZ(xos[kst : ke]) in line 10 is

equivalent to CLZ(∧ths=−thRFILL (xos [kst : ke])). In other
words, this means that maximum selection of the multiple
CLZs can be substituted by a single CLZ operation of the
result from doing an and operation among all the elements
of the matrix XOs after setting to one all the bits to the
right of their highest set bit. This substitution are expected
to reduce resource usage since the comparators used in max
consumemore resources than the gates required to implement
RFILL. The RFILL algorithm is very simple as shown in
Algorithm 6 and is already proposed in the RISC-V Bitmanip
Extension [38]. Figure 8 depicts an example logic circuit
to compute an example CLZ(∧1s=−1RFILL(XPs)) operation.
A single CLZ unit is used, and RFILL is implemented with
a small number of or gates.

Algorithm 6 RFILL. Bit-Wise Highest Set Bit Fill. Fill With
Ones From the Highest Set Bit
Input: An input number (X ) of n bits.
Output: A 8 bit output number (R) in which each bit position
is 1 if there is a 1 in the same position or a left position in the
input number

1 R← 0
2 for i← 1 to n do
3 r[i]← ∨ij=1x[j]
4 end for

SneakySnakes requires that, after a one is detected in a
window, the following search for the longest run of zeros
should start at the following bit. Note that the one that ends
the run of zeros is a detected error. If the error threshold
of the implementation is lower that the window size some
optimization can be done at the window level. This is the case
of the FPGA implementation done in [22], which limits the

units to find the longest streams of zeros to 4 inside a window.
We aim to implement a generic implementation, so we
replicate all blocks until we cover the whole window. The
algorithm with all the discussed optimizations is presented in
Algorithm 7.

Algorithm 7 SneakySnakes (Proposed Update)
Input: P as the pattern sequence, T as the text sequence
both of length n, th the threshold so that the pairs with
dLev (P,T ) > th are quickly discarded. WS is the window
size.
Output: The estimated minimum number of errors (EE),
such that dLev (P,T ) ≥ EE

1 EE ← 0
2 for w← 1 to n/WS do
3 kst ← WS · (w− 1)+ 1
4 ke← WS · w
5 for all s ∈ [−th, th] do
6 SP← P� s
7 XOs← SP⊕ T
8 XPs← xos[kst : ke]
9 end for
10 for all i ∈ [1,WS] do
11 lzi← CLZ(∧ths=−thRFILL

(
xps [i : WS]

)
)

12 end for
13 for i← 1 to WS do

14 Editsi =


0, if lzi = i
1, if lzi = i− 1
Editsi−lzi−1 + 1, otherwise

15 end for
16 EE ← EE + EditsWS
17 end for

The implementation in C/C++ can easily be derived from
the algorithm. A benefit of this approach compared with
previous implementation is that no full sequence accumulator
bit vector is used. Thus, after the windowed parts extracted
from the bit matrix XPs are obtained (in line 8) all the
operations required to compute the number of edits of
a window can be described by standard integer C/C++
variables as they only require a small number of bits WS.
The number of edits on a window is computed by combining
the information from the set of maximum number of leading
zeros of every subwindow. The resulting circuit is depicted
in figure 9. The final number of edits of the whole pair is
obtained by aggregating the values for every window.

E. BANDED-LEV
The computation of the Levenshtein distance with the
dynamic programming approach is a well-known basic
method. The value of each cell of the table depends on the
values of previous column, row, and diagonal cells. Thus,
it is not possible to break the data dependency among cells
of the same row or column to compute them in parallel.
However, it is also well known that cells of anti-diagonals do
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FIGURE 7. Logic diagram of the circuit that computes the number of edits on a 8-bit window (for WS = 8) in the SneakySnakes filter. The
window is divided in smaller subwindows that allow the detection of runs of zeros at different column offsets of the input matrix. The number
of leading zeros from the biggest units (that consider smaller starting column offsets) are used to detect the position of the one finishing the
run of zeros and select the following unit to consider (corresponding to the offset of the column following the column from the detected one).

FIGURE 8. Optimized logic circuit to compute the maximum count of
leading zeros over three 8 bit inputs. The alternative circuit to do the
same computation would consist of three count leading zeros units
(CLZ8) and a tree of comparators to select the maximum value.

not have data dependencies among them, and therefore, can
be computed in parallel.

Hardware implementations (like [39]) tend to compute
the cells of the anti-diagonals in parallel. If the allocated
processing elements (PEs) are created to address the longest
anti-diagonal, the matrix computation takes several cycles
and the PEs are be reused. Another alternative is to create a
PE for each cell of the matrix and compute the anti-diagonals
in pipeline. Unlike classic HDL designs we do not create a
specific PE for cell computation. We can still interpret that
there is a kind of virtual PE diluted in the OpenCL source
code for each matrix cell. The logic diagram of this virtual
PE is depicted by figure 9. Different elements from the PE
can be pruned out depending on the cell.

Instead of an explicit description of an anti-diagonal
pipelined design, we will use an iterative algorithm (Algo-
rithm 8: Banded Lev) to build the elements of the matrix,
pruning out the computation of all cells farther than bth/2c
from the main diagonal. The direct implementation of the
algorithm in C/C++ could lead the compiler to detect the
data dependency between the iterations of the loops iterations
preventing the unrolling of the for loops (in lines 1 and 2).
In our case, we unroll the loops using metaprogramming
on Intel platforms. With this step we make it easier for

FIGURE 9. Diagram of the processing element used for each cell of the
dynamic programming table when using the classical DP approach to
compute Levenshtein distance. Notice that the circuit is a direct
implementation of equation 10 and the width of the signals must be large
enough to accommodate the maximum distance value.

the OpenCL compiler to detect the data dependencies and
implement a pipelined design automatically.

F. BANDED-MYERS
Despite the apparent fundamental difference, the Banded-
Myers algorithm structure is very similar to the previous
Banded-Lev design as both compute the same number of cells
from the matrix. However, in this case, the virtual PE does
not compute a distance, but a set of bits. The design is totally
implemented with binary gates as shown in figure 10.

The algorithm requires a final phase to aggregate the
diagonal cells to obtain the distance estimation. Separating
the computation of the distance from the cell computation has
an important impact on resource utilization.

Despite the number of the considered matrix cells of
Banded-Lev and Banded-Myers are the same, a cell of
Banded-Lev contains multiple adders and a similar number
of circuits to get the minimum from two values. Minimum
circuits can be implemented with a comparator (often using
a subtract circuit) and a multiplexor. In the worst case, the
number of add/sub units in the virtual PE to compute a cell
of the matrix will be 6. Therefore, the upper bound of the
total number of add/sub units of the Banded-Lev design is
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Algorithm 8 Banded Lev
Input: The pattern sequence P, and text sequence T , both of
length n. The error threshold th so that pairs withED (P,T ) >

th can be quickly discarded.
Output: The estimated minimum number of errors (EE),
such that dLev (P,T ) ≥ EE

1 for x ← 0 to n do
2 for y← 0 to n do
3 if (|x − y| ≤ bth/2c) then
4 if (x = 0 ∨ y = 0) then
5 Dy,x = max(x, y)
6 else
7 Dy,x = min(th + 1,Dy−1,x−1 + P [y− 1] ⊕
T [x − 1])

8 if (|x − 1− y| ≤ bth/2c) then
9 Dy,x = min(th+ 1,Dy,x ,Dy,x−1 + 1)
10 end if
11 if (|x − y+ 1| ≤ bth/2c) then
12 Dy,x = min(th+ 1,Dy,x ,Dy−1,x + 1)
13 end if
14 end if
15 end if
16 end for
17 end for
18 EE ← Dn,n

FIGURE 10. Diagram of the processing element used for each cell of the
DP table when using a Banded-Myers approach to compute the
Levenshtein distance. Notice that the circuit implements equations
18,19,20,21, and 22 and the width of most inputs and outputs is just one
bit.

Resadd/sub < 6 (n+ 2 · (bth/2c) (n− bth/2c)). On the other
hand, the Banded-Myers design only needs n adders.
Similarly to previous design, we use the algorithm 9 to

implement the system. Again, the for loops (lines 1 and 2)
are unrolled with our metaprogramming framework in Intel
platforms so that the OpenCL compiler can easily detect
data dependencies and automatically infer an anti-diagonals
pipeline. In Xilinx platforms, we use #pragma HLS
array_partition variable=<var> complete
to obtain the same effect.

Algorithm 9 Banded Myers
Input: The pattern sequence P, and text sequence T , both of
length n. The error threshold th so that pairs withED (P,T ) >

th can be quickly discarded.
Output: The estimated minimum number of errors (EE),
such that dLev (P,T ) ≥ EE

1 for x ← 0 to n do
2 for y← 0 to n do
3 if (x = 0) then
4 VPy,x = 1
5 VN y,x = 0
6 else if (y = 0) then
7 HPy,x = 1
8 HN y,x = 0
9 else if (|x − y| ≤ bth/2c) then
10 D0y,x = ¬(P[y]⊕T [x])∨VN y,x−1∨HN y−1,x
11 HN y,x = VPy,x−1 ∧ D0y,x
12 VN y,x = HPy−1,x ∧ D0y,x
13 HPy,x = VN y,x−1 ∨ ¬(VPy,x−1 ∨ D0y,x)
14 VPy,x = HN y−1,x ∨ ¬(HPy−1,x ∨ D0y,x)
15 else if (|x − y| = bth/2c + 1) then
16 if (x > y) then
17 HN y−1,x = 0
18 HPy−1,x = 1
19 else
20 VN y,x−1 = 0
21 VPy,x−1 = 1
22 end if
23 end if
24 end for
25 end for
26 EE ←

∑n
i=1¬(D0i,i)

V. RESULTS
In this section we first analyze the accuracy of the different
filters following a novel frequency-domain interpretation.
As we saw in section II.A, accuracy has a direct impact on the
expected speedup factor (SFalign) achieved when integrating
them in read-mappers. Then, we describe the FPGA synthesis
results for different platforms, focusing on the resource usage
of the different filters and their scalability with respect to error
thresholds and read lengths. We measure all filters execution
time on different platforms and report the speedup factor
with respect to Edlib library [40] executed in a single thread
CPU. Finally, we estimate the speedup factors that could be
achieved after the integration of filters on seed-and-extend
mappers.

A. ACCURACY
We measure the accuracy of the filters with a synthetic
benchmark that simulates random edition operations in a
controlled way. For every sample, the benchmark creates a
random text string and generates a pattern with a certain
number of insert, delete or substitution operations specified
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FIGURE 11. False positive (FP) observed values of different filters as the number of errors is increased in the input data set. Dashed lines
correspond to the FP rate on substitution errors. Solid lines correspond to the FP rate on ins/del errors. For every sequence pair length we test
three different thresholds. Notice that, in inexact filters, the higher the threshold the higher the observed FP rates, which is a non-desirable effect.

by the user. For every pair sample, the filter is executed and
each pair is classified as positive or negative.

To analyze the filter response we introduce a frequency-
domain analysis method as the filters effectively act as
low-pass filters, where the frequency is the frequency of
differences (or errors) between the pattern and text pairs.
An ideal response a filter would accept all values below the
cutoff frequency and reject all values above it in a sharp drop
to zero (as depicted in figure 12 first diagram). However, for
many filters the false positives rate is often high after the
threshold, showing a gradual drop to zero as error frequency
increases (as depicted in figure 12 second diagram).

To do the analysis we consider the number of positives
rate obtained for a varying number of input errors. Since our

synthetic benchmark allows to exactly introduce a specific
number of errors we start introducing no errors and keep
increasing the number of introduced errors and collecting the
filter response. For each value of ‘‘number of errors’’ (or error
frequency) we run two tests: one introducing substitution
errors, and another introducing insertion and deletion errors.
Generally, insertion and deletions are harder to detect than
substitutions, and they give higher false positive rates. To the
best of our knowledge, this is the first time that pre-alignment
filters are analyzed by their frequency-domain response.

Figure 11 depicts the response of the filters for various
sequence lengths and different threshold values. The vertical
axis corresponds to the Prate. The horizontal axis correspond
to the number of errors injected to the filter. Dashed
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FIGURE 12. Left) Ideal filter response: all positives (P) are detected
(100% acceptance), after the cutoff frequency all negatives (N) are
rejected (0% acceptance). Right) Possible filter response: all positives
(P) are detected (100% acceptance), after the cutoff frequency some
negatives are accepted becoming false positives (%FP > 0), but as the
error frequency is increased the FP rate drops to zero.

FIGURE 13. Error frequency profiles of some input data sets used in
previous work from the literature. The amplitude value (y axis)
corresponds to the number of sequences having a specific number of
errors (x axis). (Left) Error frequency profile of file ERR240727_1_E2.
(Right) Error frequency profile of file ERR240727_1_E40. Notice that
correctly filtering the right file (i.e. reducing the number of FP) is less
challenging than filtering the left file.

lines correspond to the false positive rate obtained when
substitutions are injected. Solid lines correspond to the false
positive rate obtained with insertion and deletions. For all
sequence lengths and all inexact filters, increasing the error
threshold increases the observed FPrate. SneakySnake is the
inexact filter less affected by this effect. For all algorithms,
increasing the sequence length increases the observed FPrate.
Again SneakySnake is the less affected from the inexact
filters.

As we studied in section II the performance of a complete
system is also affected by the characteristics of the input data.
The number of positives and false positives is a determinant
factor to the final speedup. As an example we take two
dataset files (ERR240727_1_E2, ERR240727_1_40) used
in [22] which are generated with the mrFAST mapper [41].
Their error frequency profile is shown in figure 13 diagrams.
The important difference between these two datasets is
that the first one will generate a large number of false
positives if the filter response is like the shown in figure 12
(right). On the other hand the same filter will generate no false
positives for the second dataset.

Besides false positive analysis, it is also important to ensure
that the false negative rate for any filter is zero, otherwise
we would be possibly discarding some potentially matching
pairs. Although there are very few of them (see table 1), SHD
and Shouji do not completely avoid false negatives.

From our analysis, we conclude that SneakySnakes is the
inexact method that better approximates the real Levenshtein
distance computation. However, exact filters (Banded-Lev,

TABLE 1. Pre-alignment filters with non-zero false negatives rate.

TABLE 2. FPGA details of target accelerator boards.

and BandedMyers) provide the exact computation, and a zero
FPrate and FN rate.

B. FPGA SYNTHESIS AND RESOURCES USAGE
We selected eight FPGA accelerators from the leading
manufacturers Intel and Xilinx to synthesize our designs.
We include a low-cost accelerator based on CycloneV FPGA,
and seven high performance accelerators based on Arria,
Stratix, and Virtex FPGA families. The characteristics of the
accelerators are described in tables 2 and 3. An important
difference between the HARPv2 accelerator and the other
systems is the faster QPI link to access the host memory.

One of the selling points of High Level Synthesis (HLS)
is the expected higher productivity. A side result from our
work is the assessment of this claim. Given the combination
of platforms, filter types, read lengths, and error thresholds
we have created 504 different designs.

A small fraction of the compilations were not successful
either due to the exhaustion of device resources or by bugs
in the compilation toolchain. The lack of resources is the
main reason of failure for the smallest device (OSK) but
also affects the Banded-Lev filter in most Intel devices
except HARPv2. After the analysis of the generated HDL,
we observed that the reason of the significant difference
on resource consumption for this filter in Intel platforms is
the different way that saturating adders are handled. In the
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TABLE 3. Additional details of target accelerator boards.

FIGURE 14. Synthesis results for different FPGA accelerators. The plots
report resource usage percentage as a function of the equivalent DP table
cells used by the designs, i.e. m× (2× th+ 1).

worst case, the compiler avoids to remove the unused bits
from the adders and introduces additional pipeline registers.
Regarding bugs in the compilation toolchain, HDL synthesis
is never failing, but an occasional failures happen in the
LLVM optimization phase when dealing with very large
designs.

The percentage of occupancy for all platforms with
respect to the number of computed cells from the DP table

FIGURE 15. Kernel clock frequency variability for different designs in
various FPGA accelerators.

(m× (2× th+ 1)) is depicted in figure 14. The simplicity of
SHD results in the lowest resource consumption consistently
on all devices. Another consistent behavior is the larger
resource usage of Shouji with respect to Sneaky Snake.
Among exact filters, Banded-Myers consistently has a lower
resource usage than Banded-Lev, as expected. An unexpected
result is the rather flat resource occupancy profile in Xilinx
devices. Our designs are not able to achieve an initiation
interval of 1 clock cycle on Xilinx devices, but start with
an initiation interval of 8 and grow up to 64 clock cycles.
This reduces the parallelism achieved in the loop iterations
and the resource demand. The limits to the scalability of
designs with respect to longer read lengths can be estimated
by extrapolating the trend lines in figure 14 considering
the required number of cells to compute. For instance, read
lengths of 500 bp with a 10% of error threshold would require
50,500 cells, making most of the designs unviable.

Besides the device occupancy, an important synthesis
result is the maximum clock frequency achieved by the
kernel as it influences the maximum throughput of the filter.
figure 15 shows a boxplot of the clock frequency of all the
designs by platform. The differences between the achieved
maximum frequencies are mainly caused by the differences
between FPGA families, but most accelerators target the
300 MHz range.

The Cyclone-based FPGA accelerator shows the slowest
clock frequency. The Arria family systems provide an
important improvement, which is still slightly lower to the
achieved by Stratrix families. The Stratix 10 device show a
10% improvement with respect to Stratix V for our kernels.
These results are basically in line with our expectations, since
Cyclone family is addressing low cost, Stratix and Virtex
are addressing High Performance applications, and Arria is
targets a trade-off between the two aspects. Xilinx Alveo
boards provide a clock frequencies above 300 Mhz, except
the Xilinx system used in Amazon F1 instances, which is
above 250 Mhz.
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TABLE 4. Synthesis results from the HDL designs in the literature
compared with our OpenCL results for 100 bp.

C. RESOURCE OVERHEAD OF HLS DESIGNS
We analyze the resources of our HLS based implementations
in comparison with HDL based ones reported in other works.
In this case we do not report occupancy percentage, but the
absolute number of resources. This can be used to give an idea
of the overhead induced byHLS frameworks and the OpenCL
runtime. An interesting point is that the original inexact
filters (GateKeeper, Shouji, SneakySnake) use combinational
logic designs and duplicate computing units to achieve better
speedups. As their units are replicated, the fmax decreases.
The introduction of pipelining is proposed by them with a
grain of salt due to the concerns on an excessive cost in
registers.

Table 4 shows a comparison of synthesis results of
previous works and our proposals. Although the FPGA
devices used in our work are different from those used
in others’ works, we can still get some useful information
from the comparison. The replication of 16 filtering units
done in previous proposals increase the Logic Elements (LE)
count creating an imbalance between LEs and register use.
In modern FPGAs combinational blocks and registers are
combined inside the logic blocks of the devices, so having
balanced LE/register designs can share the same logic block
resources without increasing resource usage. Our OpenCL
designs have a balanced number of LEs and registers. In our
case, OpenCL introduces pipelining automatically when
needed, so that the register count is higher but the LE count
is lower. On the other hand, our designs already have a
high occupancy of the memory bandwidth of the accelerator
with a single filtering unit, so there are no incentives to
replicate filtering units unless higher memory bandwidth is
available.

As shown in table 5, our exact filter designs also have a
balanced mix of LEs and registers. The resource count of the
Banded-Lev design is higher than the Banded-Myers design,
so, for the exact same accuracy Banded-Myers should be
preferably used.

TABLE 5. Synthesis results of our exact filters for 100 bp.

FIGURE 16. Throughput of kernel (only) execution for different FPGA
accelerators. Different filters do not differ significantly as performance is
more determined by the common adapter part rather than the
implementation of each filter. Longer sequences require more memory
bandwidth than shorter ones, which translates on lower performance.

D. PERFORMANCE RESULTS
We analyze the performance of the filters by executing
synthetic benchmarks having 10 million sequence pairs. The
results are shown in table 6. When we focus our analysis to
the execution time of the kernel (see figure 16), the boards
with device memory show the highest performance. For
Intel devices, D5005 platform has a slightly higher kernel
performance than the PAC10 platform due to both, a higher
bandwidth when fetching data from the device memory, and
a higher clock frequency. Having a similar Arria10 FPGA
fabric, the HARPv2 system runs the kernel slower than the
PAC10 device due to the higher distance to the memory.

For Xilinx devices, the U250 platform achieves the highest
performance thanks to the high bandwidth of their DDR4
memories. Notice that the performance is reduced as read
length is increased due to the increase of the initiation interval
mentioned earlier.

Memory read and write operations must be interlaced as
the distance for every pair is computed and stored. Thus,
as seen in figure 17, the available memory bandwidth is
often underutilized due to an incapacity of maintaining a
unidirectional transfers during long period of time. We only
approach the maximum bandwidth when using long reads
and the factor between the data read and the data written
is increased. When including the memory transfer time
between the host and the accelerator in the analysis, the
shared memory approach of the HARPv2 platform shows
a better overall performance thanks to a higher bandwidth
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FIGURE 17. Memory bandwidth utilization during kernel execution. The
columns illustrate the maximum available memory bandwidth for a
device. A dot illustrates the consumed bandwidth for a particular design
(targeting a certain combination of read-length, error threshold, and filter
type).

FIGURE 18. Throughput of filter execution (including memory transfers
with the host) for different FPGA accelerators. Notice that PCIe based
accelerators show a significant performance drop as designs are not able
to reach the theoretical maximum bus bandwidth.

FIGURE 19. Bus bandwidth utilization before and after kernel execution.
The columns illustrate the maximum available bus bandwidth for a
device. A dot illustrates the consumed bandwidth for a particular design.

with the host memory (see figure 18). Regarding the OSK
platform, the lower performance of the kernel is mainly
explained by the lower clock frequency (around a third
of the other platforms) and a lower bandwidth with the
external memory. The lower bus memory bandwidth of
its PCIe connection contributes to and even lower total
throughput.

The invocation of the kernel requires to transfer the input
data, execute the kernel, and collect the results. We do not
overlap computation and communication, which is left to
future optimizations. As shown in figure 19, this results on
a low bus bandwidth utilization. However, we try to optimize
the transfers with the host by using the SVM OpenCL primi-
tives in HARP devices and clEnqueueMigrateMemObjects in
Xilinx devices.

TABLE 6. Filtering Speed in million pairs per second (M Pairs/s)
measured when executing our OpenCL filters over 10 million pairs.

E. RELATED WORK
The execution time of inexact filters compared with previous
work is shown in table 7, which shows the million pairs
per second (MPPS) achieved by pre-alignment filters when
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TABLE 7. Achieved filtering speed (MPairs/s) of 100bp and th=2 filters
from previous work and our work.

TABLE 8. Achieved filtering speed (MPairs/s) of exact filters.

working on 10 million pairs. We report the throughput of
FPGA HDL-based implementation in original papers and the
throughput of our best performing OpenCL implementation
on D5005 and the HARPv2 system. The speedup factor
SFpre is computed with respect to the execution time of the
Levenshtein distance using Edlib with a single thread on a
Xeon Gold 6230 (0.314 MPairs/s computing edit distance
using 100 bp and 0.094 MPairs/s obtaining the backtrace).
The results show that our OpenCL implementations on the
external memory based accelerator D5005 is between 20%
and 40% faster than the HDL coded solutions in the literature,
and more than 120% faster on the HARPv2 platform, which
is based on a shared memory architecture.

As shown in table 8, the exact filters (Banded-Lev
and Banded-Myers) have a similar performance since they
are also designed aiming a single clock throughput. The
performance of the accelerators could still be improved
by overlapping communication and computation if using
multiplememory buffers and interleaving the transfer of input
data. However, it is clear that the analyzed pre-alignment
filter algorithms are memory bound and its execution time
is totally determined by the available bandwidth to fetch the
input data.

In addition to the total best throughput achieved in
HARPv2 system, in table 7 we include the throughput
achieved by the kernel execution in the second best
performing system (the D5005 platform, using the Stratix
10 device). Since we work at the cycle throughput the
theoretical peak performance of the hardware unit would
be the clock frequency, which is around 330 MHz for the

Stratix 10 device. This peak performance would require a
sustained memory bandwidth of 21 GB/s, which is higher to
the reported top memory bandwidth of D5005 (19 GB/s). The
actual achieved top bus bandwidth (6.8 GB/s) is less than half
of the theoretical peak bandwidth (15.7 GB/s). Since the same
amount of information must be streamed through the bus and
the device memory, the bus bandwidth underutilization is the
clear limiting factor of the global performance.

As examined in section 2.4, the speedup provided by the
accelerator into the extension phase of the read mapping
process is a combination of the accuracy of the used filter
and its speedup factor compared with the performance of
the CPU-only execution of the extension phase. If we take,
for instance, the Sneaky Snake filter in 100 bp sequences,
we could assume to have SFpre = 298× (as reported in
table 7) and an average FPrate = 1%. This false positive rate
is selected empirically after analyzing the filter response on
some non-synthetic datasets. Using these values on equation
6 we would still need to determine Nrate to get an estimate
of the whole acceleration. We can consider two scenarios
to get an idea of the potentially achieved acceleration. With
a pessimistic Nrate = 50% we would obtain an overall
speedup factor of SFalign = 1.58×. With a more optimistic
Nrate = 100% we would obtain an overall speedup factor of
SFalign = 24.7×.
Using the Banded-Myers filter in 100 bp sequences

(with SFpre = 314×, FPrate = 0) the acceleration in
the same previous scenarios would range from SFalign =
1.6× to SFalign = 314×. These results are assuming that
the Edlib alignment is still executed in the host CPU for
the positives pairs to obtain the alignment path, and their
Compact Idiosyncratic Gapped Alignment Report (CIGAR).
This effect of how requiring the alignment path affects
the overall alignment speed is illustrated in figure 20. The
alignment can be divided in to processes: filtering (computing
edit distance) and verifying (obtaining the alignment path).
Amdahl law explains this behavior as with this approach
we effectively parallelize the filtering process but not the
verification one.

If the extend phase does not require the CIGAR, the
achieved acceleration of Banded-Myers would be SFalign =
314× in all cases. As shown in figure 21, the execution time
of an Edlib solution would be constant with Nrate as it would
always retrieve the edit distance and never the alignment path.
However, inexact filters would still require to execute Edlib
to compute the edit distance to verify the positives.

To the best of our knowledge, the achieved performance
of our implementation of Banded-Myers pre-alignment
filter is the highest reported in the literature. In table 9
we compare the processed MPairs/s of various dynamic
programming algorithm accelerators that can be used in the
extend phase of read mappers, including Myers, NW, and
SW. Although the quality of the alignment given by gap-
affine SW is considered better than Levenshtein distance
in the bioinformatics community, we provide a significant
lower execution time, almost doubling the closest result in
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FIGURE 20. Execution time (in seconds) and speedup factor (with respect
to single threaded Edlib) of 100 million reads of 100bp. In all cases first,
the edit distance is computed (or estimated) and only if the result is
lower than the threshold the CIGAR is retrieved.

FIGURE 21. Execution time (in seconds) and speedup factor (with respect
to single threaded Edlib) of 100 million reads of 100bp. The CIGAR is
never retrieved, but inexact filters need to verify the positives. Thus,
a significant speedup in inexact filters is only achieved if Nrate is big
enough.

TABLE 9. Performance in MPairs/s for 300× 300 sequences.

GPU [43]. An advantage of GPU implementations is that they
are more flexible as they are not limited to a specific read
length and supports longer reads. To address the first issue,
the FPGA OpenCL approach can take profit of the dynamic
reconfiguration ability to reprogram the FPGA fabric with a
specific accelerator addressing the required read length and
error threshold.

TABLE 10. Energy efficiency for 300× 300 sequences.

FIGURE 22. Energy efficiency of different alignment designs from the
literature compared with our best implementations. We should note
that [42], [45], and [47] implement SW instead of Myers, which is the base
of [43] and one of our filters.

Besides performance, the expected major benefit from
FPGA acceleration is energy efficiency. As detailed in [49],
energy efficiency depends (among other factors) on the
process node and the number of transistors of the computing
platform. In table 10 we can see the energy efficiency
achieved by different dynamic programming alignment
accelerators. Since FPGAs, GPUs, and CPUs are all early
adopters of new silicon foundry nodes, there is no huge
difference between the node factor of latest works from the
literature. We achieve the best energy efficiency value by
more than one order of magnitude margin to other works
(see figure 22). The key factor explaining this high number
is the number of operations computed per cycle of our
FPGA design using local (on-chip) fast memory accesses.
In comparison, GPU implementations execute a large number
of operations per clock cycle as well, but at the expense
of a much higher memory bandwidth requirements to fetch
instructions, private registers, and data, which increases their
energy consumption.

VI. CONCLUSION
We have reviewed and re-implemented the most-relevant
FPGA pre-alignment filters of the literature using HLS
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toolchains that can be executed through the OpenCL runtime.
The designs can be integrated easily in genomic datacenters
with FPGA accelerators providing important performance
and energy efficiency improvements of several orders of
magnitude with respect to CPU-based Levenshtein distance
computation.

The algorithmic analysis to translate the existing proposals
from HDL to C/C++ based HLS that we performed has
unveiled many method simplifications and optimization
opportunities. In turn, these results allow shorter and more
understandable algorithms showing higher performance and
lower resource usages. The maximum achieved throughput
of 95.1 M Pairs/s including memory transferences of
the Banded-Myers filter is the highest reported to date
for an exact filter. Without considering memory transfer-
ences, the achieved throughput is even significantly higher:
178.8 MPairs/s in Xilinx U250. This result motivates our
future research in addressing the system bottlenecks and the
integration in read mappers with an expected double digit
speedup factor.

Although some of the tested platforms are not addressing
the data center environment (like the OSK) we have included
them to demonstrate the degree of portability achieved with
OpenCL and also make the bottlenecks of the system more
evident to the reader. As an additional result from this
work we have verified the productivity of C/C++ based
HLS in implementing genomic accelerators. The lack of a
full feature support for arbitrary precision integer library
has been an important road-block. The metaprogramming
approach has proven to be useful to work around it by
sacrificing the readability of the code, which is a well-known
factor to increase BUG probability and maintenance cost.
Ignoring this issue, coding is very fast, and the generation
of multiple variants is easy to do, facilitating the design
space exploration. The HLS framework obviously hides the
implementation details of many parts of the design. This
has some drawbacks, like trying to identify exactly how
a computing unit has been implemented and what are the
performance bottlenecks. But also has some benefits, like
avoiding implementing tedious blocks like memory load and
store units, which are also key to high performance.
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