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ABSTRACT Grasping strategy of many different kinds of target objects is vital in a wide range of automatic
robotic manipulations. Among the many potential applications for a robot arm with a parallel gripper, the
key challenge for robotic grasping is to determine an optimal grasping pose relative to the target object.
Previous works based on 2D grasp and 6-Dof grasp planning have been proposed to efficiently consider the
physical contact between the robotic gripper and the object. However, there are still a few unsolved problems
caused by partial and limited information about the detected objects due to their locations and geometries
that reduce the grasping quality and reliability. In view of these problems, this paper proposes an optimal
grasping strategy to deal with target objects with any poses based on their 3D model during the grasping
process. Experimental results of the performance evaluation show that the proposed method outperforms the
state-of-the-art in terms of grasping success rate on the YCB-Video datasets. Moreover, we further investigate
the effectiveness of the proposed method in two scenarios where the robotic manipulator works in either the

collaborative or bin-picking modes.

INDEX TERMS Robot grasping, point cloud, parallel gripper, 3D objects, grasp planning.

I. INTRODUCTION

With the advancement of science and technology in recent
years, robot arms have been widely used in many practical
fields, such as industrial manufacturing, living assistance,
agriculture, medical rescue, entertainment services, military
security, and even space exploration, etc. According to the
International Federation of Robotics (IFR), over the past
ten years, more than 2.7 million industrial robots have been
introduced and operated worldwide [1]. The top three indus-
tries with the highest usage are automobile (30%), electri-
cal and electronic industries (25%), and the metal industry
(10%). Most of these traditional industrial robots operate
automatically but lack self-awareness and flexibility. They
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generally rely on professional engineers to customize control
programs to achieve various grasping tasks on the production
line for different applications. As a result, most applica-
tions are based on low-mix, high-volume production models.
According to the study [2], production-grade robot systems
can require days or weeks of effort from highly trained
robot programmers when the production lines change. This
adjustment time is far from satisfying the flexible produc-
tion needs of the industry, especially for small and medium-
sized businesses (SMBs) that generally produce customized
products in small batches and short production cycles. There
is not sufficient capital or time to carry out sophisticated
tuning for robots in the production line. These difficulties
have prevented SMBs from adopting robot arms into produc-
tion lines to achieve Low Volume Automation (LVA). Thus,
robotic systems’ development has gradually shifted their
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focus from efficient single repetitive tasks in a controllable
environment to intelligent robots with autonomous visual
recognition and smart grasping strategy. As well as achieving
LVA in the factory, collaborative robots have also become
increasingly popular in recent years. Through human-
robot interaction, a collaborative robot can work together
with people to accomplish various tasks, like assembling
parts, carrying items, inspecting products, oropharyngeal-
swab sampling [3], etc., to further improve the working
efficiency.

Since robot grasping is the crucial technique for robotic
manipulation, it has long been a significant challenge for
robotic systems [4], [S]. For various robots, including indus-
trial robots, service robots, and collaborative robots, to accu-
rately complete a task, grasping strategy, which dominates the
reliability of automation, is of significant importance. As a
result, related technologies have also been extensively studied
for decades, particularly in recent years [4], [7]. However,
traditional factory work is mainly concerned with specific
grasp locations because the robot arm performs regular work
that can be pre-defined. Various 6-7 Dof robot arms have been
produced and utilized to accomplish different tasks. With
greater flexibility in the robot arm, grasp estimation also has
been widely researched. Several different methods to solve
the various tasks have also emerged. The 2D planar grasp is
widely used to solve the task when a target object lies on the
plane. In this scenario, the plane’s height is fixed, so it only
needs to know the position of the object from the camera and
the rotation angle which is vertical to the plane. The problem
here is that the target object is constrained to lie on a plane and
the gripper is constrained from one direction. With the recent
advance of deep learning-based approaches, a large number
of methods are used to evaluate the candidates of the oriented
rectangle whether they are reliable to grasp. Although 2D
planner grasp provides a more reliable estimate by using a
neural network, it still has several constraints about the place-
ment of the gripper and object under different circumstances.
With the progression of the 6DoF grasp, a robot arm can
grasp the target from different angles and locations in the
3D domain. Analytical methods were utilized to analyze the
geometric structure of the 3D data, and thus the better points
according to different grippers could be found. With the use of
the 3D cameras with depth sensing such as Microsoft Kinect,
Intel Realsense, etc., several methods have been developed to
utilize depth information to yield a better grasping capability.
Similarly, the application of deep learning is quite popular
when searching for a better grasp rectangle from point cloud
data. However, several problems still exist with this method
since it would be restricted by the angle between objects
and RGB-D camera. Another problem is the precision and
constraints of the depth camera. Besides estimating the grasp
from 3D information, most of the current grasping methods
aim at object detection first and then estimating the pose
of the object, finally using the predefined grasp pose which
is relative to the estimated pose so that the robot arm can
successfully grasp the object. As a result, the problems lie
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in the accuracy of object pose estimation and the suitability
of the predefined grasp pose.

As an attempt to relieve the restricted constraints in the
aforementioned research, this paper presents a system that
takes advantage of the related methods to deal with the above
mentioned problems so that the robotic manipulator can suc-
cessfully grasp the target object. Thanks to the rapid develop-
ment of the object pose estimation, we not only can estimate
the correct object pose with RGB-D cameras from mature
methods such as DenseFusion [8], [9] and PVN3D [10],
but also directly estimate object pose with RGB cameras by
employing the method such as OPEPL [11]. Compared with
several similar works, our method utilizes the object pose
to estimate the grasp pose directly. In this way, we propose
an effective algorithm rather than using the deep learning
method so that an optimal robotic grasp pose can be quickly
determined to perform the reliable grasping task in real time.
In this strategy, we can find the 6D grasp pose containing
the location and angle in 3D space rather than 2D location
and one orientation by the traditional 2D grasping planner.
Moreover, our proposed grasping strategy can be utilized in
different applications such as collaborative robots, produc-
tion lines, and bin-picking, etc. Also, to achieve the hand-
over action in the collaborative mode or production line,
we separate the target object into two parts, i.e., grasping
area and non-graspable area. Accordingly, the robot arm can
find an optimal grasp pose based on the determined grasping
area of the target object with any pose for grasping with a
conventional parallel gripper. More specifically, this paper
makes the following contributions:

1) An algorithm-based optimal grasping strategy is pro-
posed to efficiently determine an optimal grasping pose
for target objects with any poses based on their 3D
model during the grasping process using only a RGB
camera.

2) The proposed optimal grasping strategy is effective
for accomplishing tasks in both collaborative and
bin-picking modes to grasp objects with various shapes
and sizes.

3) The proposed optimal grasping strategy has a better
success rate for grasping objects on the YCB-Video
dataset than the state-of-the-art methods.

4) Experimental results show that the total computation
time required to obtain an optimal grasping pose is
about 0.14 seconds, which reveals the feasibility to pro-
vide real-time operations for practical robot grasping
applications.

Il. RELATED WORKS

A. 2D GRASPING PLANNER

The grasping strategies in a 2D image plane have been widely
used in circumstances where the target object is placed on
a plane. In these circumstances, we only need to consider
the 2D location and one orientation. Recent commonly used
methods can be roughly divided into finding the grasp contact
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point and using the oriented rectangle. Firstly, the method of
finding the grasp contact point first generates multiple grasp
points as candidate points and then evaluates the possibility
of successful grasping through analysis or deep learning-
based methods. The study in [12] proposed a method of
estimating from depth maps, but this empirical method gener-
ally encounters difficulties in dealing with unknown objects.
With the development of deep learning, [13], [14] proposed
a method based on deep learning to solve this problem. First,
this method generates several grasp candidates from a depth
map and determines the score of each candidate from the
network. The one with the highest score will be determined as
the final grasp points. Through training on a huge dataset, this
method can handle unknown objects to obtain a grasp point.

Secondly, [15] proposed a method using the oriented rect-
angle to represent the configuration of the gripper, then select-
ing a good grasp from the candidates of the oriented rectangle.
As well as finding candidates from an image directly, [15]
estimated the object contour from the depth map to find
an oriented rectangle with the skeleton of the object. There
are also several methods [17] using deep learning to find
the oriented rectangle as candidates to determine the best
candidate through another network.

Unfortunately, the methods mentioned above only deal
with the situation when the objects are placed on a specific
plane. As aresult, they suffer from several constraints, includ-
ing the accuracy of the depth camera, the detection distance of
the depth camera, the situation where the object is occluded,
and even the position of the depth camera.

B. 6-DOF GRASPING PLANNER

Because of the constraints of the 2D grasping configuration,
6-Dof grasping has received great attention. The difference
from the previously mentioned 2D planner grasp is that the
purpose of this approach is to generate a valid grasp from
the 6D pose space. Through this approach, the robot arm
can grasp an object which is placed at any random position
and angle and is no longer restricted to objects that must be
placed on a fixed plane. The methods of 6Dof grasp can be
roughly divided into methods based on partial point cloud
and methods based on the complete shape, according to the
different information used.

1) EVALUATING THE GRASP QUALITIES

OF CANDIDATE GRASPS

This method is widely used by sampling many candidate
grasps to find the best grasp quality using various algorithms.
Among the traditional methods, [14] proposed a supervised
learning approach to find the best grasp pose. With the current
rise of deep learning, several methods have been proposed.
GPD [18] used ROI (Region of Interest) to find candidate
grasps, and evaluated each candidate by a convolutional neu-
ral network to find the best grasp candidate which had the
highest score. Besides, PointnetGPD [19] randomly samples
candidate grasps from GPD [18], and evaluates the grasp
quality by direct point cloud analysis with the 3D deep neural
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network PointNet. In 2019, GraspNet [20] used a vibrational
autoencoder and grasp evaluator model to refine the grasps.
Then REGNet [21] proposed a three-stage approach. First,
a score network (SN) is used to divide the point cloud
into regions with high confidence. Then a grasp region net-
work (GRN) will generate several grasp candidates, and use
the refinement network to revise the grasp pose to obtain
the final grasp pose. However, to obtain an optimal grasp
candidate, these methods based on evaluating the grasp can-
didates on the partial point cloud need to detect the object
and separate the point cloud of the object from the depth map
first.

2) TRANSFERRING GRASPS FROM EXISTING ONES

This method focuses on transferring the existing grasp to
another, which means finding the correspondences from the
target to the existing ones if both are in the same cate-
gory. [22] proposed a taxonomy-based approach, classifying
objects into several categories so that the required grasping
pattern for a certain object can be found from the associated
categories. [23] also proposed a part-based grasp planning
to segment objects into several categories according to their
shape and volumetric information. The object parts are also
labeled with semantic and grasping information. As a result,
the grasp can be transformed from the same category’s object.
DGCM-Net [24] adopted the network to learn a reliable
grasp, and then transferred the grasp to unseen objects in the
same category. In order to transfer the grasp, both methods
need to detect the object and separate the point cloud of the
object from the depth map first. Another method, as proposed
in [25], utilized a model-based registration approach for the
6-DoF pose estimation of the target object, and increased
the grasping efficiency by reducing the 3D data scanning
operations.

Ill. OPTIMAL GRASPING STRATEGY

In this paper, we propose an optimal grasping strategy utiliz-
ing the estimated object pose obtained through an object pose
estimation system for two-finger grippers. Figure 1 illustrates
the architecture of the proposed grasping process, in which an
optimal grasping strategy aims to find an optimal 6Dof grasp
pose for a two-finger gripper based on an object pose and
preloaded object’s point cloud. With this optimal grasping
pose, we can solve the problem of the 2D planner grasp which
only can grasp objects placed on a fixed plane. In developing
the optimal grasping strategy, the complete point cloud of the
object is transformed by the object pose so that we would not
need to consider the limitation caused by the placement angle,
accuracy, or sensor noise of the depth camera. At the same
time, we expect to find a grasp pose on a specific area of the
object so that the collaborative robot would not grasp the area
currently held by the human hand. As far as production line is
concerned, we also expect robotic arms can grasp a specific
area of the target object for further processing. As a result,
we propose this optimal grasping strategy to accomplish
these tasks, and Figure 2 shows the flowchart of the optimal
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FIGURE 1. Architecture of the proposed grasping process of a robotic manipulation system.
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FIGURE 2. Flowchart of the proposed optimal grasping strategy.
grasping strategy. First, the object is transformed by an object 0.06
pose. Next, we determine the grasping area for the object by ZZ:
human assistance as indicated by a dashed rectangle. Third, z 0:001
the grasping area is segmented into K clusters. Fourth, each oW
cluster will be processed to create M grasping paths. Finally, ~0.06]
by calculating the cost function of each grasping path, the W —

system can determine an optimal grasping pose for guiding
the manipulator to complete the grasping task.

A. DETERMINE GRASPING AREA
As mentioned earlier, the proposed strategy aims to find the
optimal grasp solution. Therefore, the robot arm firstly needs
to detect a proper contact area of the object to guarantee a
stable grasping. In order to solve this problem, we roughly
separate each object into grasping and non-graspable areas.
At this stage, we determine a specific area of each object
as the desired grasping area suitable for a specific situation,
task, or application by human assistance with the aid of Mesh-
lab [26], an open source system for processing and editing 3D
triangular meshes. Steps to determine the grasping area of a
target object can be summarized as:
1) Use “Meshlab” to open the point cloud file of the
object.
2) Select the non-graspable area roughly through the
“Interactive Selection” function in ‘“Meshlab’.
3) Delete the selected non-graspable area to keep the
desired grasping area
4) Save the remaining point cloud as the grasping area.
For example, in human-robot collaboration, we might deter-
mine a desired grasping area of a target object according
to the human’s attempt to grasp the object. Take the object
‘mug’ for example. Figure 3 shows a complete 3D point cloud
of the mug, while Figure 4 shows the determined grasping
area of this object in red dots according to a specific task or
application.

B. SEGMENT INTO CLUSTERS

After determining the grasping area, we can roughly separate
the grasping area from the original point cloud into two
areas. However, we want to find more precise areas to fit
the size of the gripper. As a result, K-means method [27] is
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FIGURE 3. Complete 3D point cloud of a mug.
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FIGURE 4. Determined grasping area for the mug in Figure 3.

used to segment the point cloud of the grasping area into K
clusters. K-means is a method of vector quantization, aiming
to partition n observations into K clusters in which each
observation belongs to the cluster with the nearest mean.
With this method, the point cloud of the grasping area can
be easily segmented into K clusters, where K depends on the
size of the gripper. A bigger gripper has fewer clusters and a
small gripper has more. At the same time, K-means can also
find the center of each cluster. As illustrated in Figure 5, the
determined grasping area is segmented into 3 clusters painted
with different colors, and the corresponding center point is
shown by a red point.

C. CREATE GRASPING PATHS

After segmentation, we have K clusters and their centers.
To further find the grasp pose, we create M grasping paths
in each K cluster. By visualizing every possibility of the
grasping paths when we grasp a point or object, we find
that there exists a sphere surrounding the grasping target,
where the connection from each point on the sphere to the
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FIGURE 5. Segmentation of the grasping area.

grasping point represents a grasping path. Fibonacci Lattice
is a method to create points lying on the surface of the sphere.
As a result, we will use the Fibonacci sphere to create M
grasping paths, where M depends on how many paths we
want to create for grasping paths. The center of the Fibonacci
sphere is the center of each cluster. We then create the M
grasping paths from the M points scattered on the sphere.
In Figure 6, red lines represent all possible grasping paths
while setting the Fibonacci sphere on the center of each K
cluster.

8 0.06
—_%} 0.00 0.02 0.04
.%6 —0.06‘0-04_0‘02 X

FIGURE 6. M paths created by Fibonacci sphere for each cluster.

D. CALCULATE GRASPING COST FUNCTION

To apply this grasping strategy for human-robot interaction
such as collaborative robots or service robots, we expect
the gripper to grasp the target as a human does. Through
observation of humans, we find that humans are used to
grasping an object orthogonally to the main axis of an object.
For example, most people are used to taking a PET bot-
tle horizontally. Inspired by this human behavior, we use
Principal Components Analysis (PCA) to find the main axis
of the object and grasping area, respectively. PCA is com-
monly used for dimensionality reduction by projecting each
data point onto only the first few principal components to
obtain lower-dimensional data while preserving as much as
possible of the data’s variation. Through this dimensionality
reduction method, we can get the main axis by reducing the
dimensionality of the object’s point cloud. The red lines in
Figure 7 show the main axis of the grasping area of the object
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obtained by PCA. Besides, the M paths generated through the
Fibonacci sphere contain different directions in the sphere.
Some of the paths will pass through the desktop, depicted
by a blue plane in Figure 8, which is infeasible in reality.
As a result, we can directly delete the paths that will pass
through the desktop by removing them from the candidates.
Figure 8 shows some of the paths that have been removed
from the candidate sets.

I =
—0.06-0.04-0.020.00 0.02 0.04 0.06
X

FIGURE 7. Main axis of the grasping area.
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FIGURE 8. Some infeasible candidate paths are removed.

After creating M paths of each cluster as candidates,
an optimal grasping path is required from among all can-
didates as the best grasp. Thus, the other objective of this
work is to estimate an optimal grasping pose for robotic
manipulation to successfully grasp the object. The best grasp
of the target object can be reasonably assumed to contain
the following features: 1) The grasping path should be as
orthogonal to the main axis as possible. 2) There are more
points within the radius of the gripper for the gripper to grasp
and fewer points outside the radius to prevent the gripper
from colliding with object. To achieve these objectives, a cost
function is defined to evaluate the cost for each generated
grasping path, which is given by

1 o — 5 ¢
0.0 % 90’+05*Zmin(1, 202 )
8 i=1 (Yip—ric) +1

p=1,....M, (10

=
|
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where «), is the angle between path p and the main axis,
Y, represents the distance from points i to grasp path p,
ry represents the radius of the kth cluster, and N represents
the object’s point cloud. The constants in (1) are empirically
obtained. In order to find the grasping path with the two char-
acteristics, Equation (1) contains 2 terms multiplied together,
where the first term M:OHO'S calculates the cost of the
intersection angle «, between path p and the main axis of the

object, and the second term

Tl

Z min | 1, ——

i=1 (Yip—re)” +1
calculates the cost of the distance Y;, from all points i to path p
in the object’s point cloud. Through Equation (1), we can find
that the path resulting in a lower value from the cost function
implies that the path is more orthogonal to the main axis and
it has a higher success rate within the radius of the gripper to
complete the grasping.

The design of Equation (1) is to find the optimal grasp path
suitable for the collaborative mode. Furthermore, we might
also utilize this strategy for the bin picking mode when the
target object is on a flat table. To this end, we need to be con-
cerned about whether the gripper would collide with the table
or not when the object is lying on the table. Taking this into
consideration, Equation (1) can be modified as Equation (2)

below:
N
0.1 % |, —90| + 0.5 20
Jy= |O‘P | * Zmin (1, —2)
8 i=1 (Yip_rk) +1
*T(d, By), pP=1,....M @
T(dk’ :3]7)
(Bp—m/2) i
_ PT~|—O.05, ifdy <g , p=1,....M,
1. otherwise
3

where dy, is the distance from the center of the kth cluster
to the table, B, is the angle between path p and the table,
and g represents the maximum open range of the gripper. The
other values are empirically obtained. To prevent the gripper
from colliding with the table when grasping the object on
the table, there is an extra third term expressed in Equation
(3) to multiply with Equation (1), where dj is used to judge
whether the grasping point is too close to the table or not.
Once the grasping point is too close to the table, the term
By — 7/2)?/2 4 0.05 in Equation (3) will yield the value
of the intersecting angle f; between path p and the table.
Through Equation (2), we find that a path resulting in a lower
value from the cost function implies that this path is not only
more orthogonal to the main axis with a higher success rate
within the radius of the gripper to complete the grasping, but
also prevents the gripper from colliding with the table.
Besides finding the optimal grasping path, we still want
to find the grasp pose for the two-finger gripper. As a result,
we find a vertical vector of the grasping path and the main
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FIGURE 9. Optimal grasp pose produced by the proposed grasping
strategy.

axis of the grasping area which is produced by PCA to find
the 6DoF grasp pose. As illustrated in Figure 9, the coordinate
system (a) shows the optimal grasp pose of the object, where
the blue axis represents the best grasping path, which is the
Z-axis of the gripper, the red axis is the vector of the main
axis found by PCA which is the X-axis of the gripper, and
the last green axis is a vertical vector calculated through the
grasping path and the main axis, which is used as the Y-axis
of the gripper. The coordinate system (b) shows the position
and angle of the previous axis of the gripper in the robot arm.
On the other hand, we can directly determine the suitable
open range of the gripper from ry representing the radius of
the kth cluster.

IV. EXPERIMENTAL RESULTS

A. EXPERIMENTAL SETUP

In this paper, we have proposed an optimal grasping strategy
to find an optimal grasp pose for a robotic arm in different
scenarios. In order to evaluate our proposed optimal grasping
strategy, we build a simulation environment to verify the
grasping success rate in various tasks.

V-REP (simulator CoppeliaSim) [28], an integrated devel-
opment environment, is based on a distributed control archi-
tecture: each object/model can be individually controlled via
an embedded script, a plugin, an ROS, or BlueZero node, a
remote API client, or a custom solution. This makes Cop-
peliaSim very versatile and ideal for multi-robot applications.
Controllers can be written in C/C++, Python, Java, Lua, Mat-
lab, or Octave. As a result, we build a simulation environment
on V-REP to verify the capability of the proposed optimal
grasping strategy.

We create a simulation environment shown in Figure 10
(a) that uses only a gripper (RG2), considering only the
end-effector pose (X, y, z, roll, pitch, yaw) to simplify
the complexity and concentrate on evaluating the proposed
approach. We call this simulation environment the collab-
orative mode, which uses a box to support the target. The
box would not be used to calculate the collision with the
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FIGURE 10. Simulation environment with a parallel gripper in (a) the
collaborative mode and (b) the bin picking mode.

gripper after setting it in the simulation environment. Besides,
we build another simulation environment to simulate grasp-
ing the target object placed on the table with a gripper. We call
this simulation environment the bin picking mode, which is
shown in Figurel0 (b).

B. DATASETS

To evaluate the performance of the proposed approach,
we conduct experiments of grasping strategy on two well-
known object datasets, i.e., the LINEMOD dataset [29] and
the YCB-Video dataset [30]. LINEMOD dataset not only
contains the pose of the object but also a 3D model of
each object. There are 13 different objects in the LINEMOD
dataset; ape, bench vise, cam, can, cat, driller, duck, egg
box, glue, hole puncher, iron, lamp, and phone, as shown in
Figure 11. The advantage of adopting the LINEMOD dataset
as our experimental dataset is that each object has a different
shape and size. However, there are several objects which are
much bigger than the others, such as bench vise, egg box,
hole puncher, and lamp. Thus, this will cause challenges in
grasping. Figure 12 shows the grasping area and original
point cloud depicted in red points and blue points, respec-
tively. Besides the LINEMOD dataset, we also choose nine
objects from the YCB-Video dataset as PointnetGPD [19]
selected, including cleanser bottle, mug, meat can, tomato
soup can, banana, power drill, mustard bottle, wood block,
and screwdriver, as shown in Figure 13. Each object also
has its particular shape and size. However, several objects
are much bigger than the others, which would cause more
challenges during the grasping experiment. For example,

FIGURE 11. 3D model of objects in the LINEMOD dataset.

24062

& ° ¥ i £ 2 °
WI Q x»w i ] ‘Sx
~> - #: 8

FIGURE 12. Determined grasping area (in red points) of the objects in the
LINEMOD dataset.

FIGURE 13. 3D model of objects in the YCB-Video dataset.

FIGURE 14. Determined grasping area (in red points) of the objects in the
YCB-Video dataset.

the wood block may be too big for some parallel grippers.
In Figure 14, the determined grasping area and original point
cloud for the selected objects are depicted in red points and
blue points, respectively. Note that the grasping areas shown
in Figs. 12 and 14 are determined for illustration purpose only,
and can be altered to suit the needs of different applications.

C. EVALUATION METRICS

To evaluate the grasping success rate of the proposed optimal
grasping strategy, two different grasping scenarios were con-
ducted in our experiments, called the collaborative mode and
the bin picking mode, respectively. In the collaborative mode,
we aimed to make this experiment as similar as possible to the
real world. First, we let the object randomly rotate and fall
on the box. After moving the gripper to the grasping pose,
which is estimated from the proposed grasping strategy, the
gripper will close its fingers and try to capture the target. Then
the box is removed to simulate that a human is not holding
the object. We call it a grasping success if the object was
still held by the gripper. In the bin picking mode, we built
up a table in the simulation environment, which is shown in
Figure 10 (b). First, we randomly rotate the object and let it
fall on the table. Unlike the collaborative mode experiment,
the gripper would grasp the object and pull it back from the
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table to simulate picking objects up from the table in the real
world. If the gripper collides with the table or the object falls
from the gripper, we call it a grasping failure. On the contrary,
if the gripper still held the object after pulling it back, we call
it a grasping success.

D. IMPLEMENTATION DETAILS

Besides designing two different scenarios, we also set up two
different experiments in these two scenarios. First, we ran-
domly rotate the object along its Z-axis and drop it onto the
box or table. Second, we randomly rotate the object along its
X-axis, Y-axis, and Z-axis, then drop the object onto the box
or table. We recorded the success rate through our evaluation
method in collaborative mode and bin picking mode. In each
of the experiments, we tested ten rounds on each of the objects
in the LINEMOD dataset and YCB-Video dataset.

We have pre-determined each object’s grasping area in
two different datasets, which are shown in Figure 11 and
Figure 13. The cluster K depends on the gripper size and the
size of the grasping area. Besides, we set the parameter M as
256 to create grasp paths of each cluster in these experiments.

Figure 15 shows the experiment process of the object
“bench vise” from the LINEMOD dataset in the collabora-
tive mode. First, an optimal grasp pose is determined from
the proposed method and the gripper opens according to the
diameter of the grasping area found by the method too, which
is shown in Figure 15 (a). Then the gripper moves to the
grasp pose and closes the gripper to grasp the object. Finally,
the box is removed to simulate that the object is not held by
hand. If the object is still grasped by the gripper, we call
it a grasping success in this experiment, as Figure 15 (c)
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FIGURE 15. Experimental results of the object “bench vise” in the
collaborative mode.
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FIGURE 16. Experimental results of the object “wood block” in the bin
picking mode.

shows. Figure 16 shows another experiment process using
the object “wood block™ from the YCB-Video dataset in
bin picking mode. Different from the collaborative mode,
the gripper performs the actions “extend” and ““pull back”
to simulate picking an object with a robotic arm, as shown
in Figure 16 (b) and (d), respectively. Besides, if the gripper
does not collide with the table in the process and still grasps
the object after pulling it back from the table, we call it a
success in this experiment which is shown in Figure 16 (d).
Through our proposed optimal grasping strategy, we not only
find the optimal grasp pose but also determine a suitable open
range of the gripper according to the diameter of the grasping
area. Figure 17 shows the experiment on the objects “mug”
and “woodblock” in the YCB-Video dataset. We can see that
the open range of the gripper in Figure 17 (b) when it grasps
the object “wood block” is much bigger than grasping the
object “mug” shown in Figure 17 (a). Because a suitable
open range of the gripper can be used, collision with the other
parts of the target object can be avoided during the grasping
process. As a result, better performance can be obtained.

(@) o

FIGURE 17. Open range of the parallel gripper for different objects.

E. COMPARISON RESULTS AGAINST THE
STATE-OF-THE-ART METHODS

For better performance demonstration, the comparison of
the proposed optimal grasping strategy with respect to GPD
and PointnetGPD [19] in grasping is conducted to evaluate
the success rate of different scenarios on the YCB-Video.
As illustrated in Table 1, the proposed optimal grasping strat-
egy in different scenarios manifests a higher average grasping
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TABLE 1. Comparison between the proposed method and state-of-the-art approaches in the grasping success rate on the YCB-Video dataset.

GPD [18] PointnetGPD PointnetGPD Ours-Z Ours-XYZ Ours-Z Ours-XYZ
2-class [19] 3-class [19] (Collaborative | (Collaborative (Bin picking) (Bin picking)
YCB-Video robots) robots)
Success rate Success rate Success rate Success rate Success rate Success rate Success rate
(%) (%) (%) (%) (%) (%) (%)
Cleanser B. 100 100 90 100 90 100 100
Mug 30 50 70 100 100 80 60
Meat Can 60 80 70 90 90 100 100
Tomato Soup 90 100 100 100 100 70 100
Banana 20 90 90 100 100 100 100
Power Drill 80 70 90 100 100 100 100
Mustard B. 90 100 90 90 100 100 100
Wood Block 90 90 90 50 70 100 100
Screwdriver 20 70 80 100 100 100 100
Average 64.44 83.33 85.56 92.22 94.44 94.44 95.56
success rate than those of the state-of-the-art methods. The TABLE 2. Grasping success rate on LINEMOD dataset.
proposed optimal grasping strategy reaches a 95.56% suc-
cess rate in bin picking mode, which is better than Point- (COllllrSt-)Z (%urlsl-)thZ O(g?'z OUE;XYZ
ollabora ollaborat n n
netGPD [19] and GPD [18], and means .that our proposed Linemop | tivemode) | ive mode) picking picking
grasping strategy has a better grasping ablht.y. The proposed r— r— r— r—
method also reaches a 94.44% success rate in the collabora- rate (%) rate (%) rate (%) rate (%)
tive n'lode, Whl(':h shovxfs the feaslble grasping performance for Ape T00 700 %0 20
handing the objects. Figure 17 illustrates the advantage of the
. . Bench vise 100 100 90 100
proposed method, where a suitable open range for the gripper
is determined to grasp different objects “mug” and “wood Cam 100 100 100 100
block” in the YCB-Video dataset. As §howq in F1gur§ 17, Can 100 100 100 90
we can see that the open range of the gripper is much bigger
when it grasps the object “wood block’ in Figure 17 (b) than Cat 100 100 100 100
the case when it grasps the object “mug” in Figure 17 (a). Driller 100 100 100 100
Because a suitable open range of the gripper can be used, col-
.. . . . Duck 100 100 100 90
lision with the other parts of the target object can be avoided
during the grasping process. As a result, better performance Egg box 60 60 70 90
can be obtained as shown in Tables 1 and 2. In addition to Glue 100 100 90 100
the comparison with the state-of-the-art methods on the YCB-
Video dataset, we also use other objects from the LINEMOD Hole p. 80 80 100 70
dataset to evaluate our methods. As illustrated in Table 2, our Iron 100 90 100 80
prgpos§d qptlmal grasping strategy also has good grasping Lamp 100 100 90 100
ability in different scenarios. Our methods can reach a 95.38
% success rate and 94.62% success rate in collaborative mode Phone 100 100 100 100
and bin picking mode, respectively. Average 9533 5462 9462 9231

F. COMPUTATIONAL EFFICIENCY

OF THE PROPOSED METHOD

To show the running speed of the proposed method to obtain
an optimal grasp pose, we need to execute both object pose
estimation and the proposed grasping strategy. The experi-
ment of this paper is conducted on a personal computer with
Intel (R) Core (TM) 17-9700 @ 3.0GHz, an NVIDIA GeForce
RTX 2070 graphic card, and a Logitech C920 webcam.

24064

According to the experimental results, the method to estimate
the object pose [10] for an object has a running time of
0.04 seconds, while the proposed grasping strategy, including
the steps of ‘Segment into Clusters’, ‘Create Grasping Paths’,
and ‘Cost Function’, has a running time of 0.1 seconds on
the above-mentioned platform. Thus, the total computation
time required to obtain an optimal grasping pose is about
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0.14 seconds, which reveals the feasibility to determine an
optimal grasp pose in real time for practical robot grasping
applications.

V. CONCLUSION

This paper has proposed an effective and reliable grasping
strategy for determining the optimal grasp pose for widely
used parallel grippers to deal with target objects with any
pose. To evaluate the performance of the proposed method,
we compare our method with the state-of-the-art GPD [18]
and PointNetGPD [19]. The experimental results show that
our proposed method reaches 94.44% and 95.56% success
rate in collaborative and bin picking mode on the YCB-Video
dataset, respectively, outperforming the state-of-the-art meth-
ods. Besides, experimental results of our evaluation using the
LINEMOD dataset also show that our method is still feasible
in both collaborative and bin-picking modes. Furthermore,
since the proposed method only requires the object pose
estimation from a RGB camera, it can also be applicable
to other adaptive grippers to develop an optimal grasping
strategy.
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