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ABSTRACT In this work, the hierarchic multiresolution (MR) preconditioner is combined with the multi-
level fast multipole algorithm-fast Fourier transform (MLFMA-FFT) and efficiently parallelized inmulticore
computers for computing electromagnetic scattering and radiation from complex problems exhibiting deep
multi-scale features. The problem is formulated using the thin-dielectric-sheet (TDS) approximation for
thin dielectric materials and the electric and combined field integral equations (EFIE/CFIE) for conducting
objects. The parallel MLFMA-FFT is tailored to accommodate the MR hierarchical functions, which
provide vast improvement of the matrix system conditioning by accurately handling multi-scale mesh
features in different levels of detail. The higher (coarser) level hierarchical functions are treated by an
algebraic incomplete LU decomposition preconditioner, which has been efficiently embedded into the
parallel framework to further accelerate the solution. Numerical examples are presented to demonstrate the
precision and efficiency of the proposed approach for the solution of realistic multi-scale scattering and
radiation problems.

INDEX TERMS Dielectrics, multiresolution preconditioners (MR), fast solvers, surface integral equations
(SIE), Maxwell’s equations, method of moments (MoM), multilevel fast multipole algorithm (MLFMA),
scattering, radiation.

I. INTRODUCTION
Numerical modelling of time-harmonic electromagnetic
scattering and radiation problems using the surface integral
equation (SIE) methods has been a major research topic in
computational electromagnetics (CEM) [1]–[10]. SIE meth-
ods bring important advantages when compared to other
volumetric approaches, as they naturally incorporate radia-
tion conditions and both parameterization and computations
are restricted to the boundary surfaces and interfaces. This
yields a reduction of the three-dimensional (3D) domain
onto two-dimensional (2D) domains, significantly decreas-
ing the required number of unknowns. Combined with its
known versatility, numerical stability and fewer restrictions
on geometry and material modelling, this has made the SIE
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method a preferred choice for solving many electromagnetic
and engineering problems.

SIE methods also have some inconveniences. They pose
a fully populated dense complex system matrix, which bur-
dens the computational cost and restricts their direct applica-
tion to small-scale problems, with a few hundred thousand
unknowns at most. Fortunately, the last decades have wit-
nessed great achievements in the development of efficient
fast solvers to compress this otherwise high computational
cost. It is worth mentioning, among others, the fast multipole
method (FMM) [11] and its multilevel version, the multilevel
fast multipole algorithm (MLFMA) [3], [12], [13], which
are based on the iterative resolution of the matrix system.
In synergy with concurrent advances in computer technology,
efficient parallel variants have also been devised on modern
shared and distributed memory computing architectures [14],
[15]. Some combine FMM with fast Fourier transform (FFT)
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seeking better parallel scalability, such as FMM-FFT [16] or
its multilevel version, MLFMA-FFT [17]–[19]. These and
other advances have pushed the bounds of SIE methods,
allowing to increase the problem size from tens of millions
to billions of unknowns [18]–[22].

However, as all these advances evolve, bringing compu-
tational capabilities closer to industrial needs, the targeted
problems are becoming increasingly realistic, posing electro-
magnetic models whose complexity and size are constantly
growing. This is giving rise to new challenges, one of the
most important being the multiscale nature of the high-
fidelity models. The presence of small geometrical details
demands discretization with elements that are very small
compared to the wavelength. Additionally, they often involve
very different spatial scales, which can differ by several
orders of magnitude, resulting in disparate mesh sizes. All
of this contributes to increasing the condition number of the
system matrix, which degrades the convergence rate of the
iterative solution, jeopardizing the efficiency gained with fast
solvers [9], [19], [23]–[28].

A well-knownmethod to improve the convergence of itera-
tive solvers is applying a preconditioning technique. Precon-
ditioning techniques have been the focus of intense research
in the past decades. A recent and extensive review of precon-
ditioning techniques for different applications can be found
in [23]. Broadly speaking, they can be divided into two main
categories: algebraic and physics-based preconditioners. The
algebraic preconditioners, such as the incomplete lower
unitriangular upper triangular (ILU), sparse approximate
inverse (SPAI), Jacobi (diagonal) or block-Jacobi precondi-
tioners [29]–[31], estimate an inverse of the system matrix,
applied then to improve the matrix conditioning. Instead, the
physics-based ones act on the discretized operator to regular-
ize it. Some examples of dense-discretization stable physics-
based preconditioners are the Calderón preconditioner [6],
[32]–[36], and the Multiresolution (MR) preconditioner [37].
The MR preconditioner introduces a set of multi-level basis
functions, to discretize the problem, able to keep the different
scales of variation of the solution, improving then the system
matrix conditioning in particular in the case of multi-scale
structures [8], [38], [39].

In this paper we apply the MR preconditioner for com-
puting electromagnetic scattering and radiation of complex
multi-scale problems exhibiting deep multi-scale nature. The
problem is formulated using EFIE/CFIE for the conduct-
ing surfaces and the thin dielectric sheet (TDS) approxima-
tion for thin dielectrics [40], [41]. The integral equations
are discretized using the well-known Rao-Wilton-Glisson
(RWG) basis functions [42] and the Galerkin’s formulation
of the method of moments (MoM) [1], and the resolution
is accelerated using MLFMA-FFT. The MR preconditioner,
alone and combined with LU preconditioner, is then judi-
ciously embedded into the above formulation, rendering
a vast improvement of the matrix system conditioning by
accurately handling multi-scale mesh features in different
levels of detail. Details of the MR integration and subsequent

parallelization of the resulting MLFMA-MR approach are
reported for the first time, laying the groundwork for a
fast-converging highly-scalable methodology in multicore
shared-memory computers. Examples are presented to eval-
uate the precision and efficiency of the MR preconditioner,
demonstrating its performance and applicability in different
scenarios.

II. FORMULATION
Let us consider a collection of homogeneous penetrable bod-
ies in a homogeneous unbounded background. The homoge-
neous regions are denoted byRi, with i = 1, . . . ,M , the index
number of each region. The material properties of the regions
are defined by the complex permittivity εi = εriε0 and the
complex permeability µi = µriµ0. We denote with Sij the
surface between regions Ri and Rj, and with n̂ij the unit vector
normal to Sij pointing toward Ri.

With the above notation, we can formulate the electric field
integral equation (EFIE) and the magnetic field integral equa-
tion (MFIE) in regionRi by introducing the equivalent electric
and magnetic currents Jij(r′) andMij(r′) on the interfaces Sij
that surround Ri. The equivalent currents are related to the
total electric and magnetic fields in this region, Ei(r′) and
Hi(r′), as Jij(r′) = n̂ij × Hi(r′) and Mij(r′) = −n̂ij × Ei(r′).
Then, applying the equivalence principle to the total electric
and magnetic fields in Ri, we obtain the tangential (T) EFIE
and MFIE equations as follows:

T-EFIEi:
∑
j′∈Gi

(
ηiLi(Jij′)−Ki(Mij′)

)
tan

+
1
2
n̂ij ×Mij =

(
Einci

)
tan

(1)

T-MFIEi:
∑
j′∈Gi

(
Ki(Jij′)+

1
ηi
Li(Mij′)

)
tan

−
1
2
n̂ij × Jij =

(
Hinc
i

)
tan

(2)

In a similar way, the twisted or normal (N) equations in Sij
throughout Ri can be obtained as

N-EFIEi : n̂ij ×
∑
j′∈Gi

(
ηiLi(Jij′)−Ki(Mij′)

)
−

1
2
Mij = n̂ij × Einci (3)

N-MFIEi : n̂ij ×
∑
j′∈Gi

(
Ki(Jij′)+

1
ηi
Li(Mij′)

)
+

1
2
Jij = n̂ij ×Hinc

i (4)

In Eqs. (1)–(4)Gi denotes the set of indices of the regions sur-
rounding region Ri, ηi is the intrinsic impedance in medium
Ri, Einci and Hinc

i are the incident fields due to the sources
located inside Ri, and the integro-differential operators L and
K are defined as

Li(Xi) = jki

∫
S
Xi(r′)gi(r, r′)dS′
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−
1
jki
∇

∫
∇′ · Xi(r′)gi(r, r′)dS′ (5)

Ki(Xi) = PV
∫
S
Xi(r′)×∇gi(r, r′)dS′. (6)

where r is the observation point approaching to Sij from the
interior of region Ri and r′ ∈ Sij′ denote the source points
at the boundaries surrounding Ri. ∇′ denotes the divergence
in the primed (source) coordinates, PV denotes the principal
value of the integral in Eq. (6), ki is the wavenumber in Ri and
we define

gi(r, r′) =
exp−jki|r−r′|

4π |r− r′|
(7)

which is the homogeneous Green function in Ri. The sum-
mations in equations (1) to (4) account for all the surfaces Sij′
surrounding Ri, including Sij.

We can now combine the above integral equations in region
Ri, yielding two combined field integral equations (CFIEs) on
Sij, one being well-tested for the equivalent electric currents
(J-CFIE) and the other being well-tested for the equivalent
magnetic currents (M-CFIE), as follows [43]:

J-CFIEi : ai
1
ηi
T-EFIEi + biN-MFIEi (8)

M-CFIEi : −ciN-EFIEi + diηiT-MFIEi (9)

where ai, bi, ci and di are the appropriate complex combina-
tion coefficients. The next step is to combine Eqs. (8) and (9)
for regions Ri and Rj onto a single integral equation for each
interface Sij as follows:

J-CFIEij = J-CFIEi + J-CFIEj (10)

M-CFIEij = M-CFIEi +M-CFIEj (11)

posing the so-called JMCFIE formulation.
In the case of perfect electric conduction (PEC) objects

surrounded by or in contact with multiple penetrable objects,
we can simply derive an appropriate CFIE from the JMCFIE
formulation by dropping Eq. (9) and adequately choosing
the combination parameters in Eq. (8). The CFIE for a PEC
object in contact with a penetrable region Ri can be written
as:

CFIEi = αT-EFIEi + (1− α)N-MFIEi (12)

where 0 < α < 1 is the weight controlling the contribution
of the EFIE and MFIE equations.

A. THIN DIELECTRIC SHEET (TDS)
In the case of simulating penetrable dielectric sheets that
are thin compared to wavelength, the JMCFIE formulation,
described above, involves a large count of unknowns, as both
sides of the dielectric sheet must be modeled using equivalent
electric and magnetic currents. In these particular cases, the
computational cost can be greatly alleviated by applying a
specific formulation, namely the thin dielectric sheet (TDS)
approximation [40], [41]. It is based on the fact that, when
the thickness of the TDS is small in terms of wavelength

and the sheet dielectric permittivity εs = εrsε0 is not too
low compared with the background, the impinging field will
penetrate the sheet almost perpendicularly. Under these con-
ditions, tangential fields will dominate in the dielectric and
the normal components can be neglected. Therefore, a TDS
of thickness τ embedded in a penetrable region Ri can be
modeled as

TDSi : (Zs(r)Ji + ηiLi(Ji))tan ≈
(
Einci

)
tan

(13)

where the volumetric sheet is approximately represented by
an equivalent surface electric current Ji placed on its middle
surface Si.

Zs(r) =
−j

ωε0(εrs − 1)τ
(14)

is the equivalent surface impedance of the TDS.
The above integral equation is very similar to that for a PEC

surface. Only one set of surface equivalent electric currents is
required to model the complete TDS, reducing the amount of
unknowns with respect to the JMCFIE approach by a factor
of four.

B. THE MULTIRESOLUTION PRECONDITIONER (MR)
The multiresolution (MR) preconditioner [8], [37], [44]–[47]
improves the spectral properties of the original MoM matrix
system by splitting the unknown current into solenoidal and
non-solenoidal parts. The procedure is divided into different
steps. First, the input triangular mesh, supporting the dis-
cretization of the problem in terms of standard RWG basis
functions, is rearranged until getting a set of meshes with dif-
ferent mesh-element (cell) sizes. This is done via a multilevel
algorithm in which the adjacent cells of the previous level,
starting from level-0 triangular facets, are aggregated giving
rise to macro-cells. The generalized RWG (gRWG) functions
are then defined on each pair of adjacent macro-cells, and
the associated unknown current is divided into solenoidal and
non-solenoidal parts as detailed in [37], [45]. This process
poses theMR basis functions of each level. The above scheme
is applied recursively down to the quasi-Nyquist (coarsest)
cell-size level, where gRWGs are defined completing the set
of multilevel basis functions.

The above MR functions at the intermediate (detail) levels
and gRWG functions at the coarsest level can be described as
linear combinations of the initial underlying RWG functions.
Thereby, the MoM system matrix Z in the space of the initial
RWG basis functions can be expressed in the new functions
by simply applying a change-of-basis matrix T, as follows:

Ẑ = T · Z · TT =

(
ẐMR ẐMR,gRWG

ẐgRWG,MR ẐgRWG

)
(15)

where the matrix T is made up of two different blocks:

T = [TMR,TgRWG]T (16)

being TMR the sub-matrix describing the set of NMR basis
functions defined at detail levels, and TgRWG the sub-matrix
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with the set of NgRWG functions at the coarsest level, where
NMR + NgRWG = N , i.e. the total number of unknowns.
Next, a diagonal preconditioner (DP) D is applied to the

MoM matrix in the new multilevel basis, whose elements are
given by:

Dii =
1√
Ẑii

, i = 1, . . . ,N (17)

Thematrix block corresponding to the gRWG functions at the
coarsest level (ẐgRWG in Eq. (15)) is further preconditioned
in terms of its incomplete LU factorization [8], which can be
denoted as:

DgRWG · ẐgRWG · DgRWG ≈ L · U (18)

whereDgRWG is the portion ofD corresponding to the gRWG
functions at the coarsest level and ẐgRWG is the gRWGmatrix
block of Ẑ.
It is worth mentioning that a naive implementation of the

above LU preconditioner would compromise the scalability
on mixed-memory architectures, burdening the communica-
tions between distributed processes and drastically reducing
efficiency. In this paper, we propose a very efficient imple-
mentation of this operation taking advantage of the highly
localized and hierarchic nature of the new set of basis func-
tions. Details of this implementation will be given in the next
section.

C. FAST SOLVER
Applying the standard MoM procedure and the Galerkin’s

testing method to Eqs. (12) and (13), we obtain an N × N
dense matrix whose solution are the N unknown coefficients
Jn of the expansion of the equivalent current density J in terms
of RWG basis functions. Here, J stands for the collection of
current densities on the PEC and TDS surfaces of the problem
under analysis.

To reduce the otherwise prohibitive computational cost of
the MoM for the case of large-scale geometries, we apply
the MLFMA-FFT. As mentioned earlier, this is an extension
of MLFMA to speed-up the matrix-vector-product (MVP)
in the framework of an iterative resolution of the problem.
Assuming an octree spatial decomposition of the geometry
into a set of groups, theMVP in group p can be obtained using
FMM as

N∑
n=1

ZmnJn =
∑
q∈Bp

∑
n∈Gq

ZmnJn +
(
−jk
4π

)2

×

∫
S2

Vmp

∑
q/∈Bp

αpq(k, rpq)

×

∑
n∈Gq

Vqn(k̂)Jnd2k̂,m ∈ Gp (19)

where Bp is the set of indexes for the nearby (adjacent)
groups of group p, Gp is the set of indexes corresponding
to the testing functions of group p, Gq is the set of indexes

corresponding to the basis functions of group q, and S2 is the
Ewald unit sphere. In Eq. (19), the near interactions between
basis and testing functions belonging to adjacent groups are
calculated using the direct MoM procedure. The far (non-
adjacent) group contributions are accounted for using the
standard FMM by (i) aggregating the radiation of the basis
functions within each group q to the center of their groups

Vqn(k̂) =
∫
1n

(Ī− k̂ k̂) · fn(r)e−jk·(rq−r)dS (20)

where rq is the center of the qth group and with Ī the 3-D unit
dyad; (ii) Translating the aggregated radiations between the
different groups using the translator operator

αpq(k, rpq) =
L∑
l=0

(−j)l(2l + 1)h(2)l (krpq)Pl(k̂ · r̂mn) (21)

where h(2)l is the spherical Hankel function of the second kind,
Pl is the Legendre polynomial of degree l, and L is the number
of multipole expansion terms [12]; And (iii), disaggregating
the receiving patterns to the testing functions within each
receiving group p

Vmp(k̂) = α
∫
1m

(Ī− k̂ k̂) · fm(r)e−jk·(r−rp)dS

− (1− α)k̂ ×
∫
1m

fm × n̂m(r)e−jk·(r−rp)dS

(22)

With this algorithm, the computational cost is reduced from
O(NitN 2) to O(NitN 1.5), with Nit the number of iterations
required to obtain a prescribed residual error.

Using MLFMA the computational cost of the MVP can
be further reduced to O(NitN logN ), using exponential trans-
lation, interpolation and adjoint interpolation (or anterpola-
tion) of the fields, in the framework of a multilevel octree
decomposition of the geometry. Additionally, to benefit
from the availability of multicore distributed computers, the
MLFMA-FFT extension is applied. This algorithm imple-
ments the translation between groups at the coarsest level
of the octree decomposition by performing a 3-D circular
convolution per sample of the Ewald sphere. This operation
is efficiently done in the transformed domain applying the
FFT. MLFMA-FFT avoids inter-process communication and
equally distributes the workload among parallel processes,
posing a highly scalable parallel implementation. Solutions
of surface integral equation with up to one billion unknowns
have been obtained using this method [18], [48].

The above algorithms reduce the complexity of the MVP.
But the overall cost can also be lowered by accelerating con-
vergence to the solution (i.e., reducing Nit ). To this purpose,
we apply the MR preconditioner described in the previous
section, where the multilevel MR and gRWG basis functions
obtained as linear combinations of the original RWG basis
functions. This change of bases can be efficiently applied
through two sparse matrix vector products (SpMVP) before
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and after the MLFMA main MVP as
N∑
n=1

N∑
i=1

N∑
j=1

T ′miZijT
′T
nj Ĵn

=

N∑
i=1

T ′mi
∑
q∈Bp

∑
j∈Gq

Zij
N∑
n=1

T ′Tnj Ĵn +
N∑
i=1

T ′mi

·

(
−jk
4π

)2 ∫
S2

Vip

∑
q/∈Bp

αpq(k, rpq)
∑
j∈Gq

Vqj(k̂)

×

N∑
n=1

T ′Tnj Ĵnd
2k̂,m ∈ Gp (23)

where T′ = D · T is the sparse change-of-basis matrix
including the DP of Eq. (17).

III. PARALLEL IMPLEMENTATION
In this section we delve into the details of the integra-
tion of the hierarchic MR preconditioner in the parallel
MLFMA-FFT. This integration must be addressed carefully,
as operatingwith large sparsematrices, such as those involved
in the MR approach, could create a significant computational
bottleneck in parallel deployment.

Let us start by introducing a simplified notation for the
accelerated MVP in (19), as:

y =
(
Znear + Zfar

)
· I (24)

where the product by Znear on the right hand side (RHS)
denotes the near-field contributions (adjacent groups) to the
MVP, and the product by Zfar denotes the far (non adja-
cent groups) contributions calculated via MLFMA-FFT as
explained in Section II.C. These contributions correspond to
the first and second terms of the RHS in (19) respectively. I is
the vector with the N unknown coefficients of the expansion
of the current density J (in the original RWG space), and y is
the vector resulting from the MVP.

The above MVP is called in the framework of the parallel
iterative solving of the dense matrix system. The iterative
solver is the GMRES implementation from the book of SIAM
Templates [49], adapting the code for complex arguments and
parallelizing it using the OpenMP standard.

Applying theMR preconditioner requires GMRES to oper-
ate in the subspace of the new set of MR basis functions,
where the MVP in (23) should be applied instead of (19).
Considering that MR hierarchical bases can spread beyond
the boundaries of individual MLFMA octree groups at the
finest level, a naive implementation of (23) could easily
burden the parallel numerical computation. The inclusion of
the preconditioner was resolved in this work by incorporating
two additional sparse MVPs (SpMVPs) in (24), as follows:

ŷ = T′ ·
(
Znear + Zfar

)
· T′T · Î (25)

where Î is the vector with the unknown coefficients of
the expansion of the current density J in the new set of

(MR+gRWG) bases, and where

ŷ = [ŷMR, ŷgRWG]T (26)

is the resulting MVP in the MR subspace, with ŷMR the part
corresponding to theMR functions defined at the detail levels
and ŷgRWG the part corresponding to the gRWG functions at
the coarsest level.

Next, the LU preconditioner defined in Eq. (18) is applied
to the gRWG part of the MVP resulting from Eq. (25), as

ŷILUgRWG = (L · U)
−1
· ŷgRWG. (27)

Only the gRWG bases contained in the original MLFMA
near-field matrix are considered, by applying (15) to Znear ,
which is calculated for the initial RWG basis functions at the
finest level of theMLFMAoctree (i.e., Ẑnear = T·Znear ·TT ).
Subsequently, (18) is applied to the gRWG block of Ẑnear

(ẐneargRWG). This maximizes data locality and the efficiency of
the parallel implementation, albeit at the expense of limiting
the interactions between gRWG functions to those available
in MLFMA, resulting in incomplete LU (ILU) factorization.
In our implementation, this implies that there may even be
pairs of gRWG functions that are partially computed in the
LU preconditioner, since not all the partial contributions
of the RWGs that make up these macrobases are available
in Znear .
The above formulation has the advantage of applying

MLFMA-FFT in the initial RWG subspace, where its par-
allel performance is optimized, while GMRES operates in
the preconditioned MR subspace. Importantly, the two addi-
tional SpMVPs involved in Eq. (25) and subsequent appli-
cation of the ILU preconditioner have been accelerated and
judiciously embedded into the MLFMA-FFT parallel imple-
mentation. All the required sparse matrices (T′, Znear and
ẐneargRWG) are stored in compress sparse row (CSR) format.
Efficient algorithms have been developed for the SpMVP
parallel computation using OpenMP (this also applies to the
near-field calculation of the MVP in the RWG subspace in
Eq. (25), i.e.,Znear ·(T′T · Î). Instead of the usual octree-group
parallelization, we have used a SpMVP to avoid memory
overlapping, so only the CSR sparse version of this matrix is
stored). Additionally, Ẑnear is never fully calculated, as only
the diagonal and the gRWG block of this matrix are needed.
Effective parallel algorithms have been developed for the
calculation of both elements.

The efficient implementation of the ILU preconditioner
is, however, somewhat more cumbersome, as the ILU pre-
conditioner is not naturally prone to parallelization. Naive
implementations generally suffer from heavy inter-process
communication overhead, resulting in very inefficient par-
allel performance. This lack of scalability can be overcome
in the present case by applying the parallel sparse direct and
multi-recursive iterative linear solver (PARDISO), available
in the Intel Math Kernel Library (MKL) [50]. The pipelining
parallelism of this implementation combined with the strong
sparsity and local dependencies of the new set of hierarchical
functions with respect to the initial RWGs, allow efficient
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TABLE 1. Singular values (SV) analysis.

parallel computation of (L · U)−1 in multicore computers,
avoiding the bottleneck normally involved when applying the
ILU preconditioner in large-scale parallel calculations.

IV. NUMERICAL RESULTS
In this section, we illustrate the effectiveness of the multires-
olution preconditioner in solving large-scale scattering and
radiation problems with real-life interest. First, we examine
the correctness of the proposed method by solving a cylindri-
cal PEC monopole with 0.25 m length and 15 mm diameter
on a square ground plane with a side of 1 m. The real and
imaginary parts of the input admittance versus frequency
calculated through the proposed MR-LU (indicated in the
following MLFMA-MR-LU) and the MR alone (indicated in
the followingMLFMA-MR) are depicted in Fig. 1, compared
to the reference solution usingMLFMA andRWGbasis func-
tions without preconditioning (indicated MLFMA). In both
cases the EFIE is applied. A perfect agreement is observed
between the three results.

To assess the spectral properties of the proposed MR
preconditioner, the singular values of the EFIE impedance
matrix at the resonant frequency of 300 MHz are evaluated
for the RWG, MR and MR-LU spaces, after the application
in all cases of the diagonal preconditioner (DP). In particular,
Table 1 reports the corresponding minimum and maximum
singular values. It is evident that, with respect to the RWG
space, the minimum singular value is around two orders
of magnitude higher in the MR space and almost three
orders more if LU preconditioner is applied to the gRWG
block, reducing so significantly the matrix condition num-
ber. Moreover, Fig. 2 shows the eigenvalues distribution of
the RWG and MR-LU MoM matrices after DP. Applying
the MR-LU preconditoner the eigenvalues are concentrated
at 1, as it would happen for a second-kind integral equation:
this measures the regularization introduced by the applied
preconditioner. Finally, the respective relative residual errors
with the number of Krylov iterations are plotted in Fig. 3. It is
observed clearly that a dramatic improvement of convergence
is obtained using the proposed MR preconditioner.

A second example is considered to evaluate the correctness
and effectiveness of the MR preconditioner when applied to
the TDS approximation. We consider a spherical shell made
of glass material (permittivity εr = 5) with a diameter of
1 m and a thickness of 2.5 mm in vacuum, illuminated by
a linearly polarized plane wave at a frequency of 900 MHz.
Fig. 4(a) shows the bistatic radar cross section (RCS) cal-
culated using the TDS approximation, compared to the ref-
erence JMCFIE solution. An average mesh size of λ/10 on
both sides (spherical surfaces) of the shell is considered for

FIGURE 1. Input admittance versus frequency of a cylindrical PEC
monopole on a square ground plane.

FIGURE 2. Eigenvalues distribution of the EFIE impedance matrix for the
example in Fig. 1 after DP; (a) RWG, (b) MR-LU.

the JMCFIE solution, as well as for the equivalent (single
surface) sphere in the case of the TDS approximation. In the
latter model, a finer mesh of λ/40 is applied around a small
region of the surface, as illustrated in the inset of Fig. 4(a),
to better illustrate the effectiveness of the MR approach in the
case of a TDS including multiscale features. Looking at this
figure, a good agreement between the TDS and the reference
results is observed, as expected since the shell thickness
is small enough compared to the wavelength. Figure 4(b)
shows the convergence of the relative residual error, where
it can be seen that both MLFMA-MR and MLFMA-MR-LU
outperform MLFMA with RWG functions. This reveals the
effectiveness of the MR preconditioner in conjunction with
the TDS approach.

A challenging structure consisting of a Ferrari Testarossa
is considered next, as shown in Fig. 5. This structure exhibits
deep multi-scale nature, combining smooth surfaces with
different levels of details distributed throughout the structure:
on the sides of the doors, front and rear grills, rear cover,
wheels, shock absorbers, and the exhaust pipes. To test the
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FIGURE 3. Relative residual error for simulation of the example in Fig. 1.

FIGURE 4. (a) Bistatic radar cross section of a spherical shell made of
glass (permittivity εr = 5) in vacuum using the TDS approximation,
compared to the reference JMCFIE solution; (b) relative residual error for
the simulation of the glass shell.

FIGURE 5. Ferrari Testarossa CAD model with a shark monopole strip
antenna.

proposed method exhaustively, two different kinds of prob-
lems were considered, consisting of the calculation of the
scattering for an incident plane wave, and the calculation of
a radiation problem for a shark-type antenna located in the
ceiling. Additionally, both problems were solved byMLFMA
using two different integral equation approaches: first, the
EFIE formulation was applied to the entire structure; alter-
natively, the CFIE formulation was applied to the closed
parts (body), leaving EFIE for the open ones (antenna). The
car windows and windshields were modeled using the TDS

FIGURE 6. Real part of the equivalent electric surface current distribution
induced on the Ferrari Testarossa considering a impinging plane wave
excitation.

integral equation formulation applied to a 2.5 mm thick glass
material with relative permittivity εr = 5. The frequency was
set to 900 MHz, and an average mesh size of λ/20 was set to
the smooth parts, while a fine enoughmeshing (up to λ/500 in
some parts) was applied to properly model the small details,
which clearly reveals the multi-scale nature of this example,
yielding a total of 1,051,408 unknowns. At the prescribed
operating frequency, the thickness of the glass structures is
small enough compared to the wavelength within the sheet
to give good results using the TDS approximation, without
considering the normal current induced in the dielectric.

The proposed MLFMA-MR-LU is compared to
MLFMA-MR, the conventional ILU preconditioning applied
to the whole problem using RWG basis functions (indicated
MLFMA-ILU), and a raw solution using RWG without pre-
conditioning at all (indicated MLFMA). Importantly, given
the large size of the problems posed, the gRWG matrix in
MR-LU is stored in CSR format and ILU factorization is
accelerated and parallelized throughout PARDISO routines,
which are available from the Intel Math Kernel Library.
Sparse storage and PARDISO factorization and solving are
also applied to the conventional ILU preconditioning. This
enables these ILU based preconditioners to be used in the
large examples posed, which would otherwise be intractable
due to computational burden.

Let us focus first on the scattering problem. An incident
vertically polarized plane wave is considered, impinging into
the car nose with θi = 90◦ and φi = 0◦. The equivalent
electric currents induced on the car surfaces are shown in
Fig.6. Figure 7(a) shows the convergence of the relative resid-
ual error to reach these currents with the number of Krylov
iterations, for the case in which the problem is solved by
MLFMA applying EFIE for the complete structure. It can be
observed that both the MLFMA-MR-LU and MLFMA-ILU
approaches outperformMLFMAandMLFMA-MR, reaching
residual errors below 10−6 in around 1500 iterations. Nev-
ertheless, it must be remarked that the time per iteration is
different in each preconditioner, as can be observed from
Table 1, which gathers the setup, iteration time and solving
time (time to reach 10−6 residual error) for the set of exam-
ples considered in this section. Consequently, a better figure
of merit is the wall-clock time, defined as the time to solve
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FIGURE 7. (a) Iteration count and (b) wall-clock time for the EFIE
formulation considering a impinging plane wave excitation.

TABLE 2. Computational times (s) for the different preconditioners and
examples considered.

the complete problem, which is shown in Fig. 7(b). From
these curves we can observe that MLFMA-MR-LU is by
far the preconditioner that provides the fastest convergence,
reaching the prescribed relative error in little more than half
an hour. This contrasts with the wall-clock time convergence
of the other solutions, which remains above a relative error of
10−3 after one hour and a half. MLFMA-MR-LU is superior
to MLFMA-ILU also in terms of peak memory, as shown
in Table 2, which lists the peak memory for the different
examples and preconditioners. MLFMA-MR-LU requires a
slight increase in memory compared to the plain MLFMA,
but it is far from the more than four times the memory needed
by MLFMA-ILU.

A similar picture can be observed in Fig. 8 (a) and (b) for
the case of using CFIE for closed parts and EFIE for open
ones. In this case, even though the iteration count is lower for
MLFMA-ILU, when we bring time and peak memory up the
MLFMA-MR-ILU solver is still the one that provides fastest
convergence.

FIGURE 8. (a) Iteration count and (b) wall-clock time for the CFIE-EFIE
formulation considering a impinging plane wave excitation.

FIGURE 9. Real part of the equivalent electric surface current distribution
induced on the Ferrari Testarossa.

We move next to the radiation problem, where the exci-
tation consists of an extended delta-gap applied to the base
of the shark-type antenna. The equivalent electric currents
induced on the structure are shown in Fig. 9. Looking at
the convergences for the EFIE case, gathered in Fig. 10,
a very similar behavior to the scattering problem is observed.
Nevertheless, as could be expected, MLFMA without pre-
conditioning performs worse than in the scattering case (for
a given example, convergence is usually worse in radiation
problems than in scattering problems due to localized excita-
tion). What stands out in this result, however, is the excellent
convergence of the MLFMA-MR-LU approach, which even
improves the speed-up attained in the scattering counterpart.
A residual error below 10−6 is reached in less than half
an hour (1000 iterations), a very fast convergence given the
complexity of this problem, which demonstrates the remark-
able improvement of matrix-conditioning contributed by MR
basis functions.

Similar conclusions are observed in the case of using
CFIE/EFIE formulation, shown in Fig. 11. As expected, the
convergence of all preconditioned cases is better than using
pure EFIE formulation, as can be deduced from Fig. 10.
Both the MR and LU based preconditioners greatly facilitate
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FIGURE 10. (a) Iteration count and (b) wall-clock time for the EFIE
formulation considering a delta-gap excitation in connection basis of
shark antenna.

FIGURE 11. (a) Iteration count and (b) wall-clock time for the CFIE-EFIE
formulation considering a delta-gap excitation in connection basis of
shark antenna.

problem solving, with MLFMA-MR-LU still allowing the
quickest and lightness solutions in terms of wall-clock time
and memory.

In view of the preceding results, we can summarize that
MLFMA-MR-ILU constitutes the best approach of those
tested to deal with this kind of multi-scale problems, espe-
cially when the EFIE formulation come into play. Finally,
for the sake of completeness, Fig. 12 shows some views of
the induced currents obtained withMLFMA-MR-ILU, where
it can be appreciated the noiseless distribution of current on

TABLE 3. Peak memory (GB) for the different preconditioners and
examples considered.

FIGURE 12. Real part of the equivalent electric surface current
distribution induced on the Ferrari Testarossa.

the very tiny details in different parts of the car. The current
flows perfectly without observable artifacts along the entire
structure, including car windows and windshields.

All results have been calculated on an Intel(R) Xeon(R)
E7-8867 v3 computing server using 32 cores, providing an
average speedup ratio of 24 for the larger examples.

V. CONCLUSION
In this work, a highly scalable parallel implementation of
MLFMA-FFT combined with MR-ILU was proposed for the
analysis of complex large-scale radiation and scattering prob-
lems including TDS and EFIE/CFIE formulations. The highly
localized and hierarchic nature of the MR basis functions is
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taken into account to maximize the efficiency of the parallel
implementation in the context of the MLFMA-FFT parallel
scheme. The preconditioner is applied through the use of
efficient algorithms for the store and calculation of SpMVPs
and the efficient application of PARDISO solver.

The efficiency and versatility of the proposed approach
has been demonstrated through simulations of a challenging
structure, consisting of a Ferrari Testarossa, in different radi-
ation and scattering scenarios. It was shown that the inclusion
of the hierarchical MR-ILU scheme within theMLFMA-FFT
constitutes a robust preconditioner for the solution of this
kind of problems in all cases, and especially when the EFIE
formulation come into play.
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