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ABSTRACT Solving parametric partial differential equations using artificial intelligence is taking the pace.
It is primarily because conventional numerical solvers are computationally expensive and require significant
time to converge a solution. However, physics informed deep learning as an alternate learns functional
spaces directly and provides approximation reasonably fast compared to conventional numerical solvers.
The Fourier transform approach directly learns the generalized functional space using deep learning among
various approaches. This work proposes a novel deep Fourier neural network that employs a Fourier neural
operator as a fundamental building block and employs spectral feature aggregation to extrude the extended
information. The proposed model offers superior accuracy and lower relative error. We employ one and
two-dimensional time-independent as well as two-dimensional time-dependent equations. We employ three
benchmark datasets to evaluate our contributions, i.e., Burgers’ equation as one dimensional, Darcy Flow
equation as two dimensional, and Navier-Stokes as two spatial dimensional with one temporal dimension
as benchmark datasets. We further employ a case study of fluid-structure interaction used for the machine
component designing process. We employ a computation fluid dynamics simulation dataset generated using
the ANSYS-CFX software system to evaluate the regression of the temporal behavior of the fluid. Our
proposed method achieves superior performance on all four datasets employed and shows improvements to
baseline. We achieve a reduced relative error on the Burgers’ equation by approximately 30%, Darcy Flow
equation by approximately 35%, and Navier-Stokes equation by approximately 20%.

INDEX TERMS Partial differential equation approximation, physics informed neural network, computa-
tional fluid dynamics, neural operators, functional spaces, spectral feature learning.

I. INTRODUCTION
Numerical simulations use a multidimensional discretization
mechanism for solving partial differential equations. They
are computationally expensive and require significant time
to solve numerical problems. It requires large-scale for-
ward numerical runs, often time-consuming and computa-
tionally expensive. In general, the approximation process
is time-consuming, so one has to wait long enough for
results. Therefore, it delays the organizational decision pro-
cess. Machine learning researchers have made breakthrough
progress in providing alternative solutions to numerical sim-
ulators or solvers in the past few years. Neural networks
that use the data-driven finite-dimensional operator [1]–[3]
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and parameterize the solution function are called physics
informed, physics constrained, or neural finite-difference
learning approaches [4], [5].

DeepONets [6] proposed a solution to the numerical
approximations using deep learning. In [7] a multi-pole
graphical neural network (MGNO) was proposed.
(Li et al.2020) [8] proposed the Fourier Neural Opera-
tor (FNO) based on the Fourier transform that solves the
problem through the functional parametric dependency and
learns directly from the infinite dimension mapping. Then
U-FNO [9] improved the FNO to work with the multi-phase
flow by adding a U-network inside the FNO. In this context,
FNO made significant progress and demonstrated cutting-
edge performance.

Solving partial differential equations using deep learning
or machine learning is an active research field, and various
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FIGURE 1. System Architecture: Deep spectral feature aggregation model using Fourier neural operator.

solutions with excellent performance exist already, but deep
learning and computer vision are not yet perfect enough to
produce a strong performance impression. It motivates us to
contribute to this field of research. As an active research field,
more and more solutions are being proposed in this area.

Fourier neural operators (FNO) have presented a novel
method with excellent performance for functional space
learning. So, applying the underlying architecture inherits
feature space learning to each extended model by itself. How-
ever, we analyze that cascading Fourier convolutions with
iterative calls cause information loss during reconstruction,
the process of transforming spatial domain representations
into spectral domains, performing complex multiplications,
and inverting transforms into spatial domains. In this process,
information loss is observed at the boundary due to spectral
convolution’s forward and backward transformation process.
So it allows us to propose the model to enhance the perfor-
mance while processing the same information iteratively by
saving feature loss at the edge after each layer.

This study aims to fulfill the performance gap and to
develop a deep neural network model that takes advantage of
the Fourier neural operator to learn partial differential equa-
tion (PDE) functional space using the fast Fourier transform
domain and improve the feature representation by collecting
each layer in a dedicated tensor and fusing this feature-filled
tensor with final outputs. We extend the research work by
FNO to achieve our extended goals.

Our contributions in this study are as follows.
• We introduce a novel deep spectral-aggregation
approach with block-wide feature aggregation consum-
ing the Fourier neural operator.

• We incorporate spectral channel compression to extract
most learned information and keep from information
loss during layer cascading.

• We introduce spectral feature fusion at the final layer of
each aggregation block.

• Finally, we develop a novel deep-spectral-feature-
aggregation neural network architecture made of deep-
spectral-aggregation blocks and a fully connected layer
for the output.

This study proposes a deep neural network model, which
fundamentally is a deep layer aggregation model with spec-
tral feature compression. Spatial convolutions learn feature
spaces as spatial features, whereas spectral convolutions learn
functional spaces directly. The model as shown in Figure 1
is designed to accept Inputs in one, two, or three dimen-
sions that are kept compatible with the base paper; it mainly
depends on the composition of the dataset, i.e., Burgers’
equation is a one-dimensional dataset; hence, the model
for the one-dimensional dataset accepts a compatible one-
dimensional input. Similarly, the Darcy Flow equation pos-
sesses two-dimensional and Navier-Stokes two-dimensional
with additional temporal dimension, which can be used as
three-dimensional input. The model is configured in a regres-
sion topology with a loss function of mean squared error
(MSE); hence the output possesses the same dimension as the
input.

We used three benchmark datasets: Burgers’ equations,
Darcy Flow equations, andNavier-Stokes andNavier-Stokes-
based computational fluid problems. A new state-of-the-art
performance was achieved by measuring the mean squared
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error with the lowest relative error across all benchmark
datasets under consideration.

We compare our proposed model with time-independent
approaches: Artificial Neural Network (NN), Convolution-
based Neural Network Method (FCN) [10], Graph Neu-
ral Operator (GNO), Multipole Graph Neural Operator
(MGNO), Sub-Neural Operator (LNO), DeepONet, and Prin-
ciple Component Analysis (PCANN) based neural net-
works. On the other hand, Time-dependent approaches: 2D
ResNet18 with residual connections, image segmentation
model U-Net, 2D + temporal turbulence network TF-Net,
Fourier neural operator 2D+ time (FNO-2D), and 3D model
Fourier neuron operator (FNO-3D). The proposed spec-
tral aggregation neural network approach with and without
time-dependent problems outperformed and achieved a new
state-of-the-art performance.

The primary audience for this work is the deep learn-
ing community that promotes and advances computer vision
for the physics-informed learning models and estimating
numerical problems through computer vision. On the other
hand, physical science researchers looking for alterna-
tive deep learning computational models can employ our
proposed model to estimate partial differential solutions.
The Navier-Stokes equation solutions can be approximated
quickly and kept from time-consuming simulations for their
initial study.

The rest of the paper consists of four sections.
Section 2 covers existing approaches and related work in
subject areas. Section 3 presents the proposed method.
Section 4 describes and discusses the experimental results in
detail. Finally, Section 5 concludes the research contribution
and presents future aspects of this study.

II. RELATED WORK
A. CONVENTIONAL VS PHYSICS INFORMED
MACHINE LEARNING
In general, equation solvers use spatial discretization meth-
ods to solve equations. This includes the finite difference
method (FDM) or the finite element method (FEM). So there
is a trade-off between speed and accuracy due to the size
of the grid or mesh. The coarse grid eventually ends with a
coarse resolution, whereas the fine grid requires much time to
find a solution. Finding solutions to complex problems is dif-
ficult and requires patience. [4] has developed a new interface
for machine learning that enables synergistic combinations
and introduces mechanisms for integrating physical princi-
ples into deep neural networks. [11] has developed a new neu-
ral operator for Fourier spaces by directly parameterizing the
integral kernel. Neural operators can demonstrate zero-shot
learning at super-resolution by directly training the feature
space. This solution is 100x faster to find a solution. [12]
proposed a framework for a multi-grid solver that learns a sin-
gle mapping to a set of partial differential equations for pro-
longation operators. This approach integrated unsupervised
loss functions and performed the two-dimensional diffusion

problem experiments. [13] introduces an end-to-end deep
learning method for improving computational fluid dynam-
ics (CFD) for modeling 2D turbulent flows and performing
simulations for turbulence and mass vortex problems. This
method showed eight to ten times more precise resolution and
40 to 80 times better spatial dimension performance than the
computational speed.

(Shukla, Jagtap and Karniadakis, 2021) [14] introduced a
distributed framework for physical information neural net-
works (PINNs) using domain decomposition. The system
uses domain decomposition to distribute distributed tasks
across parallel GPUs. This approach mainly focuses on train-
ing and inferring models to perform physics information
learning. (Jagtap andKarniadakis, 2021) [15] proposed a gen-
eralized Spatio-temporal domain decomposition framework
for extended physical information neural networks (XPINN).
This approach is an evolution of PINN and is designed to
solve differential equations. This approach achieved perfor-
mance mainly by applying residual continuity conditions
to adjacent subdomains. This method achieved an excellent
L2 error (MSE) of 8.93265e-3 for the Burgers’ equation.
(K. Li et al., 2020) [16] proposed a deep domain decom-
position method (D3M) for solving partial differential equa-
tions. The physics-based approach presents a deep subdomain
decomposition method and focuses on parallel computing to
find solutions to PDEs. This method uses ResNet based by
default. In this study, the performance was evaluated using
Poisson’s equation and the time-independent Schrödinger
equation, and it showed good performance at a relative error
of 0.0045.

B. FINITE-ELEMENT METHODS (FEM)
A method designed for a specific instance of a PDE trained
on a specific problem is called FEM. However, it does not
perform as expected for new problems and various functional
parameters, requiring retraining by optimization problems
similar to neural networks. In this context, [17] proposed
a deep learning approach, namely the Deep Ritz method,
to solve the numerical variational problem, especially PDE.
Deep Ritz is essentially a non-linear adaptive framework.
Therefore, it is more likely to solve higher-order problems
that fit well with the stochastic gradient descent (SGD)
method used in deep learning. This method was evaluated for
eigenvalues along with several other numerical problems.

Similarly, [18] proposed an unsupervised DCNN algo-
rithm to solve forward and backward problems for PDE. The
network is optimized for a cost function that satisfies the
PDE, boundary conditions, and further regularization. This
approach is mesh-less, unlike numerical solvers and grid-
based solutions. After focusing on 2D second-order elliptical
systems of non-constant coefficients and specific applications
for electrical impedance tomography (EIT), [19] proposes
EikoNet to model seismic ray multi-path, hype-center inver-
sion, and tomographicmodeling to solve the Eikonal equation
using DCNN. This approach characterizes the first time-to-
arrival parameters in heterogeneous 3D velocity structures.
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This method utilizes the differentiation of CNNs to compute
spatial gradients analytically. This approach provides low
memory overhead and avoids lookup tables (LUTs).

C. FINITE-DIMENSIONAL OPERATORS (FDM)
[20] proposed a general and flexible approximation model
using CNN for real-time prediction of non-uniform steady
laminar flow. This method demonstrated up to 100x faster
solutions for CFD solvers using GPU acceleration, and sim-
ilarly 400x faster than CFD running on CPU at the marginal
cost of relative error. A Bayesian approach surrogate model
was proposed in [21] for the problem of uncertainty quantifi-
cation in PDEs using deep encoder-decoder (ED) networks
similar to image-to-image regression. The model was trained
to consider the standard uncertainty quantification for flow
in a heterogeneous medium to realize permeability at corre-
sponding velocities and pressures. This study was evaluated
using a probabilistic dimension of 4,225 and produced a good
performance basis. Results were compared with Monte Carlo
estimates. [22] proposed a partially learned approach to solv-
ing the ill-posed inversion problem. This approach advances
the ideas of classical regularization theory and incorpo-
rates deep learning. Methods were constructed using forward
operators, noise models, and regularization functions. This
method presented a gradient method similar to deep neural
networks. Experiments were performed on the tomographic
inversion problem using the Sheep-Logan phantom method
and simulated data from computed tomography (CT) of the
head. Results were compared with filtered back projection
and full transform reconstruction. Thismethod showed a peak
signal-to-noise ratio (PSNR) of 5.4 dB with a faster solution
at a resolution of 512. [23] proposed an approximate model
based on CNN for the flow of fluid prediction. This method
predicted velocity and pressure geometries by taking into
account the pixelated shape of an object under invisible flow
conditions. This method was evaluated against a Reynolds
Averaged Navier-Stokes (RANS) flow on airfoil training
data. [24] proposed NN to parameterize physical quantities
as a function of coefficients and integrated engineering of
physics examples in PDE to evaluate the approach.

D. TIME-DEPENDENT PROBLEMS
Various approaches are also proposed based on time depen-
dencies. A spectral pooling-based approach was proposed
by [25] and introduced many innovations. A prominent
contribution was spectral pooling to reduce dimensionality.
Then [26] published computational fluid dynamics using
Fourier neural operators for airfoil approximation using deep
learning. On the other hand, [27] proposes an approach
to PDE-related approximation operators using Fourier neu-
ral operators and proves that Fourier neural operators are
universal. A sophisticated CNN, Fourier Transform U-Net,
is shown in [28] and claims to use Fourier methods to
reduce the cost of convolution. The method has identi-
fied object information in the given set of images. They
also show that this system requires less training time. The

proposed technique was applied to the Broad Bio-image
Benchmark Collection (BBBC) data set. Continuing the
Fourier approach, [8] proposed a new Fourier neural oper-
ator using the Fourier transform function spatial convolu-
tion. The approach was evaluated via the Burgers’ equation,
Darcy Flow, and Navier-Stokes benchmark equations. This
model claims to be the first to solve partial differential equa-
tions and additionally provides high-quality, one-shot super-
resolution. Then, [29] proposed a neural operator for solving
partial differential equations (PDEs) using a graph kernel
network approach. This method provided a generalization for
learning an infinite-dimensional feature space. This approach
also used message-passing techniques for kernel integration
between objects. They have demonstrated significant con-
tributions in this active field of research for solving partial
differential equations. Experiments and data-backed facts
validated the performance.

E. AGGREGATION APPROACHES
There are various approaches to feature aggregation. The
leading approaches are fusing features hierarchies. Densely
connected networks applied the concept of short-connection,
or skip-connection [30] achieved a state-of-the-art perfor-
mance with a significant parameter reduction. It solved the
deep network vanishing gradient issue and set a new standard
in deep convolution networks. This family of architectures
for semantic fusion propagates features and losses through
skip connections which are further concatenated over stages.
We adapt the skip connection from the DenseNet; however,
our approach uses spectral features.

Feature pyramid networks (FPNs) (Vo et al., 2021) [31] is a
family of architectures, which focus on spatial fusion, equal-
ize the Resolution and standardize semantic features across
various levels of pyramidal hierarchy using a top-down lateral
connection approach. Our approach concatenates, compress
and fuse the spatial semantic features at the compression
block at the end of the stage.

Deep layer aggregation (DLA) (Yu et al., 2018) [32], on the
other hand, formulate various hierarchical designs to aggre-
gate the spatial features. This approach handles vanishing
gradient problems using skip connection to hierarchical step
aggregation. It is further connected to the next level hierarchy,
making it easier to see a far layer via skip connections and a
small distance due to fewer steps via hierarchical architecture.
Our approach aggregate feature similar to deep layer aggrega-
tion but different due to no multi-level hierarchy, whereas we
employ concatenated aggregation technique and compression
as feature reduction approach. Furthermore, our approach
aggregates spectral features, whereas deep layer aggregation
achieves it over spatial features.

F. FOURIER TRANSFORM
Awell-established approach, the Fourier transform, is widely
used in image and signal processing and is a well-known
transform for solving PDEs because of its mathematical
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importance in solving derivatives using frequency-domain
multiplication.

A standard multi-layer feed-forward network capable of
approximate learning was introduced by [33] and then [34]
proposed a method to classify the severity of gear tooth
breakage using Fourier transform spectrograms. [35] pro-
vided mathematical and empirical evidence suggesting that
non-parametric learning, especially kernel methods, can learn
complex higher dimensions. A multi-scale neural network
for high-dimensional nonlinear maps has been proposed
in [36]. This approach approximated discrete nonlinear maps
and demonstrated solution maps of nonlinear equations,
i.e., radiative transfer equations, Schrödinger equations, and
Kohn-Sham map approximations. Meanwhile, [37] proposed
a sine-wave representation network (SIREN), a periodic
activation function for implicit neural representation. This
approach learns complex natural signals derived from 1D,
2D, and 3D functional spaces. Focus on working with
images, wave fields, sound, video, and three-dimensional
shapes. It also shows that it is suitable for solving boundary
value problems such as Ekonal’s equation, Poisson’s equa-
tion, Helmholtz, and wave equations. A new deep learning
super-resolution frame using MESHFREEFLOWNET was
proposed in [11] to generate Spatio-temporal solutions. This
approach has demonstrated empirical studies of the per-
formance of Rayleigh-Bénard convection problems at the
super-resolution of turbulence. [38] proposed a frequency
convolutional network and [39] developed a deep neural
network of multitype signal detection and classification in
spectrograms.

G. DEEP LEARNING APPROACHES USING
SPATIAL FEATURES
A variety of deep learning Physics informed approaches [40]
has been proposed recently. Methods involving deep convo-
lutional neural networks using convolutional deep learning
approaches have a long history. These include deep convolu-
tional neural networks (DCNNs), recurrent neural networks
(RNNs), long short-term memory networks (LSTMs), and
generative adversarial networks (GANs). (Mo et al., 2019) [2]
(Ren et al., 2021) [41] (Kovachki et al., 2021) [13] (Tang,
Liu and Dulofsky, 2020) approach) [3] (Sitzmann et al.,
2020) [37] (Guan, Hsu and Chitnis, 2021) [42]–[50] are vari-
ous approaches. (De Ryck, Lanthaler and Mishra, 2021) [51]
Propose a surrogate model for the dynamic subsurface
flow problem of wastewater streams by combining spatial
and temporal information via LSTM using a cyclic U-Net
(RU-Net). The survey (Sun et al., 2021) [52] addressed scien-
tific machine learning based on physics and its application to
subsurface flows governing the equations of mass transport
in porous media.

III. METHOD
We propose a novel deep spectral feature aggregation Fourier
neural network, which employs Fourier neural operator
block with feature aggregation and channel compression

mechanism; we control scalability using Fourier modes and
network depth. The maximum modes can be as much as one
more than half of the width of the input tensor. The core
of the model is based on a Fourier neural operator layer,
which is further organized into the deep spectral aggregation
block (DSAB). A DSAB consists of four FNO layers and one
aggregation block.

A. DSFA-NET ARCHITECTURE
The proposed model consumes the Fourier neural opera-
tor (FNO) as a basic unit and systematically organizes the
layers to make a novel and better deep learning solver for
parametric functional learning. The model consists of a series
of deep spectral blocks, as shown in Figure 2. A deep spectral
block consists of FNO layers, which is an implementation
of Fourier neural operators proposed by (Li et al., 2020) [8].
We form a multi-block architecture that performs deep learn-

FIGURE 2. Deep spectral feature aggregation neural network.
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ing operations staged. The architecture is general-purpose,
with a novel organization of deep spectral blocks.

B. FOURIER NEURAL OPERATOR (FNO)
We adapt Fourier neural operator implementation from work
presented by (Li et al., 2020) [8]. The Fourier neural oper-
ator (FNO) presented a novel scheme with excellent gener-
alized performance. However, there is still room to improve
in this approach. We analyze that the Fourier convolution,
which primarily transforms the spatial domain representa-
tions to spectral-domain, does the complex multiplication,
and reverses the transform to the spatial domain, can perform
over further depths. In this process, information is lost due to
multiple conversions as the nature of the process. Therefore
performance degrades on the following layers. Processing the
same information with lost features makes it less effective.
So it is not efficient to add more layers to increase the
depth for further accuracy.We introduce the layer aggregation
mechanism explained in the deep spectral aggregation block
section to overcome this issue. It enhances the performance
of the neural operator significantly.

Figure 3 depicts the architecture of the Fourier neural
operator.

FIGURE 3. Architecture of Fourier neural operator [8].

The Fourier neural operator replaced the kernel integral
operator with convolutional operator using Fourier spectral
space, hence convert the spatial input to spectral formF for a
function f : D→ Rdv , does complexmultiplication (F f )j (k)
and perform a reverse Fourier transformF−1 for kernel k and
input tensor x.

(F f )j (k) =
∫
D
fj(x)e−2iπ〈x,k〉dx, j = [1, dv](

F−1f
)
j
(x) =

∫
D
fj(k)e2iπ〈x,k〉dk, j = [1, dv]

C. DEEP SPECTRAL FEATURE AGGREGATION
We introduce a concatenation layer to aggregate the features
computed at each stage. The last layer is not concatenated
to keep final features from compression. The concatenated
features are passed to a spectral channel compression layer,
which applies Fourier convolution and reduces channels to
match the output, which is further added and normalized to
both outputs, i.e., one from the last layer and the other from

the spectral compression. Finally, the normalized output is
presented for further operations. The Figure 4 depicts the
aggregation block.

FIGURE 4. Spectral feature aggregation block.

The feature aggregation A performed at each layer i for a
tensor x is expressed as

A(xi) =
{
x1, if i = 1
A(xi−1, xi), otherwise

where A(xi) is obtained aggregation after each layer and final
aggregationAx is then passed through a Fourier based channel
compression process to reduce the aggregate channels to
same as the input channels and final layer aggregation is
activated with activation function σ .

Ax = σ (A(xn))

the aggregation added and batch normalized as a post process
as

xout = σ (BatchNorm(
∑
i

Wixi + b)+ Ax)

where Ax is aggregate for specific input x for layer i, and W
represents the layer weights with bias b to obtain the final
output xout .

D. DEEP SPECTRAL AGGREGATION BLOCK (DSAB)
A deep spectral aggregation block is an organization of
Fourier neural operator layers with an N-layered iterative
approach. The mechanism cascades and extracts staged fea-
tures to a concatenated tensor at the final layer. The con-
catenated features are then passed through a spectral channel
compression which is fundamentally a Fourier spectral con-
volution layer as shown in Figure 5.

IV. RESULTS AND DISCUSSION
This section shows the performance evaluation of the pro-
posed method and is discussed in more detail later in this
section. The relative error for measuring the performance
of the proposed method is recorded and compared with
the existing method. Performance results were recorded on
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FIGURE 5. End to end deep spectral aggregation block (DSAB).

benchmark data sets such as Burgers’ equation, Darcy Flow
equation, and Navier-Stokes equation. The data sets used in
the experiments remain the same for a fair comparison with
existing approaches, especially with current state-of-the-art
Fourier neural operators.

A. BENCHMARKS PROBLEMS
We adapt datasets available from the baseline
(Li et al., 2020) [8] paper, i.e., Navier-Stokes, Darcy Flow
equation, and Burgers’ equation. Navier-Stokes consists
of temporal information and is a time-dependent problem,
whereas Darcy Flow and Burgers’ equations are 2D and 1D,
respectively.

1) NAVIER-STOKES EQUATION
Navier-Stokes is a famous two-dimensional time-dependent
equation. The equation represents the behavior of viscous and
incompressible fluids in mathematical form. The equation
was first presented by Claude-Louis Navier in 1822 and
further modified and extended byGeorge Gabriel Stokes. The
equations are recognized among the Clay Mathematics Insti-
tute Millennium Problems with a prize offer for a solution.

Navier-Stokes describes the conservation of mass and
momentum of Newtonian fluids. The general expression for
Navier-Stokes with a momentum and periodic boundary con-
dition with a T 2 unit torus of [0, 1]2 and a fixed viscosity ν,
velocity u, forcing function f , and pressure p is:

∂tu+ u.
h

u+
h

p = ν1u+ f (x), x ∈ T 2, t ∈ (0,∞)
h
.u(x, t) = 0, x ∈ T 2, t ∈ [0,∞)

u(x, 0) = u0(x), x ∈ T 2

A 256 × 256 grid is used to generate data with
sub-sampling for use at various resolutions. Different datasets
are available for N training examples with different times T
and viscosities in the baseline paper. The model is evaluated
against two additional variants to demonstrate the perfor-
mance. Table 1 shows the data set distribution for various
configurations employed for experiments.

Our proposed model shows promising improvements
over the reference paper in terms of relative error. This
shows that aggregation of spectral features and the standard
layer pipeline improves feature regression. A fundamental

advantage of Deep Spectral Aggregation is that it improves
functional learning in the temporal dimension and has fewer
spatial features. It is because the Navier-Stokes behavior is
transient. We observe a significant reduction in relative error,
i.e., L2 loss.

2) DARCY FLOW EQUATION
Henry Darcy’s law equations describe the flow of liquids
through porous materials, and investigations have been made
for water flowing through layers of sand. This is analogous
to the Fourier laws of other innate sciences, such as thermal
equations, Ohm’s law, and Fick’s law of the diffusion hypoth-
esis. The basic form of Darcy Flow equation defines a relation
between the fluxes q = Q/A, where Q is the flow rate (m3/s)
of the liquid flowing through A(m2) when characterizing
the permeability of medium k. Dynamic thickness µ with
length L and pressure drop 1p.

q = −
k
µL

1p

We apply the dataset provided by the baseline paper, where
solutions to PDEs were formulated using a grid size of
421 × 421 employing a second-order finite difference
scheme. We keep the same settings and dataset for a fair
comparison.

Darcy Flow equations are an active area of research and
have a variety of applications, such as popular petroleum
engineering and coffee brewing solutions. We use the dataset
given in the baseline paper where we formulated a solution to
the PDE using a grid size of 421× 421 using a second-order
finite difference system. Keep the same setup and data set for
a fair comparison. All other resolutions were extracted from
the highest available resolution (e.g., 421× 421 ).

3) BURGERS’ EQUATION
We also apply a one-dimensional fundamental equation for
cross-validation, referred to as Burgers’ equation with bound-
ary conditions. It is a viscous periodic partial differential
equation. The model performance was evaluated, and results
are recorded as shown in the table. Burgers’ equation can be
expressed as below in periodic form [53].

dx
dt
= u,

du
dt
= 0
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FIGURE 6. Dataset: samples generated over t + nT , where T = 10.

With an extended form in periodic form as below

∂

∂t
u(x, t)+

1
2
∂

∂x
(u(x, t))2 = ν

∂2

∂x2
u(x, t), x ∈ (0, 2π ),

t ∈ (0,∞))

u(x, 0) = u0(x), x ∈ (0, 2π )

where fixed viscosity ν is a diffusion term with a value range
of 0.1 for time t > 0 in our simulations. We adapted the
ground truth as available by the baseline paper to compare
our results.

4) COMPUTATIONAL FLUID PROBLEM MODEL
(CASE STUDY)
We selected case study problem datasets generated for the
experiment in a preceding study [26] by a team from Luleo
Institute of Technology in Sweden, Yeungnam University in
Korea, and Khalifa University Abu Dhabi. The calculation
domain size is 30D× 30D, where D is the cylinder diameter.
The cylinder object is placed 20D downstream, and the inlet
boundary is at 10D—the sidewall distance of 15D for each
cylinder. Create a structural mesh grid using hexahedral ele-
ments. An O-grid around the cylinder wall is introduced to
maintain a high-quality mesh in the boundary layer thickness
region with 50 nodes in this region. The model problem is
generated using the Navier-Stokes equation.

A commercial software ANSYS-CFX is utilized to address
the transient and incompressible types of the coherence for
Navier-Stokes conditions. An average speed at the inlet
boundary with normal pressure at the power source is induced
and allocated a no-slip condition for sidewalls and create
1, 000 samples for each time t-second in our test dataset.

B. EVALUATION METRICS
The loss function measures the mean squared error (MSE) for
1D, 2D or 3D regression. The MSE is defined as

MSE = (
1
n
)

n∑
i=1

(Yi − Ŷi)2

where average of n terms is taken from square of the dif-
ferences of Yi the observed values and Ŷi the predicted
values.

C. DATASET DISTRIBUTION
Employed dataset distributions for training, validation and
test are shown in Table 1.

TABLE 1. Dataset distribution.

D. SIMULATION PARAMETERS
Table 2 enlists the parameters employed during our experi-
ments.

TABLE 2. Simulation parameters.

E. PERFORMANCE EVALUATION
We evaluate the proposed method using three benchmark
datasets and one case study and wemeasure theMSE score as
a performance indicator. We achieved considerable improve-
ments on Burgers’ equation dataset where it improved an
MSE score by approximately 30% from 0.00081 (baseline) to
0.0005654 (ours). Secondly, the Darcy Flow equation dataset
demonstrated an improvement of approximately 37% from
0.0109 (baseline) to 0.0069 (ours). Finally, we observe an
improvement of more than 20% for the Navier-Stokes equa-
tion dataset with time-dependent data, from 0.0834 (baseline)
to 0.0655 (ours).

1) NAVIER-STOKES EQUATION EXPERIMENTS
The deep spectral aggregation approach demonstrated a
new state-of-the-art performance in physics-informed deep
learning approaches. Our proposed method achieved more
than a 20% reduction in relative error for all sub-
ject benchmark datasets for the Navier-Stokes equation,
i.e., V1e-3-N1000-T50, V1e-3-N5000-T50, V1e-4-N1000-
T30, V1e-4-N5000-T30, V1e-4-N10000-T30. The model
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TABLE 3. Navier-Stokes benchmarks (Relative error MSE) (fixed resolution 64× 64 on train and test).

remained consistent with improved relative error to baseline
paper. Navier-Stokes equation dataset is a temporal dataset,
and we observe the spectral aggregation notably performed
well in temporal datasets, whereas simple 2D Darcy Flow
equation dataset did not show such a good response. The
baseline paper employed 2D+T and 3D models, from which
the 2D+T approach performed better. On the other hand, our
proposed model superseded the performance of both of the
above variations proposed in the base paper.

We further explored the performance by varying the num-
ber of samples (1,000; 5,000; 10,000) per dataset, and the
relative error results were observed to be consistently better
for the proposed model. Table 3 shows the results recorded
from Navier-Stokes experiments. The proposed model out-
performed because the model perceives and extracts more
temporal features due to the aggregation and compression
approaches. Various datasets are shown in columns and net-
works in rows.

Figure 7 plots the training history of Navier-Stokes over
various datasets. The history plot shows that DSFA per-

FIGURE 7. Training validation histogram Navier-Stokes datasets.

FIGURE 8. Test dataset with 200 samples. Navier-Stokes dataset
prediction error with average line. DSFA mean(sample wise error mean) is
observed reasonably low, demonstrating the lower error on all
200 samples.

formed much better and demonstrated improvement over the
2D+T/3D volume dataset for Navier-Stokes. We recorded
and plotted relative test error in Figure 8. The plot shows
orange dots for the proposed model prediction relative error
and mean-line for the same. DSFA’s relative mean error is
lower than the Fourier neural operator model.

We performed experiments on Navier-Stokes equations
dataset [8] and recorded the results in Table 3. We employ the
dataset with viscosities ν: 1e − 3 and 1e − 4 and generated
training samples with times T = 30 and 50 seconds as
discussed in the benchmark problems section.We reproduced
baseline results per available code at the GitHub repository
and compared them with ours using the same parameters and
environment. The results show a performance gain in terms
of minimizing the relative error.

2) DARCY FLOW EQUATION EXPERIMENTS
We evaluated our model over the Darcy Flow equation dataset
for various resolutions, i.e., 421×421, 211×211, 141×141,

VOLUME 10, 2022 22255



M. Rafiq et al.: DSFA-PINN: Deep Spectral Feature Aggregation Physics Informed Neural Network

TABLE 4. Darcy flow equation (Relative error MSE) (resolution size of 421, 211, 141, 85).

FIGURE 9. Darcy Flow relative error over different resolutions, the graph
shows DSFA with lowest relative error over various resolutions.

and 85 × 85. The results show that our proposed model
outperformed all existing approaches by approximately 20%
to the most recent paper, i.e., the baseline paper as shown in
Figure 9. The Darcy Flow equation is a two-dimensional
dataset and is presented to the model like an image dataset.
Therefore, the spectral features are applied to the spatial
domain. Due to the nature of the Fourier neural operator,
the data is presented in the spatial domain, and then within
the layer, it is converted to the spectral domain using the
forward operation of the Fourier transform. A complex mul-
tiplication takes place, which is transformed back to the
spatial domain using a reverse Fourier transform. The process
ultimately mimics more like a spatial convolution. Darcy
Flow equation dataset at all various resolutions showed that
the proposed model is equally performing better in addition
to the benchmark dataset of Navier-Stokes, which contains
three-dimensional data as two-dimensional spatial and a tem-
poral dimension. We plotted prediction error reported by the
model test phase in Figure 10. The plot shows that the pro-
posed model prediction shown as orange dots is reasonably

FIGURE 10. Test dataset 100 samples predictions. Orange dots shows
overall a lower relative error on the scatter plot. A lower relative error
shows a better performance.

low and is evident from the average line. Table 4 enumerates
the results observed over Darcy Flow equation experiments.

3) BURGERS’ EQUATION EXPERIMENTS
The Burgers’ equation is a one-dimensional equation dataset
and is a collection of waveforms generated by the equation.
The model learns the functional space and regenerates the
waveform. The single dimension data is a kind of temporal
data and hence shows major improvements in response to
the proposed model. Spectral concatenation and feature com-
pression contribute to major performance gain to learn the
longer temporal states.We achieve a relative error decrease by
approximately 30%. Which shows the superior performance
of the proposed model. Recorded results are shown in Table 5
compared with baseline paper.

4) COMPUTATIONAL FLUID DYNAMICS EXPERIMENTS
We performed experiments for a CFD-generated dataset
from [26] using ANSYS-CFX software. We compare ground
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TABLE 5. Burgers’ equation (resolution 8192).

FIGURE 11. CFD - Ground Truth vs. Predictions (T=10).

truth with predictions using our proposed model. The
output is encouraging, and reconstruction looks much
more meaningful. The experiments exhibit a relative error of
0.00007 for the sequences generated. Although deep learn-
ing approaches cannot yet replace or compete the numeri-
cal solvers, they are still getting popular over the trade-off
on computation cost over accuracy. With this active field
of research, we believe further improvement can make it
near perfect towards accuracy with a massive benefit of
time and computation cost. We plan to optimize further the
loss function and a better temporal approach in our future
experiments.

5) ANALYSIS WITH NOISY DATA
Partial differential equations are known to be noise-sensitive.
We performed experiments over Darcy Flow dataset by
adding 10% synthetic generated noise using the random nor-
mal distribution to the training data to collect the results.
The proposed model demonstrated a minor change in relative
error and implicitly canceled the micro noise because of a
low pass filter employed with fast Fourier frequency bin
selection. The observed results reflect no evident deviation.
We obtained a relative error of 0.0071 for the Darcy Flow
equation over a resolution of 211, which is 0.0069 without
noise experiment. Such a change can occur due to random-
ness; like training, the model with random seed can reflect
slightly different values after every run. Overall the model
demonstrates resistance to noise and learns the functional
space from noisy inputs with confidence.

V. CONCLUSION AND FUTURE WORK
This study shows that neural operators have started a new
direction for physics-informed machine learning. It is a
one-shot and straightforward generalized solution for partial
differential equations. Various convolutional and recurrent
approaches learn and regress the equation-generated data in
a conventional sequential method, whereas neural operators

transform the functional space and learn functional features in
a single go. Our experiments demonstrate that the aggregation
approach followed by spectral compression outperformed
the previous state-of-the-art. Although machine learning and
deep learning have started to understand the computationally
expensive task of numerical solvers, there is a long way
to replace the numerical solver. Physics-informed machine
learning is still not ready for noisy data; however, Fourier
approaches control noisy data using frequency-domain fil-
ters. This study is a step to build a model that better under-
stands the parametric partial differential equation functional.
However, there is a long way for an artificial intelligence sys-
tem to approximate perfectly. We plan to try new methods to
generalize themodels using othermathematical functions like
Laplace transform combined with Fourier and conventional
convolutional neural networks. The Fourier neural operator-
based networks, like a proposed method, can learn com-
puter vision tasks and partial differential equations. Computer
vision tasks can employ 2D models like the Darcy Flow
dataset and 3D for videos like Navier-Stokes datasets. There-
fore, future research on this domain can change the tradition
of convolution-only networks.
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