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ABSTRACT The spectral efficiency of a representative uplink in awireless networkwith spatially distributed
antennas and linear minimum-mean-square-error processing is found to approach an asymptote with a simple
form as the number of antennas increases. These results generalize prior work which was applicable to
systems with small numbers of base stations with large numbers of antennas each, to systems with large
numbers of spatially distributed access points with small numbers of antennas each, and systems between
these extremes. Additionally, these results are applied to systems where mobiles have multiple transmit
antennas, and are used to characterize systems with both disjoint and user-centric clustering of cooperating
base stations. Among other conclusions, these results indicate that with the same density and number of
antennas cooperating to serve a mobile user, the uplink spectral efficiency with all antennas randomly
distributed is several-fold higher than the case when the antennas are concentrated at one base station. These
findings help improve our understanding of the tradeoffs involved in distributed antenna systems which have
the potential to significantly increase data rates, but at a higher cost.

INDEX TERMS Cooperative communications, cell free, minimum-mean-square error (MMSE), distributed
antennas, user-centric cooperation.

I. INTRODUCTION
Mobile communications systems where antennas serving
a given mobile are not co-located at a particular base
station (BS) have received significant attention in the
literature recently including in Cloud-Radio Access Net-
works (CRAN), Networked Multiple-Input Multiple-Output
(MIMO), and cell-free massive MIMO networks [1]–[13].
With some exceptions such as [5] and [6], most works in
the literature do not analytically model the distribution of
mobiles and antennas in space, which can provide addi-
tional insight into system performance such as the impact of
antenna density, and the benefits of distributing antennas in
space compared to clustering them at base stations. Of the
works directly related to this work, [4] considers maximal-
ratio-combining and zero-forcing receivers and [14] consid-
ers a networked-MIMO system with zero-forcing receivers
and employed a number of approximations on the spatial
user model as well as interference distribution to handle the
complexity of analyzing networked MIMO systems. On the
other hand, linear minimum-mean-square error (MMSE)
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processing can provide significant performance increases
over zero-forcing and maximal-ratio combining, as it is the
optimal linear processor to maximize Signal-to-Interference
Ratio (SIR), as observed by [15] in the context of mas-
sive MIMO, which considers the spatial distribution of
antennas and users via simulations. Additionally, [12] con-
siders cell-free massive MIMO systems using stochastic
geometry and analyzes the channel hardening effect when
matched-filters are used. [16] and [17] considered the uplink
of cooperative base station systems with MMSE processing,
and provided a simple analytical expression for the uplink
spectral efficiency when a small number of cooperative base
stations with large numbers of antennas each are used, for
Poisson distributed mobiles in [16] and general mobile distri-
butions in [17]. The general framework developed in [16] was
applied to twomodels for base station architectures, namely a
user-centric clustering approach, and a hexagonal-cell archi-
tecture where the spectral efficiency of a cell-edge mobile
was considered, and asymptotic expressions for the spectral
efficiency provided for up to six co-operating base stations at
hexagonal lattice sites.

In this work, we consider a system similar to [16] and [17].
However, the receiver antennas in our system are arbitrarily
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FIGURE 1. Illustration of cooperative base stations and cooperative access points.

distributed within a bounded region and do not have to
be clustered at a small number of base stations. In other
words, [16] and [17] considered systems depicted on the left
of Figure 1. In contrast, this work considers systems with
large numbers of antennas, regardless of whether they are
located at a small number of base stations (depicted on the
left of Figure 1), a small number of antennas per access point
(AP) at a large number of APs (depicted on the right of
Figure 1), or anywhere in between the two extremes. This
difference in assumptions results in a different structure of
the random channel vectors and matrices that determine link
SIRs in this work as compared to [16], and requires us to
use different random matrix techniques to derive the main
results.We provide further details on regarding this difference
in Section II.
In addition, two further generalizations in this work com-

pared to [16] and [17] are that we allow multiple transmit
antennas at each mobile, and we use a slightly more gen-
eral fading model compared to Rayleigh fading used in [16]
and [17]. We also applied the framework developed here to
analyze the performance of user-centric clustering, where
each mobile is served by its nearest K base stations (some-
times referred to as cell-free systems), antennas at hexagonal
lattice sites as well as a disjoint-clustering system, where
space is divided into cells and each cell contains K antennas
at random positions. In contrast, [16] and [17] consider user-
centric clustering and base stations at hexagonal lattice sites,
both for small numbers of BSs.

Note that like [14], we assume that the channel state infor-
mation (CSI) required for the beamformer design is known
at the processors. While channel estimation errors do play
a significant role in large MIMO systems, our focus here is
to characterize the spectral efficiency that can be achieved
if the CSI is known. Hence, these results can be used as a
bound for systems where CSI errors are significant, or with
an appropriate reduction in the spectral efficiencies calculated
to account for training time and inaccuracies.

In addition, we make the simplifying assumption that the
distributed antennas in this system are sufficiently well syn-
chronized in time as is done in [14], [15], [18] and oth-

ers. While practical systems will require synchronization
algorithms such as those described in Section 3.3. of [8],
we believe that analyzing systems assuming distributed tim-
ing synchronization is helpful to understand the performance
that could be expected with a well synchronized system.

Further, modern communication systems for human-to-
human communication use efficient error-correcting codes,
including capacity-achieving codes such as turbo-codes.
As noted in [19] and others, the spectral efficiency (computed
using the Shannon formula in this paper) is good approxima-
tion for rates achievable in practical modern communications
systems. Therefore, we believe that analysis of the spectral
efficiency is a useful approximation to the rates achievable in
practical systems.

As such, the results in this work apply to distributed
antenna systems ranging from systems with a large number
of access points each with a small number of antennas (or just
one antenna), to systemswith a small number of base stations,
each with large number of antennas and to systems between
these extremes. Thus, the results presented in this work enable
us to quantify the performance gains of completely distribut-
ing antennas, versus clustering antennas at a small number
of base stations. Such a characterization is very helpful for
system designers given the significant costs and complexities
associated which such systems, and the potentially different
costs associated with distributing antennas over a large num-
ber of access points versus at a small number of base stations.
In summary, the main contributions of this work are as

follows:

• The introduction of an approach for analyzing the spec-
tral efficiency of a system with distributed antennas and
optimal linear processing when the number of antennas
is large, which is a generalization of prior work which is
only applicable to systems with a small number of coop-
erating base stations, with large numbers of antennas
each [17]. In particular, this work enables us to charac-
terize the spectral efficiencies achievable when antennas
are completely distributed in space, versus concentrated
at a small number of base stations.
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• A method to characterize the spectral efficiency of a
system with distributed antennas and optimal linear pro-
cessing when mobiles have multiple transmit antennas.

• An application of these approaches to both disjoint and
user-centered clustering of BS/APs which indicates that
under these assumptions, for the same total number of
antennas, several fold increases in spectral efficiency are
possible if antennas are distributed completely randomly
versus concentrated at one base station.

II. SYSTEM MODEL
Assume that there are K antennas at arbitrary positions in a
planar network, which are connected to a central processor
which jointly processes the signals received at the antennas.
Assume that the distance of these antennas to the origin is
bounded from above by D. At the origin of the network
is a mobile transmitter, called the test transmitter with M
antennas. TheK antennas jointly detect the transmitted signal
from this test transmitter. Other interfering mobiles are also
located on the plane such that there is no mobile co-incident
with an antenna, and with probability 1 (w.p.1), ∀x ∈ R2.

lim
d→∞

#B(x, d)
πd2

= ρ, (1)

where #B(x, d) is the number of mobiles in a radius d disk
centered at x. Thus, ρ is the area density of the mobiles.

Note that the results of this work do not depend on the
specific model for how the mobiles are distributed in space
as long as (1) holds. The reason for this is that when the
number of antennas used to detect the signal from the test
mobile is large, the MMSE algorithm places deep nulls on
the signals from the mobiles that are close to the antennas.
Hence, the residual interference at the output of the MMSE
receiver is dominated by farawaymobiles. Since signal power
decays rapidly with distance according to the inverse power-
law model, the specific locations of mobiles far away do not
influence the spectral efficiency significantly. Note that this
result was already shown for systems with a small number
of base stations with large numbers of antennas each in [17].
Here, we prove it for the more general model used here, and
verify it by simulations detailed in Section VI.

For ease of exposition, in the subsequent analysis, we shall
consider the case where M = 1 in all sections except
Section IV where we develop the extension to the M >

1 case, and Section VI-D where simulation results for M >

1 are provided.
The channel vector from the ith mobile to the K Rx anten-

nas is hi ∈ CK×1:

hi = [r
−
α
2

i,1 gi,1 r
−
α
2

i,2 gi,2 . . . r
−
α
2

i,K gi,K ]
T . (2)

Here, α > 2 is the path-loss exponent, gi,k are independent
and identically distributed (i.i.d.) zero-mean, unit-variance
random variables and ri,k is the distance from the ithmobile to

the kth Rx antenna. Hence r
−
α
2

i,j gi.j is the flat fading coefficient
between the i-th mobile and the j-th antenna.

FIGURE 2. System diagram showing the test mobile, an interferer and
two antennas. The solid lines represent the distances and the dashed
lines represent flat fading. The central processor jointly combines the
signals received at the different antennas.

Note that as in [12] and [14], we do not consider shadow
fading in this work. Suppose that the distance of the test
mobile to the K antennas is bounded from below, i.e. r0,k >
Dmin > 0. A system diagram showing the test mobile, with
just one interferer and just two antennas is shown in Figure 2,
where we have suppressed showing additional interferers and
antennas in the interest of clarity.

As in [16] and [17] we assume an interference-limited
system and neglect noise. Note that if we do incorporate a
constant, non-zero noise level in the analysis, in the asymp-
totic regime as K → ∞, the system will become noise
limited at a finite K . As such, the effect of interference will
be negligible, resulting in a system that is asymptotically
identical to an interference-free network. Since this happens
at only an extremely large K , the results will not be useful for
practical systemswhere interference is significant. Therefore,
we do not incorporate noise into the analysis of the system,
since our focus is on systems with significant interference.
However, we do incorporate noise in numerical simulations
provided in Section VI.

We write the signal received at the K antennas y ∈ CK as

y = h0x0 +
∞∑
i=1

hixi, (3)

where the test mobile has index 0, and xi is the zero-mean,
unit variance symbol transmitted by the i-th mobile.

Define the channel matrix H ∈ CK×n between the n
mobiles closest to the origin and the antennas serving the test
mobile as:

H[n] =
[
h1 h2 h3 . . . hn

]
The signal from the test mobile is estimated using a linear
MMSE estimator

w[n] =
(
H[n]H†[n]

)−1
h0. (4)

The SIR at the output of the MMSE estimator is

SIR[n] = h†0
(
H[n]H†[n]

)−1
h0 (5)
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We assume that n > K so H[n]H†[n] is invertible w.p.1.
The limits as n → ∞ of w[n] and SIR[n] are w and
SIR, respectively. Assuming Gaussian codebooks used by
all transmitters, the spectral efficiency is defined using the
Shannon formula as:

η = log2(1+ SIR) b/s/Hz (6)

Note that the channel vector between mobile i and the K
antennas serving the test mobile is given in (2). For systems
with a fixed number of base stations and large numbers of
antennas which were analyzed in [16], there is a fixed and
finite number of distinct ri,k terms. With this restriction,
the asymptotic SIR was analyzed in [16] using random
matrix techniques developed for Code-Division-Multiple-
Access (CDMA) systems with a finite and constant number
of antennas in [20]. However, in the case analyzed in this
paper, the ri,k terms can all be different and the approach
developed in [20] can no longer be used as it relied funda-
mentally on there being a constant, finite number of distinct
ri,k terms. As such, in this work, we used different random
matrix approaches including results from [21] and [22] to
characterize the SIR in the asymptotic regime assumed here.

For convenience, we have provided a table with the list of
the key symbols and notation used in this paper in Tables 1
and 2, respectively.

III. MAIN RESULTS
The SIR of the test link grows with the number of antennas
K . We find that a normalized version of the SIR converges in
the limit as K →∞ as described below.
Theorem 1: The following holds in probability (i.p.).

lim
K→∞

K−
α
2 SIR = P̄

[
α

2π2ρ
sin
(
2π
α

)] α
2

. (7)

where P̄ = limK→∞
1
K

∑K
i=1 r

−α
0,i .

Proof: This result is proved using results characterizing
the eigenvalue distributions of randommatrices whose size go
to infinity, for whichmost techniques involve matrices that go
to infinity in both dimensions. On the other hand, since our
system involves an infinite number of mobiles, the channel
matrices constructed for our system would need to start with
an infinite number of columns, making it challenging to
directly apply techniques from infinite randommatrix theory.
To utilize these techniques, we first consider a network with
only the n mobiles closest to the origin, which results in the
channel matrix H[n] having K rows and n columns. We then
take n and K together to∞ such that n/K = c > 2, which
enables us to use approaches from infinite random matrix
theory. We will then show that the limit for the normalized
SIR when n and K are taken to infinity together, equals the
limit of the SIR for an infinite network of mobiles (i.e. n = ∞
to start), in the limit as K →∞.
To this end, note that the SIR of the test link for the

system model with only the first n mobiles is given in (5).
A normalized version of SIR[n] converges according to the

TABLE 1. Table of key symbols and parameters.

following lemmawhich is at the heart of the proof of the main
result.
Lemma 1: Set n = cK , with c > 2.

lim
c→∞

lim
K→∞

K−
α
2 SIR[n] = P̄

[
α

2π2ρ
sin
(
2π
α

)] α
2

. (8)

Proof: Please see Appendix A.
The next lemma shows that (8) continues to hold i.p. even

if we start with an infinite network (i.e. n → ∞), and
then take K → ∞. This lemma is very close to Lemma
1 of [16], but has been modified to account for differences
in the assumptions in this work.
Lemma 2: The following holds i.p.:

lim
K→∞

K−
α
2 SIR = lim

c→∞
lim
K→∞

K−
α
2 SIR[n] (9)
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TABLE 2. Summary of notation.

Proof: Please see Appendix B.
Combining Lemmas 1 and 2 completes the proof. �
Note that P̄, defined in Theorem 1, is the limit of the

average path loss from the test mobile to the K antennas used
to detect its signal. When compared to prior results from [16]
and [17], we see that the limit of the normalized SIR for the
distributed antenna system here is equal to the limit of the
normalized SIR for a system with a single base station and K
antennas, with path loss equal to P̄.

Applying steps used to prove Theorem 2 of [16] to (7),
we have the following in probability as K →∞∣∣∣∣∣η − log2

(
1+ P̄

[
α

2π2ρ
sin
(
2π
α

)] α
2

K
α
2

)∣∣∣∣∣→ 0. (10)

Note that in addition to providing the scaling behaviour of
the spectral efficiency with K , (10) can be used to approx-
imate the spectral efficiency when the number of antennas
is fixed but large. Further, while (10) holds for a fixed P̄,
if we treat P̄ as a random variable, when K is large, we can
approximate the cumulative distribution function (CDF) of
the spectral efficiency using the CDF of P = 1

K

∑K
i=1 r

−α
0,i ,

which we denote as FP. Using this approach, by direct sub-
stitution, we get the following approximation for the CDF of
the spectral efficiency with randomly distributed antennas

P(η ≤ τ ) ≈ FP

 (2τ−1)K−
α
2 ρ

α
2[

α

2π2
sin
(
2π
α

)] α
2

 (11)

Hence, (11) can be used to characterize the spectral effi-
ciency of the test link under different system parameters,
including the statistical properties of P, which is highly
dependent on how the antennas serving the test mobile are
distributed in space. We apply this expression with different

choices of FP in Section V which are then supported by
simulations in Section VI.

IV. MULTIPLE TRANSMIT ANTENNAS
Now, assume that each mobile has M ≥ 1 transmit anten-
nas, and that each mobile transmits an independent data
stream from each of its transmit antennas. Suppose that
x0, x1, · · · , xM−1 are the M symbols transmitted by the test
mobile at a given sampling time. Similarly xM , · · · , x2M−1
are the symbols transmitted by Transmitter 2, and so on.
We shall treat the signals from the interfering mobiles as
if they were coming from separate mobiles in the single-
transmit-antenna model above. (1) is still satisfied but with
the effective density of mobiles of Mρ. We can write the
following expression for the received signal y:

y = H0x0 +
∞∑
i=M

hixi (12)

where xT0 = (x0, x1, · · · , xM−1) is the vector of transmitted
symbols from the test mobile. The channel vector between
antenna i − bi/McM of mobile bi/Mc and the K antennas
cooperating to detect the signals from the test mobile is given
by

hi = [r
−
α
2
bi/Mc,1gi,1 r

−
α
2
bi/Mc,2gi,2 . . . r

−
α
2
bi/Mc,Kgi,K ]

T . (13)

The matrixH0 given below is the channel matrix between the
antennas of the test mobile and the K antennas cooperating to
detect its signal and is given by

H0 = [h0 h1 · · · hM−1] . (14)

Additionally, let’s define a channel matrix corresponding to
all the interfering signals from the first n mobiles as follows

HI [n] = [hM hM+1 · · · hnM−1] (15)

and the covariance matrix of all the interfering signals as

K = lim
n→∞

HI [n]H
†
I [n] (16)

We define the spectral efficiency ηM to equal the mutual
information between the transmitted and received signals
from the test mobile. Note that with Gaussian code-books
used at all mobiles, the mutual information corresponds to
an achievable rate with an arbitrarily low probability of error.
Hence,

ηM = I (y; x0) = log2
∣∣∣I+H0H

†
0K
−1
∣∣∣ (17)

With these definitions, we can write the following theorem
on the spectral efficiency with multiple transmit antennas.
Theorem 2: With M ≥ transmit antennas per mobile, the

following holds in probability

lim
K→∞

∣∣∣∣∣ηM −M log2

(
1+ P̄

[
α

2π2Mρ
sin
(
2π
α

)] α
2

K
α
2

)∣∣∣∣∣
= 0. (18)

Proof: Please see Appendix J.
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If the locations of the antennas serving the test mobile
are random, when the number of antennas is large enough
that the spectral efficiency is close to the asymptote given
in Theorem 2, the CDF of the spectral efficiency can be
approximated by

P(η ≤ τ ) ≈ FP

(
2
τ
M −1

)
K−

α
2 (Mρ)

α
2[

α

2π2
sin
(
2π
α

)] α
2

 (19)

V. APPLICATIONS
A. COOPERATIVE BASE STATIONS OR DISTRIBUTED
ACCESS POINTS
In the results described above, we have not assumed much
about how the antennas serving the test mobile are distributed
in space, as long as there is a large number of them.

In the subsequent discussion, we shall assume that there
are N AP/BSs serving the test user, and each AP/BS has L
antennas such that K = NL. We consider regimes where L is
large and N is small (cooperative BSs with large numbers of
antennas per BS), N is large and L is small (large number of
APs) and the cases in between the extremes. Here, we assume
that the path losses from the antennas of each AP/BS to the
test mobile are the same. In other words

r0,1 = r0,2 = · · · = r0,L
r0,L+1 = r0,L+2 = · · · = r0,2L

...

r0,K−L+1 = r0,K−L+2 = · · · = r0,K

Then, we have

P =
1
K

K∑
i=1

r−α0,i =
1
N

N∑
i=1

r−α0,i (20)

Note from (10) that with fixed P̄, the spectral efficiency of
the test mobile primarily depends on K and not the specific
values ofN and L. On the other hand, if P̄ is not fixed, how the
AP/BSs are distributed in space could have different effects
on the spectral efficiency. Suppose that the AP/BS locations
are deterministic and the test mobile is served by theN closest
AP/BSs to it. P, which we use to approximate P̄with large K ,
is therefore non-decreasing with N , since it is the average of
the path losses from the AP/BSs to the test mobile, which
can only decrease if we add farther away AP/BSs. Therefore,
increasing the number of APs, while keeping L constant,
results in diminishing returns.

However if P is a random variable, the CDF of P depends
significantly on N , L, and how the AP/BSs serving the test
mobiles are distributed in space. For instance for a fixed total
number of antennas K and a fixed density of antennas, if the
APs are distributed independently in space, using a large
number of access points will be more favorable than using
a small number of BSs, because the probability of the test
mobile being far away from all the antennas serving it will
be lower when a large number of APs are used. On the other

hand, the cost of connecting a large number of AP/BSs that
are distributed in space can be prohibitive, making it helpful
to understand how much performance improvement can be
gained by using a large number of access points. To get further
insight into these effects, we need to apply specific models of
how the AP/BSs are distributed in space.

We adopt twomodels for how the BS/APs are distributed in
space to characterize the spectral efficiency of the test mobile.
We consider a disjoint clustering approach, where theAP/BSs
are divided into spatially disjoint co-operating clusters as
done in [14], and a user-centric cooperation strategy, where
the test mobile is served by the N closest APs/BSs to it. The
latter system is also known as a cell-free system. By varying
the number of AP/BSs N , with a constant total number of
antennas K , we can then characterize the performance impli-
cations of concentrating a large number of antennas in a small
number of BSs and vice-versa under these two models. In the
subsequent discussion, we shall assume that the number of
antennas K is large enough that the asymptotic expressions
hold.

B. DISJOINT CLUSTERING
In disjoint clustering, cooperating AP/BSs are distributed in
fixed clusters. For such systems, we assume that the plane is
divided into congruent hexagonal cells, and within each cell
N AP/BSs are distributed uniformly randomly and indepen-
dent of each other. Each of the N AP/BSs has L antennas
such that the total number of antennas used to detect the
test mobile’s signal is K = NL. The N AP/BSs cooperate
to detect the signal of any mobile that falls within their
cell. Each cell has a processor which is connected to all
the AP/BSs within that cell. This approach is illustrated in
Figure 3a. We use two models for the location of the test
mobile, a randomly located test mobile and a test mobile at
the cell edge. In the randomly distributed mobile case, the test
mobile is assumed to be distributed uniformly randomly in its
cell, independent of the locations of the APs/BSs in its cell.
Note that while technically we require a minimum distance
between the test mobile and the antennas serving it, we do
not impose this restriction in the derivations of the CDF of
P in order to simplify the resulting expressions. Note that
situations where the test mobile gets very close to an antenna
will result in large spectral efficiencies and are not in the low-
outage-probability regime which is the regime of interest.
Hence, not enforcing a minimum distance in our numerical
evaluations does not influence the spectral efficiencies in the
regimes of interest.

To make the analysis tractable, following [14], we approx-
imate the hexagonal cells using circles with a radius R, such
that the area of the circle equals that of a hexagonal cell.
The resulting CDF for the random variable P is given by the
following Lemma
Lemma 3:

FP(x) = Pr (P ≤ x) =
∫ R

0

[
1
2
−

1
π

∫
∞

0

1
s

VOLUME 10, 2022 23203



Q. Deng, S. Govindasamy: Uplink Spectral Efficiency of Large, Distributed Antenna Systems With MMSE Processing

× =

{
e−jsNx

(∫
∞

0
ejsr
−α

fr|d (r|d) dr
)N}

ds

]
2d
R2
dd,

(21)

with

fr|d (r)=



2r
πR2

acos
(
d2 + r2 − R2

2dr

)
if d + r > R and

d − r < R,
2r
R2

if d + r ≤ R,

0 otherwise.
(22)

Proof: Please see Appendix C.
This expression is used with (11) to approximate the CDF

of the spectral efficiency for the disjoint clustering system.
When the test mobile is at the cell edge, the CDF of P is

given by the following, which follows directly from the proof
of Lemma 3.

FP(x) = Pr (P ≤ x) =
1
2
−

1
π

×

∫
∞

0

1
s
=

{
e−jsNx

(∫
∞

0
ejsr
−α

fr|d (r|R) dr
)N}

ds

(23)

Numerical results, including simulations for this case are
provided in Section VI.

C. USER-CENTRIC CLUSTERING
With user-centric clustering, a mobile is served by a set
of BS/APs which have favourable channels to it (e.g. the
closest by Euclidian distance). Such a system is depicted in
Figure 3b, where the APs illustrated in bold serve the mobile.
Note that in this setup, APs need to be connected to several
processors (or all APs need to be connected). In the example
depicted in Figure 3b, the dashed bold lines indicate links
that would need to be added to the system (as compared
to a disjoint-clustering system) in order to serve the mobile
shown. As such, user-centric clustering typically results in
larger infrastructure and overhead requirements. On the other
hand, with user-centric clustering, there is no notion of a cell-
edge, which is the worst-case location for a mobile. Note that
if we model the APs in the user-centric scenario as being
randomly distributed, the performance of a given link can be
quite different depending on whether we use a large number
of APs with small numbers of antennas vs. a small number of
BSs with large numbers of antennas each. The reason for this
is that the probability of being far away from any antenna is
relatively smaller in the former case, compared to the latter
case.

A commonly used model (e.g. [14]) is to assume that
the access points/base stations form a homogeneous Poisson
Point Process (HPPP) on the plane. Here we adopt the HPPP
model with density ρb BS/unit area. The test mobile then
connects to the N closest BS/APs to it, where K = LN . With

this model, the CDF of P is given by the following lemma
proved in [16].
Lemma 4: For user-centric clustering with BS/APs dis-

tributed as a HPPP with density ρb, the CDF of P is

FP(x) = Pr (P ≤ x)Pr

(
1
N

N∑
i=1

r−α0,i ≤ x

)

= e
−ρbπ

(
1
x

) 2
α N∑
`=0

(
ρbπ

(
1
x

)2/α)`
`!

+
1
π

N∑
`=1

(
N
`

)(
−0

(
1−

2
α

))`
sin
(
2π`
α

)

×

∞∑
m=0

AN−`,m0
(
m+

2
α
`

)
×(xN )−m−

2
α
` 1
N !
(ρbπ)

1
2mα+`

×0

(
N −

mα
2
− `+ 1,

(
1
x

) 2
α

ρbπ

)
(24)

The coefficients Ai,j are defined recursively as follows

Ai,j =
1
j

j∑
`=1

(`(i+ 1)− j)
(

2
`!(2− `α)

)
Ai,j−` (25)

with Ai,0 = 1 for 0 < i ≤ N and 0(·, ·) is the upper
incomplete gamma function. N = K/L, is the number of
access points or base stations.

Assuming that the asymptotic approximation holds, we can
approximate the CDF of the spectral efficiency combining
(24) and (11). Note that while (24) is complicated, it can
be evaluated numerically efficiently, as described in the
following section.

VI. NUMERICAL RESULTS
A. FIXED ANTENNAS
To verify the accuracy of the analytical results, we simulated
a system with AP/BSs at fixed locations serving a test mobile
at the origin.We considered a range of values ofK andN , and
1 antenna per AP/BS. Note that low numbers of antennas per
base station is the regime of interest as systems with small
numbers of base stations, with large numbers of antennas
each have already been analyzed in [16]. We used a relative
density of antennas to users of 20.

Further, in order to verify that as long as (1) holds, the
specific distribution model of the mobiles does not impact the
spectral efficiencies when the numbers of antennas are large,
we consider three different models of how the interfering
mobiles are distributed. As a baseline, we consider the HPPP
model where the locations of the mobiles are completely
independent of one another. To simulate mobile distributions
where mobiles tend to form clusters, we use the Matern
Cluster Process (MCP) with 10 mobiles per cluster (note that
the MCP is a special case of the Neyman-Scott Process [23]).
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FIGURE 3. Illustration of disjoint clustering (left) vs. user-centric (right) architectures. In the disjoint clustering case, the access points within each cluster
are all connected to a central processor. In the user-centric case, the mobile is served by base stations/access points close to it (with the bold
illustration). Hence, some access points will have to be connected to multiple processors, or all access points have to be connected to a single central
processor. The additional fronthaul links required to serve the mobile in the user-centric clustering case as compared to the disjoint clustering approach
are illustrated using the bolded dashed lines in (b).

FIGURE 4. Normalized histogram of the spectral efficiency for APs in a
hexagonal grid around the test mobile with one antenna per AP.
Histograms for mobiles distributed as HPPPs and MCPs are shown.

We also consider a repulsive model for mobile distribution,
namely the Matern type-I hard-core (MHC) process with a
repulsion distance of 10 units. In all cases, we set the effective
density of mobiles to 10−3 mobiles per unit area. Note that the
HPPP, MCP and MHC models are commonly used in the lit-
erature on stochastic geometry for wireless communications
(see e.g. [24]). The specific definitions of these processes can
be found in references such as [23].

Figure 4 shows a normalized histogram of the spectral
efficiency for different numbers of antennas with one antenna
per access point. The lines without the markers represent
simulations using HPPP mobiles, and the lines with the
markers represent the MCP model for the mobiles. Note
that the reduction in the standard deviation of the spectral
efficiency indicates that the spectral efficiency converges in
mean-square, and hence in probability, which is the assertion

FIGURE 5. Normalized histogram of the spectral efficiency for APs in a
hexagonal grid around the test mobile with one antenna per AP.
Histograms for mobiles distributed as HPPPs and MHC processes are
shown.

of the main results of this work. Additionally, for the HPPP
case, we observe that while the convergence is not very fast,
even with 50 antennas, the standard deviation of the spectral
efficiency is below 10% of the asymptotic spectral efficiency,
and with 200 antennas, the standard deviation of the spectral
efficiency is below 5% of the asymptotic spectral efficiency.
Note here that while this convergence is not fast in this
case where P is deterministic, when P is random due to the
random relative positions of the antennas to the test mobile,
the approximation to the CDF of the spectral efficiency given
in (11) is quite accurate for small numbers of antennas as
shown in the remainder of this section. The reason for this
observation is that for even moderately large numbers of
antennas, the primary source of variation that impacts the
spectral efficiency is the positions of the antennas relative to
the test mobile. Figure 5 shows a normalized histogram of the
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FIGURE 6. CDF of the spectral efficiency for K = 200 and different Ls, for
disjoint clustering with cells approximated as circles. The access
points/base stations were distributed uniformly randomly within each
circular cell. The test mobile is assumed to be distributed uniformly
randomly in a circular cell.

spectral efficiency with lines without markers representing
the HPPP model, and the lines with the markers representing
the MHC model for the mobiles. In both Figures 4 and 5,
the distribution of the spectral efficiencies of the MCP and
MHC models approach that of the HPPP model, indicating
that the specific model of mobile distribution is not signif-
icant when the number of antennas is large. Additionally,
we expect, the MCP model (i.e. with clustering of mobiles)
has a larger standard deviation than the HPPP model. Simi-
larly, for the MHC model (where mobiles are more spaced
out and hence more spatially regular), the standard devia-
tion of the spectral efficiency is lower as compared to the
HPPP model.

Figures 4 and 5 also provide some insight into how
the accuracy of the asymptotic approximation changes with
increasingK , with the only source of randomness (aside from
fading) arising from the mobile distributions. The standard
deviation for the HPPP case decreases from 1.38 to 0.87 as the
number of antennasK increases from 20 to 400. Additionally,
since the asymptotic spectral efficiencies increase withK , the
ratio of the standard deviation to the asymptote plays a sig-
nificant role as well. This quantity varies from 0.17 to 0.05 as
the number of antennas increases from 20 to 400. For the
MCP, these values range from 0.22 to 0.11, and for the MHC
process, they range from 0.14 to 0.04, As such, the asymptotic
approximation to the spectral efficiency is moderately accu-
rate in predicting the spectral efficiency when the locations
of the antennas serving the test mobile are fixed. On the other
hand, as noted above and discussed subsequently, this result
is still very useful in predicting the spectral efficiency when
the antennas serving the test mobile are randomly located,
since the ratios of the standard deviation to the asymptotic
spectral efficiencies are small. The mean spectral efficiencies
on the other hand are quite well predicted by the asymptotic
spectral efficiency, with the deviation between the mean and
asymptotic spectral efficiency being less than 1 b/s/Hz with
50 antennas and above, going down to less than 0.1 b/s/Hz at
400 antennas for all three models of mobile distributions.

FIGURE 7. CDF of the spectral efficiency for K = 200 and different Ns, for
a cell-edge user, and disjoint clustering with cells approximated as circles.
The access points/base stations were distributed uniformly randomly
within each circular cell. Relative antenna to mobile density of 20:1 was
used.

B. DISJOINT CLUSTERING
We simulated the disjoint clustering scenario described in
Section V-B where we placed N AP/BS independently and
uniformly randomly in a circular cell, serving a test mobile.
We varied the number of AP/BS, N , and the number of
antennas per BS, L, such that the total number of antennas
serving the test mobile was constant at K = NL = 200. The
test mobile was either distributed uniformly randomly in the
cell or placed at the cell edge with the radius of the cell set so
that the antenna density is 20 times that of the mobile density.
4000 interferers were then placed randomly in the plane with
density 0.001 interferers per unit area, in order to simulate
Poisson distributed interferers. A path-loss exponent of α =
4. Single transmit antennas per mobile were used in these
simulations.

Figure 6 shows the simulated spectral efficiencies (with
markers) and the theoretical spectral efficiencies (with solid
lines) obtained from evaluating (11) together with Lemma 3,
where we used a noise power of -96dBm and transmit power
of 100mW. From the graphs, it is clear that the theoretical
predictions match the simulations well when the number of
antennas per AP/BS is 4 or larger, but even when the number
of antennas per BS L = 2 or L = 1, the graphs still predict the
spectral efficiency moderately well. At an outage probability
of approximately 0.1, the theoretical predictions match the
simulations to within 0.4 b/s/Hz when L = 2 and within
0.6 b/s/Hz when L = 1.
For a fixed total number of antennas, the convergence of

the spectral efficiency CDF to its asymptote is slow when the
number of antennas per AP/BS is low. The reason for this
difference is that the rate of convergence of the SIR (and
hence, the spectral efficiency) is dependent on the conver-
gence of the empirical distribution function of the path losses
between the interfering mobiles and the antennas serving the
test mobile. If the antennas are all co-located, the convergence
of the empirical distribution function of the path-losses is
faster with K as compared to the case when the antennas
serving the test mobile are distributed randomly in space.
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Hence, the convergence of the spectral efficiency when the
number of antennas per AP/BS is low is slower with K . The
portions of the derivation of Theorem 1 that directly impact
this appear in Appendix E and with a note of explanation at
the end of that section.

These results indicate that the asymptotic theoretical
results are useful approximations to the spectral efficiency
for reasonable (in the massive MIMO regime) system param-
eters. Further, observe that distributing all antennas randomly
within the cell results in approximately 2.5 times the spectral
efficiency compared to concentrating all 200 antennas at a
single base station, at an outage probability of 0.1.

Figure 7 depicts the spectral efficiencies of users at a cell
edge of a cell with radius such that the ratio of antenna to
mobile density is 20. We used K = 200 antennas, while vary-
ingN and L such thatK = NL, as indicated in the legend. The
theoretical predictions match simulations between 0.1 b/s/Hz
at L = 50 to 0.6 b/s/Hz at L = 2. The convergence is slower
for the test mobile at the cell-edge than a randomly located
mobile in the cell because at the cell edge, there is more
variation in the distances (and hence path losses) between
the test mobile and the antennas serving it as compared to
a mobile randomly located in the cell.

C. USER-CENTRIC CLUSTERS
As described in Section V, in the user-centric scenario, the
test mobile is served by the BS/APs closest to it. For this
scenario, we conducted simulations where a test mobile was
placed at the origin of the network and the K/L closest
access points to it were used to detect the signal from the test
mobile. The AP/BSs were randomly distributed according to
a Poisson Point Process with density of antennas equal to
20 times that of the mobiles. Note that this value corresponds
to an access point density of 0.1 times the mobile density,
if the 200 antennas were located at a single access point.
The path-loss exponent, α = 4. Single transmit antennas per
mobile were used in these simulations.

Figure 8 shows the simulated and theoretical CDF of the
spectral efficiencies for K = 100 antennas total, and L =
1, 4, 20, 100 antennas per access point, noise power of -
96dBm and transmit signal power of 100mW. The simu-
lated CDFs (illustrated by the markers) were generated from
10000 trials of a circular network with 10000 mobiles. The
theoretical prediction using (24) and (11) is plotted with the
solid lines. Note that the asymptotic prediction matches the
simulations well (within 0.3 b/s/Hz at an outage probability
of 0.1), confirming the accuracy of the asymptotic analysis.

The results indicate that at an outage probability of 0.1,
placing all antennas at a single base station has approximately
3.4 times lower spectral efficiency compared to completely
randomly distributing the antennas. The decrease in spectral
efficiency that results from concentrating all antennas at a
single base station is due to the fact that the probability of the
test mobile being far away from all antennas is higher when
they are concentrated at a single base station (L = 100) as
compared to distributing them in space (L = 1).

FIGURE 8. CDF of the spectral efficiency for K = 100 and different Ls, and
user-centric clustering using N = K/L nearest access points to serve the
test mobile.

Figure 9 shows the simulated and theoretical CDF of the
spectral efficiencies forK = 200 antennas and different num-
bers of antennas per AP/BS. We used L = 1, 4, 20, 100 and
200 antennas per base station. We used a noise power of
-96dBm and a transmit power of 100mW. The theoretical
prediction using (24), and (11) is plotted with the solid lines,
and the markers represent simulation results. From the graph,
we see that the theoretical prediction matches the simula-
tion well (within 0.1 b/s/Hz at an outage probability of 0.1)
as illustrated in the figure, which confirms the accuracy of
the asymptotic analysis. The results indicate that for K =
200 antennas at an outage probability of 0.1, placing all
antennas at a single base station (L = 200) has approximately
2.8 times lower spectral efficiency compared to completely
randomly distributing the antennas (L = 1).

Additionally, to verify that the approach introduced here
works for systems where mobiles have different distributions,
we plotted the CDF of the simulated spectral efficiencies and
theoretical predictions for the systemwithmobiles distributed
as MCPs and MHC processes in Figure 10. The parameters
for the spatial distribution of antennas are the same as that
described in the first paragraph of this section and the param-
eters of the MCP and MHC processes used to for the mobiles
are as defined in Section VI-A. In both cases, we picked
the mobile closest to the center of the network as the test
mobile, and translated the origin to be located at the test
mobile. At an outage probability of 0.1, the simulations for
the MCP (depicted using the ’x’ marker) and the simulations
for the MHC (depicted using the ’o’) marker differ by at most
0.2 b/s/Hz from the theoretical predictions in the simulations
we conducted. Additionally, we note that as expected, for low
outage probabilities, the spectral efficiencies for the MCP
mobiles are slightly lower than that of the MHC process
because the MCP involves clustering of mobiles as compared
to the MHC process where mobiles are more spaced apart
which reduces the likelihood of othermobiles appearing close
to the antennas serving the test mobile (which are close to the
test mobile). These results verify the utility of the proposed
framework for a variety of different modeling assumptions on
the mobile distributions.
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FIGURE 9. CDF of the spectral efficiency for K = 200 and different Ls, and
user-centric clustering using N = K/L nearest access points to serve the
test mobile.

FIGURE 10. CDF of the spectral efficiency for K = 200 and different Ls,
and user-centric clustering using N = K/L nearest access points to serve
the test mobile. The mobiles were distributed either as a MCP (data
plotted with an x) or a MHC process (data plotted with a circle). The
graphs show results from systems with L = 200, 100, 20, 4 and 1, from
left to right.

FIGURE 11. CDF of the spectral efficiency for different numbers of
antennas K L = 1, and user-centric clustering using the N = K/L nearest
access points to serve the test mobile. The mobiles were distributed as a
HPPP. The graphs show results from systems with
K = 20, 50, 100, 150 and 200, from left to right.

To illustrate how the accuracy of the asymptotic predictions
changes as K increases, we plotted the simulated spectral
efficiency of systems with user-centric clustering and differ-
ent numbers of antennas K , using one antenna per AP/BS
in all cases. We used noise level of -96dBm and a transmit
power of 100mW for these simulations which are illustrated
in Figure 11. At one extreme, with K = 20, the simulated
spectral efficiency and its asymptotic prediction differ by
2 b/s/Hz at an outage probability of 0.1. This discrepancy
diminishes to 0.1 b/s/Hz for K = 200.

FIGURE 12. Simulated and theoretical CDF of the spectral efficiencies for
K = 200 receive antennas and different numbers of transmit antennas
per mobile, Ms. Results for L = 4 and L = 50 antennas per access
point/BS are shown. We used user-centric clustering with the N = K/L
closest AP/BSs serving a test mobile.

D. MULTIPLE TRANSMIT ANTENNAS
We additionally simulated systems where each mobile has
multiple transmit antennas.We considered systems with user-
centric clustering, and Poisson distributed AP/BSs as done
for the single-transmit-antenna per mobile system described
in Section VI-C. We consider M = 1, 2, 3, 4 transmit anten-
nas per mobile. We use low numbers since it is unlikely
that mobile devices will have large numbers of antennas.
We illustrate two cases, when APs have 4 antennas and when
BSs have 100 antennas, with the total number of antennas
equaling 200 in all cases in Figure 12. The simulations agree
well with the theoretical predictions from (19) for M =

1, 2, 3 transmit antennas per mobile, but less so for M = 4.
Even for L = 4 andM = 4, the theoretical predictions match
the simulations within 2 b/s/Hz at an outage probability of
approximately 0.1, indicating that the theoretical asymptotic
predictions are moderately useful in predicting the spectral
efficiencies when the mobiles have a small number of trans-
mit antennas.

We further note the diminishing benefit of increasing the
number of transmit antennas per mobile since the multiplex-
ing gain obtained by using multiple transmit antennas at the
test mobile is offset by the increased burden on suppressing
interference since each multiantenna interferer appears as
multiple single antenna interferers because we have assumed
that independent transmissions are used per transmit antenna.
For example, in the 4 antennas per access point case, going
from one to 4 transmit antennas per mobile increases spectral
efficiency by approximately a factor of 3.5 at an outage prob-
ability of 0.1. However, when the antennas are concentrated
at a few base stations, e.g. at 2 base stations with 100 antennas
each, the spectral efficiency with 3 or 4 transmit antennas
are both approximately 1.5 times that of just using a single
antenna. The reason for the smaller increase in spectral effi-
ciency in this case is because even with the same total number
of antennas, when the antennas are concentrated at a few base
stations, the probability of the test mobile being far away from
all antennas is larger compared to the case where there are
a large number of access points with a few antennas each,
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distributed randomly in space. Consequently, the probability
of the test mobile being in the low SIR regime is higher when
antennas are concentrated at a few BSs. When the SIR is low,
multiplexing gain with multiple transmit antennas is known
to be reduced.

VII. SUMMARY AND CONCLUSION
We have presented an asymptotic technique to analyze the
uplink spectral efficiency of a distributed antenna systemwith
linear MMSE processing and a large number of antennas.
The system model is general enough that it applies to sys-
tems with a large number of single-antenna access points,
to systems with a small number of base stations, each with
a large number of antennas, and systems between those
extremes. Hence, the results of this work generalize the find-
ings in [17] which only apply to the latter case.We applied the
approach developed here to a user-centric distributed antenna
system with Poisson distributed access points and mobiles,
where a mobile is served by the 200 closest antennas to it.
We found that with a fixed antenna density, a factor of about
2.8 improvement in spectral efficiency is achieved when the
antennas are fully distributed (1 antenna/access point) as
compared to 200 antennas all placed at a single base station.
Similar increases were also found in the case of disjoint
clustering of antennas, where space is divided into cells with
a fixed number of antennas distributed independently and
uniformly randomly in each cell.

Hence, the analysis presented here can be used by sys-
tem designers to trade off between placing fewer number of
antennas on a larger number of access points, vs. placing
larger number of antennas in fewer access points. Given
the potentially different cost implications associated with
different allocations of antennas and access points, and the
overall high cost associated with distributed antenna systems
in general, we expect that the approach presented here to be
helpful for system designers to trade off cost and complexity
vs. spectral efficiency in distributed antenna systems.

APPENDIX A
PROOF OF LEMMA 1
Define D = diag(r−α0,1 , r

−α
0,2 , · · · , r

−α
0,K ) and g0 =

[g0,1 g0,2 . . . g0,K ]T We can then write

K−
α
2 SIR[n] =

1
K
g†0R̄
−1g0 (26)

where R̄ = D−
1
2

(
K−

α
2−1H[n]H†[n]

)
D−

1
2 . Let λk be the k-

th largest eigenvalue of R̄.
The smallest of the λks, is bounded from below for large

K as follows.
Lemma 5: ∃ K0 such that ∀K > K0, and some λ`b > 0,

w.p.1..

min λk > λ`b. (27)

Proof: Please see Appendix D.

Next, consider the following

lim
K→∞
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{∣∣∣∣ 1K g†0R̄
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= ER̄

[
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−1g0 −
1
K
Tr(R̄−1)
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∣∣∣∣ R̄}]
= 0 (28)

where the limit is taken into the expectation by the Dominated
Convergence Theorem. The limit in (28) goes to zero from
Theorem 3.4 of [21] and the fact that convergence w.p.1.
implies convergence i.p..

Hence, from (26) and (28) the following holds i.p.

lim
K→∞

K−
α
2 SIR[n] = lim

K→∞

1
K
Tr
(
R̄−1

)
= lim

K→∞

∫
∞

−∞

dFK (τ )
τ

, (29)

where the empirical distribution function (e.d.f.) of the eigen-
values of R̄ is FK (τ ), so dFK (τ ) is a measure with a mass of
1
K at each eigenvalue of R̄.
The following lemma shows that (29) converges to the

desired form as K →∞, completing the proof.
Lemma 6:

lim
c→∞

lim
K→∞

Tr
(
R̄−1

)
= lim
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lim
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∫
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dFK (τ )
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[

α

2π2ρ
sin
(
2π
α

)] α
2

. (30)

Proof: Please see Appendix E.
Note that the specific form of the limit in (65) originates

from the convergence of the e.d.f. of appropriately scaled
path-losses from the interferers, which was originally derived
for systems with small number of base stations in [17],
as described in Appendix G.

APPENDIX B
PROOF OF LEMMA 2
We use a sandwiching argument here, with the general
approach similar to the proof of Lemma 1 from [16], but with
details differing due to the more general system assumptions
in this work. Let SIR[n] be the SIRwhen theMMSE estimator
constructed for a network with just the first n interferers is
applied to the network with all interferers. Recall that SIR[n]
is the SIR of a system with just the first n interferers in it.
Hence,

SIR[n] ≤ SIR ≤ SIR[n] (31)

We have

SIR[n] =
||βw†[n]h0||2

β2w†[n]
(
H[n]H†[n]+

∑
∞

m=n+1 hmh
†
m

)
w[n]

(32)
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where β is a scale factor on the weight vector which does not
impact the SIR as it scales the signal and the interference by
the same value. From (4) and (5),

SIR[n] =
SIR[n]

1+ 1
SIR[n]

w†[n]
(∑
∞

m=n+1 hmh
†
m

)
w[n]

=
SIR[n]

1+ 1
SIR[n]

∑
∞

m=n+1 |w†[n]hm|2
(33)

Consider the limits as K → ∞, and c → ∞ of the sum-
mation term in the denominator of the previous expression.
We will subsequently show that this term goes to zero in
probability.

lim
c→∞

lim
K→∞

1
SIR[n]

∞∑
m=n+1

|w†[n]hm|2. (34)

The following lemma helps simplify the summation term
in (34), in the limit.
Lemma 7: Consider an L × L, non-negative definite, Her-

mitian matrix BL , whose minimum eigenvalue is bounded
from below by λ̄ > 0 with probability 1. Suppose that a ∈
CL×1 and b ∈ CL×1 comprise zero-mean, uncorrelated ran-
dom variables with variances σ 2

a1 , · · · , σ
2
aL and σ 2

b1
, · · · , σ 2

bL
respectively which are bounded ∀L. Then, for some L0 > 0,
for L > L0, with probability 1
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]
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λ̄2L
max{σ 2

a`}max{σ 2
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where the expectation is with respect to a and b. Hence, the
following holds in probability

lim
L→∞

1
L
a†B−1b = 0. (36)

Proof: Please see Appendix F.
Consider the expectation of the summation term in (34)
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2 .
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where the expectation goes into the sum due to positivity of
the summands, and
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qm is comprises independent random variables. Since ri,j
are bounded from below, the variance of these variables is
bounded from above. Hence form sufficiently large that rm >
D,

max{rα0,1, · · · , r
α
0,K }max{r−αm,1, · · · , r

−α
m,K }

≤ max{rα0,1, · · · , r
α
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−α, (39)

with probability 1. Thus, for n sufficiently large that rn+1 >
D, with probability 1, we can bound (37) as
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(rm − D)−α,

(41)

where the inequality in (40) follows from Lemma 7. Note that
the expectation above is over g0, and hm. For large enough n
such that rn+1 > D, the summation of (rm − D)−α is known
to be bounded with probability 1, and since r0,1, · · · r0,K
is bounded, and with probability 1, limK→∞ λmin(R̄−1) is
bounded by a strictly positive number from Lemma 5,

lim
K→∞

K−
α
2

∞∑
m=n+1

|w†[n]hm|2 = 0 (42)

in probability. From Lemma 1 with n = cK and c > 2,

lim
c→∞

lim
K→∞

SIR[n] = P̄
[

α

2π2ρ
sin
(
2π
α

)] α
2

(43)

Therefore (34) converges in probability to zero, and the fol-
lowing holds in probability

lim
c→∞

lim
K→∞

K−
α
2 SIR[n] = lim

c→∞
lim
K→∞

K−
α
2 SIR[n]

= P̄
[

α

2π2ρ
sin
(
2π
α

)] α
2

(44)

Thus, the upper and lower bounds of SIR are equal in the
limit, completing the proof.

APPENDIX C
PROOF OF LEMMA 3
Note that

Pr(P̄ ≤ x) = Pr
(
1
N
(r−α0,1 + r

−α
0,2 + · · · + r

−α
0,N ) ≤ x

)
= Pr

(
r−α0,1 + r

−α
0,2 + · · · + r

−α
0,N ≤ Nx

)
. (45)

To find the CDF of r−α0,1 + r
−α
0,2 +· · ·+ r

−α
0,N , we first condition

on the test mobile being at distance d from the center of
the circular cell. Since the AP/BSs are uniformly randomly
distributed within the circular cell, the PDF of the distance
from the mobile to one AP/BS is equal to the PDF of the
distance between a random point in a disk of radius R to
another point in the disk at distance d from the center of that
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disk. Using geometric arguments one can find this PDF to
equal (22). Note that this PDF can be found in different forms
in references such as [25] and others.

Conditioned on d , the characteristic function of r−α0,i for
i = 1, 2, · · ·K is therefore∫

∞

0
ejsr
−α

fr|d (r|d) dr (46)

Since the AP/BSs are i.i.d., conditioned on d , the character-
istic function of r−α0,1 + r

−α
0,2 + · · · + r

−α
0,N is(∫

∞

0
ejsr
−α

fr|d (r|d) dr
)N

(47)

We then apply the Gil-Palaez Theorem, [26], to find the CDF
of r−α0,1 + r

−α
0,2 + · · ·+ r

−α
0,N conditioned on d , evaluated at Nx,

which yields:

1
2
−

1
π

∫
∞

0

1
s
=

{
e−jsNx

(∫
∞

0
ejsr
−α

fr|d (r|d) dr
)N}

ds

(48)

The proof is completed by averaging the CDF over d whose
PDF is 2d/R2 for 0 < d ≤ R.

APPENDIX D
POOF OF LEMMA 5
First let’s define K̂ = c1K , where c1 is a constant, with 1 <
c1 < c. Since n = cK > K̂ , by the Weyl inequality (see
e.g. [27]),

λmin

(
K̂α/2−1H[K̂ ]H†[K̂ ]

)
≤ λmin

(
K̂α/2−1H[n]H†[n]

)
(49)

Additionally,

H[K̂ ]H†[K̂ ] =
K̂∑
i=1

hih
†
i =

K̂∑
i=1

(
rK̂+1 + D

)−α
gig

†
i

+

K̂∑
i=1

(hih
†
i −

(
rK̂+1 + D

)−α
gig

†
i ) (50)

Since ri,j < rK̂+1 + D for i = 1, 2, · · · , K̂ and j =
1, 2, · · · ,K with probability 1, the matrix resulting from
rightmost sum of (50) is non-negative definite with proba-
bility 1. Hence, by the Weyl inequality (see e.g. [27])

λmin


K̂∑
i=1

(
rK̂+1 + D

)−α
gig

†
i

 ≤ λmin

{
H[K̂ ]H†[K̂ ]

}
(51)

Note that the following is known to hold with probability 1
([28])

lim
K̂→∞

λmin


K̂∑
i=1

1
M

gig
†
i

 =
(
1−

√
1
c1

)2

(52)

By assumption, we have the following with probability 1

lim
K̂→∞

πρr2
K̂+1

K̂ + 1
= 1 (53)

lim
K̂→∞

(
rK̂+1 + D

)−α ( K̂
πρ

)α/2
= 1 (54)

Combining (52) and (54), we have

lim
K̂→∞

K̂α/2−1λmin

(rK̂+1 + D)−α
K̂∑
i=1

gig
†
i


= (πρ)α/2

(
1−

√
1
c1

)2

(55)

with probability 1. Combining this expression with (51) and
(49), and rearranging yields the following in probability

(πρ)α/2

(
1−

√
1
c1

)2

c
1− α2
1

≤ lim
K→∞

λmin

{
Kα/2−1H[n]H†[n]

}
(56)

Since λmin(D
−1) ≥ Dαmin(

πρD2
min

)α/2 (
1−

√
1
c1

)2

c
1− α2
1

≤ lim
K→∞

λmin

{
D−

1
2

(
Kα/2−1H[n]H†[n]

)
D−

1
2

}
(57)

Additionally, it is known from [29] that for suffi-
ciently large K , with probability 1, the matrix R̄ =

D−
1
2

(
Kα/2−1H[n]H†[n]

)
D−

1
2 has no eigenvalues outside

the support of its limiting eigenvalue distribution. Therefore
for large enough K , with probability 1, no eigenvalue of R̄
will be less than or equal to the RHS of (57), which is bounded
from below by the LHS.

APPENDIX E
PROOF OF LEMMA 6
Define the following vectors for i = 1, 2, · · ·

h̃i = [r
−
α
2

i gi,1 r
−
α
2

i gi,2 . . . r
−
α
2

i gi,K ]T (58)

ĥi = hi − h̃i = [(r
−
α
2

i,1 − r
−
α
2

i )gi,1 (r
−
α
2

i,2 − r
−
α
2

i )gi,2

. . . (r
−
α
2

i,K − r
−
α
2

i )gi,K ]T , (59)

where ri is the distance of the i-th mobile from the origin.
Hence, the vector h̃i is equivalent to the channel vector
between the i-th mobile and the K receive antennas, if the
antennas were all co-located at the origin instead of their
actual locations.

Define the following matrices

Hbs[n] = [h̃1 h̃2 h̃3 . . . h̃n] (60)

H1[n] = [ĥ1 ĥ2 ĥ3 . . . ĥn] (61)
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Hence,

H[n] = Hbs[n]+H1[n] (62)

Using this expression, rewrite R̄ as

R̄ = K−
α
2−1D−

1
2

(
Hbs[n]H

†
bs[n]+H1[n]H

†
bs[n]

+Hbs[n]H
†
1[n]+H1[n]H

†
1[n]

)
D−

1
2 . (63)

Let FbsK (τ ) be the e.d.f. of the eigenvalues of the matrix

R̄bs = D−
1
2

(
K−

α
2−1Hbs[n]H

†
bs[n]

)
D−

1
2 (64)

The limit of FbsK (τ ) is given by the following Lemma
Lemma 8: The following hold w.p.1.

lim
K→∞

FbsK (τ ) = Fbs(τ ) (65)

and

lim
c→∞

∫
Fbs(τ )
τ
= P̄

[
α

2π2ρ
sin
(
2π
α

)] α
2

. (66)

Proof: Please see Appendix G.
The following lemma shows that as K → ∞, FK (τ ) does

not depend on the three RHS terms in the parentheses of (63),
and completes the proof when combined with (66).
Lemma 9: The following hold i.p.

lim
K→∞

FK (τ ) = F(τ ) = Fbs(τ ) and (67)

lim
K→∞

∫
FK (τ )
τ

dτ =
∫

Fbs(τ )
τ

dτ (68)

Proof: Please see Appendix H.
Note that if all antennas were co-located at a given location,

all the ri,j terms in the vectors ĥi in (59) would be equal,
resulting in faster convergence to zero of the terms involving
H1[n] in equation (63).

APPENDIX F
PROOF OF LEMMA 7
Denote the i-th entries of the vectors a and b by ai and bi
respectively, and the ij-th entry of B−1L by B−1i,j

E

[∣∣∣∣ 1L a†B−1b
∣∣∣∣2
]

= E

 1
L2

L∑
i1=1

L∑
i2=1

L∑
j1=1

L∑
j2=1

ai1a
∗
i2bj1b

∗
j2B
−1
i1,j1

B−1i2,j2

 (69)

Terms in the summation with odd numbers of ai1 and bj1
terms will go to zero, due to the fact that ai and bi are zero
mean, uncorrelated random variables. Therefore, for all the
remaining terms, with i1 = i2 and j1 = j2, we have

E

[∣∣∣∣ 1L a†B−1b
∣∣∣∣2
]

=
1
L2

L∑
i1=1

L∑
j1=1

E[|ai1 |
2]E[|bj1 |

2]|B−1i1,j1 |
2 (70)

≤
1
L2

max
`=1···L

{σ 2
a`} max

`=1···L
{σ 2
b`}

L∑
i1=1

L∑
j1=1

|B−1i1,j1 |
2

=
1
L2

max
`=1···L

{σ 2
a`} max

`=1···L
{σ 2
b`}Tr

{
B−2L

}
≤

1
L

max
`=1···L

{σ 2
a`} max

`=1···L
{σ 2
b`}λmax(B

−2
L ), (71)

Since λmax
(
B−2L

)
=

1
(λmin(BL ))2

, for L > L0, with prob-
ability 1, (35) is proved. The second part follows because
(35) converges to zero as L → ∞, and the fact that
mean-square convergence and convergence with probability
one both imply convergence in probability.

APPENDIX G
PROOF OF LEMMA 8
From Theorem 6.1 of [21], as n,K → ∞ with n = cK , and
c > 2, w.p.1.,

FbsK (τ )→ Fbs(τ ),

lim
K→∞

∫
FbsK (τ )
τ − z

=

∫
Fbs(τ )
τ − z

= lim
K→∞

mbsK (z) (72)

where mbsK (z) and mbs(z) are the Stieltjes transforms (see
e.g. [22]) of FbsK (z) and Fbs(z), respectively. Thus, (65) is
proved.

For the next part of the Lemma, using ↑ to denote approach
from below we have

lim
z↑0

lim
K→∞

∫
FbsK (τ )
τ − z

= lim
z↑0

∫
Fbs(τ )
τ − z

= lim
z↑0

lim
K→∞

mbsK (z)

= lim
z↑0

mbs(z). (73)

Additionally from Theorem 6.1 of [21], as n,K → ∞ with
n = cK , and c > 2,

lim
K→∞

mbsK (z) = lim
K→∞

1
K
Tr

(∫
τdH (τ )

1+ 1
c τe(z)

D−1 − zIK

)−1
(74)

where e(z) is the unique solution to

e(z) = lim
K→∞

1
K
Tr

(∫
τdH (τ )

1+ 1
c τe(z)

IK − zD

)−1
, (75)

where H (τ ) is the limit of the e.d.f. of K
α
2 r−α1 ,

K
α
2 r−α2 , · · · ,K

α
2 r−αK . Additionally, this convergence is uni-

form in z for any z < 0. Therefore, from Theorem
7.11 of [30],

lim
z↑0

lim
K→∞

mbsK (z) =

lim
z↑0

lim
K→∞

1
K
Tr

(∫
τdH (τ )

1+ 1
c τe(z)

D−1 − zIK

)−1

= lim
K→∞

lim
z↑0

1
K
Tr

(∫
τdH (τ )

1+ 1
c τe(z)

D−1 − zIK

)−1
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= lim
K→∞

lim
z↑0

1
K
Tr

(∫
τdH (τ )

1+ 1
c τe(z)

D−1
)−1

= lim
K→∞

lim
z↑0

1
K

K∑
k=1

r−α0,k∫
τdH (τ )
1+ 1

c τe(z)

= lim
K→∞

lim
z↑0

1∫
τdH (τ )
1+ 1

c τe(z)

1
K

K∑
k=1

r−α0,k (76)

Next, take the limit of (76) as c→∞ to get

lim
c→∞

lim
z↑0

lim
K→∞

mbsK (z)

= lim
c→∞

lim
K→∞

lim
z↑0

1∫
τdH (τ )
1+ 1

c τe(z)

1
K

K∑
k=1

r−α0,k (77)

Suppose that r0,1 = r0,2 = · · · = r0,K = 1, which
corresponds to the case of a single base station at unit dis-
tance from the test mobile. Then, it is known from [31] for
Poisson distributed mobiles, and [17] for the general mobile
distribution assumed here, that

lim
c→∞

lim
z↑0

lim
K→∞

mbsK (z) =
[

α

2π2ρ
sin
(
2
α

)] α
2

(78)

Comparing with (77), we conclude that when it is not neces-
sarily the case that r0,1 = r0,2 = · · · = r0,K = 1, we have

lim
c→∞

lim
z↑0

lim
K→∞

mbsK (z) =
[

α

2π2ρ
sin
(
2
α

)] α
2 1
K

K∑
k=1

r−α0,k

(79)

The lemma is proved from the definition of P̄

APPENDIX H
PROOF OF LEMMA 9
From Lemma 8, it is known that FbsK (τ ) → Fbs(τ ) w.p.1..
We then use the results of Exercises 2.4.3 and 2.4.4 of [22]
to show that all the terms involving H1 in (63) do not play a
role in the e.d.f. of the eigenvalues of R̄ in the limit. To this
end, let’s define

B = H1[n]H
†
bs[n]+Hbs[n]H

†
1[n]+H1[n]H

†
1[n] (80)

and for some 0 < δ < 1, define the following matrices

Ba1 =
n∑

i=bn1−δc+1

h̃iĥ
†
i (81)

Ba2 =
n∑

i=bn1−δc+1

ĥih̃
†
i , (82)

Ba3 =
n∑

i=bn1−δc+1

ĥiĥ
†
i (83)

Bb1 =
bn1−δc∑
i=1

h̃iĥ
†
i (84)

Bb2 =
bn1−δc∑
i=1

ĥih̃
†
i (85)

Bb3 =
bn1−δc∑
i=1

ĥiĥ
†
i (86)

Note that B = Ba1 + Bb1 + Ba2 + Bb2 + Ba3 + Bb3.
The following lemmas will be used to show that the matrices
above have a diminishing effect on FK (τ ) as K →∞.
Lemma 10: The following holds i.p. for i = 1, 2, 3

lim
K→∞

1
K
||D−

1
2

(
K−

α
2−1Bai

)
D−

1
2 ||

2
F = 0. (87)

Proof: Please see Appendix I.
Lemma 11: The following holds i.p. for i = 1, 2, 3

lim
K→∞

1
K
Rank

(
D−

1
2

(
K−

α
2−1Bbi

)
D−

1
2

)
= 0. (88)

Proof: Since Bb1 is a sum of bn1−δc rank 1 matrices, its
rank is ≤ n1−δ . Hence,

1
K
Rank

(
D−

1
2

(
K−

α
2−1Bbi

)
D−

1
2

)
≤

1
K
Rank

(
K−

α
2−1Bb1

)
≤

1
K
n1−δ (89)

Since δ > 0 and n = cK , the upper bound above converges
to zero as K →∞ completing the proof �
Let R̄ = R̄bs + Ra + Rb, where

Ra = D−
1
2Ba1D−

1
2 + D−

1
2Ba2D−

1
2 + D−

1
2Ba3D−

1
2

Rb = D−
1
2Bb1D−

1
2 + D−

1
2Bb2D−

1
2 + D−

1
2Bb3D−

1
2

From Lemmas 10 and 11, limK→∞
1
K ||Ra||

2
F = 0 and

limK→∞
1
K Rank (Rb) = 0 i.p., respectively. Hence, from

Exercises 2.4.3 and 2.4.4 of [22], the e.d.f. of the eigenvalues
of R̄ converges to the e.d.f. for the eigenvalues of R̄bs i.p.,
completing the proof of the first part. The second part follows
from Theorem 25.8 of [32] and Lemma 5.

APPENDIX I
PROOF OF LEMMA 10
1) Ba1

Since 1
K ||D

−
1
2

(
K−

α
2−1Ba1

)
D−

1
2 ||

2
F

≤ ||D−
1
2 ||

4
F

1
K ||K

−
α
2−1Ba1||2F , it suffices to show that as

K →∞, 1
K ||K

−
α
2−1Ba1||2F → 0 i.p..

Consider the following, where the expectation is w.r.t. the
fading variables gi,j

E
[∣∣∣∣ 1K ∥∥∥K α

2−1Ba1
∥∥∥2
F

∣∣∣∣] = Kα−3
K∑
`=1

K∑
m=1,
m6=`

E
[
|[Ba1]`m|

2
]

+Kα−3
K∑
`=1

E
[
|[Ba1]``|

2
]
(90)

VOLUME 10, 2022 23213



Q. Deng, S. Govindasamy: Uplink Spectral Efficiency of Large, Distributed Antenna Systems With MMSE Processing

Subsequently, when we say φ(i) = O1(iκ ), we mean
limi→∞ i−κφ(i) = A, for a constant (possibly zero) A, w.p.1.
With this notation, we have
Lemma 12: With expectation w.r.t. the fading variables:

E
[
|[Ba1]`m|

2
]
=

{
O1
(
K−α+αδ+δ+1

)
, for ` = m

O1
(
K−α+αδ+δ

)
, for ` 6= m

(91)

Proof:

[Ba1]`m =
n∑

i=bn1−δc+1

(r
−
α
2

i,1 − r
−
α
2

i )2gi,`g∗i,m (92)

From (1), we have

r
−
α
2

i = O1(i−
α
4 ) (93)

Additionally, since the antennas serving the test user are
contained within a bounded area, for ` = 1, 2, · · · ,K :

|r
−
α
2

i,` − r
−
α
2

i | = O1(i−
α
4−

1
2 ) (94)

Taking the variance of (92)w.r.t. gi,` and gi,m, and substituting
(93) and (94) yields the following w.p.1.,

var {[Ba1]`m} =
n∑

i=bn1−δc+1

r−αi (r
−
α
2

i,1 − r
−
α
2

i )2var
{
gi,`g∗i,m

}
=

n∑
i=bn1−δc+1

r−αi (r
−
α
2

i,1 − r
−
α
2

i )2 (95)

≤

n∑
i=bn1−δc+1

r−α
bn1−δc+1

(r
−
α
2
bn1−δc+1,1

− r
−
α
2
bn1−δc+1

)2

≤ nr−α
bn1−δc+1

(r
−
α
2
bn1−δc+1,1

− r
−
α
2
bn1−δc+1

)2 (96)

= O1

(
n(bn1−δc + 1)−α−1

)
= O1

(
nαδ+δ−α

)
(97)

For ` = m, note from (92) that

E
[
[Ba1]`m

]
=

n∑
i=bn1−δc+1

r
−
α
2

i (r
−
α
2

i,1 − r
−
α
2

i )E[|gi,`|2]

=

n∑
i=bn1−δc+1

r
−
α
2

i (r
−
α
2

i,1 − r
−
α
2

i )

(
E
[
[Ba1]`m

])2
=

n∑
i=bn1−δc+1

r−αi (r
−
α
2

i,1 − r
−
α
2

i )2

+

n∑
i=bn1−δc+1

n∑
j=bn1−δc+1

j6=i

r
−
α
2

i |r
−
α
2

i,1 − r
−
α
2

i |r
−
α
2

j |r
−
α
2

j,1 − r
−
α
2

j |

(98)

Using steps similar to the derivation from (95) to (97) yields
the following w.p.1.(

E
[
[Ba1]`m

])2
= O1

(
nαδ+δ−α

)
+ O1

(
nαδ+δ−α+1

)

= O1

(
nαδ+δ−α+1

)
. (99)

Since E
[
|Ba1|`m|2

]
= var {|Ba1|`m|} +

(
E
[
[Ba1]`m

])2
,

the proof for ` = m is completed by adding (97) and (99) and
substituting n = cK . For for ` 6= m, E

[
[Ba1]`m

]
= 0. Hence,

for ` 6= m we can use (97) with n = cK to say that w.p.1.,

E
[
|[Ba1]`m|

2
]
= O1

(
K−α+αδ+δ

)
. (100)

The proof is complete since αδ + δ < 1 and α > 2, and
convergence in mean and w.p.1. imply convergence i.p.. �
From substituting Lemma 12 into (101) and simplifying

results in

E
[∣∣∣∣ 1K ∥∥∥K α

2−1Ba1
∥∥∥2
F

∣∣∣∣] = O1

(
K δα+δ−1

)
(101)

If we pick δ such that δα + δ < 1, we have the following
w.p.1.

lim
K→∞

E
[∣∣∣∣ 1K ∥∥∥K α

2−1Ba1
∥∥∥2
F

∣∣∣∣] = 0. (102)

Since convergence in mean, and w.p.1. both imply conver-
gence i.p., (87) is proved. The proof of i = 2 and 3 follow
similar steps.

APPENDIX J
PROOF OF EXTENSION TO MULTIPLE TRANSMIT
ANTENNAS
Consider a normalized version of the mutual information
between the transmitted signal from the test transmitter and
the received signal vector as follows

I (y; x0)+ log2
(
K−

α
2 I
)

= log2
∣∣∣I+H0H

†
0K
−1
∣∣∣+ log2

(
K−

α
2 I
)

= log2
∣∣∣K− α2 I+ K− α2 H0H

†
0K
−1
∣∣∣

= log2
∣∣∣K− α2 I+ K− α2 H†

0K
−1H0

∣∣∣
= log2

∣∣∣∣K− α2 I+ 1
K
H†

0

(
K

α
2−1K

)−1
H0

∣∣∣∣ (103)

Let’s take a closer look at the determinant of the matrix
1
KH

†
0(K

α/2−1K)−1H0, for large K . Define K̄ = Kα/2−1K for
notational convenience. We then have

lim
K→∞

1
K

∣∣∣H†
0K̄
−1H1

∣∣∣ = lim
K→∞

1
K

×

∣∣∣∣∣∣∣∣∣∣∣

h†0K̄
−1h0 h†0K̄

−1h1 . . . h†0K̄
−1hM−1

h†1K̄
−1h0 h†1K̄

−1h1 . . . h†1K̄
−1hM−1

...
...

. . .
...

h†M−1K̄
−1h0 h†M−1K̄

−1h1 . . . h†M−1K̄
−1hM−1

∣∣∣∣∣∣∣∣∣∣∣
(104)

Note that the smallest eigenvalue of K̄ is bounded
from below with probability 1. Hence, by Lemma 7,
limK→∞

1
K h

†
i K̄
−1hj = 0 for i 6= j. Since the determinant of
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a matrix is a continuous function of its entries, by the contin-
uous mapping theorem we have the following in probability

lim
K→∞

1
K

∣∣∣H†
0K̄
−1H1

∣∣∣ = lim
K→∞

1
K

×

∣∣∣∣∣∣∣∣∣∣
h†0K̄

−1h0 0 . . . 0
0 h†1K̄

−1h1 . . . 0
...

...
. . .

...

0 0 . . . h†M−1K̄
−1hM−1

∣∣∣∣∣∣∣∣∣∣
= lim

K→∞

∣∣∣∣K− α2 I+ 1
K
H†

0K̄
−1H1

∣∣∣∣
=

M−1∏
i=0

lim
K→∞

1
K
h†i K̄

−1hi =
M−1∏
i=0

lim
K→∞

K−
α
2 h†iK

−1hi

=

(
P̄
[

α

2π2ρ
sin
(
2π
α

)] α
2
)M

(105)

where the last step is from substituting Theorem 1.
Now consider the following, where the identity matrix in

(107) isM ×M :

∣∣∣∣∣ηM −M log2

(
1+ P̄

[
α

2π2Mρ
sin
(
2π
α

)] α
2

K
α
2

)∣∣∣∣∣
=

∣∣∣∣∣ log2 (∣∣∣I+H†
0K
−1H0

∣∣∣)
−M log2

(
1+ P̄

[
α

2π2Mρ
sin
(
2π
α

)] α
2

K
α
2

)∣∣∣∣∣
=

∣∣∣∣∣ log2 (∣∣∣I+H†
0K
−1H0

∣∣∣)−M log2
(
K

α
2

)
−M log2

(
1+ P̄

[
α

2π2Mρ
sin
(
2π
α

)] α
2

K
α
2

)

+ M log2
(
K

α
2

) ∣∣∣∣∣
=

∣∣∣∣∣ log2 (∣∣∣I+H†
0K
−1H0

∣∣∣)− log2
∣∣∣K α

2 I
∣∣∣

−M log2

(
1+ P̄

[
α

2π2Mρ
sin
(
2π
α

)] α
2

K
α
2

)

+M log2
(
K

α
2

) ∣∣∣∣∣ (106)

=

∣∣∣∣∣ log2 (∣∣∣K− α2 I+ K− α2 H†
0K
−1H0

∣∣∣)
−M log2

(
K−

α
2 + P̄

[
α

2π2Mρ
sin
(
2π
α

)] α
2
)∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣log2


∣∣∣K− α2 I+ K− α2 H†
0K
−1H0

∣∣∣(
K−

α
2 + P̄

[
α

2π2Mρ
sin
(
2π
α

)] α
2
)M


∣∣∣∣∣∣∣∣∣ = 0.

(107)

The last step follows from (105).
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