
Received February 7, 2022, accepted February 17, 2022, date of publication February 21, 2022, date of current version March 3, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3153119

Using HW/SW Codesign for Deep Neural
Network Hardware Accelerator Targeting
Low-Resources Embedded Processors
EREZ MANOR 1 AND SHLOMO GREENBERG 1,2, (Member, IEEE)
1Department of Electrical and Computer Engineering, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel
2Department of Computer Science, Sami Shamoon College of Engineering, Be’er Sheva 84100, Israel

Corresponding author: Shlomo Greenberg (shlomo.greenberg@gmail.com)

This work was supported in part by the High-Tech Scholarship Award, and in part by the GenPro Consortium within the framework of
the Israel Innovation Authority’s Magnet Program.

ABSTRACT The usage of RISC-based embedded processors, aimed at low cost and low power, is becoming
an increasingly popular ecosystem for both hardware and software development. High performance yet
low power embedded processors may be attained via the use of hardware acceleration and Instruction Set
Architecture (ISA) extension. Efficient mapping of the computational load onto hardware and software
resources is a key challenge for performance improvement while still keeping low power and area. Further-
more, exploring performance at an early stage of the design makes this challenge more difficult. Potential
hardware accelerators can be identified and extracted from the high-level source code by graph analysis to
enumerate common patterns. A scheduling algorithm is used to select an optimized sub-set of accelerators
to meet real-time constraints. This paper proposes an efficient hardware/software codesign partitioning
methodology applied to high-level programming language at an early stage of the design. The proposed
methodology is based on graph analysis. The applied algorithms are presented by a synchronous directed
acyclic graph. A constraint-driven method and unique scheduling algorithm are used for graph partitioning
to obtain overall speedup and area requirements. The proposed hardware/software partitioning methodology
has been evaluated forMLPerf Tiny benchmark. Experimental results demonstrate a speedup of up to 3 orders
of magnitude compared to software-only implementation. For example, the resulting runtime for the KWS
(Keyword Spotting) software implementation is reduced from 206 sec to only 181ms using the proposed
hardware-acceleration approach.

INDEX TERMS HW/SW codesign, SDF Graph, extensible processors, MLPerf tiny.

I. INTRODUCTION
In the last years, the complexity of the embedded platform,
such as Internet-of-Things (IoT) devices, has been increasing
steadily with the conflicting requirements for high perfor-
mance and real-time capabilities versus the minimal amount
of power and size. Using a general-purpose RISC processor
for such systems typically results in a design that fails to meet
the application-specific requirement [1].

To achieve the application’s desired requirements, one
may use extensible RISC-based embedded processors, which
offer the flexibility of integrating hardware accelerator and
Instruction Set Architecture (ISA) extension. Examples for
such processors can be found in the products of various ASIC
providers such as Tensilica Xtensa from Cadence [2] and

The associate editor coordinating the review of this manuscript and

approving it for publication was Arianna Dulizia .

the ARC processor [3] from Synopsys or by FPGA-based
hardware providers such as the Intel Nios [4] and Xilinx
Microblaze [5].

Traditionally, hardware/software partitioning was carried
out manually. However, this approach has become infeasible
for complex designs and research efforts have been taken
to find alternative approaches. A common approach for the
acceleration of an application using an extensible processor
usually follows the following stages [6]: (1) develop the algo-
rithm in a high-level programming language (e.g., Matlab,
Python); (2) translate the source code application into lower-
level programming language (e.g., C), (3) compile the code
to the appropriate target hardware machine, and evaluate
performance and energy efficiency. Normally, at this stage,
the profiling tools are used for further code optimization
before applying new custom instructions and using hardware
accelerator [7]. Porting an application written in high-level

22274 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0002-2708-5628
https://orcid.org/0000-0002-1385-8394
https://orcid.org/0000-0002-7565-5963


E. Manor, S. Greenberg: Using HW/SW Codesign for Deep Neural Network Hardware Accelerator

language onto hardware consumes design time and engineer-
ing resources.

An alternative approach for hardware acceleration is based
on graph analysis by conversion of an application source code
into data flow graphs [8]. The data flow graph approach sug-
gests a sub-graph enumeration and selection phases to extract
the appropriate hardware acceleration units. However, the
process of selection and enumeration for hardware/software
partitioning is NP-hard [9], and therefore it is difficult to
implement in large designs.

In this paper, we propose an efficient methodology for
hardware/software partitioning applied to high-level pro-
gramming language at an early stage of the design. The
proposed methodology is based on a description of the
applied algorithms as a synchronous directed acyclic graph.
A constraint-driven method is used for graph partitioning and
task scheduling to obtain overall speedup and area require-
ments. We suggest a unique framework that is based on
the proposed methodology to analyze a given source code
(in high-level), extract set of hardware accelerators, and
implement them into a custommicro-architecture model. The
proposed implementation model embodies a hybrid hard-
ware accelerator and scheduler algorithm targeting micro-
controllers with limited memory resources.

The key contributions of this paper are as follows:
• Developing a new methodology for hardware/software
application partitioning applied to high-level program-
ming language at an early stage of the design.

• Suggesting a constraint-driven method and a unique
graph clustering and scheduling algorithm for SDF
graph partitioning.

• An efficient framework for automatic custom instruction
definition, sub-graph enumeration and selection, and
hardware implementation.

• Evaluation of the proposed method using the com-
mon MLPerf Tiny benchmark and demonstrating
a significant speedup compared to pure software
implementation.

The rest of this paper is organized as follows: Section II
presents general background related to this paper, while
Section III presents an overview of related work. Section IV
provides a thorough description of the proposed methodol-
ogy. Finally, experimental results are presented in Section V,
while conclusions are given in Section VI.

II. BACKGROUND
In this section, we provide background for two areas referred
to in this work: (1) A particular class of data flow mod-
els called Synchronous Data Flow (SDF) graph, and (2) an
ISA extension feature and the usage of hardware custom
instruction.

A. SYNCHRONOUS DATA FLOW
Synchronous Data Flow (SDF) is a special case of the data
flow model of computation [10]. Under the SDF paradigm,
algorithms may be described as directed graphs where the

nodes represent computations (or functions/tasks), and the
arcs represent data paths. The data flow principle is that any
node (i.e., task) can fire (perform its computation) whenever
input data are available on its incoming arcs. A node with no
input arcs may fire at any time. This implies that many nodes
may fire simultaneously, and hence tasks are considered to
be concurrently performed. Because the program execution
is controlled by the availability of data, data flow programs
are said to be data-driven [10].

SDF graphs may be mapped into various hard-
ware/software partitioning to guarantee required performance
while facing hardware resources constraints. Fig. 1 shows an
example of implementing a given software application with
four dedicated hardware accelerators. Any software/hardware
partitioning should comply with a timing constraint, Tmax
which defines the total allowed application runtime.

FIGURE 1. Hardware/software partitioning example using 4 dedicated
hardware accelerators.

The structure of an SDF graph can be represented in a
compact form using the topology matrix, 0. Each row of
0 corresponds to an arc, and each column corresponds to
a node in the SDF graph. An element 0(a, n) in the topol-
ogy matrix specifies the rate of the data that flows from
node n along arc a. SDF is a common approach, and its
effectiveness for hardware and software partitioning has been
approved [11], [12].

B. CUSTOM ISA EXTENSION
ISA extension is a common approach used in various micro-
controllers and DSP, such as Cadence Tensilica Xtensa [2],
Synopsys ARC processor [3], CEVA-Xtend [13], Intel
Nios [4], and Xilinx Microblaze [5].

In this work, we adopt the Intel paradigm for custom
instruction [14]. Fig. 2 shows the custom instruction architec-
ture for the Nios-II embedded processor. As typically used in
ALUs, the custom logic has two operand inputs (dataa and
datab) and one output (result).
As shown in the figure (right side), there are three modes

of custom instruction: (a) combinational, (b) multi-cycle, and

VOLUME 10, 2022 22275



E. Manor, S. Greenberg: Using HW/SW Codesign for Deep Neural Network Hardware Accelerator

(c) extended mode. In a combinational custom instruction
mode, an instruction is completed in a single clock cycle.
This mode requires a result output port and may have two
optional input ports (dataa and datab). The custom instruc-
tion receives values from two source registers and writes
the result to a destination register. Multi-Cycle (sequential)
custom instructions consist of a logic block that requires
two or more clock cycles to complete an operation. The
start and done ports participate in a handshaking scheme
to determine when the custom instruction execution begins
and is complete. This mode allows adding an interface to
communicate with a logic outside the processor. An extended
custom instruction allows a single custom logic block to
implement several different operations. An extension index n
is used to specify the logic operation. Ports a, b, and c specify
the internal registers from which data is accessed.

FIGURE 2. A custom instruction architecture [14].

III. RELATED WORK
In the following section, we review related work concern-
ing the following specific fields: Graph-based methods for
extracting hardware accelerators and accelerator coupling
approaches.

A. GRAPH-BASED ACCELERATOR EXTRACTION METHODS
The common flow for extracting a custom instruction is
as follows: First, the application code is transformed to an
appropriate data-flow graph. Then, an enumeration phase
based on the flow graph is carried out for enumerating all the
sub-graphs satisfying a given set of micro-architectural con-
straints. Each sub-graph is considered as a possible candidate
for custom instruction. Finally, a sub-graph selection phase is
performed to select the most profitable sub-graph subsets as
hardware accelerators.

Xiao et al. [8] present a design flow that accepts a C/C++
application program and translates it to a data-flow graph
using the GeCoS compiler [15]. Then, a search for all the sub-
graphs that satisfy a given set of constraints is performed. The
algorithm enumerates all the convex connected sub-graphs
in a top-down manner. Wang et al. [16] propose a more
efficient algorithm to solve the time-consuming process of
enumeration, adapting a parallel approach to enumerate all
connected convex sub-graphs using theMapReduce tool [17].
Xiao et al. [18] propose an optimal enumeration algorithm

that depends solely on the number of vertex and edges within
the connected convex sub-graphs instead of the number of
graph nodes. Xiao et al. [8] also suggest a subgraph selection
technique for extracting custom instructions using genetic
and heuristic algorithms.

Another approach for sub-graph enumeration and pattern
selection is presented by Zacharopoulos et al. [19], [20]. They
present a new approach that is based on intermediate repre-
sentation analysis. The analysis is performed using the LLVM
compiler toolchain [21]. The LLVM is a C compiler that
defines a common, low-level code representation in Static
Single Assignment (SSA) form. The analysis investigates a
function-call graph to determine which parts of the applica-
tion should be implemented in hardware. They provide a cost
measure (required resources) and merit (potential speedup)
for all candidate accelerators for both hardware and soft-
ware implementation. The set of accelerators that results in a
maximum speedup while still meeting the hardware resource
constraints is selected as the optimized hardware/software
partitioning choice.

Wijesundera et al. [22] suggest an approach for rapid
hardware/software partitioning at a fine-grained (basic block)
level that can be applied to resource constraint IoT appli-
cations. They present a methodology for analysis of data
communication cost between basic blocks and memory com-
ponents and a heuristic formulation to select the most prof-
itable hardware/software partitioning. Zuo et al. [23] present
a coarse-grained C code partitioning using a dedicated pro-
filing tool to suggest some possible hardware and software
implementations in terms of latency, power, and area.

We propose a different approach for sub-graph enumer-
ation and pattern selection in this work. Our partitioning
approach is at the basic block level and is intended for
resource-constrained devices [22]. We support a higher level
of abstraction compared to the C/C++ mentioned in previ-
ous works [8], [19], [22]. Using high-level language allows
performing a codesign hardware/software analysis in an early
stage of the design. We developed a unique graph conversion
tool, specially designed for high-level code, to convert the
application into SSA intermediate representation [19]. The
SSA form is converted into an appropriate SDF Directed
Acyclic Graph (DAG). Then, a sub-graph clustering is per-
formed using a top-down manner approach presented in [8].
However, we suggest including disjoint convex sub-graphs,
which share common inputs, as well. We adapt the heuris-
tic approach for sub-graph selection presented in [8] and a
similar cost function. We extend the selection methodology
to support both clustering and scheduling for the optimal
solution within design specifications.

B. ACCELERATOR COUPLING APPROACHES
There are two classic implementation models for coupling
the accelerator to a given processor, as presented by
Cota et al. [24]: Tightly-coupled and Loosely-coupled.

Tightly-coupled accelerators consist of one or more hard-
ware functional units which can accelerate critical portions

22276 VOLUME 10, 2022



E. Manor, S. Greenberg: Using HW/SW Codesign for Deep Neural Network Hardware Accelerator

FIGURE 3. Host/accelerator interfacing: (a) Tightly coupled, (b) Loosely coupled [24].

of the application kernel. In a tightly-coupled approach, the
accelerator is considered as an additional functional unit that
is directly connected to the CPU data-path [8], [25], [26]
as shown in Fig. 3.a. In this scenario, the accelerators are
integrated into the conventional software flow and there-
fore are performed sequentially. A single custom instruction
can control accelerators that are tightly coupled to the host
pipeline through an instruction set extension.

Loosely-coupled accelerators are located outside the CPU
core and interact with the CPU through an on-chip intercon-
nect, as shown in Fig. 3.b. A loosely-coupled co-processor
computation model, which executes computational-intensive
parts that loosely interact with the application, is presented
in [19], [27]. A Loosely-Coupled approach enables the
CPU and the hardware accelerator to run concurrently. Data
exchange with the processor is performed via shared mem-
ory. Therefore, the performance gain can be affected by the
communication and control overhead.

Vassiliadis et al. [28] and Sun et al. [29] proposed a
hybrid approach to integrate a tightly-coupled and loosely-
coupled accelerator. An approach for a tightly-coupled
accelerator with direct memory access has been proposed
in [30]–[32]. This approach suggests hardware architec-
ture in which the accelerator can directly access a section
of the CPU memory-mapped address space for reading
or writing operations. The memory-mapped access is per-
formed without the intervention of the CPU. This approach
extends the tightly-coupled accelerator approach by allowing
a higher granularity of sub-graphs operations to be mapped
onto it.

In this work, we propose a tightly-coupled accelerator
using direct memory access and supporting multiple sub-
graphs calls that are controlled by a unique internal scheduler.
This approach enables the implementation of variable oper-
ations, represented by different sub-graphs, using a single
custom instruction, reducing the number of processor inter-
actions. This solution enables higher granularity of imple-
menting sub-graphs operations compared to previous works,
reducing the cost of area and operational latency.

IV. THE PROPOSED APPROACH
This section describes in detail the proposed hardware/
software partitioning methodology to analyze algorithms
written in high-level language at an early stage of the design.

We provide efficient hardware/software partitioning in
terms of resource utilization and speedup merit, using graph
analysis for extracting hardware accelerator.

First, we define the problem formulation based on our
previous work [33]. Subsection IV-A describes the high-level
modeling of the applications, the internal representation of
the hardware, and the design space exploration approach.

The proposed methodology includes three design flow
phases: 1) Graph Conversion (IV-B): which transforms the
high-level algorithm into an analyzable SDF graph repre-
sentation; 2) Sub-Graph Clustering (IV-C): which detects
and groups repeated identical patterns; 3) Graph Scheduling
(IV-D), which assigns the computational load to specific
hardware and software resources. Fig. 4 depicts the design
flow and the analysis tools that are used for the proposed flow.

The graph conversion tool (code-to-SDF) receives the
application source code and generates represented SDF graph
(including the cost and latency for each node/operation)
according to the computational model, which defines the
unique operation and their cost. Then a sub-graph clustering
is carried out considering the specific system constraints,
such as input/output constrain and graph makespan. Finally,
a graph scheduling algorithm allocates both software and
hardware tasks to satisfy the performance requirements.

Subsection IV-E describes the hardware acceleration
implementation model and the system scheduler code.

A. PROBLEM FORMULATION
The space of all possible hardware/software implementations
is defined by SN×M×K [33]. Where N is the number of nodes
in the SDF graph 0, M is the number of target platforms,
and K is the number of possible partitioning. In our case,
M is equal to two, representing one software platform and
one hardware platform.

Each single partitioning (k = 1 . . .K ) is represented by the
2d-matrix SkN×M . The column vector (i = 1 . . .N ) represent
a specific node (ni) and the row vector (j = 1 . . .M ) presents
the target platform. Since a single target platform is allocated
to a specific node, the row vector includes only one element
with a value ’1’ while all others are ’0’.

The cost for specific criteria (such as area and latency) is
presented by the matrix CN×M×L , where N and M represent
the number of nodes and target platform, respectively, while
L represents the cost criteria for evaluation (area and latency).

VOLUME 10, 2022 22277



E. Manor, S. Greenberg: Using HW/SW Codesign for Deep Neural Network Hardware Accelerator

FIGURE 4. Hardware/software partitioning design flow.

Eq. 1 describes the cost for each sub-graph partitioning Pk

of the SDF graph in terms of area and latency [33]. The cost
is given by the dot-product of the Sk matrix, representing the
kth partition, and the C l matrix, representing the cost of each
node n in the SDF graph.

PkL =
N∑
n=1

M∑
m=1

(
Sk . ∗ C l

)
(n,m) ,∀l ∈ L (1)

The proposed partitioning algorithm should comply with
the total execution time and area constraint (i.e., total exe-
cution time, including communication overhead). Fig. 5
describes a set of possible hardware/software partitioning
configurations. The highlighted square region represents a set
of possible solutions bounded by the runtime constraint Tmax
and the available hardware resources represented by Amax .

B. GRAPH CONVERSION
To translate an application program into an SDF graph,
we propose a unique Static Single Assignment (SSA) as
an intermediate representation. The proposed SSA-SDF
graph represents the data flow of the given algorithm. The
SSA-SDF representation is required to identify code loops
that can be recursively unrolled to single-line operations.

We developed a unique ’code-to-SDF’ tool to perform
the SSA conversion. Alg. 1 depicts the pseudo-code of the
conversion algorithm. The computational model (defined by
the matrix CN×M×L) includes the cost and latency for each
operation and is given by a specific XML file. The SSA-SDF
provides a clear view of the application flow for further anal-
ysis which is presented in the following methodology phases.

FIGURE 5. Hardware/software partitioning solutions that meet time and
area constraints.

The proposed SSA-SDF analysis assumes that the input
size is fixed and, therefore, for each input size, a dedicated
SSA-SDF graph should be rebuilt.

Algorithm 1 Code-to-SDF
1: Input← main function (Matlab source code)
2: Flatten all sub-function calls into a single call function

code
3: Perform loop unrolling in the flattened code
4: Split mathematical expressions with multiple operands

into atomic operations
5: Assign each atomic expression a unique SSA-variable ID
6: for each variable in the SSA code, do do
7: Extract computational cost
8: Assign predecessors nodes
9: end for
10: Build SSA-SDF adjacency matrix
11: Output← SSA-SDF Graph

The ‘code-to-SDF’ tool provides a preliminary estimation
for SSA-SDF cycles count since each node includes the com-
putation cost for a software implementation. The tool also
allows converting the SSA Matlab source code into a C code
for performance evaluation using a specific processor. In this
work, we choose the Nios-II as the target processor.

The Nios-II processor has two configurations: (1) The
Nios-II/f, which includes specific hardware multiply and
divide units. (2) The Nios-II/e is a more economical version
of the Nios, characterized by low power and area but with lim-
ited computational power. The Nios-II/e has 1287 logic cells
versus 2618 for the Nios-II/f and therefore has a lower power
consumption, 5.91mW versus 15.92mW, respectively. Since
the Nios-II/e emulates the multiply and divide operations, it is
difficult to estimate the cycle count accurately [34].

For each processor configuration, we evaluate two mem-
ory architecture: (a) MEM-I: where the data and program

22278 VOLUME 10, 2022



E. Manor, S. Greenberg: Using HW/SW Codesign for Deep Neural Network Hardware Accelerator

memory reside in external SDRAM, and (b) MEM-II using
Tightly Coupled Memory (TCM) for instruction and external
SDRAM for data. Each processor configuration and mem-
ory architecture has a different computational model, which
affects the latency. For example, the Nios-II/f with MEM-I
requires ten cycles for an RD operation, three cycles for a
WR operation, one cycle for MUL and AD, and 35 cycles
for DIV.

The proposed methodology is demonstrated using a blur
algorithm for a separable 3 × 3 box filter with O(Nr) com-
plexity. Table 1 shows the evaluated runtimes of the original
separable filter as described in Alg. 2 for both Nios-II/e
and Nios-II/f. The best result is achieved with the Nios-II/f
using TCM. A first-order software optimization has been
applied using software GCC compiler with -Os flag for code
size optimization for both Nios processors. This software
implementation is used as the baseline reference for further
speedup evaluations in all the following stages.

Algorithm 2 Separable Two 1D Pass Box Blur
1: I ← Input Image
2: r ← Radius of the filter
3: result ← zeros(Nheight − r,Nwidth − r)
4: ver ← zeros(Nheight − r − 1,Nwidth)
5: hor ← zeros(Nheight − r,Nwidth − r)
6: for i = 1 : Nheight do
7: for j = r + 1 : Nwidth − r do
8: sumver ← 0
9: for k = −r : r do

10: sumver ← I [i, j+ k]
11: end for
12: ver[i, j− r]← sumver/(2r + 1)
13: end for
14: end for
15: for i = r + 1 : Nheight − r do
16: for j = 1 : Nwidth − 2r do
17: sumhor ← 0
18: for k = −r : r do
19: sumhor ← ver[i+ k, j]
20: end for
21: hor[i− r, j]← sumhor/(2r + 1)
22: end for
23: end for

TABLE 1. Nios-II f/e run cycles for a 3 × 3 box blur algorithm apply on
different image sizes.

The ‘code-to-SDF’ is used to convert a Matlab source code
to SSA-SDF representation. Listing 1-3 show an example for

the blur algorithm (Alg. 2). Listing 1 describes the Matlab
source, while Listing 2 depicts an intermediate naïve rep-
resentation code (basic convolution operations), and List-
ing 3 shows the final SSA conversion for each iteration.
Finally, the SSA-SDF graph is converted into a compatible
common C code.

Fig. 6 depicts SSA-SDF representation for a 3 × 3 blur
algorithm applied to a 5×5 image. The input image is reduced
to 5× 5 pixels for visibility purposes. The arithmetic opera-
tions are represented by the blue circles, while red triangles
are input/output matrices.

Table 2 shows a comparison of the estimated cycles count,
derived from the SSA-SDF graph using the converted C
code running on a Nios-II/f, for various image pixels size.
A fixed speedup factor of about three is achieved by the
proposed SSA-SDF algorithm, which is actually realized by
loop unrolling techniques. For image size of 16 × 16 pixels
and above, a fairly accurate estimation error of about 3% is
achieved. The high error rate of a 5× 5 pixels image size can
be explained by the CPU initialization overhead.

Table 3 shows the code-to-SDF conversion runtime and
the resulted code size. The runtime shows that the SSA-SDF
conversion is performed in a reasonable time. The code size
is larger the 32KB for images of 32 × 32 pixels and above
and therefore can not be implemented using TCM (MEM-II
architecture).

Comparison of the cycle count between the original C code
(Table 1) and SSA C code (Table 2) show the SSA-SDF
provide a speedup (up to×3) in terms of cycle counts for the
Nios-II/f. This can be explained by the ’for’ loop (Alg. 2),
which involves a branch operation in each iteration.

Since the MEM-II architecture (using TCM) is the pre-
ferred choice for IoT devices (in terms of execution speed and
cost) the code size limitation should be addressed. Therefore,
we suggest using a clustering approach and unique imple-
mentation model to face code size limitations (as described
in the following subsections).

TABLE 2. SSA-SDF cycles count for a 3 × 3 box blur algorithm applies to
different image sizes.

C. SUB-GRAPH CLUSTERING
To find the optimal sub-graph clusters for partitioning the
SSA-SDF graph into appropriate hardware and software
resources, we propose a unique enumeration algorithm.

VOLUME 10, 2022 22279



E. Manor, S. Greenberg: Using HW/SW Codesign for Deep Neural Network Hardware Accelerator

FIGURE 6. SSA-SDF representation for the blur algorithm (blue circles are arithmetic operations while red triangles are input/output).

Listing 1. Matlab source code for a 3 × 3 box blur algorithm.

Listing 2. Intermediate naive representation code for convolution.

Listing 3. SSA conversion for each loop iteration.

The proposed algorithm identifies common convex sub-
graphs in the SSA-SDF graph 0, also known as induced sub-
graphs 0[S]. Then each sub-graph is replaced with a single
‘‘super-node’’, integrating several arithmetic operations into

TABLE 3. Code-to-sdf parameters for a 3 × 3 box blur algorithm apply to
different image sizes.

a single atomic operation. This process generates a higher
granularity clustered graph 0′. Each ‘‘super-node’’ should
satisfy a predefined set of constraints Eu, in order to be chosen
as a suitable candidate for hardware acceleration.

The constraint set Eu for each sub-graph 0[sn] include:
(a) themaximum number of input operands, (b) themaximum
number of output operands, (c) maximal length of the critical
path, (d) the maximum number of nodes (e) the minimum
number of the sub-graph occurrences.

We propose a unique graph search with two separated
sequential passes on the graph: (a) clustering pass: the first
pass searches only for parent-child pairs in purpose to extract
sub-graph with a single output and (b) grouping pass: the
second pass search for all node pairs (including parent-child)
which have common inputs. This enables further acceleration
by sharing common input operations.

The proposed clustering algorithm is based on the hill-
climbing heuristic search [35]. Hill-climbing is a mathemat-
ical optimization technique that belongs to the local search
family. It is an iterative algorithm that starts with an arbitrary

22280 VOLUME 10, 2022



E. Manor, S. Greenberg: Using HW/SW Codesign for Deep Neural Network Hardware Accelerator

solution and represents a target function f (x), where x is a
vector of continuous discrete values. At each iteration, hill
climbing attempts to make an incremental change to the solu-
tion and determine whether the change improves the value of
f (x). This process continues until no more improvement is
achieved in the target function.

The algorithm flowchart is depicted in Fig. 7. The fol-
lowing steps are performed on each stage of the clustering
algorithm: (1) Extracting a representing list of all parent-child
nodes in the SSA-SDF graph 0. (2) The parent-child list is
divided into several sets according to their specific mathe-
matical operation. For example, all pairs where parent nodes
represent ’multiplication’ and the child nodes represent ’sum-
mation’ are grouped into the same set (as shown in Fig. 8.a).
All previous sets are excluded. (3) Then, the most popular
arithmetic operation, identically the set which includes the
maximum number of parent-child pairs, is selected as a sub-
graph candidate. (4) The elements in the selected set are
arranged by order according to their minimal distance from
either a selected input or from the nearest input using breadth-
first search [36]. (5) Then, the first element in the set is
replaced with a single ‘‘super-node’’ creating graph 0′ and
is discarded from the set. (6) The examined ‘‘super-node’’
should comply with the constraint set Eu in case the constraints
are satisfied, the ‘‘super-node’’ is compared against all previ-
ously induced sub-graphs 0[sn]. Then it is defined as a new
sub-graph0[sn+1] in case there is no identical already created
‘‘super-node’’ representing the same atomic operation. The
comparison involves graph isomorphism search by means of
commutative, associative, and distributive properties of the
parent-child nodes. (7) Then, any repetitive elements caused
by removing the last parent-child pair are discarded from
the set. The left pair operation (multiplication and add) of
Fig. 8.a is replaced with a single ‘‘super-node’’ operation
(AB+), as shown in Fig. 8.b, therefore discarding the left pair
operation in Fig. 8.a. (8). This process is iteratively repeated
for all the remaining elements in the set. (9) Finally, the 0

graph is replaced with a temporary 0′ graph and 0[sn] are
updated accordingly. (10) This flow is repeated until all pairs
in the graph are marked as excluded.

A similar flow is applied to the resulted SDF graph gener-
ated by the clustering pass. The two orange eclipses in Fig. 7
describe the two different phases between both passes. The
grouping clustering is applied to all node pairs, while the
clustering pass considers only parent-child pairs. In addition,
the set in the grouping algorithm is organized by order using
the number of common inputs as an order criterion.

The purpose of the clustering pass is to search for all node
pairs (including parent-child) that have common inputs to
share joint input operations. Fig. 9 demonstrates the grouping
algorithm applied to the sub-graph shown in Fig. 8.c. Fig. 9.a
shows two ‘‘super-nodes’’ where each one represents: four
inputs, one output, and three atomic operations.We can notice
that the inputs A/B/C are common to the two ‘‘super-nodes’’.
The grouping algorithm results in a new ‘‘super-node’’, which
includes five inputs, two outputs, and five atomic operations.

FIGURE 7. Clustering algorithm flow.

FIGURE 8. A clustering algorithm example: (a) MUL-ADD pair operation.
(b) A single ‘‘super-node’’ operation (AB+). (c) Final ‘‘super-node’’
operation (AB+CB).

FIGURE 9. A cluster grouping example: (a) Two ‘‘super-nodes’’ each
represents 3 atomic operations. (b) Final ‘‘super-node’’ represents 5
atomic operations.

Since A× B is common to both ‘‘super-nodes’’ the new inte-
grated ‘‘super-node’’ required only five operations (instead
of the original six operations). Moreover, since A/B/C are
common inputs, less memory access is required, and simple
fused custom instruction can be implemented.

VOLUME 10, 2022 22281



E. Manor, S. Greenberg: Using HW/SW Codesign for Deep Neural Network Hardware Accelerator

Fig. 10 depicts the combined clustering-grouping SDF
for the blur filter SSA-SDF shown in Fig. 6. This exam-
ple supports up to eight inputs and four outputs defined by
the Eu constraint vector and complies with 32-bit ISA. The
clustering algorithm extracts nine different types of induced
sub-graphs that satisfy the constraint. A possible solution
using four induced sub-graphs is presented in Fig. 10. The
statistic of the extracted sub-graphs is presented in Fig. 11,
demonstrating the sub-graphs occurrences in the final SDF
graph. Fig. 12 depicts the four sub-graphs, representing the
six ‘‘super-nodes’’ (atomic operations) shown in Fig. 10 (yel-
low triangles). It can be seen from Fig. 11 that the sub-graph
‘‘SG Module #8’’ is used three times. Fig. 13 depicts three
atomic sub-graphs which are used as building blocks in the
sub-graphs shown in Fig. 12.

Table 4 shows the clustering results for the 3 × 3 blur
filter for different image sizes. This table demonstrates the
extracted nodes in each phase of the proposed clustering and
grouping process. For example, for the 5 × 5 image, the
original SSA-SDF graph includes 72 nodes (In - the first col-
umn). The clustering algorithm (pass one) extracts 18 nodes
(Out - second column). Two possible sub-graphs selection
based on statistical analysis are described in columns three
and four. The top-1 case represents a choice of only one sub-
graph with 12 occurrences for the 5 × 5 image, while the
top-3 case represents a choice of three sub-graphs containing
all 18 nodes. A similar grouping process is carried out in
pass two, starting with the 18 nodes extracted in pass one.
In some cases, more sub-graphs should be required in order to
cover all the nodes in the graph. Fig. 14 depicts the clustering
runtime as a function of the numbers of the nodes in the
SDF graph. As expected, the results demonstrate a linear
time complexity that matches the time complexity of previous
graph-based acceleration methods [8], [16], [18].

TABLE 4. Clustering results for the blur algorithm.

D. GRAPH SCHEDULING
Following the clustering algorithm, we propose to apply the
graph scheduling algorithm to the resulting clustering SDF
graph. The scheduling algorithm is aimed to find the optimal
sub-graph (which was extracted in the previous stage) combi-
nations 0′ which lead to maximum performance or minimum
area while facing the given constraints in terms of PPA.While

choosing more complicated sub-graphs, which include more
atomic operations, might improve the performance, selecting
several atomic sub-graphsmay result in better area utilization.

In this work, Heterogeneous Earliest Finish Time (HEFT)
algorithm [37] has been chosen as the basis scheduling pro-
cess. The HEFT algorithm is a heuristic list-based scheduling
algorithm that provides a simple schedule plan with a low
computational complexity of O(n2 · p), where n and p are
the number of tasks and resources, respectively. The HEFT
algorithm consists of two phases. In the first phase the tasks
are ranked according to their execution priority. The task
priority is determined as a function of the task weight and the
inter task communication cost, and the search path in the SDF.
The second phase is responsible to assign the processor’s
available resources to each task.

The original HEFT is applied to task scheduling in a multi-
processor environment. We suggest modifying the HEFT
algorithm to support the optimal allocation of the extracted
multiple sub-graphs to several co-processors. The proposed
SSA-HEFT algorithm provides scheduling support for imple-
menting multiple custom accelerators in a single-core envi-
ronment sharing the same memory. Each induced sub-graphs
0[sn] is considered a custom instruction that is acceler-
ated using a unique co-processor. The scheduling algorithm
support both blocking and non-blocking multi-cycle custom
instruction. The number of required cycles is determined by
the maximum length of the critical sub-graph path and the
type of the atomic operations.

The basic configuration of the SSA-HEFT scheduler is
defined using a single processor and several co-processors
(a single instance for each sub-graph). The proposed sched-
uler should consider the following architectural information:
the processor instructions execution time (in clock cycles),
memory latency, and register file size. The size of the register
file is used as a parameter while implementing the scheduler
to adjust the execution time to a real-time software imple-
mentation. Fig. 15 depicts the clustered blur filter SSA-SDF
scheduler results shown in Fig. 10.

Table 5 and Table 6 show the speedup contribution due to
the clustering algorithm. Table 5 demonstrates the proposed
hardware/software partitioning implementation’s achieved
speedup compared to the reference software implementation
using Nios-II/f on the FPGA board. A speedup factor of about
six is demonstrated for all the image sizes. This table also
shows the estimation of the execution time as been extracted
by our SSA-HEFT algorithm. It can be seen that the estima-
tion error is lightly accurate and reasonable.

For example, a software implementation with no accel-
eration requires 3273 cycles (for the 5 × 5 images), while
only 542 cycles are needed for implementing the custom
instruction accelerated core. Table 6 shows similar results
for the Nios-II/e running on the same board. In this case,
the proposed approach demonstrates a speedup factor of
about 15. As expected, the code size required for the software
implementation is significantly reduced compared to Table 3.

22282 VOLUME 10, 2022



E. Manor, S. Greenberg: Using HW/SW Codesign for Deep Neural Network Hardware Accelerator

FIGURE 10. Combined clustering and grouping for the blur filter (5 × 5 image).

FIGURE 11. Induced sub-graphs 0[S] statistics for a separable filter box
blur filter on 5 × 5 image. [squeeze height].

TABLE 5. Nios-II/f MEM-II scheduling for a 3 × 3 box blur algorithm
applies to different image sizes.

E. IMPLEMENTATION MODEL
The proposed hardware/software implementation model
is composed of the following two main components:

FIGURE 12. Clustering-Grouping pass: Induced sub-graphs 0[S] of a
separable filter box blur filter on 5 × 5 image. [squeeze height].

TABLE 6. Nios-II/e MEM-II Scheduling for a 3 × 3 box blur algorithm
applies to different image sizes.

(1) a software package (written in C) that implements the
SSA-HEFT scheduler, (2) a Custom Instruction Wrapper
(CIW), which includes the hardware accelerators.

VOLUME 10, 2022 22283



E. Manor, S. Greenberg: Using HW/SW Codesign for Deep Neural Network Hardware Accelerator

FIGURE 13. Singleton sub-graphs 0[S] for a separable filter box blur filter
on a 5 × 5 image.

FIGURE 14. Clustering runtime complexity.

FIGURE 15. SSA-HEFT scheduler results for a separable filter box blur
filter on 5 × 5 image.

The software scheduler has a hardware interface to com-
municate with the custom instruction module. The scheduler
is responsible for both software and hardware task schedul-
ing. While a task is a candidate for acceleration using hard-
ware custom instruction, the following parameters should be
transferred to the CIW: the type of the required operation
(i.e., an index for a specific sub-graph), and pointers to the
operands for this operations.

We propose using a single extended multi-cycle instruc-
tion to utilize the scenarios of repeated sub-graphs within
the SSA-HEFT. A single custom instruction replaces con-
secutive repeated calling to the same sub-graph. For exam-
ple, sub-graph SG8 has three instances (SG8_1, SG8_2,
SG8_3) as depicted in Fig. 15. Therefore, it requires three
different access to the hardware accelerator. Alternatively,
we suggest using only a single call to the custom instruction
wrapper. This implementation model significantly improves
latency and code size performance, reducing the num-
ber of required interactions with the hardware accelerator.
The proposed scheduler implementation has been further
enhanced by adding the real-time hardware decompression
technique [38], [39].

Fig. 16 depicts the Custom Instruction Wrapper (CIW).
The CIW comprises of four main components: a Cus-
tom Instruction Controller (CIC), hardware accelerator unit,
hardware scheduler control module, and data-path control
module.

The CIC is responsible for the communication with the
processor and the configurations of other CIW modules.
The hardware accelerator unit implements the sub-graphs
(a unique custom instruction per sub-graph). The hardware
scheduler stores the operands required to complete the oper-
ation indexes. The data-path control module uses both soft-
ware pointer and indexes to fetch the appropriate operands
and store the results (using DMA controller). The mod-
ule includes an internal memory to enable reuse of already
fetched data (such as DNN weights).

The HW-Scheduler control is responsible for fetching an
encoded data file for each sub-graph. The data file includes
the specific sub-graphs IDs and indexes for various input
operands arrays. The HW-Scheduler can manage several
input operand arrays, each representing different data types,
such as weights and data for DNN applications.

FIGURE 16. Custom Instruction Wrapper (CIW).

Table 7 shows the speedup results for the Nios-II/e using
TCM for a 3 × 3 box blur algorithm. The results are com-
pared to only software implementation for the blur algorithm.
A significant speedup factor of up to 122 is demonstrated for

22284 VOLUME 10, 2022



E. Manor, S. Greenberg: Using HW/SW Codesign for Deep Neural Network Hardware Accelerator

the 64× 64 images. The speedup increases as the image size
increases. Although the C code for the software scheduler
remains about the same for all images, the size of the data
file required by the HW-Scheduler increases as the image size
increases.

TABLE 7. Speedup results for Nios-II/e using TCM for a 3 × 3 box blur
algorithm.

V. EXPERIMENTAL AND RESULTS
The proposed methodology has been evaluated employing
hardware accelerators for various Neural Network (NN)
architectures. The proposed accelerator is compared to a
software-only implementation using the open-source Tensor-
Flow Lite for Micro-controllers (TFLM) [40]. The MLPerf
Tiny benchmark [41], [42] is used for runtime and code-size
comparison.

TABLE 8. Anomaly detection clustering results: Vertical (V) and
Horizontal (H).

This benchmark consists of three sequential models for
machine learning tasks: (a) Keyword Spotting (KWS), which
uses a neural network that detects keywords from an audio
spectrogram, (b) VisualWakeWords (VWW), a binary image
classification task for determining the presence of a person
in an image, and (c) Anomaly Detection (AD), which uses
a neural network to identify abnormalities in machine oper-
ating sounds. To further evaluate the proposed methodology,
we examined the common TFLM model for (a) Google net-
work for ’Gesture Recognition Magic Wand’ (GRMW) that
was trained to detect wand gestures [43], and (b) an MNIST
network used for Handwritten Digit Recognition (HDR) [44].
The speedup reported in this section is always with
respect to the baseline software implementation as defined
in Sec. IV.

The Nios-II embedded processor has been implemented
on the Intel Cyclone-10 LP FPGA with the following

configuration: 120MHz reference clock, 32 KBit on-chip
RAM, and an external 8 MByte SDRAM. The RTL imple-
mentation of the Custom Instruction Wrapper (CIW) results
in 627 logic elements. Each sub-graph includes additional
dedicated logic according to the implemented function. The
TFLM model is converted to an equivalent Matlab code, and
the network’s input data files are represented in HDF5 or
JSON format.

The implementation of the sub-graph clustering (which has
been performed on the SSA-SDF graph) is limited by the
Cyclone-10 FPGA resources since the available number of
the multiplier elements is limited to 132. The clustering phase
results in various sub-graph configurations from which we
choose two hardware implementations applied to different
scenarios: (a) Low-Resource implementation and (b) High-
Resource implementation. For the low-resource implementa-
tion, we search for sub-graph configuration that consists of
no more than 15% of the total device multiplier elements,
while for the high-resource implementation, the sub-graph
configurations consist in the range of 15-85% of the device
multiplier elements. Running theMLPerf Tiny benchmark on
the proposed Cyclone10 LP-based implementation results in
extra power consumption of up to 80mw.

Table 8 shows the clustering results for the low-resource
implementation (with less than 20 multipliers) applied to
the anomaly detection model [42]. The clustering process
converges to two SG types, and therefore only two hard-
ware accelerators are required for efficient implementation.
Moreover, the number of nodes is reduced from about 800k
elements in the original graph to only 30K elements, resulting
in fewer cycles.

Table 9 demonstrates the overall hardware accelerator
speedup compared to the software model for the two different
hardware implementations of each benchmark model. For
example, the resulting runtime for the anomaly detection
model, running on the Nios-II/f, is 108ms, 17ms, and 8ms
for the TFLM software implementation, the low-resource,
and the high-resource hardware-accelerated implementation,
respectively. The Nios-II/e results with 5.67s, 32ms, and
11ms for the software implementation, the low-resource,
and the high-resource hardware-accelerated implementation,
respectively. A speedup factor of 515 and 177 compared
to software implementation is achieved for the high and
low resource implementations, respectively. As expected, the
high-resource implementation outperforms the low-resource
implementation. The Nios-II/e demonstrates a speedup factor
from 515 (AD) up to 3936 (GRMW) for the high-resource
implementation, and a speedup factor from 177 (AD) up to
696 (HDR) for the low-resource implementation.

The table shows that while the Arm Cortex-M4 is
characterized with 1.95 DMIPS/MHz, both Nios-II/f and
Nios-II/e can perform only 0.75 and 0.1 DMIPS/MHz,
respectively [45], [46]. However, we demonstrate that adding
the proposed hardware accelerator to the low-performance
Nios-II makes it a competitive choice for the Arm
processor.

VOLUME 10, 2022 22285



E. Manor, S. Greenberg: Using HW/SW Codesign for Deep Neural Network Hardware Accelerator

TABLE 9. Hardware accelerator speedup for the MLPerf tiny benchmark.

VI. CONCLUSION
This work suggests an efficient and automated codesign parti-
tioning methodology to improve performance while keeping
low power and area. Identifying the potential for hardware
acceleration and resource utilization at an early development
stage is essential information for the designer and may signif-
icantly affect design decisions. The proposed methodology is
based on synchronous data graph analysis to detect common
patterns as candidates for hardware acceleration.

We suggest a unique framework to analyze a given high-
level source code extracting a set of hardware accelerators.
The hardware accelerators are implemented using a custom
micro-architecture targeting limited-resources processors.

A unique clustering and scheduling algorithm has been
developed to obtain real-time constraints by selecting an
optimized sub-set of accelerators. The proposed codesign
methodology has been evaluated for some neural net-
works (NNs) architectures using the common MLPerf Tiny
benchmark. The proposed accelerators are compared to a
software-only implementation using the open-source Ten-
sorFlow Lite for Micro-controllers (TFLM). Experimental
results demonstrate a significant speedup of up to 3 orders
of magnitude compared to software-only implementation.

REFERENCES
[1] T. Adegbija, A. Rogacs, C. Patel, and A. Gordon-Ross, ‘‘Microprocessor

optimizations for the Internet of Things: A survey,’’ IEEE Trans. CAD
Integr. Circuits Syst., vol. 37, no. 1, pp. 7–20, May 2018.

[2] (Mar. 2020). Cadence. Tensilica Customizable Processors. [Online]. Avail-
able: https://ip.cadence.com/ipportfolio/tensilica-ip/xtensa-customizable

[3] (Jun. 2020). Synopsys. Arc EM Processor Family. [Online]. Available:
https://www.synopsys.com/designware-ip/processor-solutions/arc-em-
family.htmll

[4] (Mar. 2020). Intel. Nios II Processors. [Online]. Available:
https://www.intel.com/content/www/us/en/products/programmable/
processor% /nios-ii.html

[5] (Mar. 2020). Xilinx.Microblaze Soft Processor Core. [Online]. Available:
https://www.xilinx.com/products/design-tools/microblaze.html

[6] W.-S. Gan and S. M. Kuo, ‘‘Teaching DSP software development: From
design to fixed-point implementations,’’ IEEE Trans. Educ., vol. 49, no. 1,
pp. 122–131, Feb. 2006.

[7] B. A. Syrowik, B. Fort, and S. D. Brown, ‘‘Use of CPU performance coun-
ters for accelerator selection in HLS-generated CPU-accelerator systems,’’
in Proc. 9th Int. Symp. Highly-Efficient Accel. Reconfigurable Technol.,
New York, NY, USA, Jun. 2018, pp. 1–6.

[8] C. Xiao, E. Casseau, S. Wang, and W. Liu, ‘‘Automatic custom instruction
identification for application-specific instruction set processors,’’ Micro-
processors Microsyst., vol. 38, no. 8, pp. 1012–1024, Nov. 2014.

[9] P. Arató, S. Jáhasz, Z. Á. Mann, A. Orban, and D. Papp, ‘‘Hardware-
software partitioning in embedded system design,’’ in Proc. IEEE Int.
Symp. Intell. Signal Process., Sep. 2003, pp. 197–202.

[10] E. A. Lee and D. G. Messerschmitt, ‘‘Static scheduling of synchronous
data flow programs for digital signal processing,’’ IEEE Trans. Comput.,
vol. C-36, no. 1, pp. 24–35, Jan. 1987.

[11] S. S. Battacharyya, E. A. Lee, and P. K. Murthy, Software Synthesis From
Dataflow Graphs. Norwell, MA, USA: Kluwer, 1996.

[12] M. Edwards and P. Green, ‘‘The implementation of synchronous
dataflow graphs using reconfigurable hardware,’’ in Field-Programmable
Logic and Applications: The Roadmap to Reconfigurable Computing,
R. W. Hartenstein and H. Grünbacher, Eds. Berlin, Germany: Springer,
2000, pp. 739–748.

[13] (Jan. 2019). CEVA. CEVA BX Product Note. [Online]. Available:
https://www.ceva-dsp.com/wp-content/uploads/2019/01/CEVA_BX_
Brochure_EN%_final_secure.pdf

[14] (Apr. 2020). Intel. Nios II Custom Instruction User Guide. [Online].
Available: https://www.intel.cn/content/dam/altera-www/global/en_US/
pdfs/literatur% e/ug/ug_nios2_custom_instruction.pdf

[15] A. Floc’h, T. Yuki, A. El-Moussawi, A. Morvan, K. J. M. Martin, M. Naul-
let, M. Alle, L. L’Hours, N. Simon, S. Derrien, F. Charot, C. Wolinski,
and O. Sentieys, ‘‘Gecos: A framework for prototyping custom hardware
design flows,’’ in Proc. Int. Work. Conf. Source Code Anal. Manipulation
(SCAM), Sep. 2013, pp. 100–105.

[16] S. Wang, C. Xiao, and W. Liu, ‘‘A faster algorithm for enumerating
connected convex subgraphs in acyclic digraphs,’’ IEEE Embedded Syst.
Lett., vol. 9, no. 1, pp. 9–12, Mar. 2017.

[17] J. Dean and S. Ghemawat, ‘‘MapReduce: Simplified data process-
ing on large clusters,’’ Commun. ACM, vol. 51, no. 1, pp. 107–113,
Jan. 2008.

[18] C. Xiao, S.Wang,W. Liu, X.Wang, and E. Casseau, ‘‘An optimal algorithm
for enumerating connected convex subgraphs in acyclic digraphs,’’ IEEE
Trans. Circuits Syst. II, Exp. Briefs, vol. 68, no. 1, pp. 261–265, Jan. 2021.

[19] G. Zacharopoulos, L. Ferretti, E. Giaquinta, G. Ansaloni, and L. Pozzi,
‘‘RegionSeeker: Automatically identifying and selecting accelerators from
application source code,’’ IEEE Trans. Comput.-Aided Design Integr. Cir-
cuits Syst., vol. 38, no. 4, pp. 741–754, Apr. 2019.

[20] G. Zacharopoulos, L. Ferretti, G. Ansaloni, G. Di Guglielmo, L. Carloni,
and L. Pozzi, ‘‘Compiler-assisted selection of hardware acceleration candi-
dates from application source code,’’ inProc. IEEE 37th Int. Conf. Comput.
Design (ICCD), Nov. 2019, pp. 129–137.

[21] C. Lattner and V. Adve, ‘‘LLVM: A compilation framework for lifelong
program analysis & transformation,’’ Computer Science Dept., Univ. Illi-
nois Urbana-Champaign, Champaign, IL, USA, Tech. Report UIUCDCS-
R-2003-2380, Sep. 2003.

[22] D. Wijesundera, A. Prakash, T. Perera, K. Herath, and T. Srikanthan,
‘‘Wibheda+: Framework for data dependency-aware multi-constrained
hardware-software partitioning in FPGA-based SoCs for IoT applica-
tions,’’ in Proc. 9th Int. Symp. Highly-Efficient Accel. Reconfigurable
Technol., New York, NY, USA, Jun. 2018, pp. 1–6.

22286 VOLUME 10, 2022



E. Manor, S. Greenberg: Using HW/SW Codesign for Deep Neural Network Hardware Accelerator

[23] W. Zuo, L.-N. Pouchet, A. Ayupov, T. Kim, C.-W. Lin, S. Shiraishi, and
D. Chen, ‘‘Accurate high-level modeling and automated hardware/software
co-design for effective SoC design space exploration,’’ in Proc. 54th Annu.
Design Automat. Conf., Jun. 2017, pp. 1–6.

[24] E. G. Cota, P. Mantovani, G. Di Guglielmo, and L. P. Carloni, ‘‘An analysis
of accelerator coupling in heterogeneous architectures,’’ in Proc. 52nd
Annu. Design Automat. Conf., Jun. 2015, pp. 1–6.

[25] K. Atasu, L. Pozzi, and P. Ienne, ‘‘Automatic application-specific
instruction-set extensions under microarchitectural constraints,’’ in Proc.
40th Conf. Design Automat. (DAC), 2003, pp. 256–261.

[26] K. Martin, C. Wolinski, K. Kuchcinski, A. Floch, and F. Charot,
‘‘Constraint-driven instructions selection and application scheduling in the
DURASE system,’’ in Proc. 20th IEEE Int. Conf. Appl.-Specific Syst.,
Architectures Processors, Jul. 2009, pp. 145–152.

[27] J. R. Hauser and J. Wawrzynek, ‘‘Garp: A MIPS processor with a recon-
figurable coprocessor,’’ in Proc. 5th Annu. IEEE Symp. Field-Program.
Custom Comput. Mach., Apr. 1997, pp. 12–21.

[28] N. Vassiliadis, G. Theodoridis, and S. Nikolaidis, ‘‘The arise approach
for extending embedded processors with arbitrary hardware accelera-
tors,’’ IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 17, no. 2,
pp. 221–233, Feb. 2009.

[29] F. Sun, S. Ravi, A. Raghunathan, and N. K. Jha, ‘‘A synthesis methodology
for hybrid custom instruction and coprocessor generation for extensible
processors,’’ IEEE Trans. Comput.-Aided Design Integr., vol. 26, no. 11,
pp. 2035–2045, Nov. 2007.

[30] J. Cong and K. Gururaj, ‘‘Architecture support for custom instructions with
memory operations,’’ inProc. ACM/SIGDA Int. Symp. Field Program.Gate
Arrays (FPGA), New York, NY, USA, 2013, pp. 231–234.

[31] A. Prakash, C. T. Clarke, S.-K. Lam, and T. Srikanthan, ‘‘Rapid memory-
aware selection of hardware accelerators in programmable SoC design,’’
IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 26, no. 3,
pp. 445–456, Mar. 2018.

[32] E. Manor, A. Ben-David, and S. Greenberg, ‘‘CORDIC hardware accel-
eration using DMA-based ISA extension,’’ J. Low Power Electron. Appl.,
vol. 12, no. 1, p. 4, Jan. 2022.

[33] E. Manor and S. Greenberg, ‘‘Efficient Hardware/Software partitioning for
heterogeneous embedded systems,’’ in Proc. IEEE Int. Conf. Sci. Electr.
Eng. Isr. (ICSEE), Dec. 2018, pp. 1–4.

[34] A. Renbi, ‘‘Data-stream-driven computers are power and energy effi-
cient,’’ in Sustainable Practices. Hershey, PA, USA: IGI Global, 2013,
pp. 447–462.

[35] P. Stanicek and R. Farana, ‘‘Chosen optimization methods for search
data,’’ in Proc. 12th Int. Carpathian Control Conf. (ICCC), May 2011,
pp. 370–373.

[36] S. Beamer, K. Asanovic, and D. Patterson, ‘‘Direction-optimizing breadth-
first search,’’ in Proc. Int. Conf. High Perform. Comput., Netw., Storage
Anal., Nov. 2012, pp. 1–10.

[37] H. Topcuoglu, S. Hariri, and M.-Y. Wu, ‘‘Task scheduling algorithms for
heterogeneous processors,’’ in Proc. Heterogeneous Comput. Workshop,
Apr. 1999, pp. 3–14.

[38] T. Malach, S. Greenberg, and M. Haiut, ‘‘Hardware-based real-time deep
neural network lossless weights compression,’’ IEEE Access, vol. 8,
pp. 205051–205060, 2020.

[39] M. Ledwon, B. F. Cockburn, and J. Han, ‘‘High-throughput FPGA-based
hardware accelerators for deflate compression and decompression using
high-level synthesis,’’ IEEE Access, vol. 8, pp. 62207–62217, 2020.

[40] R. David, J. Duke, A. Jain, V. J. Reddi, N. Jeffries, J. Li, N. Kreeger,
I. Nappier, M. Natraj, S. Regev, R. Rhodes, T. Wang, and P. Warden,
‘‘Tensorflow lite micro: Embedded machine learning on tinyml systems,’’
2020, arXiv:2010.08678.

[41] C. R. Banbury, V. J. Reddi, M. Lam, W. Fu, A. Fazel, J. Holleman,
X. Huang, R. Hurtado, D. Kanter, A. Lokhmotov, D. A. Patterson, D. Pau,
J. Seo, J. Sieracki, U. Thakker, M. Verhelst, and P. Yadav, ‘‘Benchmarking
tinyml systems: Challenges and direction,’’ 2020, arXiv:2003.04821.

[42] C. Banbury, V. J. Reddi, P. Torelli, N. Jeffries, C. Kiraly, J. Holleman,
P. Montino, D. Kanter, and P. Warden, ‘‘MLPerf tiny benchmark,’’ in Proc.
NIPS, 2021, pp. 1–15.

[43] A. Williams. (Dec. 2018). Magic Wand Learns Spells Through Machine
Learning and an IMU. [Online]. Available: https://hackaday.com/
2018/12/07/magic-wand-learns-spells-through-machine-learning-and-an-
imu/

[44] D. Tassopoulos. (Jul. 2019). Machine Learning on Embedded. [Online].
Available: https://www.stupid-projects.com/machine-learning-on-
embedded-part-3/

[45] (Sep. 2020). Arm. Arm Cortex-M4 Datasheet. [Online]. Available:
https://developer.arm.com/ip-products/processors/cortex-m/cortex-m4

[46] (Sep. 2020). Intel. Nios II Performance Benchmarks[Online]. Avail-
able: https://www.intel.com/content/dam/www/programmable/us/en/pdfs/
literatur% e/ds/ds_nios2_perf.pdf

EREZ MANOR received the B.Sc. and M.Sc.
degrees in electrical and computer engineering
from the Ben-Gurion University of the Negev,
Be’er Sheva, Israel, in 2008 and 2014, respectively.
He is currently pursuing the Ph.D. degree. His
primary research interests include AI, FPGA, and
edge devices.

SHLOMO GREENBERG (Member, IEEE)
received the B.Sc., M.Sc. (Hons.), and Ph.D.
degrees in electrical and computer engineering
from the Ben-Gurion University of the Negev,
Be’er Sheva, Israel, in 1976, 1984, and 1997,
respectively. He is currently an Associate Profes-
sor and the Head of the Computer Science Depart-
ment, Sami Shamoon College of Engineering, and
a Staff Member with the School of Electrical and
Computer Engineering, Ben-Gurion University

of the Negev. His main research interests include computer architecture,
machine learning, image and digital signal processing, computer vision, and
VLSI low-power design.

VOLUME 10, 2022 22287


