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ABSTRACT To mitigate the low frequency problem in a transmission system in an event of a power
station failure or during low renewable generation production, UK National Grid (NG) Electricity System
Operator has balancing mechanism in place with generators to provide temporary extra power, or with
large energy users to reduce load demand or so call fast reserve services. This paper presents an alternative
method to aggregately control the existing distribution network primary on load transformer tap changers
as a voltage-led customer load active service. The main benefits of the proposed method are (i) to unlock
the distribution network load demand flexibility without causing any negative impact on customers, and
(ii) to provide the lowest cost of fast reserve service from a distribution network to transmission network.
In this paper an optimal control strategy based on genetic algorithm is proposed and developed to achieve
an optimized voltage-led customer load active service with the aim of finding the optimal dispatch of on
load transformer tap changers by minimizing each transformer tap switching operation as well as network
losses. Two practical 102 buses and 222 buses UK distribution networks have been modelled and used
to demonstrate and compare the effectiveness of the proposed control methods under different operating
conditions. The performances of the proposed method are also compared with both the rule-based and the
branch-and-bound methods. The results show that the proposed optimal control strategy based on the genetic
algorithm is more effective by achieving more accuracy and a faster solution for a large distribution network
than other two methods. These are important findings as the fast reserve service by transmission network
requires the accuracy of the load demand reduction delivery within 2 minutes.

INDEX TERMS Fast reserve, customer active load service, load demand reductionmanagement, aggregately
control of transformer tap changers, genetic algorithm, optimizations.

I. INTRODUCTION
To support net zero carbon emission by 2050, it is imper-
ative a need to have significantly increasing integration of
renewable energy resources (RESs), such as wind and pho-
tovoltaic generation, into both transmission and distribution
networks [1]. However, the increasing penetration of RESs
into the existing power grids would cause more frequently
short terms imbalance between generation and demand due
to the intermittency of RESs [2]. To keep the short-timescales
balance between the supply and demand of electricity,
UK National Grid Electricity System Operator (NGESO) has
several classes of reserve services: Balancing Mechanism
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Start-Up, Short-Term Operating Reserve, Demand Manage-
ment and Fast Reserve [3]. These reserve services are needed
especially when a power station fails or if forecast renew-
able generation differs from actual generation or if fore-
cast demand differs from actual demand [4]. To support
these services NGESO has contracts in place with genera-
tors to provide temporary extra power, or with large energy
users to reduce load demand. While traditional generators
are gradually replaced by renewable generation, fast reserve
services supported by the declined traditional generation
would become rarer and more expensive, hence load man-
agement (LM) would play an increasingly important role to
make a short period load demand reductions [5], [6].

There are many different LM techniques and methods [7],
but traditional LM schemes often require contracts with

22844 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0002-6941-8769
https://orcid.org/0000-0002-5270-7986


Z. Gao et al.: Optimized Voltage-Led Customer Load Active Service Using Genetic Algorithm in Distribution Networks

customers. Particularly those focusing on load shifting, peak
clipping techniques [8]–[11]. For example, load transfer
scheme was reported in [10] and load shedding with smart
direct load control was reported in [11]. Several load man-
agement modules have been designed to provide dynamic
electricity pricing signals [12], [13]. The modules encour-
age the customers to participle load demand response by
making savings in electricity bills without need of contracts.
Researchers have also considered many different optimiza-
tion techniques or methods [14]–[19]. In [14] a decentralized
load management with considering both dual decomposi-
tion and sub-gradient methods was implemented in which
the Lagrange multipliers were used to have a wider system
coordination and optimization. For a single energy source
system with multiple customers, the distributed Newton’s
method was employed in the design of an energy scheduling
model [15]. An integer linear programming technique was
used in the industrial LM [16]. A short-term load forecast
based on machine leaning and the optimal contracted capac-
ity was used to optimize LM for a shipyard drydock [17].
A decentralized framework was used to optimize residen-
tial load management in a microgrid with 50 residential
customers [18]. Optimal residential load control with price
prediction was reported in [19].

Since a large distribution network may involve hundreds
or thousands residential load customers, LM would con-
sider heuristic search optimization methods to find the global
solution more quickly and accurately [20], [21]. There are
many different heuristics search based methods [22]–[24].
In [22], a swarm optimization algorithm-based network load
interaction model with fuzzy uncertain demand response was
considered and presented. Similarly, in [23], load scheduling
model based on an improved chicken swarm optimization
algorithmwas considered. The well-established generic algo-
rithms have also been considered in load demand manage-
ment optimization [24], [25].

Although the traditional LM methods work well when
generation productions are predictable and load demand are
measurable, they would face serious challenges when the
intermittency productions of RESs are difficulty to be accu-
rately estimated. In addition, there will be a challenge task
if a power utility would need to sign load demand reduction
contract with each individual residential customer. Dynamic
price driven LM method would also face a problem if not
many residential customers are willingly to participate. Since
different individual loads can be categorized into three types
(i) impedance expressed as Z, (ii) current expressed as I and
power expressed as P, the sum of all individual loads can be
modelled as ZIP load model where both the impedance load
Z and the current dependent load I have a direct proportional
relationship with voltage change [26]. As a result, control of
voltage change at a substation can result in control of load
demand changes in the substation. This led to the voltage-led
customer active load demand reduction method which was
proposed and implemented by Customer Load Active Service
System (CLASS) project [27].

The proposed load demand reduction method in CLASS
project aggregately controls a large numbers of transformer
on-load tap changers (OLTCs) at substations to manage cus-
tomer load demand reduction under the statutory voltage limit
constraints, so that the method has no impact on customer
load usages [27]. In facts the method saves money for all
resistance and current types of loads, for example slightly
lower voltage for the conventional lighting type of loads
would not affect their usages. Also, for example, an electric
water kettle having a lower voltage would take more time
to boil water, but the energy for boiling the same amount of
water remains the same. The comprehensive assessments for
the CLASS load demand reduction in distribution networks
have been reported in [28], [29]. Results show the distribution
network has load demand reduction capacity which can be
released at each of the time periods required by load demand
reduction active services. The CLASS load demand reduc-
tion method has also successfully entered in the UK Firm
Frequency Response (FFR) and Fast Reserve (FR) market
since March 2019 [30]. However, the current CLASS uses
the branch-and-bound optimization method in a large distri-
bution network has sometimes experienced larger errors and
slower search convergence. This led to a need to consider an
alternative optimization method to overcome the problem.

This paper presents an improved optimal load demand
reduction control strategy for the operation of primary
transformer tap-changers in distribution networks, provided
that the upstream transmission system requires active load
demand reduction services during periods of low generation
production or generation loss. Since frequent operation of
OLTCs would impact the asset health of OLTC [31], the
objective is thus to find an optimal dispatch solution of trans-
former OLTCs to achieve the required load demand reduc-
tion service by minimizing OLTC tap switching operations
and the network power losses. Similar to the optimization
method used in [32], but this paper optimizes transformer tap
changers switching operations and network active power loss
to provide load demand reduction supports to the upstream
transmission network. In this paper two UK high volt-
age (HV) distribution network, i.e. 102-bus and 222-bus,
the GA based optimized load demand reduction method is
demonstrated and compared with other optimization control
methods, i.e. rule-based and branch-and-bound [33].

Main contributions of this paper are as follows:
i) Considering time series studies of ‘‘flexible control of

distribution network transformer taps changers’’ with
the permitted voltage limits to achieve voltage-led load
demand reduction which would be required by the
upstream transmission system to maintain frequency in
case of generation loss.

ii) Formulating an improved optimal load demand reduc-
tion control strategy based on GA with the aim to solve
a Mixed-Integer Nonlinear Programming (MINLP)
problem faster.

iii) Determining suitable GA parameters to ensure the
balance between the optimization results on the total
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FIGURE 1. Schematic of the tap changer control method for a medium
voltage (MV) distribution system.

network power loss and the number of OLTC switching
operations.

iv) Demonstrating two important key findings by
achieving:

• more accuracy between the required power reduc-
tion and actual load reduction,

• a faster optimal solution for a larger distribution
network to ensure the method can meet the fast
reserve service within 2 minutes requirement.

II. TAP CHANGER CONTROL METHOD
The methodology of the distribution network tap changer
control strategy is shown in Figure 1. The medium volt-
age (MV) distribution network is connected to a transmission
network via aGrid Supply Point (GSP). There are ‘N ’ number
pairs of parallel transformers (e.g. 33/11kV and 33/6.6kV in
the UK) with OLTCs in the distribution network, Remote
Terminal Units (RTUs) and Automatic Voltage Controller
(AVCs) relays being installed, which allow on-load tap
control.

The implementation of the tap changer control method is
on the primary side of a distribution substation transformer.
To change the transformer primary side winding ratio would
result in the transformer secondary side voltage change.
To reduce the voltage at the transformer secondary side where
all individual loads are connected would reduce load demand
at the substation [26].

When the transmission network requires a load demand
reduction service at GSP from the distribution, the cus-
tomer load active service system (CLASS) would issue the
tap changer operation commands to the optimal dispatch
of OLTCs via RTUs to the AVC relays to control OLTCs
taps to reduce load demand. For the ith primary substa-
tion transformer as shown in Figure 1, reducing voltage via

OLTC will result in 1Pi load demand reduction at the ith

primary substation. The total load reduction Pactual aggre-
gated at the GSP is the sum of all primary substation load
reduction 1P1+ 1P2 + . . . + 1Pn. To achieve fast solu-
tions for optimal dispatch of OLTCs, minimum tap chang-
ers operation and network active power loss, a GA-based
optimization method is used and described in the following
section.

III. GENETIC ALGORITHM BASED OPTIMAL CONTROL
The implementation of the tap changer control strategy
uses the genetic algorithm which is a global optimal search
method for finding the optimal solution through natural
selection [34]. The corresponding fitness function, penalty
function, inequality constraints, control variables and genetic
operators for the proposed voltage-led customer load active
service method are defined as follows.

A. FITNESS FUNCTION
The OLTC tap positions of the transformers are the control
variables for the GA-based tap changer optimization. There
are two objectives: the first objective (J1) is to minimize the
number of tap changer switching operations and the second
objective (J2) is tominimize the total network power loss. The
control method should also satisfy the load demand reduction
target at GSP which is required by the upstream connected
transmission network. Therefore, considering two objectives
and the fulfilment of the load power reduction requirement at
the same time, the fitness function of GA can be expressed as
below:

minF = w1 · J1 + w2 · J2 + w3 · f (e)

= w1 ·

N∑
i=1

xi + w2 ·1Ploss (x)+ w3 · f (e) (1)

f (e) =

{
0, if e ≤ elimit
e− elimit , otherwise

(2)

e =

∣∣Pactual(x)− Prequired ∣∣
Prequired

× 100% (3)

where,

xi Number of tap steps different from the initial
tap positions on the ith transformers
(e.g. xi = 2 indicates that the transformer will
step down its tap position by two steps; xi = 0
denotes that this transformer will keep its
initial position).

N Total number of transformers involved in the
tap changer optimization.

1Ploss(x) Network active power loss in the distribution
network due to the tap changers control of
load demand reduction.

Prequired The load power reduction measured at the
GSP required by the transmission network d.
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Pactual(x) The actual load power reduction measured at
GSP by using aggregated tap changer control
method for load demand reduction in the
distribution network.

elimit Maximum permissive error (%) between the
required active power reduction, Prequired , by
the transmission network and the actual load
power reduction, Pactual , in the distribution
network.

w1 The weighting coefficient of minimising the
operation of tap changers.

w2 The weighting coefficient of minimising the
total power loss in the distribution network.

w3 The weighting coefficient for delivering the
active power reduction service.

The penalty function f (e) here is to measure the dissatis-
faction on the load power reduction target. Considering the
satisfaction of the active power reduction target as the key
factor,w3 associated with violation of constraints should have
a larger value over w1 and w2. If we set that w3 = 1, w1 and
w2 can be determined as:

w1 =
µ1

Ntaps_max
, 0 ≤ µ1 ≤ 1 (4)

w2 =
µ2

1Ploss_max
, 0 ≤ µ2 ≤ 1 (5)

µ1 + µ2 = 1 (6)

where µ1 and µ2 are the parameters to balance the total sys-
tem loss reduction saving and theminimization of tap changer
operations, which can be adjusted through a sensitivity study
mentioned in Section IV. 1Ploss_max and Ntaps_max are the
maximum total system power loss and maximum permissive
number of tap changer switching operations, respectively.
And by setting all transformers with the maximum taps down
to have maximum voltage setting at transformer secondary
terminals, 1Ploss_max and Ntaps_max can be pre-calculated
through a power flow study. And then to normalize the objec-
tives J1 and J2 to the same order of magnitude, (4) and (5) are
used here.

B. CONSTRAINTS
The fitness function is subject to the constraints (7) and (8):

ATAPi,min ≤ TAPi + xi ≤ TAPi,max (7)

0 ≤ xi ≤ TC limit for i = 1, . . . ,N (8)

where,

TAPi Initial tap positions on the ith transformer.
TAPi,max ; Maximum and minimum tap positions on the
TAPi,min ith transformer, respectively.
TClimit Limited tap changer operation numbers at

one time.

C. CONTROL VARIABLES
The variable xi in (1) is a control signal that instructs the
parallel transformer OLTCs as a master and a slaver to tap

down or up together. A set of such variables will constitute
a candidate solution to (1). For this GA-based optimization
problem, a candidate solution is termed as an individual and
the chromosome of each individual can be represented as a
row vector:

x = x1x2x3 . . . xi . . . xN (9)

where based on (8), xi is an arbitrary integer in the range
from 0 to TClimit . If the maximum permissive tap position
operation TClimit is 4, the corresponding search space size
will be (1 + TClimit )N = 5N . The GA method generates
random individuals as the first generation, and then it creates
the next generation according to the current population. The
population would finally lead to an optimal solution.

FIGURE 2. Flowchart of the GA-based solution procedure.

D. GENETIC OPERATORS
The fitness of each individual in each GA generation is
measured according to objective function (1). The GA uses
the current population to produce the children for the next
generation. The individuals who have the best fitness values
(i.e. elites) are automatically kept in the next generation.
The remained non-elite individuals in the parent generation
are selected for crossover and mutation using a stochastic
uniform sampling method to avoiding trapped in a local
optimal solution [32]. The crossover function produces the
children through the scattered crossover of their parents. The
rest children are created by the mutation. The procedure of
the mutation generates random individuals that will lead to
the total number of tap changer switching operations (i.e.∑N

i=1 2x i) one fewer than or equal to the best solution at cur-
rent time. Themutation allows the GA to findmore promising
solutions rather than being trapped in local minima.

E. COMPUTATIONAL PROCEDURE
The flowchart of the GA-based solution optimal algorithm is
shown in Figure 2.
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FIGURE 3. Single line diagram of 102 bus distribution network.

A power flow module is involved to calculate actual load
reduction power (Pactual) in the network. Any distribution
network power flow simulation tool with suitable data con-
version interfaces to the GA-based solution algorithm can
be used to implement this power flow module. The settings
of Prequired , elimit and TClimit is required for the initializa-
tion. When measuring the fitness value, the tap positions
will be set firstly according to the chromosome x. And then
the corresponding value Pactual will be calculated through
the load flow module. If the constraint of (7) is reached, the
position of the OLTCs will remain at the minimum positions.
If the GA generations’ max number is achieved or the best
fitness value in the population shows negligible changes after
consecutively several generations, the GA process will stop.

IV. STIMULATION RESULTS AND COMPARISONS
The GA-based optimization for load demand reduction
method was implemented on two practical UK HV dis-
tribution networks with 102-bus and 222-bus, correspond-
ingly. The MATLAB Global Optimization Toolbox was used
to develop the GA-based optimization algorithm based on
the flowchart in Figure 2. The load flow model associated
the network in Figure 2 were implemented using the Open
Distribution System Simulator (OpenDSS) software [35].
OpenDSS is an open-source simulation tool for power flow
calculations, harmonics analyses and fault studies in electric
distribution systems. It can interface with MATLAB via the
Common Information Model. All network parameters can
be set and changed in MATLAB. After running the network
load flow, GA optimization is carried out in the MATLAB
program to obtain the results. Repeating the different network
parameters settings in MATLAB, load flow in OpenDSS

TABLE 1. Parameters of the GA optimization method.

and optimization in MATALB, time series results were
obtained.

A. LOAD POWER REDUCTION ON 102-BUS NETWORK
The implemented GA-based optimization method has been
applied to one practical distribution system as shown in
Figure 3 below. The network has total 102 buses, 11 primary
substations and total 33 transformers either 33/11 kV or
33/6.6 kV. All these transformers are equipped with OLTCs
and each OLTC has a total of 16 tap positions. According
to load modeling method in [26], the ZIP models based on
real measurement data across 102 buses are used and the total
loads in the networks are 170 MW and 54 MVAr.

The tap changer control has been applied to the 11 pairs
primary substation transformers, i.e. N = 11. Since only
the substation systems are involved, the 102 buses net-
work can be simplified as a radial system. Considering a
potential impact of too many tap switching operations on
OLTCs [31], the limited tap changer switching operation
numbers TClimit has been set to 4 (i.e.M = 4). The error (%)
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FIGURE 4. GA optimization results of the normalized objectives J1 and J2
and the penalty value f(e), with different weighting parameter µ2.

elimit between fast reserve Prequired and actual load power
reduction Pactual is set within 1% according to the accuracy
required by the fast reserve service [36]. The parameters of
GA-based method are set and listed in Table 1. The length
of each chromosome is 11, which means there are (1 +
M )N = 511 possible solutions. To evaluate the effectiveness
of the GAmethod, two previously implemented optimization
methods: the rule-based control scheme and the branch-and-
bound method were compared. The details of the rule-based
control scheme and the branch-and-bound methods can be
found in [33].

1) DETERMINAITON OF GA PARAMETERS
As the GA based method has number of variables, the deter-
mination of these variable initial values as start points of
search is necessary. In (1), parameters of w1, w2 and w3
were determined through a sensitivity analysis. Firstly, w3
was set to 1, which ensure the GA to take the fulfilment of
the active power reduction as the dominant part. w1 and w2
were then calculated based on (4) - (6). And then a sensitivity
study was carried out to determine the weighting parameters
µ1 and µ2. The study started from µ2 = 0 to 1 with a
step of 0.1. According to (6), µ1 + µ2 = 1, for each
given value of µ2, we have µ1 value. The GA ran a total
of 100 times with different load power reduction require-
ments of Prequired increased from 0.1 MW to 5 MW with a
step of 0.05 MW.

Figure 4 shows the results of the normalized objectives
J1_nom, J2_nom, and penalty function f (e) based on the average
of the 100 optimization results for each µ2. As can be seen
J2_nom decreases slightly withµ2, while J1_nom increases. The
penalty function f (e) slightly varies with µ1. The red dashed
line shows the average of three variables of J1_nom, J2_nom
and f (e) which does not change much with µ1 due to the
interactions among the variables. This leads the determina-
tion of GA parameters of µ1 to be fixed to 0.5 to keep the
balance between the optimization results on the total system
power loss and the number of OLTC switching operations in
the following studies.

FIGURE 5. Optimization results with different optimization methods for
the 102-bus distribution system hen elimit is set at 1%).

2) PERFORMACNES UNDER DIFFERENT PREQUIRED
Considering the maximum loading only in the network is
120MW + 37.8MVar (70% of rated load), the performance
of GA was simulated and obtained. The GA optimization
method has been compared with other two methods and
results are shown in Figure 5.

Figure 5(a) shows the errors elimit of load power reduction
between Prequired required at GSP in the transmission and
Pactual provided in distribution network for three Prequired
cases of 3MW, 4MW and 5MW, respectively. As can be
seen that GA produce the best accuracy results for all cases
which are well below 1%. However, both rule-based and
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TABLE 2. Computation time for 102-bus distribution system studies.

branch-and-bound methods may sometime be higher than
the required accuracy of 1%. This is because both methods
estimate the value ofPactual using linear approximation rather
than calculating it through load flow studies.

As expected, the results in Figure 5(b) show that the total
number of OTLC switching operations are increasing as
Prequired increasing from 3 MW, 4MW and 5 MW, respec-
tively. Results also show GA optimization method has a
lightly increasing number of OLTC switching operations in
comparing with other two methods under Prequired of 4 MW
and 5 MW, respectively. Rule-based optimization has small-
est number of OLTC switching operations. This may be
explained that GA method took a few more steps to ensure
that the errors are below the required 1%, hence more accu-
rate results than other two methods were obtained.

As shown in Figure 5(c), if comparing with rule-based
method, GA approach has slightly more power loss sav-
ing than rule-based method for all cases. This may also be
explained that that rule-based method uses load flow study
knowledge for prioritizing selection of those OLTCs that
would produce more load power reduction contribution to
Pactual with minimum tap switching operations. As a result,
the lowest number of taps switching operations leading to
lowest network losses. When comparing GA with branch-
and-boundmethod, it has slightly higher loss than the branch-
and-bound method when Prequired at 3MW, but it has less
losses than the branch-and-bound method when Prequired at
4MWand 5MW, respectively. Thismay be explained that GA
methodmay get more quicker andmore efficient to search the
solutionwhen tap operation numbers associatedwithPrequired
are increased when comparing them with small tap operation
numbers.

The computation time for the GA method, the rule-based
and the branch-and-bound methods are monitored during the
simulation. Results are listed in Table 2.

For 102 buses network, the GA approach takes a longer
time to find the solution than both rule-based and the branch-
and-boundmethods. Thismay be explained that the 102 buses
network is radial with small number of transfer tap changers.
It would be easier for both rule-based and the branch-and-
bound methods to use linear approximation calculation, but
GA method has still to calculate the load power reduction
through load flow studies. However, GAmethod has achieved
the required accuracy of less than 1% for all cases.

FIGURE 6. Load profile used in 102-bus distribution system.

FIGURE 7. Number of OLTC switching operations for 3 methods using
summer load profile.

3) TIME-SERIES STUDIES
From the data provided by the UK Energy Research Centre,
a typical daily domestic load profile has been selected to
perform the time-series studies [37]. As illustrated in Figure 6
there are 48 load points with a half-hour interval over
24- hours.

In this 102 network study assuming a required power
reduction of Prequired is 2MW. The numbers of all tap
changers operations to produce the required 2MW load
demand reduction in corresponding to each one load profile
point under 24 hours for of all three optimization meth-
ods, respectively, are simulated and illustrated in Figure 7.
Both GA and the branch-and-bound approaches show very
close results except for those in the early morning between
2:30am – 5:30am when loads are very light. To achieve the
required load power reduction of 2MW, a lower demand
requires more OLTC tap switching operations than a higher
demand. Also GA method shows slightly a few more OLTC
tap operation numbers than the Branch-and-bound during the
early morning between 2:30am – 5:30am. The rule-based
method has less OLTC tap switching operations than both
GA and branch-and-bound methods as the rule-based method
does not have the load flow correlation of tapping transform-
ers at different locations.

B. LOAD POWER REDUCTION STUDIES
ON 222-BUS NETWORK
GA method along with other two optimization methods are
also simulated and tested using HV 222 bus network with 28
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TABLE 3. 24-h optimization results for the 222-bus distribution system.

primary substations. The total network demand is 427MW+
127 MVAr. The setting of the GA parameters also based on
the TABLE 1. The number of tap operation and the error
percentage of the active power reduction is analyzed with
different load active power reduction requirement. The GA
method has considered 28 substation transformers, i.e. N =
28 and the load power reduction error is again set to < 1%.

1) COMPUTATION TIME
The studies used the same 24-hour load profile as shown in
Figure 6. Table 2 shows (i) the number of violations of the
load power reduction requirement, i.e. errors elimit exceeding
1%, over the 24 hours period for three different Prequired of
3MW, 4MW and 5MW, respectively, and (ii) the computation
time for the 24-h optimization studies.

As can be seen from Table 3, the GA method has the least
number of violations among all the testing results. The rule-
basedmethod shows the most numbers of violations, i.e. error
of elimit exceeding 1% setting. In contrast, the GA method
shows no violations exceeding 1%. The studies confirm that
the GA approach can achieve accurate and robust control
of the tap changing operation under different load power
reduction targets and at various load levels.

As can also been seen from Table 3, although the rule-
based method can provide much faster control than both
branch-and-bound and GA approach, it deeply relies on the
fixed-sequence selection of tap changers. Results show many
violations over 24 hours optimization studies. Both branch-
and-bound and GA methods show smaller violations, but
GA has the least violations. By comparing the computational
time for 24 hours optimization studies between GA and the
branch-and-bound, GA has the faster solution computation
time than the branch-and-round method. The search solution
speed change from the fact that the search space in 222-bus
system is 528 for the GA, which is significantly less than the
2112 of the branch-and-bound method. In this case, the GA
approach shows more efficiency in determining the optimal
solution in a large distribution system.

2) GA PERFORMANCE WITH 10% LOAD VARIATIONS
In order to study the impact of load variation on the per-
formance of GA method, the original 24 hours load profile
is randomly changing by 10% variations. There are total 50

FIGURE 8. Load changing range and error range of the GA approach.

FIGURE 9. Average of load reduction errors of 3 control methods over
24-hours optimization studies.

randomly generated load profiles used in this case study. And
the corresponding average, maximum and minimum active
power reduction error, elimit , over the 24-hours period is
shown in Figure 8(a).

Since 222 buses network can provide more than 10MW
load demand reduction based on the measured ZIP load
models, in this study assuming a required power reduction
of Prequired is set at 10MW. The corresponding average,
maximum and minimum load demand reduction error over
the 24-hours period is shown in Figure 8(b). The error range
shows in the Figure 8(b) could keep below 1% (error lim-
itation) when the load is changing randomly within 10%.
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The results confirm that the GA method can still maintain
the load power reduction accuracy within 1% under different
load level and load variation. This is because GA uses 1% of
elimit as one of search solution targets.

By taking the average of errors over 24-hours optimiza-
tion studies based on the results in Figure 8(b), the average,
maximum and minimum load power reduction average error
of GA over 24-hours optimization studies is shown in Fig.9.
Similarly, results of both rue-based and branch-and-around
methods over 24-hours optimization studies are also calcu-
lated and shown in Figure 9.

As shown in Figure 9, the GA method can satisfy the load
power reduction target within the 1% tolerance throughout
the 24-hours period. However, the other two methods exist
violations of the load power reduction response requirement.

V. CONCLUSION
This paper has presented the use of Genetic Algorithm (GA)
to optimize voltage-led customer load active service in dis-
tribution networks. Two practical 102 buses and 222 buses
UK distribution networks based on real data are modelled and
used to test the effectiveness of the GA-based tap changer
optimal control strategy under different operating conditions.
The performances of the proposed method are also compared
with both the rule-based and the branch-and-bound methods.

Under the small 102-bus system studies, GA approach
takes longer time to find the solution than both rule-based
and the branch-and-bound methods. However, GA method
has achieved the required accuracy of less than 1% for all
cases. Under the large 222-bus system studies, GA can find
the solution not only faster, but also more accuracy than both
the rule-based and branch-and-bound control methods

In summary, the studies confirm the proposed GA optimal
control approach is more effective by achieving more accu-
racy and a faster solution for a large distribution network than
other two methods. Thus, the proposed method satisfies the
fast reserve service requirements in term of the accuracy for
the load demand reduction delivery of less than 1% within
2 minutes in the studies.
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