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ABSTRACT Received signal strength indicator (RSSI) based indoor localization technology has its irre-
placeable advantages for many location-aware applications. It is becoming obvious that in the development
of fifth-generation (5G) and future communication technology, indoor localization technology will play a
key role in location-based application scenarios including smart home systems, manufacturing automation,
health care, and robotics. Compared with wireless coverage using conventional monopole antenna, leaky
coaxial cables (LCX) can generate a uniform and stable wireless coverage over a long-narrow linear-
cell or irregular environment such as railway station and underground shopping-mall, especially for some
manufacturing factories with wireless zone areas from a large number of mental machines. This paper
presents a localization method using multiple leaky coaxial cables (LCX) for an indoor multipath-rich
environment. Different from conventional localization methods based on time of arrival (TOA) or time
difference of arrival (TDOA), we consider improving the localization accuracy by machine learning RSSI
from LCX.We will present a probabilistic neural network (PNN) approach by utilizing RSSI from LCX. The
proposal is aimed at the two-dimensional (2-D) localization in a trajectory. In addition, we also compared the
performance of the RSSI-based PNN (RSSI-PNN) method and conventional TDOA method over the same
environment. The results show the RSSI-PNN method is promising and more than 90% of the localization
errors in the RSSI-PNN method are within 1 m. Compared with the conventional TDOA method, the
RSSI-PNNmethod has better localization performance especially in the middle area of the wireless coverage
of LCXs in the indoor environment.

INDEX TERMS Leaky coaxial cable(LCX), localization, RSSI, neural network.

I. INTRODUCTION
In the last couple of years, due to the large-scale commercial-
ization of the fifth-generation (5G) mobile communication
technology and the explosive growth of the number of smart
devices, various services and applications have emerged to
change people’s lives. Location-based services including out-
door positioning and navigation, proximity social network-
ing, and image geotagging have become basic demands in
recent years. The localization of users and devices is of
great value in a wide range of fields such as autonomous
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vehicles [1], health care [2], industrial and manufacturing
automation [3], and robotics [4]. It can also benefit many
novel systems including Internet of Things (IoT) [5], Internet
of Vehicles (IoV) [6], smart home system [7], smart build-
ing [8], etc.

Global positioning system (GPS) as the most widely used
localization technology provides localization and navigation
service for almost global users. However, the GPS is not
effective or accurate in the indoor environment due to its
poor reception of signals from satellites. Technologies of
indoor localization, which do not need the GPS signal or
direct access to the base station, are playing a key role in
many indoor application scenarios. Systems for localization
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can realize the location detection of the target with the help
of different tools. Methods based on proximity sensors (e.g.,
infrared sensors, motion sensors, and ultrasound sensors) can
provide localization for target users, but usually, it is hard
to share the location information directly to target users [9].
Localization methods based on wireless signals have been
greatly advanced and can be well integrated into the wireless
communication system [10]. In addition, using a magnetic
induction-based approach can also improve the performance
of localization [11]. In recent years, most researches on
indoor localization consider the wireless communication sys-
tem using conventional monopole antennas and it has two
drawbacks. One is the requirement of many access points
for wireless coverage in the linear-cell environment (a place
that is long and narrow) such as a manufacturing factory,
railway station, and underground shopping mall. Another is
the large power attenuation of the signal power in the air.
These two problems can be solved by using leaky coaxial
cable (LCX) for wireless coverage. LCX which can be used
as antennas has been researched for several years. The poten-
tial advantages promote LCX to play an important role in
wireless communication for various applications especially
in linear-cell environment. LCX can be installed simply
and it has uniform coverage and low interference between
cells [12]–[14]. Reference [15] shows the employment of
LCX in wireless power transfer (WPT). LCX also can be
employed to train and the train ground communication sys-
tem [16]. In [17]–[20], authors find that it is possible to form
a 2-by-2 multi-input multi-output (MIMO) channel using
only one LCX due to its bi-directional radiation property.
After that, reference [21] presents a 4-by-4 LCX-MIMO
system using one composite LCX. In addition to the usage
for wireless communication, LCX is available for localization
in indoor environments [22]–[24]. References [22] and [23]
propose the localization methods with time of arrival (TOA)
and time difference of arrival (TDOA) in LCX systems.
In [24], authors develop a different combination of multiple
LCXs to achieve higher accuracy in localization. On the other
hand, due to the constant power loss in the cable, LCX can
easily improve the channel capacity by transmitting power
allocation using the user’s position information [25].

Recently, machine learning approaches have been widely
explored and used in many fields. In localization technology,
machine learning is often used to classify a large number
of characteristic information of wireless signals from user
devices to improve localization accuracy. The most com-
monly used signal characteristic information in localization
includes received signal strength indicator (RSSI), angle of
arrival (AOA), time of arrival (TOA), time difference of
arrival (TDOA), and channel state information (CSI) [10].
From the perspective of low cost in hardware requirements
and low computational complexity, the RSSI-based method
is one of the simplest localization methods for indoor envi-
ronments because of the easy measurement of RSSI value.
Most recent studies have focused on the usage of neu-
ral networks (NN) and other classification algorithms to

improve localization performance. Reference [26] shows an
RSSI-based fingerprinting localization method using recur-
rent neural networks (RNNs) in an indoor environment.
A convolutional neural network (CNN) based approach for
indoor localization using RSS time-series from wireless local
area network (WLAN) access points is presented in [27].
The authors also proposed a multi-layer neural network
for RSSI-based localization in [28]. In addition, A novel
k-nearest neighbor (KNN) algorithm based on RSSI similar-
ity and position distances for indoor localization is proposed
in [29].

The motivation of this paper is to propose an RSSI-based
indoor localization approach by using LCX for indoor appli-
cation environments such as smart logistics warehouses and
automated factories. In the future, there will be large numbers
of intelligent guided vehicles or robots that automatically
move according to trajectories in these application scenarios.
Different from unplanned movement, the RSSI of the sig-
nals transmitted by these mobile devices has a high correla-
tion related to the location. Compared with the conventional
method that uses the TDOA information to directly calculate
the position, the method using NN can take advantage of the
correlation of the time series data of the target’s RSSI. For the
RSSI-based localization method using LCX, a fundamental
question is whether the time-series data obtained by LCX
is more efficient to the correct estimation of target location
than the localization accuracy of the conventional TDOA
based methods. On the other hand, for two-dimensional (2-D)
localization, at least two sets of TDOA data are required to
calculate the target location, which means that we need two
or more LCXs to complete this process [23]. However, for
the method based on RSSI time-series data using NN, it can
effectively reduce the number of LCXs as access points.

As a performance investigation for the RSSI-based indoor
localization using LCX, we utilize a probabilistic neural net-
work (PNN) to find locations using the RSSI data received by
LCX in indoor environments. PNN is a feedforward network
derived from the Bayesian network and is widely used in
classification and pattern recognition problems [30]–[33].
The simplified architecture of the feedforward neural network
offers lower difficulty in actual employment. Compared with
other types of neural networks, the feedforward neural net-
work has better performance when handling and processing
nonlinear data under large data samples, and it does not
require feature engineering in processing. The RSSI data
samples are measured at the LCX side using a geometrically
based single-bounce (GBSB) channel model with both of
line-of-sight (LOS) propagation component and non-line-of-
sight (NLOS) propagation component [34]. For comparison,
we will also provide the localization performance of the
TDOA-based method using LCX over the same environ-
ment. In summary, the main contributions of this paper are
two-fold:
(1) A classical three-dimensional (3-D) channel model

for LCX communication system in a multipath-rich
indoor environment is established using a GBSB model
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according to the radiation property of LCX. The RSSI
data samples can be simulated by using the LCX channel
model.

(2) We propose an RSSI-based indoor localization method
using multiple LCXs with a PNN approach. Com-
paredwith the conventional TDOAmethod, the proposal
improves the localization accuracy by machine learning
RSSI data samples from LCXs. We provide numerical
simulation experiments as a performance investigation
for the proposal. The results show the performance of
the RSSI-PNN method is promising and is better than
the conventional TDOA method.

The rest of the paper is structured as follows. In Section II,
we introduced the LCX radiation property and chan-
nel model. Then the conventional TDOA method and
RSSI-based localization method using PNN are explained
in Section III. Performance results of localization error are
given in Section IV, and end the paper with simple conclu-
sions in Section V.

FIGURE 1. LCX structure.

II. LCX RADIATION PROPERTY AND CHANNEL MODEL
A. LCX STRUCTURE AND RADIATION PROPERTY
Fig. 1 shows the 4-layer structure of LCX used for wireless
communication. Different from conventional coaxial cable,
the slots arranged periodically over the outer conductor can
be equivalent to a uniform linear array of magnetic dipole
antennas and the radio waves can be radiated and received
through these slots. The signal strength of LCX depends on
its radio waves from all slots at the far-field region. Radiation
angles with peak directivity of LCX can be expressed by

θm = sin−1(
√
εr +

mλ
P

), (m = −1,−2, . . .) (1)

where m is the harmonic order, P is the period of slots
and εr is the LCX’s relative insulator permittivity. λ is the
wavelength related to the frequency band. m is set as -1 to
avoid radiated harmonics.

LCXs with different slot structures have different radiation
properties. Fig. 2 shows two commonly used LCX types,
one with vertical slots and the other with pair of inclined
slots [25]. Fig. 2(a) is the radiation pattern of the H-type
LCX and it can be regarded as an array of small monopole
antennas. Due to the slot structure design, the V-type LCX
in Fig. 2(b) has bi-directional radiation property if we input

signals to both ends of the cable simultaneously [21]. In the
conventional localizationmethod, V-type LCXuses the signal
radiation angle and TDOA value to estimate the location of
the target user.

FIGURE 2. Radiation patterns of different LCXs.

B. CHANNEL MODELING FOR LCX
In this paper, we provide a GBSB model using the basic
theory in the communication field to establish a classical
model for the LCX communication system. Let’s take H-type
LCX as an example and the V-type LCX can be modeled in
the same way. The signal propagation from user to LCX can
be divided into two parts the line-of-sight (LOS) component
and the non-line-of-sight (NLOS) component.

We consider the received signal at the LCX side as SLCX
and it can be expressed as

SLCX = SLOS + SNLOS, (2)

where SLOS is the LOS signal and SNLOS is the NLOS signal.
Here, SLOS is deterministic process and SNLOS is stochastic
process. As Fig. 3(a) shows, the LOS propagation paths has
two parts including the path from the user (Tx) to slot Oi in
the air and the path from slot Oi to cable end in the cable.
SLOS depends on the superposition of LOS signals from all
slots and can be simply expressed as

SLOS =
N∑
i=1

SOi , (3)

where N is the number of slots over LCX and SOi represents
the signal from user Tx via slot Oi to the cable end. Due to
the uniform power attenuation in the cable, the corresponding
longitudinal amplitude attenuation of the signal in LCX can
be represented as

αi = 10
−αP(i−1)

20 , (4)

where α is the longitudinal amplitude attenuation constant per
meter in LCX.P is the period of cable slots andP(i−1) means
the distance from slotOi to the cable end. Similarly, the phase
variations in LCX can be represented as

βi = krP(i− 1). (5)

kr is the propagation constant of electrical wave in LCX and
kr = k0

√
εr . k0 is the propagation constant of electrical wave
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FIGURE 3. The LOS and NLOS propagation paths in the LCX channel
model.

in free space and k0 = 2π f /c. c is the speed of light. We can
change the values of k0 and kr by assigning different values to
f to simulate the generation of signals of different frequencies
in free space and LCX. It assumes that user Tx is with one
monopole antenna and the direct distance between the user
and the center point of slot Oi is ri. The LOS signal SLOS can
be expressed by

SLOS =
N∑
i=1

αi
√
Pl(ri) · E(θi) · e−j(k0ri+βi). (6)

E(θi) is the power gain due to the radiation angle [25]. Func-
tion Pl(ri) represents the pathloss at a distance of ri in indoor
environment over 2.4GHz band and can be expressed by

Pl(d) = 18.7 ∗ log10d + 46.8+ 20 ∗ log10(2.4/5), (7)

where d is the distance of the propagation path.
Fig. 3(b) shows the NLOS component of the signal prop-

agation. Similar to the LOS component, the NLOS signal
SNLOS can be simply expressed as

SNLOS =
N∑
i=1

M∑
j=1

SOiSj . (8)

Here, M is the number of the scatterers. SOiSj represents the
signal from user Tx via scatterer Sj and slot Oi to cable end.
We assume that the direct distance between Tx and scatterer
Sj is rij and the distance between Sj and slot Oi is r ′ij. The
NLOS signal can be calculated by

SNLOS =
N∑
i=1

M∑
j=1

αi

√
Pl(rij + r ′ij) · E(θij) · e

jϕij

·e−j(k0(rij+r
′
ij)+βi), (9)

where ϕij is the i.i.d random variables with uniform distribu-
tions at [0,2π).
In addition, the RSSI value of the LCX received signal can

be calculated by:

RSSILCX = 20 ∗ log10(|SLCX(t)|). (10)

III. LOCALIZATION METHODS USING LCX
A. RSSI DATA COLLECTION
We consider the indoor environment as a 3-D space similar
to a factory as shown in Fig. 4. The user is considered as the
transmitter moves on the trajectory. We collect the RSSIs at
the LCX side and the user’s location information as a data set
for training and testing using PNN.

Fig. 4(a) is the overall view of the simulation model in a
24 × 14 × 3 [m3] space. We set 4 H-type LCXs (two LCXs
are in 24 meters, two LCXs are in 14 meters) as the receivers
Rx on the wall. The user Txmoves in a clockwise direction on
the trajectory. It assumes that several scatterers are uniformly
distributed in this space.

Fig. 4(b) shows the top view of the simulation model. The
red line is the user’s standard trajectory with a length of
20 m and a width of 10 m. The black line is the user’s actual
trajectory route with random deviation and the max deviation
of the user from the standard trajectory is 0.5 m.

We use Fig. 4(c) to introduce the scatterer distribution
pattern of the channel model. We divide the user’s trajectory
into 12 parts. The channel model considers different scatterer
distribution patterns when the user is at different trajectory
parts. For example, when the user is at part 1 of the trajectory,
the channel model mainly considers the scattering points
distributed near part 1. It should be noted that when the user
turns in a corner, the distribution of scattering points in the
same area will also changes. When the user is at the same
part of the trajectory in each lap, the distribution of scattering
points remains unchanged.

Fig. 4(d) shows the layout of the quantized locations and
the measurement points for data samples. We partition the
indoor space into blocks with a side length of 0.25m. The side
length represents the resolution of this localization scheme.
We consider that the user moves on the trajectory at a speed
of 1 m/s. The location of the user on the trajectory can be
represented by (x, y) which is the coordinate of the center
point of the block where the user is located. For the calcula-
tion of the RSSI value from each LCX at each measurement
point, we take several frequency points by setting different
frequency values with equal interval to f in the LCX channel
model. These frequency points are centered at 2.4 GHz and
it calculates the RSSI value at each frequency point using
equations in Section II.B (Eq. (2), (6), (9), and (10)). Then,
we obtain several RSSI values and take the average value
as the final RSSI. We take 4 RSSIs from 4 LCXs at one
measurement point as a data sample. The user’s location (x, y)
is also recorded at the same time. The sampling rate is set to
240measurement points per lap on the trajectory.We finished
the data sample collection after the user moved 300 laps and
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FIGURE 4. Configuration of the channel model in indoor environment.

a total of 72000 data samples were obtained. As a sample,
we give the RSSI data values measured from one LCX in
1 and 10 laps respectively in Fig. 5.

In addition, we also tried to change the number of LCX
antennas and scattering points to study the changes in local-
ization performance. The specifications of the LCX and other
detailed parameters and conditions in the simulation are listed
in table 1.

B. PNN METHOD
PNN is a feedforward network that developed with the
development of a radial basis function network. The PNN
model is derived from the Bayesian network which is a
statistical algorithm that uses the Kernel Fisher discriminant

FIGURE 5. RSSI data samples.

TABLE 1. Simulation specifications for RSSI collection.

analysis techniques. The architecture of the PNN model as
Fig. 6 shows is divided into four layers: input layer, pattern
layer, summation layer, and output layer.

FIGURE 6. The architecture of PNN.

The input layer receives the training sample values and
passes the vector to the pattern layer. The number of neurons
in the input layer is equal to the dimension of the sample
vector. In the pattern layer and summation layer, each neuron
calculates the Euclidian distance between the incoming and
reference vectors and multiplies the result with a Gaussian
activation function. Then, the contribution of each classifi-
cation c is summed by the neurons in the summation layer,
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resulting in a probability as indicated:

Pc(x) =
1

σc
√
2π

NEc∑
j=1

e
−
‖v−vc,j‖

2

2σ2c , (11)

where v is the sample vector, vector vc,j is the jth training
vector. The number of training vectors for class c is NEC and
σc is the Gaussian spread. ||v− vc,j||2 represents the squared
Euclidean distance between the input and jth training vector
of class c. In the output layer. it will select the class which has
the highest probability.

FIGURE 7. The process of RSSI-based PNN algorithm in localization.

We use Fig. 7 to give a brief introduction to the process
of the PNN algorithm in this work. The whole process has
two parts: the training phase and the testing phase. As it
shows in Fig. 7(a), in the training phase, the RSSI data set
is preprocessed into an RSSI vector and then input into the
PNN network for training. In the testing phase, we input the
RSSI of the test data set into the trained network, the PNN
estimates the most likely classification of input data samples
and the location prediction will be obtained. We calculate the
localization error in the final step.

Fig. 7(b) shows the training phase in the PNN process. The
vector receives RSSI samples recorded along the trajectory
route is converted into stacked slidingwindows each of length
Nc samples. The stacked vectors then form a Nr (rows) ×
Nc (columns) predictor matrix as shown in Fig. 7. And the
prediction target is the location of the user corresponding
with the RSSI value. Each row of a corresponding length
Nr target column vector contains the index that points to the
end address of the fading sliding-window vector stored in
memory. The PNN learns to associate each window with its
start address during training. After training and during normal
operation, the PNN returns the address index of the closest
matching row that has the minimum Euclidean distance with
the current observation vector.

The parameter settings of the PNN are listed in table 2.

TABLE 2. PNN settings.

C. TDOA METHOD
To compare with the proposed RSSI-based method Using
PNN, we also provide an introduction to the conventional
TDOA method. The main idea of the TDOA method in 2-D
localization is to use the time difference between the signal
reaching the two ends of the cable and the radiation angle of
the signal to geometrically calculate the location information
of the target user. Due to limited space, only the main content
of the TDOA method using LCX is introduced here. The
content in detail can be found in [23].

FIGURE 8. LCX localization using TDOA method.

Fig. 8 shows the scheme of the TDOA localization using
two different parallel V-type LCXs (denoted as V1, V2) with
different radiation angles. t1, t2, t3, t4 are the arrival time of
signals, which is the time it takes for the signal to propagate
from the user to the end of the LCX. Since the arrival time
of signal t1, t2, t3, t4 can be calculated geometrically, the user
location in the X-axis direction and the Y-axis direction can
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be expressed as

x =
1
2 (t1 − t2)ν1c+

1
2 (t3 − t4)ν2c+ L

2
(12)

y =
cos θ1 cos θ2[ν1ν2c(t1−t3)−x(ν2−ν1)]

ν1ν2(cos θ2−cos θ1)−ν2 sin θ1 cos θ2+ν1 sin θ2 cos θ1
.

(13)

L is the length of the LCX. ν1 and ν2 are the shortening coef-
ficients of the radio waves in LCX1 and LCX2. θ1 and θ2 are
the maximum radiation angles of the LCXs. For the arrival
time estimation of the signal, we use the multiple signal
classification (MUSIC) algorithmwhich is a relatively simple
and efficient eigenstructure method [23]. MUSIC algorithm
estimates the noise subspace from available samples and
searches for steering vectors that are as orthogonal to the
noise subspace as possible. This is normally accomplished
by searching for peaks in the signal spectrum.

Here, we give a brief introduction to the TDOA measure-
ment using the MUSIC algorithm. Given an K × K autocor-
relation matrix from the signal samples at different frequency
f as

Rx =
K∑
i=1

uiViVH
i

=

s∑
i=1

(λi + σ 2
w)ViVH

i +

K∑
i=s+1

σ 2
wViVH

i , (14)

where the ui and Vi are the eigenvalue and the eigenvector
corresponding to the eigenvalue. The superscript H repre-
sents the Hermitian transpose. λi is the eigenvalue corre-
sponding to signal and σ 2

w is the variance of white noise. The
eigenvectors corresponding to the s largest eigenvalues span
the signal subspace. The remaining K − s eigenvectors span
the orthogonal noise space. We define the estimation function
for MUSIC as

g(τ ) =
1∑K

i=s+1

∣∣VH
i e(τ )

∣∣2 , (15)

where e(τ ) is known as the steering vector and can be
expressed as

e(τ ) =
[
1, e−j2π f1τ , e−j2π f2τ , · · · , e−j2π fK τ

]T
, (16)

τ = nTr , (n = 0, 1, 2, · · · ,Ns − 1). (17)

Tr is the time resolution of the MUSIC method. Ns is the
number of elements in the pseudo spectrum. The orthogonal-
ity between the noise subspace and the steering vectors will
minimize the denominator in Eq. (15) to 0 value. However,
it is a small value in practice due to the noise. As a result,
it will give rise to a peak, which corresponds to the signal
arrival, in g(τ ). From that, we can estimate the TOA of signals
and then calculate the TDOA value.

The TDOA-based localization method using LCX is usu-
ally used in a linear-cell environment. In the previous
research, the authors used two LCXs to perform the local-
ization with TDOAs and the experimental results show that

TABLE 3. Simulation specifications for TDOA method.

the localization performance is not promising when the target
user is far away from the LCXs [23]. So, for the performance
investigation in the large space in this work, we use two
parallel V-type LCXs (V1, V2) as a group on each wall in the
simulation model in Fig. 4. A total of eight LCXs are placed
on four walls to cover the user’s trajectory area to ensure the
localization performance of the TDOAmethod. The LCXs on
each side only locate the user on an adjacent trajectory. The
specifications of the LCX and other detailed parameters and
conditions in the simulation are listed in table 3.

IV. LOCALIZATION PERFORMANCE
A. LOCALIZATION ERROR
1) LOCALIZATION ERROR IN RSSI-BASED PNN METHOD
The RSSI-based PNN (RSSI-PNN) method in this paper
formulates localization as a classification problem. As stated
in the previous section, we partition the indoor space into
multiple blocks. The difference between the block predicted
by the PNN algorithm and the actual block where the user
is located will be quantified into a specific distance as the
localization error. We use Fig. 9 to introduce the localization
error quantification. If the predicted block happens to be
the block where the user is located, the localization error is
below d1. If the predicted block is next to the user’s block,
the localization error is below d2. Similarly, the maximal
localization errors are quantified as d3, d4, d5, . . . dn when the
predicted block is not the same as the user’s one. It should
be noted here that in the final experimental results we only
provide the maximal value of the localization error as the
performance of the RSSI-PNN method.

2) LOCALIZATION ERROR IN TDOA METHOD
In the TDOAmethod, the user’s location is directly calculated
by using the signal’s TDOA and radiation angle, so we cal-
culate the direct distance between the estimated location and
the actual user location as the localization error.

B. RESULTS OF LOCALIZATION ERROR
The results of the localization error are shown by cumulative
distribution function (CDF).

Fig. 10 shows the results of the localization error of the
RSSI-PNN method using different numbers of LCXs. NL is
the number of LCXs. We also provided the results using the
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FIGURE 9. The maximal localization error for quantized locations in
RSSI-based PNN method.

FIGURE 10. The comparison of the localization errors. (Number of
scatterers M = 10).

TDOA method for comparison. The number of scatterers M
is set as 10. We can find that the localization performance
of the RSSI-PNN method is better than that of the TDOA
method. The blue and green lines in Fig. 10 represent the
localization error of RSSI-PNN when using only one LCX
(LCX2 in Fig. 4(b)) and when using two LCXs (LCX1 and
LCX2 in Fig. 4(b)). We can see that the localization accuracy
is improved when we increase the number of LCXs as the
receivers in the RSSI-PNN method. In addition, more than
90% of the localization errors in the RSSI-PNN method are
within 1m.

For the analysis of the difference in localization per-
formance between the RSSI-PNN method and the TDOA
method, we extract the localization errors of some areas of
the user’s trajectory. Fig. 11(a) shows the localization errors
of two methods on the long side of the trajectory in one lap.
The localization errors of the TDOA method are promising
in the middle part of the trajectory. However, the gap in the
localization performance between the two methods becomes
large in the edge part. In addition, we divide the trajectory

FIGURE 11. Localization errors in different areas. (a) Localization errors
on the long side of the trajectory in one lap. (b) Area division of trajectory
(c) Distribution of localization errors in different areas of trajectory.
(Number of scatterers M = 10).

into middle area and edge area as Fig. 11(b) shows. Both
middle area and edge area contain 120 measurement points
at the trajectory per lap. Fig. 11(c) shows the distribution
of localization errors in different areas of trajectory. In the
TDOA method, 70% of the localization error in the middle
area is below 1.5 m and 80% of the localization error in the
edge area is over 1.5 m. The main reasons for the different
performance of the TDOA method are the signal’s radiation
angle error and the low resolution of theMUSIC algorithm for
detecting the arrival signal. On the contrary, the RSSI-PNN
method can avoid these problems.

Multipath of signal in the indoor environment is also one
of the important factors affecting wireless communication
and localization. In this paper, we also investigate the local-
ization performance under different numbers of scatterers.
As it shows in Fig. 12, when using the same number of
LCXs, the localization performance becomes worse when
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FIGURE 12. The CDF of Localization error under different number of
scatterers.

the scatterers increase. However, the influence of multipath
gradually becomes smaller as the number of LCXs increases.

Fig. 13 is the localization performance of the RSSI-based
methods using different Gaussian spread σ values in PNN
training. In PNN, if the spread value is near zero, the network
acts as a nearest neighbor classifier. As the spread value
becomes larger, the designed network takes into account
several nearby design vectors. When utilizing RSSI data from
one or two LCXs, the prediction performance is promising as
the spread value approaches 0. However, when utilizing RSSI
data from four LCXs, the prediction performance becomes
worse at a low spread value as shown in the localization
performance when σ = 0.1 in Fig. 13(c). This may be caused
by overfitting in PNN training. It is important to adjust the
value of σ appropriately to keep the prediction performance
when utilizing RSSI data frommultiple LCXs. For overfitting
or overtraining, wemay avoid the problem by adopting a con-
siderable amount of RSSI samples in the training phase and
using another fraction of datasets for the testing phase [35].
This will be our future work in future research.

The resolution of the localization method in this work can
be changed by adjusting the side length of the blocks in
Fig. 4(d). As an investigation of the effect of localization reso-
lution on performance, we provide localization results with a
resolution of 0.5 m and 0.125 m in the simulation experiment
for comparison. Fig. 14(a) shows the mean error (ME) of
localization with different resolution patterns (pattern A, B,
C is 0.5 m, 0.25 m, 0.125 m respectively). The average local-
ization errors of resolution patterns A, B, and C are 1.36 m,
0.69 m, 0.43 m respectively. When the localization resolution

FIGURE 13. Localization error with different Gaussian spread values.

FIGURE 14. Localization error and training processing time at different
resolution pattern. (Number of scatterers M = 10, Number of LCX NL = 1).

changes, not only does the minimum distance between the
measurement points become smaller, but the number of mea-
surement points within the unit distance increases. So that
the Nc (the size of the input layer in the PNN structure)
in the PNN training model in Fig. 7(b) changes in size.
For example, when the resolution is changed from 0.5m to
0.25m, the number of measurement points per unit distance
is doubled, and Nc is doubled. As a result, the amount of
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TABLE 4. Summary of simulation results with different resolution
patterns.

RSSI data is doubled, so the prediction performance of the
PNN model can be improved. Since the training data size
will be different due to different resolutions, we also provide
the processing time of the data training at each resolution in
Fig. 14(b). The summary of the simulation results including
mean-square error (MSE) can be found in Table. 4. From the
results, we can find that increasing the resolution can slightly
improve the localization accuracy and performance, but it will
greatly increase the training processing time.

V. CONCLUSION
The motivation of this paper is to propose an RSSI-based
indoor localization approach by using the PNN algo-
rithm in the LCX system. The proposal is aimed at the
two-dimensional localization of the user in a trajectory.
We present a GBSB model for the LCX system and sim-
ulate the RSSIs received by multiple LCXs. By training
and testing the RSSI time-series data, we investigate the
localization performance of the RSSI-PNN method in the
LCX system. We also provide the localization performance
of the TDOA method for comparison. The results show the
RSSI-PNN method is promising and performs better than
the TDOA method. Furthermore, the RSSI-PNN method can
reduce the number of LCXs used for localization.

It will be our future work to improve the algorithm and
localization accuracy of the localization method in the LCX
system. In addition, we will also study the performance of the
RSSI-PNN approach using LCX in a real environment.
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