IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received January 26, 2022, accepted February 5, 2022, date of publication February 21, 2022, date of current version March 3, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3153064

Defense and Attack Techniques Against
File-Based TOCTOU Vulnerabilities:

A Systematic Review

RAZVAN RADUCU", RICARDO J. RODRIGUEZ “, (Member, IEEE), AND PEDRO ALVAREZ

Department of Computer Science and Systems Engineering, University of Zaragoza, 50009 Zaragoza, Spain

Corresponding author: Ricardo J. Rodriguez (rjrodriguez@unizar.es)

This work was supported in part by the Spanish Ministry of Economy and Competitiveness under Grant PDC2021-121072-C22, in part by
the University, Industry and Innovation Department of the Aragonese Government under Programa de Proyectos Estratégicos de Grupos de
Investigacién (DisCo Research Group) under Grant T21-20R, in part by the University of Zaragoza, and in part by the Fundacién Ibercaja

under Grant JIUZ-2020-TIC-08. The work of Razvan Raducu was supported by the Government of Aragon through the Diputacién

General de Aragén (DGA) Predoctoral Grant, during 2021-2025.

ABSTRACT File-based Time-of-Check to Time-of-Use (TOCTOU) race conditions are a well-known type of
security vulnerability. A wide variety of techniques have been proposed to detect, mitigate, avoid, and exploit
these vulnerabilities over the past 35 years. However, despite these research efforts, TOCTOU vulnerabilities
remain unsolved due to their non-deterministic nature and the particularities of the different filesystems
involved in running vulnerable programs, especially in Unix-like operating system environments. In this
paper, we present a systematic literature review on defense and attack techniques related to the file-based
TOCTOU vulnerability. We apply a reproducible methodology to search, filter, and analyze the most relevant
research proposals to define a global and understandable vision of existing solutions. The results of this
analysis are finally used to discuss future research directions that can be explored to move towards a universal

solution to this type of vulnerability.

INDEX TERMS File-based race condition, TOCTOU vulnerability, avoidance techniques.

I. INTRODUCTION

Today, many applications are deployed on large-scale dis-
tributed systems and multi-core processors, which perform
multiple tasks concurrently while sharing common resources
such as memory, disk, or network. The intrinsic characteris-
tics of the simultaneous execution of programs make them
very difficult to write, test, and debug [1], [2], which facili-
tates the existence of concurrency bugs.

Concurrency bugs are caused by accesses to a shared
resource between threads and processes without proper syn-
chronization. These bugs can lead to vulnerabilities that,
when triggered by adversaries, can cause a much broader
impact on security, such as bypassing security checks, break-
ing the integrity of databases [3], hijacking the vulnerable
program control flow execution, or escalating privileges [4],
among others.

The associate editor coordinating the review of this manuscript and

approving it for publication was Binit Lukose

A common attack especially related to concurrency bugs
is the privilege escalation attack, in which a malicious user
gains access to other user accounts on the target system. The
number of vulnerabilities related to privilege escalation has
been increasing in recent years. For instance, in 2020 this
type of vulnerability comprised 44% of all Microsoft vul-
nerabilities [5]. There are two main types of privilege esca-
lation: horizontal privilege escalation attacks, in which an
attacker expands their privileges by taking over another
(non-privileged) user account and abusing the legitimate priv-
ileges granted to the other user; and vertical privilege esca-
lation attacks, which involve increasing privileges/privileged
access beyond what a user (or an application or other asset)
already has.

Vertical privilege escalation attacks are commonly caused
by a particular type of concurrency bug, called race condition
bugs. The root cause of these bugs is a TOCTOU (Time-of-
Check to Time-Of-Use) bug, which occurs when a program
checks a particular characteristic of an object (e.g., whether
the file exists), and later takes some action that assumes the

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

21742

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 10, 2022

https://orcid.org/0000-0002-8938-755X
https://orcid.org/0000-0001-7982-0359
https://orcid.org/0000-0002-6584-7259
https://orcid.org/0000-0002-2109-7871

R. Raducu et al.: Defense and Attack Techniques Against File-Based TOCTOU Vulnerabilities: Systematic Review

IEEE Access

checked characteristic still holds [6]. The window of oppor-
tunity that the program leaves between the time of check
and the time of use is then exploited by an adversary. The
adversary can increase this window by various means, such
as overloading the system or creating specific inputs for the
vulnerable program. In addition, TOCTOU vulnerabilities are
present in different scenarios. For example, memory accesses
involving the kernel [7], [8] (also known as double-fetch
bugs), Remote Attestation [9], [10], Trusted Computing [11],
[12], or file-based TOCTOU [6], [13], among others.

In this paper, we focus on file-based TOCTOU since they
are one of the oldest known security flaws, dating back to the
mid-70s [14], [15]. These types of race conditions, particu-
larly common on Unix-like systems, occur due to the map-
ping from a filename to a unique inode and a device number.
Although the mapping of the inode and device number to a
file descriptor is race-free, the mapping of the filename to the
inode and the device number is volatile since filenames and
the underlying inode and device number may change on each
system call invocation.

A well-known example of this kind of problem is
sendmail [13], which used to look for a specific attribute
of a mailbox file before adding new messages to it. Unfor-
tunately, the verification and append operations are not an
atomic unit. Consequently, if an adversary (the mailbox
owner) replaces their mailbox file with a symbolic link to sen-
sitive files (such as /et c/passwd, which contains informa-
tion about system user accounts) between the verification and
append operations, then sendmail will add email contents
to /etc/passwd. As a result, the adversary can craft an
email message to add a new user account with superuser
privileges in the system.

Figure 1 illustrates this typical security flaw. The vulnera-
ble code appears on the left side of the figure. On line 6 there
is a check of the write permission on a file (identified by a
string) with the access system call. Once the verification
is successful, the file is opened (line 8) and certain data is
appended to the file. If this program is run with setuid permis-
sion (i.e., users can run it with elevated privileges temporarily
to perform a specific task), the adversary can take advantage
of the race window between the operations on lines 6 and 8.
An example of the exploit used by an adversary is shown on
the right side of the figure. Suppose the exploit is run to write
tothe /etc/passwdfile, which is a protected file in UNIX-
based systems. If an adversary iteratively creates a symbolic
link to /etc/passwd (line 14, right side) at the same time
as the execution of the vulnerable program (line 12, right
side), the race condition will eventually occur and the attack
will succeed, appending new content to the protected file.

Specifically, file-based TOCTOU vulnerabilities! are
file-based race conditions that occur on filesystems with weak
synchronization mechanisms (that is, they do not provide
methods to ensure that filesystem objects remain unchanged

Un the rest of this paper, we refer to file-based TOCTOU vulnerabilities
simply as TOCTOU vulnerabilities.

VOLUME 10, 2022

TABLE 1. Common weakness enumerations related to TOCTOU.

CWE ID Vulnerability

CWE-59 Improper Link Resolution Before File Ac-
cess (‘Link Following’)

CWE-61 UNIX Symbolic Link (Symlink) Following.

CWE-62 UNIX Hard Link

CWE-362 Concurrent Execution using Shared Re-
source with Improper Synchronization
(‘Race Condition’)

CWE-363 Race Condition Enabling Link Following

CWE-367 Time-of-check Time-of-use (TOCTOU)
Race Condition (not only file-based
TOCTOU)

CWE-386 Symbolic Name not Mapping to Correct
Object

CWE-706 Use of Incorrectly-Resolved Name or Ref-
erence

between consecutive interactions with them). Given the
non-deterministic nature of race conditions, the success of an
attack is highly dependent on the precise and timely actions
of the attacker at any given time during the execution of
the vulnerable program. Furthermore, the occurrence of this
type of vulnerability also depends on certain system calls
being executed in a specific order, as well as environmental
conditions [13], [16]. Therefore, the reproducibility of these
vulnerabilities is typically very difficult.

Despite the age of this security flaw, numerous vulnera-
bilities are still reported each year related to TOCTOU vul-
nerabilities. For example, at the time of writing, a query to
find TOCTOU-related vulnerabilities returns 786 results in
the National Vulnerability Database [17] and 120 results in
the MITRE CVE search engine [18], with the newest being
only a few days old in both cases. This clearly shows that
it is still a significant security problem and that the CVE
release for TOCTOU vulnerabilities is common in the soft-
ware industry. Furthermore, this vulnerability affects projects
of any size, such as open-source projects [19], and major
software vendors [20]-[22]. The proof of the pudding is in
the eating: as shown in Table 1, there are several Common
Weakness Enumeration (CWE) entries related to TOCTOU.
CWEs represent a common language for discussing, finding,
and addressing the causes of software security vulnerabili-
ties, currently maintained by the MITRE Corporation. Each
individual CWE represents only one type of vulnerability.
This paper aims to systematically review the scientific lit-
erature in order to find techniques to mitigate TOCTOU
vulnerabilities, as well as techniques to exploit these vul-
nerabilities. Specifically, we review the literature to find out
what techniques have been proposed, how they are imple-
mented, how they detect TOCTOU vulnerabilities, which
operating system they target, and whether any source code
or software tool is available to reproduce the experimental
results.

21743

IEEE Access

R. Raducu et al.: Defense and Attack Techniques Against File-Based TOCTOU Vulnerabilities: Systematic Review

1 |// toctou.c

2 |char xfilename = argv[1l];

317/

4

5 |// Check permissions

6 |if (!laccess (filename, W_OK)) {

7 // Open the file

8 file = fopen(filename,) ;

9

10 // Write to file the user input

11 fwrite (buffer, sizeof (char), strlen(
buffer), file);

12 fwrite (, sizeof (char), 2, file);

13 fclose (file);

14 | }else

15 printf() ;

1 |#!/bin/bash

2 |# exploit.sh

3 | # (execute it as: ./exploit.sh /etc/passwd)

4 | TEMPFILE=

5 |OLD_LS="1s -1 $1°

6 |NEW_LS="1s -1 S$1°

7

8 |while [e]

9 |do

10 rm —-f STEMPFILE

11 echo > STEMPFILE

12 echo | ./toctou
STEMPFILE > /dev/null &

13 unlink S$STEMPFILE

14 1ln -s $1 STEMPFILE &

15 NEW_LS="1s -1 $1°

16 | done

FIGURE 1. Example of a file-based TOCTOU vulnerability (left side) and exploit (right side).

In summary, our contributions are the following:

o We conduct a comprehensive review of the literature on
defense and attack solutions against TOCTOU vulner-
abilities. In particular, we found 37 articles proposing
some kind of defense solution and only 4 articles propos-
ing attacks against TOCTOU.

o We propose a taxonomy for TOCTOU defenses and
attacks, according to when they perform the vulnerabil-
ity detection/exploitation and at what level they operate.
Furthermore, we classify TOCTOU attacks based on the
attack vector they exploit.

« We highlight future research trends and directions
regarding defense solutions for TOCTOU vulnerabil-
ities. Our proposals cover modifying current operat-
ing system calls to make them race-free and security
focused, modifying the kernel to avoid the use of file-
names, and the use of transactional filesystems. We pro-
vide more details on this matter in Section V-B.

This paper is organized as follows. Section II briefly
reviews related work. Section III presents the methodology
we followed to carry out the systematic review of the lit-
erature, defining the research questions and inclusion and
exclusion criteria. The results of the systematic review and
the proposed taxonomy are presented in Section IV. A more
detailed discussion of the results is provided in Section V,
also highlighting trends and directions of future research,
as well as limitations of our work. Finally, Section VI con-
cludes the paper.

Il. RELATED WORK
In this section, we review the literature related to our work.
Several different TOCTOU vulnerabilities are mentioned
in other literature reviews or surveys. The survey in [23]
focuses on double-fetch vulnerabilities, which is a vulnera-
bility that occurs when data consistency between the kernel
and the user space is violated in a race condition. Vulnera-
bilities in remote attestation in wireless sensor networks are
discussed in [24]. TOCTOU vulnerabilities can also occur in

21744

this context, as attesting a node occurs at a particular point in
time and does not guarantee that the node was not temporarily
compromised before or that it will not be compromised right
after the attestation. TOCTOU vulnerabilities due to naming
collusion in Android are explored in [25], which provides a
systematic review of permission-based Android security.

Unlike these works, our work focuses exclusively on
file-based TOCTOU vulnerabilities. Furthermore, the previ-
ous works do not provide an in-depth analysis of how this
vulnerability is exploited or of existing defense and offen-
sive techniques. To the best of our knowledge, we present
the first systematic literature review of file-based TOCTOU
vulnerabilities.

ill. METHODOLOGY OF THE SYSTEMATIC LITERATURE
REVIEW

We conduct a systematic review of the literature following
the recommendations given in [26] to find detection, pre-
vention, avoidance or exploitation techniques that are related
to TOCTOU vulnerabilities. Systematic literature reviews
are methodical, complete, transparent, and replicable studies
that allow the compilation of results following reproducible
and bias-free research carried out by consulting the main
scientific and academic search engines [27].

Next, we explain in detail the methodology that we have
followed. We first state the research questions and the search
strategy used. We then present the criteria used to select
studies for quantitative analysis. Finally, we summarize the
number of articles obtained in each execution phase of our
review protocol.

A. RESEARCH QUESTIONS

The main objective of this research is to review the liter-
ature in the field of prevention, detection, and mitigation
mechanisms for TOCTOU vulnerabilities, as well as related
exploitation techniques. In particular, we want to know
the underlying principles behind mitigating and attacking
file-based race conditions, how they affect the host operating

VOLUME 10, 2022

R. Raducu et al.: Defense and Attack Techniques Against File-Based TOCTOU Vulnerabilities: Systematic Review

IEEE Access

system, whether they are located at the user or kernel-space
level, and whether any tool or source code exists to replicate
the experimental results. More formally, we formulate the
following research questions (RQ):

RQ1.- How do defensive and offensive techniques of
file-based TOCTOU vulnerabilities work?

RQ2.- In which regions of the memory do they reside?

RQ3.- When is the vulnerability detected or exploited?

RQ4.- In which operating system is the technique
implemented?

RQS.- Is there any tool or source code available to validate
or replicate the experimental results?

B. SEARCH STRATEGY

We consulted various scientific databases that allow the
results to be exported for later analysis. In particular, we con-
sidered IEEE Xplore, ScienceDirect, Scopus, and ACM since
together they cover the main journals and conferences in the
field of interest.

The advanced search relied on keywords that were care-
fully selected and modified throughout the review process
to improve the results and fulfill the purpose of our review.
Specifically, we started from scratch by conducting a pre-
liminary search with the term “TOCTOU” and adding those
terms that help us narrow down the results (for instance, syn-
onyms have also been contemplated). The final search string
is: (TOCTOU OR TOCTTOU OR *‘time of check to time of
use”) AND file AND (attack* OR exploit* OR abus*OR
defen* OR mitigat* OR fix*). We looked for items until the
year 2021, without setting any initial year.

As we are only interested in scientific/academic works that
have been published in peer-reviewed scientific journals and
conferences, other works such as gray literature, books, stan-
dards, or patents are discarded from our results. In addition,
we carried out a complementary manual search by reviewing
the title of the works presented in the Tier-1 and Tier-2 con-
ferences of computer security, according to [28]. This search
consisted of checking whether the titles of the publications
contained at least one of the following keywords: file, race,
time or toc*. A total of 470 conferences (216 from Tier-1 and
264 from Tier-2) have been verified and all editions of each
conference have been reviewed. For example, regarding the
IEEE Symposium on Security and Privacy, 25 editions have
been reviewed, from 1995 to 2020. In particular, the following
conferences have been consulted: IEEE Symposium on Secu-
rity and Privacy, ACM Conference on Computer and Com-
munications Security, USENIX Security Symposium, Network
and Distributed System Security Symposium, Annual Inter-
national Cryptology Conference, International Conference
on the Theory and Application of Cryptographic Techniques,
European Symposium on Research in Computer Security,
International Symposium on Recent Advances in Intrusion
Detection, Annual Computer Security Applications Confer-
ence, Dependable Systems and Networks, ACM Internet Mea-
surement Conference, ACM Asia Conference on Computer

VOLUME 10, 2022

and Communications Security, International Symposium on
Privacy Enhancing Technologies, IEEE European Sympo-
sium on Security and Privacy, IEEE Computer Security Foun-
dations Symposium, International Conference on Theory and
Application of Cryptology and Information Security, The-
ory of Cryptography Conference, and Workshop on Crypto-
graphic Hardware and Embedded Systems.

After thoroughly reviewing the proceedings of these con-
ferences, 13 articles were selected according to their titles
for further study. In addition, we also carried out snowballing
(i.e., reference inspection) on all selected articles. This pro-
cess allowed us to find 11 additional relevant articles. We pro-
vide more details on the number of articles selected during the
review process in Section I'V.

C. STUDY SELECTION CRITERIA

After finding these initial articles, we used the StArt tool
to better perform the research and article selection processes.
StArt [29], [30] is a tool that helps researchers define and
execute the systematic review protocol. This tool automati-
cally detects duplicate results, rates them based on predefined
keywords, and provides visualizations of the current review
status, among other features.

The scoring metric provided by StArt was used as the
first filter. The St Art scoring system allows the user to rate
each article based on the appearance of certain keywords in its
title, list of keywords, or abstract. The rating system we have
used is simple, but allows us to really focus on the relevant
articles. For each term in the keyword bag, the score value is
obtained as follows:

o Add 5 points if the term appears in the article title.

o Add 3 points if the term appears in the article abstract.

e Add 2 points if the term appears in the article’s

keywords.

The keyword bag comprises the following main terms,
as well as their synonyms and plurals: TOCTOU, attack,
concurrency, defense, exploit, filesystem, interference, miti-
gation, race condition and data race. We also consider vari-
ations of these terms. The term TOCTOU, for example, has
different forms throughout the literature such as TOCTTOU,
time-of-check-time-of-use, or time of check to time of use.
We set a minimum score of 15 to select an article. Note that
articles relevant to our research should easily exceed that
minimum value, given the scoring scheme described above.

All articles above the threshold are considered for further
inspection and selected or excluded based on the criteria
defined in Table 2. These criteria help us select and focus
on the most relevant articles in relation to the proposed RQs.
After applying the criteria filter, the selected articles are
studied in depth to answer each RQ indicated in Section III-A.

D. ARTICLES COLLECTED AND REVIEWED

After running the search protocol, we collected 563 arti-
cles. 66 of them have been discarded for being duplicates.
After applying the scoring threshold, only 126 remained,
which were further analyzed to apply the selection and

21745

IEEE Access

R. Raducu et al.: Defense and Attack Techniques Against File-Based TOCTOU Vulnerabilities: Systematic Review

TABLE 2. Inclusion (IC) and exclusion (EC) criteria.

Type Criterion

IC1 The article focuses on concurrency attacks.

IC2 The main contribution of the article is a
defense against TOCTOU or an attack to
exploit it.

EC1 The article is a short introductory paper,
early access, or conference abstract.

EC2 The article is not written in English.

EC3 The article is duplicated.

EC4 The article focuses on other types of TOC-
TOU rather than file-based TOCTOU.

ECS5 The article is not available for download-
ing or reading.

exclusion criteria. In addition, 13 articles were collected after
manually reviewing the Tier-1 and Tier-2 computer security
conferences, according to [28]. 6 of them were also discarded
because they were duplicates with regard to the previously
considered corpus. These manually-included articles have not
undergone the scoring system, but were reviewed immedi-
ately. Again, 6 of them were discarded because they did not
focus on file-based race conditions. This process resulted in
a total of 41 articles that we considered for our quantitative
synthesis analysis.

This information is combined and summarized in Figure 2.
The PRISMA diagram summarizes the execution phases of
our review protocol (identification, screening, eligibility, and
inclusion) and the articles obtained in each phase.

IV. ANALYSIS OF RESULTS

This section presents the results of the systematic review
of the literature. We first propose a taxonomy for current
TOCTOU defense and attack mechanisms that collects the
main insights drawn after the systematic review of the lit-
erature and responds to the research questions established
in Section III-A. We then explain the different categories
into which TOCTOU defenses can be classified, and then we
explain the articles in each category in more detail. Finally,
we follow the same narrative to explain the studies found on
attack methods against TOCTOU vulnerabilities.

A. TOWARDS A TAXONOMY FOR TOCTOU DEFENSE AND
ATTACK MECHANISMS

Figure 3 illustrates the classification of TOCTOU defense and
attack mechanisms resulting from responding to the research
questions established in Section III-A.

A TOCTOU defense or attack mechanism can be cat-
egorized considering two aspects: memory region, which
indicates at which level the TOCTOU defense or exploita-
tion occurs; and time of detection/exploitation, which means
the time when the TOCTOU vulnerability is detected or
exploited. Memory regions can be divided into user-space
level, which includes solutions that run in the same memory

21746

)
,5 Articles identified through Manual search in proceedings
§ database searching: IEEE of the Tier-1 and Tier-
'F:' (166), Science Direct (59), 2 computer security
g Scopus (59), ACM (250) conferences, according to [28]
= (n = 563) (n = 13)
-
— l |
Articles after
removing duplicates
(n = 504)
o0
=
£ l
g
32 Articles after applying the

Articles excluded
(n = 371)

scoring system and with a
score above the threshold
(n = 133)

— |

)

Articles after applying
the inclusion and

Articles excluded

exclusion criteria (n = 96)
o (n = 37)
- l
e
= Articles included in
quantitative synthesis Articles excluded
after full-text review (n =17
(n = 30)
— |
b1 Artlc'les'mcluded n Articles included
3 quantitative synthesis - T
1 . le—— by snowballing
£ (meta-analysis) (n = 11)
5 (n = 41)
| S

FIGURE 2. PRISMA diagram of our review protocol.

area as the vulnerable application (and some drivers), and
kernel-space level, which comprises solutions that run in
the same memory area where the operating system kernel
runs (as well as kernel extensions and most device drivers).
Detection/exploitation times can be divided into static, which
comprises defense solutions in which the vulnerability is
detected without the vulnerable application running or after it
has been run (in other words, the detection of the vulnerability
occurs before or after the execution); and dynamic, which
includes proposals capable of detecting or exploiting the
vulnerability when the vulnerable program is running.

Regarding memory regions, as shown in Figure 4a, 60% of
the defense solutions are located in kernel-space, while 40%
are located in user-space. As for offensive techniques, all of
these are attacks from the user-space level. Recall that this
vulnerability allows the attacker to gain system privileges.
If the attacker is able to execute the attack from the kernel-
space level, there is no real gain in exploiting the vulnerabil-
ity. We give a more detailed discussion on this matter below
in Section V-A.

Regarding time of detection/exploitation, static propos-
als are exclusively defense approaches, and can be further
divided into source code detection approaches, which ana-
lyze the source code of the vulnerable program [6], [31],
[32], and post-mortem detection approaches, which detect
the TOCTOU vulnerability after the exploitation attempt
has already occurred [33]-[40]. Unlike post-mortem detec-
tion approaches, source code detection approaches find the

VOLUME 10, 2022

R. Raducu et al.: Defense and Attack Techniques Against File-Based TOCTOU Vulnerabilities: Systematic Review

IEEE Access

»{ Memory region }—{

Kernel-space
level

User-space
L
level

TOCTOU Defense } {

Static

detection

},

and Attack

Time of
detection/exploitation

|
|
{ Source-code }
|

Post-mortem
detection

System call
interposition

¥

Intra/inter-process
memory consistency

»{ Dynamic }'\L, Transactional

system calls

Sandbox
filesystems

H[Attack vector }-[[

{ Kernel I/0 caching}

o

External devices }

FIGURE 3. Proposed taxonomy for TOCTOU defense and attack mechanisms.

TOCTOU vulnerability before it is exploited, which is often
preferable in certain systems such as critical infrastructures
or systems with highly sensitive information.

Dynamic proposals are more diverse, based on a multitude
of runtime analysis techniques. Some defense approaches use
system call interposition, monitoring the behavior of the pro-
grams by intercepting their system calls. This monitoring can
occur at either the user-space level [41]-[46] or the kernel-
space level [13], [16], [47]-[59]. A few defense approaches
propose intra-process or inter-process techniques for mem-
ory consistency (both at kernel-space level [60], [61]) to
guarantee the consistency of variables shared across threads.
Other kernel-level defense approaches propose transactional
system calls [62] as an alternative to traditional filesystems to
prevent race conditions from occurring in system resources,
while others propose sandbox filesystems [63], [64] to protect
against unauthorized file modifications caused by file-based
race condition vulnerabilities.

In particular, as shown in Figure 4b, 71.4% of the defense
solutions are dynamic, while only 28.6% are static. Note that
we use the same terms as in program binary analysis (static
and dynamic), but we refer to the time of detection rather than
how the program is analyzed (not running or while running).

The attack techniques are all dynamic since the vulnerable
program must be running to exploit it. Attack mechanisms
can be further classified according to the attack vector, which
defines the path or means that an attacker takes to exploit a
vulnerability. Regarding TOCTOU vulnerabilities, we have
found two different attack vectors. The first is the external
devices vector, which consists of abusing the trust that the
system places in external devices (i.e., USB sticks or SD
cards) during the installation process of a given application.
During the installation process, the system can use external

VOLUME 10, 2022

devices to store sensitive data that can be altered or manipu-
lated by an attacker, since the external device is under their
control. This attack vector is used in [65], [66]. The second
is kernel Input/Output (I/O) caching, which involves attacks
that abuse the kernel’s I/O caching mechanism to deliberately
increase the window of the vulnerability. If the attacker can
tamper with the kernel cache, they will force I/O operations
so that the kernel resolves the specified pathnames. These
I/O operations take time to complete, which broadens the
vulnerability window and facilitates exploitation. This attack
vector is used in [67], [68].

B. ON TOCTOU DEFENSES

Figure 5 shows a timeline of the articles studied in this work
focused on defense solutions against TOCTOU vulnerabili-
ties. Although the first references to TOCTOU vulnerabilities
are approximately 50 years old [14], [15], [69], the first
defense solution was not proposed until 1994 [33]. Defense
solutions then extend over the years until 2019, the date of
the last solution we found.

Figures 4a and 4b show a graphical summary of defense
solutions according to memory region and time of detection,
respectively. Regarding detection location, there is no clear or
predominant choice among the proposed solutions analyzed
in this systematic literature review, although kernel-level
solutions represent slightly more than half. As for the moment
when TOCTOU is detected, almost three-quarters of the
defense solutions are dynamic (specifically, 71.4%).

Finally, it is worth mentioning the trend of detection tech-
niques chosen by the proposed defenses and their level of
execution. The timeline in Figure 5 clearly indicates that
the first solutions were based on static user-space detection,
beginning in 1994. In the early 2000s, the first solutions

21747

IEEE Access

R. Raducu et al.: Defense and Attack Techniques Against File-Based TOCTOU Vulnerabilities: Systematic Review

TABLE 3. Overview of TOCTOU defenses, sorted by publication year.

Publication Detection Detection Operating System Reproducible Items used to identify file
location time objects
[33] User-space Static Sun Solaris X File path, permission mode,
owner ID, GID
[31] User-space Static Unix-like X (n/a)
[6] User-space Static SunOS and Solaris X (n/a)
[47] Kernel-space Dynamic Linux Xt Filename
[48] Kernel-space Dynamic Red Hat Linux 6.2 X (n/a)
[34] User-space Static Unix-like X (n/a)
[49] Kernel-space Dynamic OpenBSD X File path, PID, current time, file
operation, inode
[32] User-space Static Linux 2.4.18, FreeBSD v Inode, device ID, generation
4.7, Solaris 8, SunOS 4.1.4 number (if available)
[50] Kernel-space Dynamic Linux 2.4.20 X Filename, inode
[51] Kernel-space Dynamic Red Hat Linux 7.3 (kernel X Filename, inode
2.4.18)
[16] Kernel-space Dynamic Red Hat Linux 9 (kernel X File path, arguments, PID,
2.4.20) filename, UID, GID, EUID,
EGID
[52] Kernel-space Dynamic Red Hat Linux 7.3 X File path, PID, inode, # of
processes accessing the file
[41] User-space Dynamic Linux 4 Filename
[60] Kernel-space Dynamic Linux 2.4.28 X File path, # of processes
accessing the file, UID
[35] User-space Static Red Hat Linux 7.3 X File path, UID, inode
[42, 43] User-space Dynamic Solaris 8, AIX 5.3 and v Filename, inode
Linux 2.4.26, 2.6.20 and
2.6.22
[53] Kernel-space Dynamic POSIX v Device ID, inode
[62] Kernel-space Dynamic Linux 2.6.22 v Inode
[44] User-space Dynamic POSIX v* File path, UID
[13] Kernel-space Dynamic Linux 2.4.28 X File path, logical disk block
[54] Kernel-space Dynamic Linux X (n/a)
[36, 37] Kernel-space Static Linux 2.6.35 el Inode, file handlers, UID, PID,
PPID
[55] Kernel-space Dynamic Linux 2.6.35 X Inode
[45] User-space Dynamic Unix-like Xt Device ID, inode, parent
directory
[56] Kernel-space Dynamic Linux 3.2.0 X Inode
[38] User-space Static Linux 2.6.15 X File descriptors, inode, PID
[63] Kernel-space Dynamic Linux 3.2.0-36 and 3.8.10 v (n/a)
[57] Kernel-space Dynamic Linux 2.6.35 and 3.2.0 /i Device ID, inode
[58] Kernel-space Dynamic Linux 3.2 X Inode
[61] Kernel-space Dynamic Linux X (n/a)
[59] Kernel-space Dynamic Linux X Device ID, inode,
[46] User-space Dynamic POSIX.1-2008 compliant Xt Inode
[39] User-space Static Any on Simics X PID, File descriptors, inode
[64] Kernel-space Dynamic Linux 4.10 v File path, inode
[40] User-space Static (n/a) X (n/a)

(n/a): Not available; f: No longer available; {: Found in the related article material, such as the conference presentation; *: Found by

searching the Internet; x: Lack of details to fully replicate it.

based on dynamic kernel-space detection emerged. Dynamic
detection at the user-space level began in 2006. Additionally,
19 dynamic kernel-space solutions were published between
2001 and 2014, thus averaging more than one publication
per year. In contrast, during our research we found only
one defense mechanism that relies on a static kernel-based
solution.

Table 3 summarizes our findings on defensive tech-
niques, answering research questions RQ2 through RQS5.

21748

A detailed discussion answering these questions is provided
in Section V. For each study, we indicate in the table the
detection location and the detection type. We also indicate
the operating system on which it is evaluated (the specific
operating system and version if indicated in the publication,
or otherwise the generic operating system) and if the pro-
posed solution is reproducible (that is, if a prototype tool or
source code is provided for download). In this regard, we con-
sider reproducibility to be an important issue in terms of

VOLUME 10, 2022

R. Raducu et al.: Defense and Attack Techniques Against File-Based TOCTOU Vulnerabilities: Systematic Review

IEEE Access

Static
User-space
Yes (with remarks)
Kernel-space
Dynamic

(a) Detection location

(b) Detection time

No (with remarks)

(c) Reproducibility

FIGURE 4. Graphical summary of defense solutions (detection location, detection time, and reproducible).

scientific rigor and its contribution to open science. Figure 4c
summarizes the reproducibility of the techniques proposed
by the works analyzed in this systematic literature review.
In addition, we indicate the items each technique uses to
identify (uniquely) a filesystem object and detect external
manipulation. Figure 7 shows in a bar graph how many
defense techniques use each item identified in the literature
review. We describe each of these works in more detail below
to answer RQ1.

DESCRIPTION OF TOCTOU DEFENSE SOLUTIONS

In this section we describe each of the works according
to the research questions established in Section III-A. The
studies, which are presented in chronological order, have
been grouped according to the detection location (user-space
level versus kernel-space level) and the detection time (static
versus dynamic).

1) BASED ON STATIC USER-SPACE DETECTION
The first work we found is [33]. The authors proposed a
defense solution that detects TOCTOU exploitation attempts
after the vulnerable program has been executed. The detec-
tion process is mainly based on the analysis of execution
traces. We refer to this type of static detection as post-mortem
detection, since the detection is made after the exploitation
attempt has been carried out and the vulnerable program has
finished its execution. The authors’ solution monitors the
execution of privileged programs, auditing certain sequences
of unwanted actions and then checking them against expres-
sions described by the logic of predicates and regular expres-
sions. The authors also presented a software prototype that
runs on the Sun Solaris operating system and is capable of
detecting TOCTOU vulnerabilities in three widely used pro-
grams (specifically, fingerd, rdist, and sendmail).
However, no reference to the source code or to the tool itself
is provided to facilitate reproduction of the experiments.
File-based race conditions on Unix-like operating systems
were first discussed in detail in [31], concluding that kernel
modifications are required to eliminate file-based race condi-
tions. In addition, a lexical source code scanner is proposed to
detect the vulnerabilities related to file access. Although the

VOLUME 10, 2022

presented prototype successfully discovered new instances of
TOCTOU, the tool or its source code is not available.

In a later work, Bishop and Dilger [6] demonstrated that
privilege escalation attacks that exploit TOCTOU vulnerabil-
ities only occur when filesystem objects are referenced by
their names and not by file descriptors. Again, a software
prototype is developed to (lexically) parse C source code files
and detect file-based race conditions. Detection is based on
pattern matching techniques and dependency and data-flow
graph analysis. Unfortunately, the prototype is not accessible.

Goyal et al. [34] proposed an algorithm that is evaluated
on a Unix-like system to detect TOCTOU attacks based
on the analysis of execution traces (that is, it performs a
post-mortem detection). A set of predefined rules is verified
against execution traces to detect successful exploitation of
TOCTOU vulnerabilities. As the authors stated, this solution
is incomplete as the attack patterns must be known before-
hand. No reference is provided to the availability of the
prototype that implements the algorithm.

A probabilistic solution was proposed in [32], in which the
source code of the vulnerable program is modified to reduce
the probability of success of an attack. This solution replicates
an arbitrary number of times the execution of the original
sequence of potential vulnerable actions, verifying afterwards
if the accessed file is changed. Since the authors provided
examples on how to modify the source code, we consider this
to be a reproducible work.

The solution proposed by Bhatkar et al. [35] was also
based on post-mortem detection as it parses execution traces
to build a control and data-flow graph which is then verified
against a set of learning temporal properties representing
TOCTOU vulnerabilities. The solution is implemented in a
software tool for Red Hat Linux 7.3 that is not available.

Yu et al. [38] proposed a virtualization-based solution
dubbed SimRacer, which tests the occurrence of certain
types of race conditions by replaying event traces of the
executions of the program. The authors test it against a set
of vulnerable programs, successfully detecting all TOCTOU
vulnerabilities. By construction, SimRacer is compatible
with any operating system that runs on top of the full-system
Simics simulator. Unfortunately, neither the tool nor its
source code is available.

21749

lEE E ACC@SS R. Raducu et al.: Defense and Attack Techniques Against File-Based TOCTOU Vulnerabilities: Systematic Review

1 1
1 1
T 33
o 1 ;
1 1
;
1 1
1996 1 [6] .
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
. I ettt
1 [
1 [
200 | i
1 [
i
1 [
2003 +1 (34] i [49]
| () i
1 [
1 32 : 50
oo {1 i
1 [
: [51,
2005 +1 Source code v
, detection . : 52, 16]
i
1 [
: ¥
1 1
] LI
i
1 [
i
1 [
2010 £} [44] i 154, 13] Transactional
; x ransactona
1 1
1 [
1 [
i 38 Vi 57, 58 63
2013 11 '} Static detetion
1 [
T : 59 61
2014 £ ' (o) 1 en)
1 [
2015 +¢ [46] v System call Memory
. v interposition consistency
: System call : :
' interposition 1V
l
2017 (39] i
: Dynamic detection :
1 .
2018 £ '
1 [
2019 +! [40] i Sandbox
! , : filesystem
: Post-mortem :
1 detection [Dynamic detection
1
2021?. . . R R R L
1 Static detection 1 Kernel-space level

User-space level

FIGURE 5. Evolution of TOCTOU defenses over the years.

Yu et al. [39] introduced SIMEXPLORER, an improved interruptions and signal handlers. Tested with 24 pro-
version of SimRacer. This solution extends the grams, it detected 36 out of 41 previously known vul-
detection algorithms of SimRacer to consider hardware nerabilities. Like SimRacer, SIMEXPLORER can run

21750 VOLUME 10, 2022

R. Raducu et al.: Defense and Attack Techniques Against File-Based TOCTOU Vulnerabilities: Systematic Review

IEEE Access

on any OS that runs on top of Simics and is also not
available.

The latest static user-space solution also relies on post-
mortem detection. Capobianco et al. [40] provided a solution
for detecting TOCTOU vulnerabilities by calculating the
attack graph of the vulnerable program and analyzing it to
detect sequences of events that may end up exploiting the
vulnerability. These attack graphs allow the user to find the
attack surface used by the adversaries and how they effec-
tively elevate privileges. While the authors conduct detection
statically, they explore how it can be applied at runtime
and discuss the research challenges, as their primary goal
is to improve the capabilities of intrusion detection systems.
Unfortunately, neither the prototype nor the source code is
available.

2) BASED ON DYNAMIC USER-SPACE DETECTION

Aggarwal and Jalote [41] proposed the first solution based
on dynamic user-space detection. In particular, the solution
relies on a software agent integrated in the vulnerable pro-
gram to control its execution while detecting common vul-
nerabilities. System calls are monitored by the agent and
sent to another process in charge of real-time analysis of the
behavior of the vulnerable program. A software prototype for
Linux is provided and evaluated, which succeeds in stopping
file-based TOCTOU exploits.

A new standard function was provided in [42], [43]
to avoid the TOCTOU vulnerability window between the
system call sequence access and open. This new fea-
ture is an enhancement of a previous version introduced
in [32] to defend against complex attacks such as filesys-
tem mazes [67]. More details on this type of attacks are
given in Section IV-C. Although the solution provides good
results, it still has some drawbacks, such as the difficulty of
deployment in production, defending against circular sym-
bolic links, or multi-threaded applications, among others.
Source code is provided by the authors. Since [43] is the full
report of [42], we consider them as a single solution.

Chari et al. [44] proposed a set of secure calls for
POSIX-compliant operating systems to prevent privilege
escalation attacks based on TOCTOU. These secure calls
overlap actual system calls, monitoring invocations of certain
file-based system calls for unwanted inputs. However, the
solution does not work with statically-linked programs since
it is provided as a software library. Unfortunately, the work
in [44] only shows a subset of the proposed secure calls,
leaving the reader without full knowledge to fully reproduce
their work.

Likewise, Payer and Gross [45] also proposed a
Unix-based software library dubbed DynaRace. This
binary-instrumentation solution is based on the state-machine
formalism: it maintains a state machine for each file used
by the vulnerable program, updated upon a sequence of
certain file-based system calls, to detect unwanted behavior.
When detected, it issues a warning and aborts the vulnerable
program. The tool was available on the author’s website.

VOLUME 10, 2022

A software library solution that detects file-based race
conditions is also provided in [46]. This solution, though,
puts all the responsibility on the team of software developers,
as they must use the secure system calls provided by the
software library rather than those of the operating system.
In addition, it can also generate false positives, and leaves the
vulnerable program in an unknown state after detecting an
exploitation attempt. The source code was available on the
website of the author’s research group. Unfortunately, it is no
longer online.

3) BASED ON STATIC KERNEL-SPACE DETECTION

In [36], [37], the authors introduced a system dubbed
RacePro capable of detecting different types of race con-
ditions, including TOCTOU. The system monitors program
executions and audits system calls that access shared kernel
objects. These audit records are then verified against benign
and harmful race models, which are known in advance.
RacePro was tested on Linux Kernel version 2.6.35 and
found 4 unknown bugs in common Linux tools such as make
and locate. The source code for RacePro is freely avail-
able at [70], although it is not explicitly mentioned in the
paper. Since [36] is the preliminary work of [37], we consider
them a single solution.

4) BASED ON DYNAMIC KERNEL-SPACE DETECTION
RaceGuard is a Linux kernel modification proposed in [47]
to detect race conditions when creating temporary files. Inter-
nally, it keeps track of filenames created through certain
system calls, which are then checked for race conditions.
However, this solution is incomplete as it only monitors the
creation of new files, regardless of existing ones. Although
the source code was originally available as a kernel patch for
Immunix, this commercial operating system was discontin-
ued in 2003.

Similarly, Ko and Redmond proposed in [48] a kernel mod-
ule for Red Hat Linux 6.2 that monitors system calls made
during the execution of a privileged program, deliberately
performing them ahead of the execution of system calls in
non-privileged programs. However, the availability of the
prototype is not mentioned.

In [49], Tsyrklevich and Yee also proposed a kernel module
for OpenBSD to detect sequences of system calls that can lead
to race conditions. The module removes the sharing property
of some file objects, making their accesses mutually exclu-
sive. The solution is successfully evaluated in four attack
scenarios, detecting and stopping all exploitation attempts.
However, as the authors admit, this solution is not free of
race conditions, as the interception of system calls implic-
itly generates another race condition vulnerability window.
Although the authors state that their proposal is portable to
other operating systems (not only Unix-like), the source code
is not provided.

Race-attack Prevention System is a system
proposed by Park et al. [S0] that also intercepts system calls
and checks the consistency between them. Built on top of

21751

IEEE Access

R. Raducu et al.: Defense and Attack Techniques Against File-Based TOCTOU Vulnerabilities: Systematic Review

RaceGuard [47], it verifies if shared file objects are manip-
ulated from a transactional point of view to avoid race condi-
tions. This solution is implemented for Linux kernel 2.4.20,
but unfortunately there is no mention of where or how it can
be obtained.

Lhee and Chapin [51] proposed another software library
that intercepts system calls to detect TOCTOU vulnerabil-
ities, detecting inconsistencies in file objects by means of
their binding information (specifically, the inode and the
filename). This solution is implemented as a kernel mod-
ule for Red Hat Linux 7.3 running on top of Linux kernel
version 2.4.18. Although the authors implemented, tested,
and evaluated a simplified prototype of their defense pro-
posal, it is not available.

Uppuluri ef al. [52] defined a set of security policies,
specified using a behavior modeling specification language,
that can be compiled and integrated into different detection
engines. A prototype engine is implemented as a kernel mod-
ule for the Red Hat 7.3 operating system. As before, this
solution is not free of race conditions, as it relies on the
interception of system calls. In addition, the prototype is not
available either.

Wei and Pu [16] proposed a model for TOCTOU vulner-
abilities in Unix filesystems, called CUU model. This model
consists of pairs of system calls that can lead to a TOCTOU
vulnerability. In addition, they propose different tools that
are based on this model to monitor and detect TOCTOU
vulnerabilities in Linux systems at the kernel level. These
tools were successfully tested in version 2.4.20 of the Red Hat
Linux 9 kernel, in approximately 130 utility programs. This
solution, though, is only suited for single core processors.
However, none of the tools are publicly available.

A defense solution called Event Driven Guarding of Invari-
ants (EDGI), based on the CUU model, is presented in [60].
Vulnerable pairs of system calls are translated into invari-
ants, which are used as sophisticated locks with a time-out
mechanism. This solution is implemented in version 2.4.28 of
the Linux kernel, but neither the tool nor its source code is
available.

Kupsch and Miller proposed in [53] a set of functions to
create and manipulate files in a secure way, replacing stan-
dard C functions such as creat, open, or fopen, to name
a few, to eliminate TOCTOU race conditions. A work-
ing implementation of these functions is publicly available
at [71].

Porter et al. [62] introduced a variant of Linux 2.6.22,
dubbed TxOS, which incorporates system call transactions,
allowing software developers to perform operations on sys-
tem resources guaranteeing ACID properties (atomicity, con-
sistency, isolation and durability) of the underlying system
calls. Furthermore, the vulnerable program is blocked when
an exploitation attempt is detected. TxOS is open source and
publicly available at [72].

Wei and Pu extend their CUU model in [13] by proposing
the Stateful TOCTOU Enumeration Model. This model lists
all the pairs of system calls that can lead to a TOCTOU

21752

vulnerability on a Linux and POSIX system (224 and
285 pairs, respectively). To the best of our knowledge, this
study is the most comprehensive characterization of the sys-
tem calls leading to the TOCTOU vulnerability to date. EDGI
is also extended to incorporate this model in version 2.4.28 of
the Linux kernel.

Rouzaud-Cornabas et al. [54] formalized the concept of
race conditions and provided a framework for defining secu-
rity properties to prevent them. These properties are specified
and integrated into a Linux kernel module, implemented on
top of SELinux. It is based on information flow graphs to
represent the temporal relationships between processes and
system resources. This solution was tested in production
systems for six months with successful results. However, it is
not publicly available.

Vijayakumar et al. [55] introduced a software prototype
that stops attacks targeting vulnerabilities based on name
resolution (such as TOCTOU) by combining four incomplete
defense techniques (specifically, system resource restrictions,
capabilities, namespace management, and program resource
restrictions) to build a complete solution. It is implemented
as a SELinux module in version 2.6.35 of the Linux kernel.
Neither the source code nor the tool is available.

Vijayakumar et al. [56] presented a software engine,
dubbed STING, that prevents name resolution attacks. In par-
ticular, it analyzes system calls at runtime and creates test
cases that are then used to replicate an adversary’s behavior
and thereby detect exploitation attempts. STING is imple-
mented as a Linux security module in Linux kernel 3.20,
and tested with different operating systems, discovering
26 race condition vulnerabilities (21 of them were previously
unknown). However, as the authors warn, it can produce false
positives under certain running conditions. Unfortunately, the
tool is not available for public use.

Different policies are given in [58] to determine which
files can be retrieved using the name resolution process in
system calls. These policies control file access at run-time in
the context of a system call. A prototype that enforces these
policies is deployed on top of the SELinux access control
module and tested on the Ubuntu 12.04 operating system.
The experimental results show that all exploitation attempts
were successfully stopped. However, the policy enforcement
prototype is not available.

Vijayakumar et al. [57] also proposed Process
Firewall, a Linux security module that analyzes system
calls and restricts access to resources depending on the
current state of the process. These constraints are modeled as
Linux IPTable rules and are interpreted by a rule processing
mechanism designed for system calls. Tested on Ubuntu
10.04, nine resource attacks (including TOCTOU-based
attacks) were detected and blocked successfully. Although
it is not mentioned in the article, Process Firewall is
publicly available at [73].

Kim and Zeldovich [63] introduced a new Linux-based
sandboxing mechanism called Mbox that interposes on sys-
tem calls. Mbox creates a layered sandbox filesystem on top

VOLUME 10, 2022

R. Raducu et al.: Defense and Attack Techniques Against File-Based TOCTOU Vulnerabilities: Systematic Review

IEEE Access

of the host filesystem where all the operations take place,
preventing the latter from being manipulated. The user can
then browse the sandbox filesystem, committing the modifi-
cations to the host filesystem or discarding them accordingly.
The interposition of system calls is carried out using the
seccomp/BPF facility. Mbox is open source and available
at [74].

Zhou et al. [61] proposed SHIELD, a software that uses
deterministic multithreading techniques to guarantee that
variables shared across threads are consistent. To do this,
when it detects a memory modification, it executes a memory
propagation mechanism that extends the modification to the
virtual memory of other threads within the program. Like
other solutions, SHIELD is not available.

Vijayakumar et al. [59] presented Jigsaw, a defense
mechanism against resource access attacks based on the
interception of system calls. It works in two phases: first,
it parses the program using graph-based formalisms to find
system calls on shared resources; second, it uses Process
Firewall [57] to enforce the invariants that avoid the vul-
nerability. This solution is implemented as a kernel module
and tested on Ubuntu 10.04, identifying two unknown vulner-
abilities. Unlike Process Firewall, neither the program
application nor its source code is publicly available.

A lightweight Unix-based filesystem sandboxing mecha-
nism is proposed in [64]. The mechanism is dubbed SandFs
and is designed as an extensible kernel filesystem that inter-
cepts all filesystem requests. It works with low-level kernel
objects and provides a C-like API for the developers to imple-
ment their own security extensions. Acting as an interposing
layer between the filesystem and the user-defined security
extensions, it does not perform any filesystem operations,
but instead compares them to the extensions. Allowed opera-
tions are tracked to the filesystem, whereas denied operations
are canceled with the corresponding error number. SandF S
leverages the eBPF framework to achieve safety guarantees
and is publicly available at [75].

C. ON TOCTOU ATTACKS

Figure 6 shows the timeline of the articles studied in this
work that focus on attacks that try to exploit TOCTOU
vulnerabilities. At a glance, the literature on attacks is very
scarce. We have found only 4 works that propose new ways
to abuse TOCTOU vulnerabilities, in addition to the seminal
work of [33] that first introduced specific examples on how to
exploit TOCTOU vulnerabilities and gain elevated privileges.
Regarding these offensive works, the oldest and newest of
them date from 2005 and 2017, respectively. The remaining
are dated from 2009 and 2012.

As commented above, all of them are attacks from the
user-space level and dynamic. In summary, we conclude that
there is not much innovation in the ways of abusing TOCTOU
vulnerabilities and few authors are interested in it. Regarding
the attack vectors, the offensive techniques that we found take
advantage of: the trust in external devices and the I/O caching
mechanism of the system kernel (explained in Section IV-A).

VOLUME 10, 2022

2095 2q09 2q12 20117 ZﬂZl

Con) (e (o)

FIGURE 6. Evolution of TOCTOU attacks over the years.

DESCRIPTION OF TOCTOU ATTACKS

In this section, we classify the articles found during our
systematic review of the literature that contribute to new
ways of abusing TOCTOU according to the attack vector they
exploit. We describe them according to the research questions
set out in Section III-A. As before, they are presented in
chronological order. Let us remark that none of these works
provide source code or software tools, but instead they pro-
vide a detailed explanation of how the attacks work.

1) ATTACK VECTOR BASED ON EXTERNAL DEVICES
Mulliner and Michéle proposed in [65] another novel attack
called Read It Twice, focused on consumer electronics and
embedded devices. This attack takes advantage of the instal-
lation and update processes of these devices, which normally
depend on external devices and are carried out in two steps
(not atomic): one to verify and the other to install/update. This
attack has been successfully tested on Linux-based Samsung
TVs. In addition, the authors develop a hardware board to
determine whether a device is vulnerable to these attacks.

Similarly, Lee at al. studied the installation process of
of Android applications in [66], finding TOCTOU vulnera-
bilities in all its phases. As a result, the authors present a
novel attack called Ghost Installer Attack (GIA), as well as
defense solutions against it. We have categorized this paper
exclusively as TOCTOU attack because the proposed defense
solutions are designed for the GIA.

2) ATTACK VECTOR BASED ON THE KERNEL I/O CACHING
Borisov et al. presented in [67] a novel technique to exploit
race conditions when the defense solution proposed by [32]
is working. This attack, carried out by means of three soft-
ware tools, relies on a deliberate increase in input/output
filesystem operations, as they are likely to force the preemp-
tion of the running thread due to memory cache buffering
issues.

Subsequently, in [68] Cai et al. presented a novel attack that
defeats the solutions proposed by [32] and by [42]. This attack
is based on collision attacks targeting the kernel’s filename
resolution algorithm. As a result, the filesystem operations of
the vulnerable program are slowed down and thus the window
of vulnerability increases.

V. SYNTHESIS

In this section we first present a detailed analysis of the
results of our systematic literature review to answer research
questions RQ2 through RQ5. We then highlight the future
research trends and directions that we envision and finally
discuss the limitations of our work.

21753

IEEE Access

R. Raducu et al.: Defense and Attack Techniques Against File-Based TOCTOU Vulnerabilities: Systematic Review

A. DISCUSSION OF RESULTS
Below, we address and answer each of the research questions
established in Section III-A.

1) RQ2: MEMORY REGIONS OF DEFENSIVE AND OFFENSIVE
TECHNIQUES

After performing the systematic literature review, we have
found that defense mechanisms reside either in user-space or
in kernel-space. As shown in Figure 4a, 60% of the defense
techniques reside in kernel-space.

User-space techniques can be applied to a wide variety
of programming languages, compilers, and interpreters and
are easier to debug. However, they cannot access kernel-level
information or mechanisms such as the system’s cache, the
scheduler, hardware, input/output (I/O), or the inode gener-
ation algorithm, which is a major limitation in terms of the
scope of the solution.

Alternatively, kernel-space solutions have access to all
system components and information. Solutions that work in
kernel-space benefit from lower latency when performing
certain operations, such as system calls. Despite all this, the
kernel-space approaches may require modifying the kernel
or adding modules, which is not always a viable option.
If the kernel can be modified, serious backward compatibility
issues can arise, even rendering older software or kernel
versions unusable. Furthermore, implementing and debug-
ging solutions in kernel-space is not only more difficult than
its user-space counterpart, but is also limited to the kernel
language. Moreover, kernel-level errors are likely to crash the
entire system.

As for offensive techniques, all of them are attacks from
the user-space level. This result would be expected, because
otherwise, if the attacker can already execute code in the
kernel, there is no motivation to exploit a file-based TOCTOU
vulnerability.

2) RQ3: TIME OF VULNERABILITY DETECTION OR
EXPLOITATION

According to the moment at which the vulnerability detection
is carried out, the defense solutions are broadly divided into
static and dynamic techniques. Static detection comprises
solutions in which the vulnerability is detected without the
vulnerable application running or after it has been run (that
is, the detection happens before or after the execution), while
dynamic detection includes techniques capable of detecting
the vulnerability when the vulnerable program is running.
As shown in Figure 4b, there is a clear predominance of
dynamic techniques, with 71.4%.

Static techniques have proven useful in detecting and cor-
recting the vulnerability before it occurs (for instance, during
the development phase of the software system). Some of these
techniques require the source code of the program to be exe-
cuted, which is unlikely to happen in most cases. Their main
advantages include the fact that they are simple to implement,
they do not require modification of the runtime environment,

21754

and that the overall system performance is not affected as a
result of code analysis. Unfortunately, these techniques only
propose solutions to known attacks (that is, to specific vulner-
able instruction sequences) which limits their effectiveness.
Furthermore, even when the attack is detected, it is not always
easy to figure out how to modify the source code of the
vulnerable program to avoid the vulnerability, especially in
multi-threaded programs.

Other static detection approaches rely on log analysis or
execution traces. Therefore, in this case the vulnerability is
detected when it has already occurred. In addition, these
detection techniques are often unsound because there is a
wide variety of factors that influence the exploitability of
the vulnerability, such as environment variables or system
load.

On the other hand, dynamic defenses protect systems in
real time and can thwart exploitation attempts as they occur.
The defense is typically performed by an external agent that
is integrated into the runtime environment, and hence these
solutions tend to incur performance overheads for the system.
Alternatively, other solutions require running the vulnerable
application in a controlled environment to perform the anal-
ysis. Regardless of the type of approach, dynamic techniques
are useful for detecting well-known attacks, although they
have the ability to store information about the program exe-
cution that could be used to identify new attacks. The main
advantage of these techniques is that it is not necessary to
have or modify the source code of the program, facilitating
their adoption in a more general way.

As for the offensive techniques, they are all dynamic since
the vulnerable program must be running to exploit it. These
techniques use two different attack vectors: external devices
(such as USB sticks or SD cards) and the I/O caching mecha-
nism of the system kernel. External devices are abused during
the installation process of the vulnerable application, as the
attacker can alter or manipulate the sensitive data that can be
stored on these devices. In contrast, abuse of the system ker-
nel I/O caching mechanism is done by third-party programs,
which force the kernel to perform more I/O operations and
thus increase the vulnerability window, which facilitates the
occurrence of race conditions.

3) RQ4: OPERATING SYSTEM USED BY THE TECHNIQUES

All the defense solutions focus on Unix-like operating sys-
tems. In addition, 3 out of the 4 attack techniques are also
directed at these operating systems (the remaining attack
proposal focuses on Android, which uses Linux as its kernel).
The prevalence of the Unix-like operating system is due to the
fact that other operating systems, such as Windows, manage
references to files through internal structures similar to file
descriptors (for instance, via handles in Windows [76]). This
means that these operating systems are free of file-based
TOCTOU vulnerabilities, although other types of race con-
ditions are still possible (which are beyond the scope of this

paper).

VOLUME 10, 2022

R. Raducu et al.: Defense and Attack Techniques Against File-Based TOCTOU Vulnerabilities: Systematic Review

IEEE Access

21
I [tems
18 1
15 1
?
E
z 121
—
o
St
£ 9
g
=
Z
6.
3.
O-
~ ©u O %] [=] SO0 = O M4 obn o> QL
<£gRELEEESEEEE LA A
> 85 oag=g8 S 53 ES22 2 92 ¢
CEZZ2EZ2EE 80555558 %8¢
= > < _ = M O H O £ 9
mERZESEEEE Z Z g3 EgE
S 5 R 3 2 0 o 5 ST 2 A7 A
= & R g = =
= K] L = = g NE‘DC}E
S £ g H= 5 g &2 ¢E
&b = gbgnﬂ-‘a&)
2 & =2z =
T o
L Yy
o
=]
=]
Z

FIGURE 7. Prevalence of filesystem objects’ metadata to detect any
changes.

RQ5: REPRODUCIBILITY OF SOURCE CODE OR TOOLS
Figure 4c shows the reproducibility of defense techniques.
Almost three-quarters of the articles studied are not repro-
ducible, either because no source code or tool is provided or
because details are lacking to fully replicate them. In the spirit
of open science, experimentation on any proposal should
be reproducible to allow others to evaluate, compare, and
improve the proposal.

Most defense solutions use some kind of history tracking
of filesystem objects’ metadata to detect any changes. When
they are detected, the solutions apply their logic to decide
whether the modification is legitimate or corresponds to an
attempted exploitation. Although none of the articles studied
specify what underlying filesystem they used to test their
proposed defenses, commonly used metadata includes inode,
device ID, filename, or file path, among others. Figure 7
shows the prevalence of each metadata used by the defense
solutions analyzed in this systematic literature review. How-
ever, the accuracy of these metadata for detecting file-based
TOCTOU vulnerabilities is highly dependent on the underly-
ing filesystem.

For instance, a common metadata is the inode, used by
20 of the 35 defense solutions. An inode (index node) is a
data structure that defines a file or a directory on a Unix-style
filesystem and is stored in the directory entry. To determine
if inodes are unique per file, we have studied the behavior
of inodes on the main filesystems in the Unix universe [77].
In particular, we have empirically tested if, when an inode is
freed (that is, without hard or soft links that point to it), the
filesystem eliminates it and never uses it again or if it is free

VOLUME 10, 2022

TABLE 4. Reutilization of inode according to the filesystem.

Filesystem Reutilization of inode

BTRF'S No
EXT2 Yes
EXT3 Yes
EXT4 Yes
FAT16 No
FAT32 No
NTFS No
HFS+ No
JE'S No
NILFS2 Yes
REISERFS Yes
XFS Yes
RAMF'S No

TMPF'S No

to reuse it when necessary. We have found that the uniqueness
of an inode depends to a large extent on the underlying
filesystem and, therefore, inodes cannot be assumed to be an
item for single distinction. The results of our tests are shown
in Table 4.

Turning to offensive techniques, we consider two of them
are partially reproducible and the other two are no longer
reproducible. Based on their level of detail, we consider
that [65] and [66] are partially reproducible because, although
they do not provide any source code or tool to perform the
attack, both works are detailed enough to be replicated. On the
other hand, we consider both [67] and [68] as no longer
reproducible, as both articles link to their respective source
code repositories which are unfortunately no longer available.

B. FUTURE RESEARCH TRENDS AND DIRECTIONS

Most defense solutions protect against specific cases of TOC-
TOU vulnerabilities, but incur large impacts on performance
or make strong assumptions about the behavior of the under-
lying filesystem. In summary, no defense solution is univer-
sal, as reflected in the fact that, until now, no solution has been
officially adopted to prevent TOCTOU vulnerabilities.

In our opinion, it is unlikely that a universal solution will
be found, given the non-determinism of the TOCTOU vul-
nerability and the influence of external factors (such as the
environmental variables, among others). In any case, the best
solution we envision is a mixture of some of the approaches
mentioned above. In particular:

o A new API (or modification of the current one) to pro-
vide a race-free, security-focused API. A good option to
avoid TOCTOU vulnerabilities is to use an API based on
file descriptors rather than filenames. However, legacy
software would still be vulnerable. In addition, the bur-
den falls on software developers, who must know and
use this race-free, security-focused version of the API.

o Modification of the kernel to always work with file
descriptors. Modifying the kernel to work exclusively

21755

IEEE Access

R. Raducu et al.: Defense and Attack Techniques Against File-Based TOCTOU Vulnerabilities: Systematic Review

with file descriptors instead of filenames can also be a
good solution. However, this solution implies a drastic
modification of the kernel and therefore it is likely to
cause serious backwards compatibility issues.

o Transactional filesystems. Another good option can be
to use transactional filesystems. A transactional filesys-
tem allows the files and directories to be created, mod-
ified, renamed, and deleted atomically, protecting the
consistency of their filesystem structure. A good solu-
tion can rely on this type of filesystem to verify that the
file objects do not change between pairs of TOCTOU
vulnerable system calls.

C. LIMITATIONS

Like any other systematic review of the literature, we have
defined a search protocol that is reproducible and its results
are free of bias. Note that we have considered articles written
in English, without considering articles potentially relevant
written in any other language. In addition, as we have used
the scoring system of the StArt tool, our results are tied to
that particular scoring system.

Our results are also limited to the keyword bag that we
have defined to perform the search. We can also improve
these terms to expand our search results. Finally, we have
excluded gray literature (e.g., blogs or repositories) as we are
exclusively interested in scientific contributions. However,
gray literature is an important source of knowledge about
issues related to security. For instance, the Openwall kernel
patch [78] is a collection of security hardening patches for
various versions of the Linux kernel posted on a website.

VI. CONCLUSION

Although file-based TOCTOU vulnerabilities were first men-
tioned in the mid-1970s, they began to be studied in more
detail twenty years later. Despite this vulnerability being
almost 50 years old, it remains unresolved. In this paper,
we have presented a systematic review of the literature
up to 2021 on defense solutions, as well as related attack
techniques, against this type of race condition vulnerability.
In particular, we found 41 articles of interest in different sci-
entific databases (in particular, IEEE Xplore, ScienceDirect,
Scopus, and ACM).

Our results indicate that a large majority of research efforts
have been directed towards defense mechanisms (37 out of
41), whereas a small fraction of works focuses on offensive
techniques (the remaining 4). The defense solutions proposed
in the literature can be classified into source code detection,
post-mortem detection, system call interposition, memory
consistency, transactional system calls, and sandbox filesys-
tems. As for the offensive solutions, half of them deliberately
force more time-consuming input/output operations, while
the rest focus on exploiting the installation of programs from
external storage devices.

We found defense solutions that reside in the kernel
(slightly above half, 21 out of 35) and at the user-space level
(the remaining 14). However, all the attack techniques are

21756

carried out from the user-space level. Most of the defense
solutions proposed are dynamic (25 out of 35), while the
others are static solutions. Static solutions detect TOCTOU
vulnerabilities in source code or at the binary level, while
dynamic solutions execute, monitor, and verify execution
at runtime or after program execution, analyzing logs and
audit trials. All the defense techniques are developed for
Unix-like operating systems. Similarly, 3 out of the 4 attack
solutions focus on Unix-like systems, while the remaining
attack focuses on Android.

Finally, we discovered that almost all the software tools
developed to defend or exploit TOCTOU vulnerabilities are
not available. Few give access to the source code or the tool
itself, or give enough details to code it ourselves, making it
difficult to replicate experiments later. For the sake of open
science and reproducibility, any contribution that introduces
new software tools or new methods should be accessible to
the public and other scientific researchers.

REFERENCES

[1] C.E.McDowell and D. P. Helmbold, ‘“Debugging concurrent programs,”
ACM Comput. Surveys, vol. 21, no. 4, pp. 593-622, Dec. 1989.

[2] E. A. Lee, “The problem with threads,” Computer, vol. 39, no. 5,
pp. 33-42, May 2006.

[3] T. Warszawski and P. Bailis, “ACIDRain: Concurrency-related attacks

on database-backed web applications,” in Proc. ACM Int. Conf. Manage.

Data, New York, NY, USA, May 2017, pp. 5-20.

J. Yang, A. Cui, S. Stolfo, and S. Sethumadhavan, ““Concurrency attacks,”

in Proc. 4th USENIX Conf. Hot Topics Parallelism (HotPar), New York,

NY, USA, 2012, p. 15.

BeyondTrust. (Mar. 2021). Microsoft Vulnerabilities Report 2021.

Accessed: May 30, 2021. [Online]. Available: https://www.beyondtrust.

com/assets/documents/BeyondTrust-Microsoft- Vulnerabilities-Report-

2021.pdf

[6] M. Bishop and M. Dilger, ““Checking for race conditions in file accesses,”

Comput. Syst., vol. 9, no. 2, pp. 131-152, 1996.

[7]1 P. Wang, J. Krinke, K. Lu, G. Li, and S. Dodier-Lazaro, “How double-

fetch situations turn into double-fetch vulnerabilities: A study of double

fetches in the Linux kernel,” in Proc. 26th USENIX Secur. Symp. (USENIX

Security), Vancouver, BC, Canada, Aug. 2017, pp. 1-16.

P. Wang, K. Lu, G. Li, and X. Zhou, “DFTracker: Detecting double-fetch

bugs by multi-taint parallel tracking,” Frontiers Comput. Sci., vol. 13,

no. 2, pp. 247-263, Apr. 2019.

[9] M. Ambrosin, M. Conti, R. Lazzeretti, M. M. Rabbani, and S. Ranise,
“Collective remote attestation at the Internet of Things scale: State-of-the-
art and future challenges,” IEEE Commun. Surveys Tuts., vol. 22, no. 4,
pp. 2447-2461, Jul. 2020.

[10] O. Arias, D. Sullivan, H. Shan, and Y. Jin, “LAHEL: Lightweight attes-
tation hardening embedded devices using macrocells,” in Proc. IEEE Int.
Symp. Hardw. Oriented Secur. Trust (HOST), Dec. 2020, pp. 305-315.

[11] S.Bratus, N. D’Cunha, E. Sparks, and S. W. Smith, “TOCTOU, traps, and
trusted computing,” in Proc. Int. Conf. Trusted Comput., vol. 4968. Berlin,
Germany: Springer-Verlag, Mar. 2008, pp. 14-32.

[12] X.Chang, B. Xing, and Y. Qin, “‘Formal analysis of a response mechanism
for TCG TOCTOU attacks,” in Proc. 4th Int. Conf. Multimedia Inf. Netw.
Secur., Nov. 2012, pp. 19-22.

[13] J. Wei and C. Pu, “Modeling and preventing TOCTTOU vulnerabilities
in unix-style file systems,” Comput. Secur., vol. 29, no. 8, pp. 815-830,
Nov. 2010.

[14] W. S. McPhee, “Operating system integrity in OS/VS2,” IBM Syst. J.,
vol. 13, no. 3, pp. 230-252, 1974.

[15] R. P. Abbott, J. S. Chin, J. E. Donnelley, W. L. Konigsford, S. Tokubo,
and A. andD Webb, “Security analysis and enhancements of computer
operating systems,” Inst. Comput. Sci. Technol., Nat. Bureau Standards,
Gaithersburg, MD, USA, Tech. Rep. NBSIR 76-1041, Apr. 1976.

[4

=

[5

—

[8

—

VOLUME 10, 2022

R. Raducu et al.: Defense and Attack Techniques Against File-Based TOCTOU Vulnerabilities: Systematic Review

IEEE Access

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]
[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

J. Wei and C. Pu, “TOCTTOU vulnerabilities in unix-style file systems:
An anatomical study,” in Proc. 4th USENIX Conf. File Storage Technol.
(FAST), San Francisco, CA, USA, Dec. 2005, p. 12.

(Jan. 2022). National Vulnerability Database. NVD—TOCTOU
Search Results. Accessed: Jan. 13, 2022. [Online]. Available:

https://nvd.nist.gov/vuln/search/results ?form_type=Advanced&results_typ%

e=overview&search_type=all&cwe_id=CWE-
59&isCpeNameSearch=false

(Jan. 2022). MITRE. MITRE CVE—TOCTOU Search Results.
Accessed: Jan. 13, 2022. [Online]. Available: https://cve.mitre.org/cgi-
bin/cvekey.cgi?keyword=file-based+TOCTOU]

(Jun. 2021). Flysystem. Time-of-Check Time-of-Use (TOCTOU)
Race Condition in League/Flysystem. Accessed: Jan. 13, 2022.
[Online]. Available: https://github.com/thephpleague/flysystem/security/
advisories/GHSA-9f46% -5r25-5wfm

(Oct. 2020). VMWare. VMSA-2020-0023.3. Accessed: Jan. 13, 2022.

[Online]. Available: https://www.vmware.com/security/advisories/
VMSA-2020-0023.html

(May 2021). Red Hat. CVE-2021-30465—Red Hat Cus-
tomer Portal. Accessed: Jan. 13, 2022. [Online]. Available:

https://access.redhat.com/security/cve/cve-2021-30465

(Mar. 2020). Adobe. Adobe Security Bulletin. Accessed: Jan. 13, 2022.
[Online]. Available: https://helpx.adobe.com/security/products/creative-
cloud/apsb20-11.html1%

P. Wang, K. Lu, G. Li, and X. Zhou, “A survey of the double-fetch
vulnerabilities,” Concurrency Computation: Pract. Exper., vol. 30, no. 6,
p. e4345, Mar. 2018.

R. V. Steiner and E. Lupu, “Attestation in wireless sensor networks: A
survey,” ACM Comput. Surveys, vol. 49, no. 3, pp. 1-31, Dec. 2016.

Z. Fang, W. Han, and Y. Li, “Permission based Android security: Issues
and countermeasures,” Comput. Secur., vol. 43, pp. 205-218, Jun. 2014.
B. Kitchenham, O. P. Brereton, D. Budgen, M. Turner, J. Bailey, and
S. Linkman, “Systematic literature reviews in software engineering—A
systematic literature review,” Inf. Softw. Technol., vol. 51, no. 1, pp. 7-15,
2009.

A. P. Siddaway, A. M. Wood, and L. V. Hedges, “How to do a system-
atic review: A best practice guide for conducting and reporting narrative
reviews, meta-analyses, and meta-syntheses,” Annu. Rev. Psychol., vol. 70,
no. 1, pp. 747-770, Jan. 2019.

(2015). G. Gu. Computer Security Conference
and Statistic. Accessed: Feb. 10, 2020. [Online].
https://people.engr.tamu.edu/guofei/sec_conf_stat.htm

A. Zamboni, A. Thommazo, E. Hernandes, and S. Fabbri, “StArt uma
ferramenta computacional de apoioa revisdo sistemadtica,” in Congresso
Brasileiro de Softw. (CBSoft), Salvador, Brazil, 2010, pp. 91-96.

E. Hernandes, A. Zamboni, S. Fabbri, and A. Di Thommazo, “Using GQM
and TAM to evaluate StArt—A tool that supports systematic review,” CLEI
Electron. J., vol. 15, no. 1, Apr. 2012.

M. Bishop, “Race conditions, files, and security flaws; or the tortoise and
the hare redux,” Univ. California Davis, Davis, CA, USA, Tech. Rep. CSE-
95-9, 1995.

D. Dean and A. J. Hu, “Fixing races for fun and profit: How to use
access(2),” in Proc. 13th USENIX Secur. Symp. (USENIX Security),
San Diego, CA, USA, Aug. 2004, pp. 195-206.

C. Ko, G. Fink, and K. Levitt, “Automated detection of vulnerabilities
in privileged programs by execution monitoring,” in Proc. 10th Annu.
Comput. Secur. Appl. Conf., 1994, pp. 134-144.

B. Goyal, S. Sitaraman, and S. Venkatesan, “A unified approach to detect
binding based race condition attacks,” in Proc. Int. Workshop Cryptol.
Netw. Secur. (CANS), 2003, p. 16.

S. Bhatkar, A. Chaturvedi, and R. Sekar, “Dataflow anomaly detection,”
in Proc. IEEE Symp. Secur. Privacy (S&P), May 2006, p. 15.

O. Laadan, C.-C. Tsai, N. Viennot, C. Blinn, P. S. Du, J. Yang, and
J. Nieh, “Finding concurrency errors in sequential code: OS-level, in-vivo
model checking of process races,” in Proc. 13th USENIX Conf. Hot Topics
Operating Syst. (HotOS), Napa, CA, USA, May 2011, p. 20.

O. Laadan, N. Viennot, C.-C. Tsai, C. Blinn, J. Yang, and J. Nieh, “Per-
vasive detection of process races in deployed systems,” in Proc. 23rd
ACM Symp. Operating Syst. Princ. (SOSP, New York, NY, USA, 2011,
pp. 353-367.

T. Yu, W. Srisa-an, and G. Rothermel, “SimRacer: An automated frame-
work to support testing for process-level races,” in Proc. Int. Symp. Softw.
Test. Anal., Jul. 2013, pp. 167-177.

Ranking
Available:

VOLUME 10, 2022

(39]

[40]

[41]

(42]

[43]

(44]

(45]

[46]

(47]

(48]

(49]

(50]

(51]

(52]

(53]

[54]

[55]

[56]

[57]

[58]

(591

(60]

[61]

[62]

T. Yu, W. Srisa-an, and G. Rothermel, “An automated framework to
support testing for process-level race conditions,” Softw. Test., Verifica-
tion Rel., vol. 27, nos. 4-5, p. 1634, Jun. 2017. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.1634

F. Capobianco, R. George, K. Huang, T. Jaeger, S. Krishnamurthy, Z. Qian,
M. Payer, and P. Yu, “Employing attack graphs for intrusion detection,” in
Proc. New Secur. Paradigms Workshop, New York, NY, USA, Sep. 2019,
pp. 16-30.

A. Aggarwal and P. Jalote, ““Monitoring the security health of software sys-
tems,” in Proc. 17th Int. Symp. Softw. Rel. Eng., Nov. 2006, pp. 146-158.
D. Tsafrir, T. Hertz, D. Wagner, and D. Da Silva, “Portably solving file
TOCTTOU races with hardness amplification,” in Proc. 6th USENIX Conf.
File Storage Technol. (FAST), New York, NY, USA, 2008.

D. Tsafrir, T. Hertz, D. Wagner, and D. Da Silva, “Portably preventing
file race attacks with user-mode path resolution,” IBM Res., Yorktown
Heights, NY, USA, Tech. Rep. RC24572 (W0806-008), 2008.

S. Chari, S. Halevi, and W. Z. Venema, “Where do you want to go today?
Escalating privileges by pathname manipulation,” in Proc. Netw. Distrib.
Syst. Secur. Symp. (NDSS), San Diego, CA, USA, Mar. 2010, pp. 1-16.
M. Payer and T. R. Gross, “Protecting applications against TOCTTOU
races by user-space caching of file metadata,” in Proc. 8th ACM SIG-
PLAN/SIGOPS Conf. Virtual Execution Environ. (VEE), New York, NY,
USA, 2012, pp. 215-226.

X. Cai, R. Lale, X. Zhang, and R. Johnson, “Fixing races for good:
Portable and reliable UNIX file-system race detection,” in Proc. 10thACM
Symp. Inf., Comput. Commun. Secur., New York, NY, USA, Apr. 2015,
pp. 357-368.

C. Cowan, S. Beattie, C. Wright, and G. Kroah-Hartman, ‘“RaceGuard:
Kernel protection from temporary file race vulnerabilities,” in Proc.
10th USENIX Secur. Symp. (USENIX Security), Washington, DC, USA,
Aug. 2001, pp. 165-176.

C. Ko and T. Redmond, ‘Noninterference and intrusion detection,” in
Proc. IEEE Symp. Secur. Privacy, May 2002, pp. 177-187.

E. Tsyrklevich and B. Yee, “Dynamic detection and prevention of race
conditions in file accesses,” in Proc. 12th Conf. USENIX Secur. Symp.
(SSYM). Washington, DC, USA, Aug. 2003, p. 17.

J. Park, G. Lee, S. Lee, and D.-K. Kim, “RPS: An extension of reference
monitor to prevent race-attacks,” in Proc. Adv. Multimedia Inf. Process.
(PCM). Berlin, Germany: Springer, 2004, pp. 556-563.

K.-S. Lhee and S. J. Chapin, “‘Detection of file-based race conditions,” Int.
J. Inf. Secur., vol. 4, nos. 1-2, pp. 105-119, Feb. 2005.

P. Uppuluri, U. Joshi, and A. Ray, “Preventing race condition attacks on
file-systems,” in Proc. ACM Symp. Appl. Comput. (SAC), New York, NY,
USA, 2005, pp. 346-353.

J. A. Kupsch and B. P. Miller, “How to open a file and not get hacked,” in
Proc. 3rd Int. Conf. Availability, Rel. Secur., 2008, pp. 1196-1203.

J. Rouzaud-Cornabas, P. Clemente, and C. Toinard, ‘“An information flow
approach for preventing race conditions: Dynamic protection of the Linux
OS,” in Proc. 4th Int. Conf. Emerg. Secur. Inf., Syst. Technol., 2010,
pp. 11-16.

H. Vijayakumar, J. Schiffman, and T. Jaeger, “A rose by any other name
or an insane root? Adventures in name resolution,” in Proc. 7th Eur. Conf.
Comput. Netw. Defense, 2011, pp. 1-8.

H. Vijayakumar, J. Schiffman, and T. Jaeger, “STING: Finding name
resolution vulnerabilities in programs,” in Proc. 21st USENIX Secur. Symp.
(USENIX Security), Aug. 2012, pp. 585-599.

H. Vijayakumar, J. Schiffman, and T. Jaeger, “‘Process firewalls: Protecting
processes during resource access,” in Proc. 8th ACM Eur. Conf. Comput.
Syst. (EuroSys), New York, NY, USA, 2013, pp. 57-70.

H. Vijayakumar and T. Jaeger, “The right files at the right time,” in
Proc. 5th IEEE Symp. Configuration Analytics Autom. (SafeConfig).
Cham, Switzerland: Springer, Oct. 2013, pp. 119-133. [Online]. Available:
https://link.springer.com/chapter/10.1007/978-3-319-01433-3_7

H. Vijayakumar, X. Ge, M. Payer, and T. Jaeger, “JIGSAW: Protect-
ing resource access by inferring programmer expectations,” in Proc.
23rd USENIX Secur. Symp. (USENIX Security), San Diego, CA, USA,
Aug. 2014, pp. 973-988.

C. Pu and J. Wei, “A methodical defense against TOCTTOU attacks:
The EDGI approach,” in Proc. Int. Symp. Secure Softw. Eng., May 2006,
pp. 1-9.

X. Zhou, G. Li, K. Lu, and S. Wang, “Enhancing the security of parallel
programs via reducing scheduling space,” in Proc. IEEE 12th Int. Conf.
Dependable, Autonomic Secure Comput., Aug. 2014, pp. 133-138.

D. E. Porter, O. S. Hofmann, C. J. Rossbach, A. Benn, and E. Witchel,
“Operating System Transactions,” in Proc. ACM SIGOPS 22nd Symp.
Operating Syst. Princ. (SOSP), New York, NY, USA, 2009, pp. 161-176.

21757

IEEE Access

R. Raducu et al.: Defense and Attack Techniques Against File-Based TOCTOU Vulnerabilities: Systematic Review

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

T. Kim and N. Zeldovich, ‘““Practical and effective sandboxing for non-root
users,” in Proc. USENIX Annu. Tech. Conf. (USENIX ATC), San Jose, CA,
USA, Jun. 2013, pp. 139-144.

A. Bijlani and U. Ramachandran, “A lightweight and fine-grained file
system sandboxing framework,” in Proc. 9th Asia—Pacific Workshop Syst.,
New York, NY, USA, Aug. 2018.

C. Mulliner and B. Michéle, “Read it twice! A mass-storage-based TOCT-
TOU attack,” in Proc. 6th USENIX Workshop Offensive Technol. (WOOT),
E. Bursztein and T. Dullien, Eds. Bellevue, WA, USA: USENIX Associa-
tion, Aug. 2012, pp. 1-8.

Y. Lee, T. Li, N. Zhang, S. Demetriou, M. Zha, X. Wang, K. Chen, X. Zhou,
X. Han, and M. Grace, “Ghost installer in the shadow: Security analysis
of app installation on android,” in Proc. 47th Annu. IEEE/IFIP Int. Conf.
Dependable Syst. Netw. (DSN), Jun. 2017, pp. 403-414.

N. Borisov and R. Johnson, “Fixing races for fun and profit: How
to abuse atime,” in Proc. I14th USENIX Secur. Symp. (USENIX
Security), Baltimore, MD, USA, Jul. 2005, pp.1-12. [Online].
Available: https://www.usenix.org/conference/14th-usenix-security-
symposium/fixing% -races-fun-and-profit-how-abuse-atime

X. Cai, Y. Gui, and R. Johnson, “Exploiting unix file-system races via
algorithmic complexity attacks,” in Proc. 30th IEEE Symp. Secur. Privacy,
May 2009, pp. 27-41.

R. Bisbey and D. Hollingsworth, “‘Protection analysis project final report,”
USC/Inf. Sci. Inst., Marina del Rey, CA, USA, Tech. Rep. ISI/RR-78-13,
DTIC AD A, 1978, vol. 56816. [Online]. Available: https:/csrc.nist.
gov/csre/media/publications/conference-paper/1998/10/08/proceedings-
of-the-21st-nissc-1998/documents/early-cs-papers/bisb78.pdf

O. Laadan, C.-C. Tsai, N. Viennot, C. Blinn, P. S. Du, J. Yang, and
J. Nieh. (2011). RacePro. Accessed: Oct. 28, 2021. [Online]. Available:
https://github.com/columbia/racepro

J. A. Kupsch and B. P. Miller. (2008). Safefile Library and
Documentation. Accessed: Oct. 28, 2021. [Online]. Available:
https://research.cs.wisc.edu/mist/safefile/

A. Dunn and D. Porter. (2017). Operating System Demonstrating
System Transactions. Accessed: Oct. 28, 2021. [Online]. Available:
https://github.com/ut-osa/txos

H. Vijayakumar, J. Schiffman, and T. Jaeger. (2014). Process Firewall.
Accessed: Oct. 28, 2021. [Online]. Available: https://github.com/siis/
pfwall

T. Kim and N. Zeldovich. (2013). Mbox. Accessed: Oct. 28,2021. [Online].
Available: https://pdos.csail.mit.edu/archive/mbox/

A. Bijlani and U. Ramachandran. (2019). SandFS. A File System
Sandboxing Framework. Accessed: Oct. 28, 2021. [Online]. Available:
https://sandfs.github.io/

P. Yosifovich, A. Tonescu, M. E. Russinovich, and D. A. Solomon, Win-
dows Internals, Part 1: System Architecture, Processes, Threads, Memory
Management, and More, 7th ed. Redmond, WA, USA: Microsoft Press,
2017.

L. Lu, A. C. Arpaci-dusseau, R. H. Arpaci-dusseau, and S. Lu, “A study of
Linux file system evolution 1 introduction,” in Proc. 11th USENIX Conf.
File Storage Technol. (FAST), San Jose, CA, USA, Feb. 2013, pp. 31-44.
A. Peslyak. (2002). Kernel Patches From the Openwall Project. Accessed:
Oct. 28, 2021. [Online]. Available: https://www.openwall.com/linux/

21758

RAZVAN RADUCU received the B.Sc. degree in
computer science and the M.Sc. degree in cyberse-
curity research from the University of Ledn, Spain,
in 2017 and 2019, respectively. He is currently
pursuing the Ph.D. degree in computer science
with the University of Zaragoza, Spain. His main
research interests include program binary analysis,
concurrency issues, and offensive security.

RICARDO J. RODRIGUEZ (Member, IEEE)
received the M.Sc. and Ph.D. degrees in com-
puter science engineering from the University
of Zaragoza, Spain, in 2010 and 2013, respec-
tively. His Ph.D. dissertation was focused on
performance analysis and resource optimization
in critical systems, with special interest in Petri
net modeling techniques. He is currently an Asso-
ciate Professor at the University of Zaragoza. His
research interests include performability analysis,
program binary analysis, and memory forensics. He has been involved in
reviewing tasks for international conferences and journals.

PEDRO ALVAREZ received the Ph.D. degree in
computer science engineering from the Univer-
sity of Zaragoza, Spain, in 2004. Since 2000,
he has been working as a Lecturer at the Uni-
versity of Zaragoza. He has participated in more
than 30 research and innovation projects and is
the author of more than 25 articles in various
high-impact international journals. His current
research interests include the problems of integra-
tion of network-based systems and the use of novel
techniques and methodologies to solve them, as well as on the application of
formal analysis techniques to mine event logs and databases. The results of
his research work have been applied to different application domains, such
as business intelligence, cybersecurity, health and sports, and e-learning.

VOLUME 10, 2022

