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ABSTRACT In this work, a novel computational approach for the dynamic adaptation of User Inter-
faces (Uls) is proposed, which aims at enhancing the Situational Awareness (SA) of users by leveraging the
current context and providing the most useful information, in an optimal and efficient manner. By combining
Ontology modeling and reasoning with Combinatorial Optimization, the system decides what information to
present, when to present it, where to visualize it in the display - and how, taking into consideration contextual
factors as well as placement constraints. The main objective of the proposed approach is to optimize the
SA associated with the displayed UI at run-time, while avoiding information overload and induced stress.
In the context of this work, we have deployed our computational approach to the use case of an Augmented
Reality (AR) system for Law Enforcement Agents (LEAs). To explore the benefits and limitations of the
developed system, two evaluations have been conducted. The first one was an expert-based evaluation with
LEAs and User Experience (UX) experts, assessing the appropriateness of the system’s decisions. The second
one was a user-based evaluation involving LEAs from different agencies, estimating the SA, the mental
workload and the overall UX associated with the system, through an AR simulation. The results indicate
that the system enhances SA, and while not imposing workload, it provides an overall positive UX.

INDEX TERMS Adaptive user interfaces, augmented reality, context-awareness, intelligent user interfaces,

ontology modeling, ontology reasoning, situational awareness, user interface optimization.

I. INTRODUCTION

User Interfaces (Uls) constitute the prominent means for
interacting with computing systems and applications, with
a decisive impact in their utility, accessibility and the over-
all User Experience (UX). Designing suitable, user-friendly
Uls poses a multitude of challenges, given the heterogene-
ity of potential users and contexts of use. This variability
cannot be handled by a one-size-fits-all approach, but needs
to be addressed by adapting the UI so that it is tailored
to the current user and context. The concept of extracting
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information from the environment and reacting to the chang-
ing requirements of use has been coined in the literature as
‘Context-Awareness’ [1]. The power of Context-Awareness
can be harnessed in a wide spectrum of application domains
and for a multitude of purposes, including the adaptation of
User Interfaces, relevant in the context of this work. Adap-
tive User Interfaces (AUIs) aim to suit the user’s profile,
preferences, interaction platform and computing environ-
ment, by appropriately modifying their content, presentation,
as well as their input and output modalities [2]. Existing
approaches are mainly focused on design-time or one-off
adaptation of the Ul at startup, as opposed to real-time contin-
uous adaptation based on the current situation. However, Uls
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are nowadays increasingly being used in constantly changing
contexts, such as in mobile and Extended Reality (XR) appli-
cations, calling for more dynamic approaches.

Regarding adaptation techniques, the majority of research
in AUIs is primarily concerned with the development of
handcrafted rule sets and heuristics [3]. Albeit in recent years,
Combinatorial Optimization has emerged as a powerful and
flexible tool for the computational generation and adaptation
of GUIs, providing a coherent formalism for expressing and
analyzing design decisions [4]. In general, this method treats
interface adaptation and generation as an optimization prob-
lem, by defining constraints and maximizing (or minimizing)
an objective function that represents the goal of the UI, for
instance, maximizing the interface’s usability [5], or min-
imizing user effort [6]. However, in existing approaches,
the parameters of the optimization problem are manually
specified or static. In particular, the “profit” or “cost” of
individual UI decisions, commonly expressed as coefficients
in the objective function [4], are defined a priori and do not
reflect the variable and dynamic context in which the goal
of the UI needs to be optimized. Moreover, different types
of design problems in a given UI, such as the selection of
its GUI elements and its layout, are solved separately and
independently, ignoring interrelations. Finally, the layout of
the Uls is either optimized once, at design-time, or it consists
of predefined, independent positions, regardless of what is
currently happening in the scene, in the user’s field of view.

A prime Ul goal in a multitude of application domains,
including healthcare, maintenance, mining, aviation and the
military is Situational Awareness (SA) [7]. It is formally
defined by Endsley er al. as ‘the perception of the ele-
ments in the environment within a volume of time and space,
the comprehension of their meaning and the projection of
their status in the near future’ [8]. In particular, the theo-
retical model of SA [9] involves 3 levels: perceiving criti-
cal factors in the scene (Level 1 SA), understanding their
meaning (Level 2 SA), and predicting how they will evolve
(Level 3 SA). There exist numerous factors that can incom-
mode SA - the so called “SA demons” [10]. Prominent such
factors include stress, anxiety and workload, taxing attention
and working memory, as well as information overload, when
data exceed the human capacity. The ability to achieve high
SA in the face of such conditions, for effective decision
making and information exploitation, poses a major challenge
for interactive systems, requiring new systematic approaches
and tools.

In this work, a novel computational approach for the
dynamic adaptation of Uls is proposed, which aims at enhanc-
ing the SA of users by leveraging the current context and
providing the most useful information, in an optimal and
efficient manner. By combining Ontology modeling and rea-
soning with Combinatorial Optimization, the system decides
what information to present, when to present it, where to
visualize it in the display - and how, taking into consideration
contextual factors as well as placement constraints. The main
objective of the proposed approach is to optimize the SA
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associated with the displayed Ul at run-time, while avoiding
information overload and induced stress. The main goal of
the proposed approach is to optimize the SA associated with
the displayed Ul at run-time, while avoiding “SA demons”,
such as information overload and induced stress.

The novelties of our approach, compared to existing ones,
include the following: Parameters of the optimization prob-
lem are dynamically inferred, based on the current situation
through Ontology reasoning. Furthermore, the optimization
formulation considers all dimensions of the visualization
decision (what, when, how, where), solving layout and GUI
element selection decisions simultaneously; this not only
provides a more concise handling of the design decisions, but
can also lead to improved decisions that deal with the problem
as a whole; examples of the benefits of such an approach
are better display space utilization and content adjustment
based on positional constraints. Finally, the layout of the Ul is
dynamically defined, with the positions of the graphical ele-
ments being dynamically allocated, depending on the current
scene.

Our proposed methodology is general-purpose, applica-
ble to different platforms and domains, including desktop,
mobile and XR applications, for a variety of potential end-
users. In this work, we deploy our computational approach
in the context of the European Union funded project
DARLENE [11], which investigates means by which Aug-
mented Reality (AR) and Machine Learning (ML) can be
employed, in real time, to improve the SA of LEAs when
responding to criminal and terrorist activities. Considering
the challenges law enforcement and security face today, more
efficient ways are required for delivering crucial information
meant to aid decision-making in high-pressure and dynamic
situations. AR holds massive potential in enhancing the SA
of police officers by supplying relevant information, instantly
applicable to a given task or situation. Our methodology aims
to aid Law Enforcement Agents (LEAs) in making more
informed and rapid decisions, through in-situ dynamic adap-
tivity of the AR display, taking into account the variety of user
characteristics, environmental and system factors, as well as
the current task.

In order to extract user requirements and model our appli-
cation domain, co-creation workshops with end-users have
been organized, gaining insights into context factors that
impact the SA of LEAs, and identifying GUI elements that
would increase their SA during policing in different tasks
and contexts. Based on the analysis of these requirements,
an Ontology model has been created, and appropriate infer-
ence rules have been defined that take relevant context fac-
tors into consideration. Moreover, an optimization problem
was formulated, which determines the adaptation of the AR
UL To explore the benefits and limitations of the developed
system, two evaluations have been conducted. The first one
was an expert-based evaluation with LEAs and User Expe-
rience (UX) experts, assessing the appropriateness of the
system’s decisions. The second one was a user-based eval-
uation involving LEAs from different agencies, estimating
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the SA, the mental workload and the overall UX associated
with the system, through an AR simulation. The results indi-
cate that the system enhances SA, and while not imposing
workload, it provides an overall positive UX. In particular,
observed (objective) and perceived (subjective) user SA is
improved, by 9.25% and 25.63% respectively.

Il. RELATED WORK

This section carries out a review of related work, elabo-
rating on topics relevant to our approach, and in particu-
lar: Ontology-based modeling and reasoning, employed to
make use of the available context; context-aware adaptive
Uls, supporting the adaptation of Uls based on the context;
combinatorial optimization for Ul generation and adaptation,
an emerging technique for the automatic generation and adap-
tation of Uls; and finally, context-aware Mixed Reality, which
constitutes the application domain of this work.

A. ONTOLOGY BASED MODELING AND REASONING
Context-Awareness was first introduced in the domain of
ubiquitous computing, and has since rapidly expanded
to other research areas, including Intelligent User Inter-
faces (IUIs) and XR applications. In order to capture and
utilize the different properties and characteristics of contex-
tual information, appropriate representation of, and reasoning
about, context is a requisite. To this end, a multitude of
modeling techniques and inference mechanisms have been
proposed, with Ontology-based modeling being a power-
ful, widely adopted approach, supporting both representation
and reasoning, and exhibiting clear benefits over competing
approaches [12], [13].

An Ontology is a formal description of the concepts and
relationships present in a given domain. In Ontology-based
modeling, context is modeled with an Ontology, and rep-
resented through the use of semantic Ontology languages
and frameworks, such as the W3C Web Ontology Language
(OWL),! the Resource Description Framework (RDF),% and
the Resource Description Framework Schema (RDFS).3
OWL is the prevalent one, being more expressive [14] and
facilitating greater machine interpretability of Web content,
through additional vocabulary as well as formal semantics.*
Some notable ontology-based context models that have been
proposed in the literature are the Context Broker Architec-
ture (CoBrA) project [15], the Context Ontology (CONON)
project [16], the Service-Oriented Context-Aware Middle-
ware (SOCAM) architecture [17], the Context-Driven Adap-
tation of Mobile Services (CoDAMoS) project [18], the
general and extensible context-aware computing ontology
(CACOnt) [19], and the Context Awareness Meta Ontology
modeling (CAMeOnto) [20] used by a reflective middleware
for context-aware applications, called CARMiCLOC.

1 https://www.w3.org/OWL/
2https://www.vv3>.org/RDF/

3 https://www.w3.org/TR/rdf-schema/
4https://WWW.W3.org/TR/owl-features/
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As indicated in [21], Ontologies exhibit clear benefits with
respect to heterogeneity and interoperability, in comparison
to other modeling techniques. Another considerable advan-
tage regarding usability aspects is the existence of fairly
sophisticated tools, such as ‘Protégé’,> which support and
facilitate the design of ontological context models, mak-
ing it possible even to developers of limited experience
with Description Logics. A further substantial benefit of
Ontology-based modeling is the support for Ontology-based
reasoning, deriving new knowledge based on the existing
contextual information modeled in an Ontology and identi-
fying potential inconsistencies. This approach uses descrip-
tion logic and is implemented by Semantic web languages,
such as the Semantic Web Rule Language (SWRL),® which
represents rule-based first-order logic (FOL) inference rules,
expressed in terms of predefined OWL context knowledge.
Such reasoning tools that are widely used are FaCT,” Hermit®
and Pellet.”

B. CONTEXT AWARE ADAPTIVE Uls

Context modeling and reasoning approaches for context
awareness are utilized by a wide spectrum of application
domains. In this section, we focus on approaches supporting
the adaptation of Uls, through context awareness.

Regarding mobile and desktop applications, and web
pages, context and context-awareness have been thoroughly
investigated, though a profusion of reviews, e.g. [22], [23],
reference architectures and frameworks e.g. [23]-[26], and
adaptation techniques, e.g. [2], [26]-[28] of systems and
models that adapt the Uls based on the context of use, taking
into consideration context factors related to the user, their
environment, their task or the system platform.

Reference architectures or frameworks for adapting Uls
of interactive systems include the CAMELEON-RT [24],
a conceptual reference architecture for developing dis-
tributed, migratable and plastic UT’s, the TriPlet [23], a con-
ceptual framework for context-aware adaptation of Uls
which consists of three core components: a Context-Aware
Meta-model (CAMM), a Context-Aware Reference Frame-
work (CARF) and a Context-aware Design Space (CADS),
the CEDAR [25], an approach for developing adaptive
model-driven UIS, by introducing the CHEDAR Architec-
ture, the Role-Based UI Simplification (RBUIS) mecha-
nism, and Cedar Studio, which is the supporting ID and the
AUI-UXA [26] which proposes a framework in the form of
an adaptive UI/UX authoring tool.

Research on AUISs is focused on the development of hand-
crafted rules and heuristics, whose creation is carried out
either with the help of UX experts, or system designers [26].
Furthermore, most of adaptive Ul systems use Ontology mod-
els, for the purpose of storing the information for tailoring

5 https://protege.stanford.edu/

6https J/Iwww.w3.org/Submission/SWRL/
7http://owl.cs.manchester. ac.uk/tools/fact/
8http://www.hermit—reasoner.coml

9 https://www.w3.0rg/2001/sw/wiki/Pellet
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the UI. For example, in the method and set of tools pre-
sented in [27], end users without programming experience
can customize the application UI and/or logic, using trigger-
action rules. Another similar approach is the ISATINE frame-
work [28] that proposes a multi-agent adaptation engine,
where the adaptation rules are explicitly encoded in a knowl-
edge base, from which they can be retrieved on demand
and executed. The work in [2], presents an ontology-based
approach for automatically suggesting adaptive Uls accord-
ing to the context of use, using SWRL rules. Apart from these
rule-based or heuristic approaches, Combinatorial Optimiza-
tion (CO) has been proposed as a general purpose method
for the automatic generation and adaptation of Uls. In the
next section, we will explore this adaptation technique, also
adopted by our proposed approach.

In their majority, existing approaches focus on design-time
adaptation of the Ul at startup, as opposed to real-time contin-
uous adaptation based on the current context. However, Uls
are nowadays increasingly being used in constantly changing
contexts, such as in mobile and Mixed Reality applications,
calling for more dynamic approaches. Lindlbauer et al. [5]
proposed an optimization-based approach for adapting Mixed
Reality Uls at run-time, based on the current context, and in
particular the users’ current cognitive load and task. More
specifically, it adapts which applications are displayed, how
much information they show, and where they are placed
in the Ul Similar to their work, our approach uses CO to
dynamically adapt IUIs, in line with the current user profile,
state, task and environment, adjusting which information is
displayed, at which detail, and where in the Ul To this
end, it incorporates a novel combination of Ontology mod-
eling and CO, where the parameters of the optimization
problem are reasoned at run-time from the context model,
instead of being static or hard-coded. This applies both for
the constraints and the objective function, contrary to the
state-of-the-art.

C. COMBINATORIAL OPTIMIZATION FOR Ul GENERATION
AND ADAPTATION

An emerging technique for the automatic generation and
adaptation of Uls, is Combinatorial Optimization (CO),
as surveyed in the articles by Oulasvirta et al. [4], [29]. It is
a powerful and flexible tool for formulating interface adap-
tation or generation as an optimization problem, defining
constraints and maximizing (or minimizing) an objective
function that represents the goal of the U, for instance maxi-
mizing the interface’s usability [5], or minimizing user effort
or selection time e.g. [6].

Our approach uses CO for adaptation and personalization,
modifying the UI at run-time based on the user and the
current context of use. A first approach towards this direc-
tion was SUPPLE [30], which revolutionized the field of
adaptive Uls, by proposing UI adaptation as an optimization
problem. It utilizes input traces of typical user behavior,
to adapt the UI to the specific user. The work presented
in [31] focuses on ability-based optimization, where Uls are
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adapted by considering the user’s motor or cognitive impair-
ments. SUPPLE-++ [32] is a system which can automatically
generate Uls adapted for motor and vision-impaired users.
It uses custom models of motor performance (Fitts’ law)
and heuristic models of human vision (rules-of-thumb), for
use in the optimization process, generating a personalized
interface. Sarcar et al. [33] explores a computational design
approach using CO for improving UI designs for users with
sensorimotor and cognitive impairments.

Based on the categorization of UI design CO problems
in [4], the classes relevant to our approach are selection
and layout problems. Selection problems are concerned with
choosing a set of predefined elements which optimize some
objective function(s), while at the same time satisfying given
requirements. In particular, our optimization problem is a
version of a well-known selection problem, the 0-1 knap-
sack problem. Layout problems involve fitting a set of given
objects onto a canvas, while satisfying feasibility constraints,
such that there is no overlap or overflow. Our optimization
problem combines characteristics of both selection and lay-
out problems. Similar to the knapsack problem, it tries to
select the Component Types and Levels of Detail (LoDs) that
maximize the total value, which in our application domain is
the total SA associated with the UI, given the context. At the
same time, this selection is also constrained, depending on the
current context, to avoid information overload and induced
stress. In parallel to the selection problem, our optimization
problem tries to solve a layout problem, since it also aims
to determine, in which of the available positions to place the
Components, without overlapping with others. These selec-
tion and layout dimensions are being solved simultaneously,
the one affecting the outcome of the other, utilizing better the
available display space and adjusting the presented content
based on positional constraints. This is contrary to current
approaches, which separate the decision of what virtual com-
ponents to place and how, with the problem of where to place
them. As an example, in the work by Lindlbauer et al. [5],itis
first determined by the optimization step which UI elements
are displayed and at which level of detail (LoD) and then, as a
final step, their placement is specified.

D. CONTEXT-AWARE MIXED REALITY

In general, there exist different frameworks, e.g. [34],
[35], and applications, e.g. [5], [36], targeting the area of
context-aware Mixed Reality. Our approach is concerned
with dynamically determining what virtual content is dis-
played, how, and where in the Mixed Reality display. Existing
literature mostly addresses what information to display and
how, using heuristic or rule-based approaches, where a par-
ticular context instance is mapped to a content or presentation
style adaptation. For instance, Zhu et al. [37] uses SWRL
rules for adapting the virtual content (e.g. item, instruction
sub-step) based on factors such as the current task, the user’s
expertise and device characteristics, as well as adapting its
format (e.g. color, transparency) based on characteristics
such as the user preference and distance. Ghouaiel et al. [36]

VOLUME 10, 2022



Z. Stefanidi et al.: Real-Time Adaptation of Context-Aware Intelligent Uls, for Enhanced Situational Awareness

IEEE Access

—

||

——| VISUALIZER

OUTPUT MODULES

KNOWLEDGE BASE

INPUT MODULES DECISION MAKER

FIGURE 1. The interface modules and the units of the Decision
Maker (DM).

proposed adapting the displayed augmentation based on the
scene illumination, the distance to the target and the ambi-
ent noise, using appropriate formulas. Contrary to previous
approaches, Lindlbauer ef al. [5] formulates a CO problem
whose solution adapts the virtual content and its presentation
based on the users’ cognitive load and task. Similar to [5],
we use an optimization based approach, but combined with
Ontology—based reasoning, which adapts the content of the
augmentations and their presentation based on the user’s pro-
file, state, task and environment. Focusing on the presentation
of information (how), DiVerdi et al. proposed the concept
of employing different granularity levels of content, namely
LoDs, as a basis for adapting AR Uls [38]. Our system,
similarly to the works presented in [5], [37], adopts this
concept using different LoD presentations of content based
on the current context.

lll. METHODOLOGY

In the context of this work, a general purpose methodology
was adopted, for the dynamic adaptation of context-aware
Uls, aiming at enhancing the SA of the user. The Decision
Maker (DM) is the central module of our optimization-based
approach and has been deployed in the context of the
DARLENE system, as the fundamental decision making com-
ponent for improving the SA of LEAs. It decides, based on
context factors, which information will be displayed, how it
will be presented, and in which position in the UL To this
end, it interfaces with appropriate input and output modules,
in order to acquire the necessary information and to provide
its decisions for visualization. These modules include the
following:

o The Context module, which extracts the relevant context
information regarding the user’s profile (e.g. expertise)
and state (e.g. stress level), the environment (e.g. crowd-
edness) and the task/activity at run-time (e.g. incident
resolution), and propagates it to the DM. In the context
of DARLENE, Deep Neural Networks (DNNs) were
constructed, to detect user stress, as presented in [39].

o The Knowledge Base module (KB), which provides
to the DM the necessary data (Information Elements)
regarding the current scene (e.g. detected humans, iden-
tity information) through ML algorithms (e.g. object
detection algorithm) and human input (e.g. feedback
from the Command & Control). In the context of
this work, the Knowledge Base module constitutes an
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external module (it is considered as a black box),
which provides DM with the appropriate Information
Elements.

o The Visualizer module, which contains the collection of
design ‘templates’ for all the supported GUI elements
and performs the rendering in the display. For that pur-
pose, it receives from the DM the rendering configu-
ration of the GUI elements, and in particular, which
information to display, with which design ‘template’ and
at which position. Its implementation depends on the
application platform.

The DM consists of three inter-connected units:

« The Ontology Model, which models through an Ontol-
ogy (a) the supported GUI elements, along with accom-
panying metadata (e.g. their dimensions) and (b) the
relevant context information. It dynamically receives the
current context from the Context module and stores it in
the Ontology.

o The SA Reasoner, which dynamically quantifies how
suitable each GUI element is for display (its SA score),
in terms of enhancing the SA of the user; this is based on
information from the Ontology Model and, in particular,
the current context and modeled domain knowledge in
the form of Ontology rules.

o The UI Optimizer, which computes the optimal adap-
tation of the UI, given our modeling of the problem.
In particular, it determines the GUI elements, their pre-
sentation and their position, for display by the Visualizer
module. This is based on information about (a) their SA
score provided by the SA Reasoner, and (b) visualization
and placement constraints, based on the current context
(provided by the Ontology model) and their size and
shape.

Detailed descriptions of the aforementioned units are pro-
vided in sections III-B, III-C and III-D respectively.

The interface modules and the units of the DM are por-
trayed in Figure 1. In short, the flow of information is the
following: When the current context changes, the Context
module propagates it to the DM, which updates the Ontology
Model accordingly. Based on this new state of the Ontology
Model, and its intrinsic modeling, the SA Reasoner recal-
culates the SA scores, and sends them to the UI Optimizer.
In parallel, the Knowledge Base sends real-time data in the
form of Information Elements to the DM. Each Information
Element is translated to potential designs based on the GUI
elements modeled in the Ontology and is stored in the Ul
Optimizer. At a frequency equal to the Visualizer’s render-
ing frame rate, the UI Optimizer decides which Information
Element will be visualized, through which GUI element and
where it should be placed, based on the information from the
SA Reasoner and the Ontology model. Given this decision,
the appropriate rendering configurations are generated and
propagated to the Visualizer for display.

In the following sections, our methodology is detailed,
consisting of a requirements analysis and elicitation
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TABLE 1. List of component types and their description.

TABLE 2. List of context factors and their description.

Component Type | Description

Context Factor Description

Suspect Detection | Highlights suspects (e.g. persons behaving oddly)
in the LEA’s field of view

Gives information regarding the identity and type
of a carried weapon (e.g. gun of type X, knife of
type Y, home-made explosives)

Alerts Gives urgent information from the Command &

Control (e.g. arrest John Doe)

Carried Weapon

procedure for the target application domain, described in
section III-A and the development of the DM units in
sections III-B, III-C and III-D.

A. REQUIREMENTS ELICITATION AND ANALYSIS

The first step of our methodology is to solicit and analyze the
user requirements for our target application domain. The goal
is to gain insights into the context factors that impact user SA
and identify the types of information that would increase it
during different situations and tasks. These findings are then
utilized by the DM, shaping its functionality and behaviour.
In particular, the Ontology is accordingly populated, and
appropriate Ontology rules and Optimization constraints are
defined, in line with the user requirements.

In order to employ the aforementioned approach in the
context of the DARLENE project, the requirements elicitation
and analysis was carried out through the organization of three
Co-creation workshops [40]. In these workshops, a total of
30 end users (LEAs) participated, from police agencies in
5 countries.

The systematic analysis of the outcomes of there work-
shops, which were analyzed following a combination of
deductive and inductive coding, constituted the foundation
for specifying the system requirements.

In particular, 44 requirements were identified, a subset
of which is considered in this first version of the system.
This requirements’ subset identified types of information
(Information Types) that address some of the reported LEA’s
needs, and context factors that the system should take into
account when supplying them. These Information Types,
were translated to homonymous Component Types, which
correspond to collections of design ‘templates’ (Compo-
nents), providing alternative presentations for an Information
Type. These Component Types and Components are modeled
in our Ontology, as presented in section III-B. Three exam-
ples of the currently supported Component Types and their
description are presented in Table 1. In addition, context fac-
tors currently considered are presented in Table 2. We should
note that, in addition to the factors that emerged from this
analysis, we also consider the device the user is currently
utilizing, for the appropriate placement and visualization of
the GUI elements.

B. ONTOLOGY MODEL

In the Ontology Model unit of the DM, we model the
studied application domain, based on the user requirements.
For the definition of the Ontology, relevant context factors
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Stress The current stress level of the LEA

Crowdedness The crowdedness level of the environment the
LEA is currently located
Expertise The expertise of the LEA in the field

Task The task the LEA is currently executing
Device The device the LEA is currently utilizing

FIGURE 2. DARLENE ontology model.

are captured, following a similar approach to [41]. Further-
more, all the supported GUI elements for display, along
with accompanying metadata (e.g. their dimensions) are also
represented. Regarding the DARLENE use case, the graph-
ical representation of the Ontology is depicted in Figure 2.
It is logically separated into two parts, the context fac-
tors, and the GUI elements, explained in the subsequent
subsections III-B1 and III-B2, respectively.

1) CONTEXT FACTORS

The first part of the Ontology models information about the
current context, capturing primary context factors of context-
aware systems, namely (a) the user, (b) the activity, (c) the
environment, and (d) the device. Concretely, it models with
the appropriate entities (a) the profile of the user - LEA,
which captures their expertise in the field, as well as their
current psychological state, which pertains to their current
stress level, (b) the current LEA operation task (i.e., Patrol
and Incident Resolution), as defined in the context of the
DARLENE project, (c) the environment in which it is being
executed, and in particular its crowdedness level, and lastly
(d) information about the device the LEAs are using, which is
the HUD and in particular their AR glasses. More specifically,
the necessary information regarding the HUD is modeled
in the data properties ‘Width Resolution’, ‘Height Resolu-
tion’ and ‘Sampling Rate’. These parameters are used by the
UI Optimizer in order to assign appropriate, non-overlapping
positions to the displayed GUI elements, as described in
section III-D.
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Component Type Component

Component Instance

type: Criminal Activities type: Criminal Activities,
LoD: 2 LoD:2
position: (0,0,0)
size: 100%
id:1 from Infrormation Element
detection id: 0
content:
name:  John Doe
activityl: terrorism
type: Criminal Activities jcon:  bomb.png

FIGURE 3. An example of the properties corresponding to a component
type, component and component instance, as well as their relation.

2) GUI ELEMENTS

The second logical part of the Ontology represents in a
hierarchical manner information about the supported GUI
elements. With the term ‘GUI elements’, we refer to all
the graphical entities of our modeling approach, which are
conceptually organized in three levels, with increasing level
of specificity: (1) Component Types, (2) Components and (3)
Component Instances. Each Component Type (examples in
Table 1) corresponds to a collection of the design ‘templates’
for a specific Information Type. In particular, it provides
alternative presentations (levels of detail) for Information
Elements of the corresponding Information Type. Each indi-
vidual design ‘template’ belonging to a specific Component
Type is a Component. Once a Component is instantiated with
an appropriate Information Element from the KB and its
position in the display is determined, it becomes a Component
Instance. The Component Instances, along with their corre-
sponding Information Element, do not need to be included in
the Ontology, as explained later in this section. In figure 3,
we can see the related information and properties for the
notions of Component Type, Component and Component
Instance, through an example.

a: COMPONENT TYPES

The Component Types are modeled in a hierarchical manner,
by first naturally dividing them into three main disjoint cat-
egories. The first category is the ‘Detection’ category, which
corresponds to an object or person of interest detected in the
user’s field of view. The purpose of the Component Types
of this category is to draw the attention of the user to the
detected entities, for instance to an unattended object (’Unat-
tended Object” Component Type), or foe ("Foe’ Component
Type) by highlighting them appropriately. The second cate-
gory is the ‘Annotation’ category, whose Component Types
depend on a particular detection and provide information
for it. For instance, for a detected armed man in the user’s
view, Component Types of this category can provide infor-
mation regarding the carried weapons (’Carried Weapons’
Component Type) and known criminal activities (’Criminal
Activities” Component Type) of the person. The third and
last main category is the ‘General’ category, which provide
general information regarding the surrounding environment,
and events that are taking place. Examples of this category are
alerts from the command and control (’Alerts’ Component
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Michael Johnathan Brown
38 years old
1.63 m

. Michael Brown
terrorism

KNOWN FOR:

murders terrorism

kidnapping

FIGURE 4. An example of the 3 LoDs of the component type ‘Criminal
Activities’, from low to high, instantiated with context, as displayed by the
visualizer.

Type), and procedural information (’Procedural Information’
Component Type), for instance, on how to stop blood loss
on an injured victim. The ‘Annotation’ and ‘Detection’ cate-
gories are also divided into two subcategories, ‘Object Anno-
tation’ and ‘Human Annotation’ for the former, and ‘Object
Detection’ and ‘Human Detection’ for the latter, based on
whether they correspond to a Human or an Object.

Regarding its modeled data properties, a Component Type
has a data property ‘hasPriority’, which is used in the SA Rea-
soner unit of the DM. It reflects the priority of the Component
Type for being displayed, relative to the rest, given the task
the user is currently executing. Its purpose and possible values
will be analyzed in section III-C.

Furthermore, to cater for the different needs, with respect
to information quantity and presentation, depending on the
current context of the user, each design “template” of a
Component Type corresponds to a different granularity level,
called ‘Level of Detail’ (LoD). The higher the LoD, the more
analytically information is presented. The number of LoDs a
Component Type supports are represented in the data prop-
erty ‘hasNumberOfLoDs’, and in this version of the system
this number ranges from 1 to 3. In Figure 4 an example of
the 3 LoDs of the Component Type ‘Criminal Activities’ is
depicted, instantiated with content (Component Instances),
as displayed by the Visualizer.

It should be noted that, when the KB sends an Information
Element to the DM, it gets mapped to the corresponding
Component Type, based on its homonymous Information
Type. Thus, for the modeling purposes of the Ontology, the
entity ‘Component Type’, is sufficient to represent the input
from the KB.

b: COMPONENTS

We model the GUI elements that have a particular Component
Type and LoD as Components. Each one represents a design
template, that can host content (e.g. icon, text), when instan-
tiated. Its appearance, namely its specific shape, size, colors
and so on, is determined both from their Component Type
and their LoD. Moreover, each Component is fundamentally
a Component Type in a specific LoD, ‘LowLoD’, ‘MidLoD’
or ‘HighLoD’. The data properties of a Component modeled
in the Ontology are its width and height, utilized by the Ul
Optimizer for placement considerations. Besides information
regarding their size, another modeled data property of Com-
ponents, perhaps the most significant, is the ‘hasSAscore’.
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This field stores a score, the ‘SA’ score, which is computed
in the SA Reasoner, based on the Ontology model, as we
will see in detail in section III-C. This SA score models
the Component’s appropriateness for display in the UI, and,
in particular, how much it contributes to an increased SA,
given the current context information modeled in the Ontol-
ogy. Its purpose is to provide the Optimizer with information
on which Components to “favor” for display, as described in
section III-D.

c: COMPONENT INSTANCES

As already indicated, Components are visualized instantiated
in the UI, with specific content (e.g. image, icon, text) that
corresponds to the available information (Information Ele-
ments) from the KB, and position in the display. This infor-
mation can be linked to the unfolding events during the LEA’s
operation, or a specific person or object of interest, in their
field of view. The granularity and type of information of these
Component Instances depend on the LoD and Component
Type of the Component they are instantiating. The higher the
LoD, the richer and more descriptive the content is, as we
can observe in Figure 4. Although, eventually, Component
Instances are displayed in the UI, in the current version of the
system, the decisions are taken at the level of Components
and not Component Instances. This means that their content
isn’t taken into account by the DM for determining the ones to
be visualized, but only their Component Type and LoD. As a
result, Component Instances and corresponding Information
Elements don’t need to be modeled in our Ontology, and
information regarding their content is directly propagated
from the KB to the UI Optimizer, and finally to the Visualizer
for rendering.

3) ONTOLOGY DEFINITION

The Ontology was built in the OWL 2.0 Web Ontology
Language. For the purpose of designing and visualizing our
Ontology, the software ‘Protégé’! was utilized, an open-
source ontology editor and framework for building intelligent
systems. In order to manage the defined Ontology, and per-
form reasoning based on it in section III-C, Owlready2,'! a
package for ontology-oriented programming in Python was
utilized.

C. SA REASONER

In the SA Reasoner unit of the DM, an SA score for each
Component in the Ontology of III-B is dynamically com-
puted, depending on the current context. More specifically,
based on the user’s profile, state, activity and environment,
modeled in the Ontology, an Ontology Reasoner infers the
SA score to assign to each Component, depending on its
Component Type and LoD. Specifically, for the DARLENE
case study, the activity is the current LEA operation (task),
and the user state we are interested in is the Stress level. Each

10https :/Iprotege.stanford.edu/
1 https://pypi.org/project/Owlready?2/
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time the context changes, the SA Reasoner recalculates the
SA scores and propagates them to the UI Optimizer, described
in section III-D.

1) SA SCORE CONCEPT

This SA score represents how suitable a Component is to be
displayed in the UI, and in particular, how much it contributes
to an increased SA of the user, in comparison to the other
Components, given the current contextual information. The
purpose of the score is not to express some measured or
formally computed SA value, but to provide a weak ordering
of the Components so that the ones that are more appropriate
and abler to enhance the SA of the user acquire higher score
relative to the rest. More specifically, its goal is to provide the
UI Optimizer with the necessary information as coefficients
for each Component, so that the latter will be able to decide
which Component Instances to display, so that the usefulness
of the Ul in terms of the associated SA is maximized.

The SA score of a Component, given the context, depends
on its LoD and Component Type. To provide an example of
this dependency with the LoD, in Figure 4, the Component
with LoD ‘Low’ is only an icon representing the criminal
activity a given foe is mostly known for, whereas in LoD
‘High’, it also provides identity information (e.g. name) and a
more detailed criminal record. Although the higher LoD may
empower the user with more information, enhancing their SA
under favorable physiological and environmental conditions,
in other situations, such as of high stress and crowdedness
level, textual and more detailed information that obscures
more space in the user’s field of view may potentially have a
negative impact on their SA, and lead to information overload
and induced stress. Thus, in the former cases of context,
the SA score of the Component is higher for LoD ‘High’,
whereas in the latter, it is higher for LoD ‘Low’. Moreover,
depending on the current task, some Component Types may
be more appropriate and useful to display than others. For
instance, in the LEA application domain, which was studied,
providing information about the carried weapons of a foe
(’Carried Weapons’ Component Type) during an ‘Incident
Resolution’ task can lead to higher SA for the LEA, than
providing procedural information (’Procedural Information’
Component Type). As a result, the former Component Type
has higher SA score than the latter, for this task.

2) SWRL RULES DEFINITION

For the DARLENE use case, in order to assign SA scores
to Components, depending on the context, feedback from
end-users has been utilized, obtained through the virtual
Co-Creation Workshops and a subsequent questionnaire.
This feedback led to the specification of a set of SWRL
rules, through which an Ontology Reasoner reasons about
the appropriate SA score, given the context. In our system
implementation, the Reasoner ‘Pellet’ 12 OWL 2 reasoner was
employed for this purpose. These rules can be divided into

12https://www.w3.0rg/20()1/SW/Wiki/Pellet
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two categories. The first category, the ‘Priority SWRL Rules’,
assigns a ‘Priority value’ to the Component Types, based on
the task the LEA is currently executing. The second category,
the ‘SA SWRL Rules’, assigns the final SA score to the
Components, based on the Priority of their Component Types
and the LoD, given the user’s profile, physiological state and
environment.

a: PRIORITY RULES

Regarding the set of rules belonging to the first category, they
were defined in the following manner. The requirements anal-
ysis of the workshops led to the identification of appropriate
Component Types for each DARLENE use case/task. Then,
a questionnaire was handed out to LEAs from agencies of
5 countries, that described these Component Types and the
different tasks, and requested a total ordering of the ones
they considered relevant for each of the tasks, in decreasing
level of importance/usefulness, so that the lower the rank
of a Component Type, the more they expect that it would
enhance their SA, during execution of the task. Based on
the answers to the questionnaire, for each modeled task of
the LEAs (e.g. patrolling), a weak ordering of the relevant
Component Types is specified (ties are allowed), with at most
10 ranks, in descending level of importance. The rank of each
Component Type, from 1 to 10, represents the ‘Priority’ of the
Components of this Component Type to be displayed in the
LEA’s HUD, against other Components. The lower the rank
and the number corresponding to the Priority, the higher the
Priority is. The rules defining this Priority have the following
template, Where for each Task and Component Type, the
corresponding Priority is set:

User(?u), Component(?c), hasTask(?u,{Task}),
hasComponent(?u,?c), hasComponentType(?c,
{ComponentType})->hasPriority({ ComponentType},
{Priority})

b: SA RULES

The set of rules belonging to the second category, which
assigns the SA score to the Components, were defined in the
following manner. The requirements analysis of the work-
shops highlighted the need for the presentation and amount of
information provided to the LEA’s to depend on the context
of use and especially the physiological state of the users.
Findings of the workshops indicated that in situations of high
stress or high mental workload, the field of view of the LEAs
should be obscured as little as possible. Furthermore, LEA’s
with high expertise in the field often require less information
during their operations. Based on those insights, we defined
a total ordering of the possible LoDs, for the different values
of context factors modeled in our Ontology. This ordering
specifies the order of usefulness for each LoD, with respect
to the others, in decreasing order. For instance, in the case
of ‘High Crowdedness’ and ‘High Stress’, the ‘Low’ LoD
is favored, to avoid information overload and to minimize
obstruction of field of view, whereas in the case of ‘Low
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Crowdedness’, ‘Low Stress’ and ‘Moderate Expertise’, the
‘High’ LoD is favored, to empower the LEA with as much
detailed information as possible.

Based on this ordering of the LoDs, and the Priority of
the Component Types, the set of rules for computing the
SA score of the Components were defined given the context.
In particular, the SA score of a Component depends primarily
on its Component Type and secondarily on its LoD, since
Components whose Component Type has a higher Priority
will always have a higher SA regardless of LoD. To achieve
this, we defined the SA score of a Component to be a float
of two decimal places in [0.00, 1.00). The Priority of its
Component Type determines the first decimal place, while the
rank of its LoD determines the second decimal place. More
specifically, the first decimal place is computed as:

1 —0.1 - Priority 1

where Priority takes values in [1, 10], with 1 to be the highest
and 10 the lowest values. The second decimal place takes
one of the values 0.09, 0.05, 0.01, based on the ordering
of the LoDs and the LoD of the Component. In particular,
Components with the most appropriate LoD for the current
context (first in the ordering) have the value of 0.09 while
the ones with the least appropriate (last in the ordering) have
the value of 0.01. The rules, encompassing this method for
computing the SA score, adhere to two different templates.
The first template, used in the case of Low stress, is more
generic, taking into account the LEA’s environment, state,
as well as profile. It is the following:

User(?u), Profile(?p), State(?s), Environment(?e),
Component(?c), ComponentType(?cT), hasPro-
file(?u,?p), hasState(?u,?s), hasEnvironment(?u, ?e),
hasComponent(?u,?c), hasComponentType(?c,?cT),
hasCrowdedness(?e,{ Crowdedness}), hasStress(?s,
LowStress), hasExpertise(?p,{ Expertise}),
hasLoD(?c,{L.oD}), hasPriority(?cT,?r),
multiply(?s1,—0.1,?r), add(?s2,1,?s1),
add(?s,{LoDSA},?s2) -> hasSAscore(?c,?s)

Where for LowStress and each possible value of Crowd-
edness, Expertise and LoD, the LoDSA, which is the appro-
priate value from the set 0.09, 0.05, 0.01, is added to (1)
to produce the SA. In the case of High Stress, the rules
become simpler, since the Expertise of the LEA isn’t taken
into account. So the template becomes:

User(?u), State(?s), Environment(?e), Compo-
nent(?c), ComponentType(?cT), hasState(?u,?s),
hasEnvironment(?u,?e), hasComponent(?u,?c), has-
ComponentType(?c,?cT), hasCrowdedness(?e,
{Crowdedness}), hasStress(?s,HighStress),
hasLoD(?c,{LoD}), hasPriority(?cT,?r),
multiply(?s1,—0.1,?r), add(?s2,1,?s1),
add(?s,{LoDSA},?s2) -> (7¢,?s)
Where for HighStress and each possible value of Crowd-
edness, and LoD, the LoDSA, which is the appropriate value
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from the set 0.09, 0.05, 0.01, is added to (1) to produce
the SA.

Based on these Rules, the Ontology Reasoner assigns the
appropriate SA scores to the supported Components modeled
in the Ontology, based on the current context. These SA
scores are provided as input to the Optimizer so that it can
reach optimal decisions, based on our modeled knowledge,
in terms of which Component Instances to select for the
adaptation of the UL

D. UI OPTIMIZER

In the UI Optimizer, a Combinatorial Optimization problem
is formulated, with the purpose of computing the optimal Ul
for the display of the user at run-time. This optimal UI is
the one that maximizes the SA associated with the UI, based
on the modeling of our domain, while satisfying at the same
time visualization and placement constrains. In particular, the
UI Optimizer solves two distinct but interrelated problems
at once, one of Information Element (content) and Compo-
nent (design) selection and one of Component placement
(layout). On the one hand, it determines what information to
present to end-users and how, which translates to the problem
of selecting the appropriate Information Elements provided
from the KB and the most suitable Components to visualize
them. On the other hand, it determines where to present them,
and more specifically in which of the dynamically defined
possible positions in the display. The solution of the optimiza-
tion problem is sent to the Visualizer module, responsible
for visualizing the appropriate Component Instances, which
are the selected Components at their specified position in the
HUD, instantiated with the corresponding content (Informa-
tion Element) from the KB.

1) DISPLAY GRID

To solve the problem of Component placement in the dis-
play efficiently at run-time, a display grid is defined, which
partitions the pixels of the display into disjoint grid tiles,
as we can see in Figure 5. The dimensions of the display
grid are determined by the resolution of the display, and in
particular, by the ‘Width Resolution’ and ‘Height Resolu-
tion’ properties, whereas the dimensions of each grid tile
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FIGURE 6. An example of 3 Information Elements. The one on the left
corresponds to a ‘Detection’ component type (‘Foe’) the middle one to an
‘Annotation’ component type (‘CriminalActivities’), and the right one to a
‘General’ component type (‘SummativeScenelnfo’).

are determined by a configuration parameter, represented by
the ‘Sampling Rate’ property of the Ontology model. These
grid tiles downsample the display, so that computations,
such as positioning and collision detection are carried out
more efficiently, in terms of grid tiles and not pixels. This
‘Sampling Rate’ that determines the downsampling can vary,
depending on the application and the computational resources
available, so that the more computational power we have
and the lower the Visualizer’s rendering frame rate is, the
lower its value can be, leading to more fine-grained placement
of Annotation Components with respect to their detections.
In the best case, the ‘Sampling Rate’ equals 1px, and the grid
tiles are the individual pixels. Placing a Component in the
display corresponds to visualizing it in the display grid, inside
ablock of unoccupied grid tiles, where its dimensions fit. This
block of grid tiles constitutes the position of the Component,
which should not overlap with that of other components. This
position of a Component depends on its Component Type
(e.g. ‘Carried Weapons’), its LoD (the higher the level, the
greater the size), and its category (" Annotation’, ‘Detection’,
or ‘General’). More specifically, the number of occupied
tiles and the shape of the tile block is determined by the
Component Type and the LoD, whereas the possible locations
of the tile block in the display is determined by the category,
as explained in section III-D2.

2) INPUT SOURCES

To define the parameters of the optimization problem, the
UI Optimizer receives input from the following sources: The
Ontology Model, the SA Reasoner, and the KB module.

o The Ontology model provides the Ul Optimizer with
the necessary context information. More specifically,
it supplies at run-time the physiological state of the
user, and in particular their stress level, which is used to
specify appropriate constraints on the number of visual-
ized Components in the display, as we will see later in
this section. Moreover, it provides display information
and configuration parameters, namely the display reso-
Iution and the Sampling Rate. This is used to compute
the aforementioned display grid, utilized in solving the
Component placement problem.
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TABLE 3. List of parameters of the optimization problem.

Parameter
nezZt

E = (e1,e2,..,en)
T = (tl,tQ,..,tn)

Description

Number of Information Elements
Information Elements, candidate for display
Component Types of Information Elements

my € Z+ Number of Components of Component Type ¢
Cy = (c1,c¢2,..,¢m,) | Components of Component Type ¢
le, € ZT Number of possible positions of Component c¢

P., = (p1,p2, - L., ) | Possible positions of Component c¢

ac, €(0,1) ~ | SA score of candidate Component c¢
Nezt Maximum number of Components to display
Yp., € [0,0.009] The priority for position p,

o The SA Reasoner provides the UI Optimizer with neces-
sary coefficients for the optimization problem, to be able
to select the appropriate Components for display. More
specifically, it supplies the SA score for each supported
Component, so that the UI Optimizer can maximize the
cumulative SA score associated with the displayed UI,
subject to placement constraints.

o The KB module supplies the necessary information
regarding the current scene, which is provided in the
form of Information Elements, that can be detected
entities, as well as detection related and general pur-
pose information. These supply different information
to the UI Optimizer, depending on their Information
Type. In Figure 6, we can see 3 examples of Informa-
tion Elements, one for each category of the Component
Types. The UI Optimizer maps them to a Component
Type based on their Information Type (one-to-one map-
ping) and decides which ones will be displayed, at what
LoD, (through which Component) and at what position.
In example, if the Component Type is an ‘Annotation’,
the id of the ‘Detection’ it is referring to is provided,
so that the UI Optimizer can position the former relative
to the latter.

3) OPTIMIZATION PARAMETERS
Given these input sources, the parameters of the optimization
problem can be defined (Table 3).

Each Information Element e is mapped to a Component
Type ¢, so that the multiset T contains the corresponding ¢
for each e. We note that T is a multiset, since two different
Information Elements e, e> can have the same Component
Type, thus having t| = 1, and, in general, |T| = |E| = n.

Each Component Type ¢ has a set of m; Components c;.
These Components ¢; correspond to design “templates” for
the Component Type ¢, representing its content in differ-
ent granularity levels (LoDs). Intuitively, for an Information
Element e to be visualized in the display (as a Component
Instance), it needs to instantiate one Component c;, of its
associated Component Type ¢.

Each Component ¢; of Component Type ¢, has a SA score
ac,, based on the current context. This SA score is provided as
input by the SA Reasoner. It approximates the Component’s
appropriateness for the displayed UI, given the user’s profile,
psychological state environment and task.
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FIGURE 7. An example of possible positions for ‘Annotation’ and
‘General’ components. The ‘General’ components are placed relative to
the display, e.g. on the four corners, whereas the ‘Annotation’
components are placed relative to the corresponding detection.

Furthermore, each Component ¢; can have multiple possi-
ble positions p,, in the display, whose number, denoted as [,
and location depend both on the category of its Component
Type ¢ (e.g. Annotation, Detection, General) and its LoD (e.g.
LowLoD, MidLod, HighLoD). As mentioned earlier, each
possible position corresponds to a block of tiles of the display
grid. In the final UI, the positions of the displayed Component
Instances should not overlap, thereby each tile of the display
grid can be occupied by a single instantiated Component.

Components of ‘Detection’ Component Type have only
one possible position, which coincides with the block of
grid tiles occupied by the bounding box of the detected
human/object. Contrarily, Components of ‘Annotation’ and
‘General’ Component Type have plural possible positions.
In the case of Components of ‘Annotation” Component Type,
the possible positions are relative to the detection they are
referring to. For instance, they can be located above, to the
left or to the right of the corresponding detection, or stacked,
one on top of the other, as in Figure 7. For Components
of ‘General’ Component Type, their possible positions are
relative to the display, for example, blocks of grid tiles on
its four corners, as in Figure 7. In all cases, a Component can
occupy at most one of its possible positions.

Intuitively, the purpose of multiple possible positions is
to provide more flexibility to the optimization algorithm on
selecting the most appropriate Component for displaying an
Information Element, given the constraint that there is no
overlapping. Concretely, they result to a Component having
multiple ‘attempts’ of being visualized in the Ul, increasing
its chance of not colliding with a different Component which
the optimization algorithm will “favor”, since, for example,
it is associated with a higher SA.

In order to be able to prioritize some positions over others,
for different Components, (e.g. the top right corner position
for the ‘Alert” Component Type in High LoD, or the position
above the detection, for the Annotation ‘Criminal Activities’
in Mid LoD), we define the variable y, . as the priority
for position p,. It depends both on the Component Type ¢
and LoD presentation ¢ and can take values in the range
[0, 0.009]. Using this domain, the variables prioritizing
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positions yj, , taking values below 0.01, affect less than
the situational awareness coefficients a,, taking values of
0.01 and above, the cumulative SA that the UI Optimizer tries
to optimize. This is in line with what we wish to express,
namely that the actual Component is more important than its
position. This y,, serves multiple purposes. One primary aim
is to avoid oscillations in the selected Information Elements
and their positions, at run-time, and leverage spacial mem-
ory. These oscillations are caused by the multiple optimal
optimization solutions, given that Information Elements of
the same ¢;, have the same a.,. By giving a higher y,, to
Information Elements selected in the previous frame, the
optimization ‘favours’ them over others of the same a,, and
tries to place them again and in the same position.

Finally, the parameter N denotes the maximum number
of Components that can be instantiated and displayed in
the UI, given the current context. Concretely, in order to
avoid information overload and induced stress by the UI,
an IF-THEN rule based approach has been adopted, which
reduces the number of possible components of the UI, based
on the user’s psychological state. In particular, the rule takes
into consideration the LEA’s stress and decreases the value of
N in cases of increased stress. The number of components to
display if the user has ‘Low Stress’ is 9, whereas in the case of
‘High Stress’ the number is 5. The choice of these numbers
are based on ‘Miller’s law’ regarding the capacity of short
term ("working’) memory, which states that most adults can
store there between 5 and 9 items [42].

4) OBJECTIVE FUNCTION

Our goal is to optimize the SA score associated with the
displayed UI dynamically, by determining which of the
Information Elements to display, using which Components
(Component Types at a specific LoD) and at what position,
at run-time. To this end, we use integer linear programming to
maximize the cumulative SA score of the LEA’s UIL. As men-
tioned above, each Information Element e, is mapped to cor-
responding Component Type ¢ (thus |E| = |T'|). The binary
decision variable x,, € {0, 1} denotes whether the Infor-
mation Element e mapped to ¢ is displayed or not, through
Component ¢;, and at the position p., . The objective function,
which expresses the total SA score of the Ul, is formulated as

follows:
F@ =" "%, (@, +yp,,) )
t

€t Pct
The optimization objective is to maximize the objective func-
tion f, by selecting the appropriate values for x. Concretely:

m;le(x) subject to v(x), c(x), us(x) Vte{l,...,n} (3)

5) CONSTRAINTS

For our purposes, maximizing the total SA score of the
displayed UI is not sufficient. It should at the same time
satisfy specific conditions, in order to avoid redundancy of
information, information overloading and collisions between
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UI components. We will again map each Information element
e, to its corresponding Component Type ¢ for use in the
equations. The space of feasible solutions of the optimization
problem is restricted by the following constraints:

a: UNIQUENESS CONSTRAINT

In order to ensure that each Information Element is displayed
through at most one Component, and at most in one of its
possible positions, we add the following constraints, for each
candidate Information Element:

W)=Y Y xp, <1, Vre{l,....n) )

Ct  Pct

b: VISUALIZATION CONSTRAINT

Furthermore, we need to ensure that the number of Infor-
mation Elements, supplied through displayed Component
Instances in the U, does not surpass the maximum number
N, defined to avoid information overload and induced stress.
To achieve that, we include the following constraint:

V=D D xp, <N )
t

Ct  Pet

c: COLLISION CONSTRAINT

Finally, we need to ensure that there are no overlapping
Component Instances in the displayed UI. This is achieved by
verifying that for every pair of Component Instances, there is
no collision, in terms of sharing at least one grid tile of the dis-
play grid. We define the predicate isCollided(pl.1,,, p2c2,,),
denoting whether the Information Element of Component
Type t1 materialized through Component c1, at position p1,
collides with the Information Element of Component Type
t2 materialized through Component c2, at position p2. There-
fore, the collision constraint can be formulated as follows:

Vplcl” > p2c2,2
Xpler,, * Xp2ep, * isCollided(pl.1,,, p2c2,,) = 0,
rlei, # P2e2, (6)

As a result of this constraint, the visualization of an Infor-
mation Element through a Component Instance, and in par-
ticular, whether it is displayed, through what Component, and
thereby in what LoD, and in which position, is sensitive to the
placement and shape of the other Component Instances for
display in the Ul For instance, a Component Instance may
take a sub-optimal position (of lesser priority yj,, ), due to
the fact that the optimal one is occupied. Moreover, an Infor-
mation Element may be displayed through a Component in
a decreased LoD (more succinct information), in order to
occupy less space in the Ul and fit without overlapping. More
importantly, another effect of this constraint could be that an
Information Element is not displayed at all, because for all
its the possible Component Instances (LoDs and positions),
it overlaps with Component Instances materialized through
Components which are associated with a higher SA score and
are ‘preferred’ by the optimization algorithm.
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d: COLLISION CONSTRAINT IMPLEMENTATION
For each possible position of an Information Element,
a boolean 2D array is defined which represents the dis-

play grid. This array has dimensions Wd/iResolution

Hoivhi Resoluti Sampling Rate
Hels kesoUllon o its elements represent the grid tiles of the
Sampling Rate

display. The block of tiles of the display grid that correspond
to this position are set to True, whereas all the rest are set to
False.

The set of all positions of all Information Elements are
stored in a boolean 3D array, for the purpose of comput-
ing collisions between positions to be occupied in the dis-
play. Its first dimension represents the candidate positions
competing to be occupied in the UI, whereas the other two
dimensions contain for each position the aforementioned
2D array.

To formulate programmatically the collision constraint (5),
we denote as posArray the resulting 2D array after reshap-
ing the aforementioned boolean 3D array to flatten its last
two dimensions. Consequently, the first dimension of the
posArray represents the positions, whereas the second rep-
resents the tiles of the 2D display grid, but flattened to 1D.
Furthermore we denote as x the 1D boolean array contain-
ing the decision variables x,, for each competing position.
We define the 2D array selectedPosArray as the logical AND
operation between posArray and x:

selectedPosArray = AND(posArray.T , x)

The reason for this operation is that we are interested to check
if there are collisions only among positions that are selected
to be displayed.

The purpose of the collision constraint is to impose that
each tile is occupied by at most one Information Element,
visualized through a specific Component and at a specific
position. To express that programmatically, we utilize the
following constraints, where gt denotes a grid tile:

Vgt sum(selectedPosArray(gt, : )) < 1

where sum(selectedPosArray(gt,:)) sums across the positions
axis of tile gt.

e: FINE-GRAINED VS COARSE COLLISION DETECTION
As already mentioned, the positions of the Component
Instances are computed in terms of blocks of grid tiles. The
lower the Sampling rate, the smaller the grid tiles become,
leading to more fine-grained positioning. In run-time appli-
cations, this fine-grained positioning becomes even more
aesthetically desirable for Annotation Components, which
are placed relative to a potentially rapidly moving Detection
Component, and follow it in the scene. However, the lower the
sampling rate, the more computationally expensive the Col-
lision constraint is, potentially compromising the real-time
computation requirement.

For an improved visual result, we can compute the posi-
tion in terms of pixels (instead of grid tiles), but keep the
Collision constraint in terms of grid tiles (with dimension
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FIGURE 8. Positioning of an annotation in terms of grid tiles (left) and in
terms of pixels (right). The sampling rate is 60px.
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FIGURE 9. An example of the “over-sensitive” (top) and
“under-sensitive” (bottom) coarse collision approach.

smaller than the smallest Component), meaning that Colli-
sions are still checked at every tile. In Figure 8, we can see an
example of the positioning of an Annotations in both cases
(grid tile positions and pixel positions). If we follow this
pixel positioning approach instead of the grid tile approach,
we have a Coarse collision detection instead of a fine-grained
one. The coarse collision detection can be divided into two
types, an “‘over-sensitive’” and an ‘“‘under-sensitive” collision
detection, depending on how we map the pixel position to the
grid tiles of posArray. In both cases, complete overlapping is
ensured to be avoided, provided that the grid tile dimension
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is smaller than the smallest Component. In Figure 9 we can
see the shortcomings of each approach, using corner cases.
The red and blue dots correspond to tiles of the posArray
with value True. In the “over-sensitive” case (top), a collision
is detected (purple dot), although there is none, whereas in
the “‘under-sensitive” case, no collision is detected although
there is partial overlapping. In the context of the simulation
videos of the user-based evaluation, described in section V,
Coarse, “under-sensitive” collision was preferred, display-
ing in all cases satisfactory results (with only occasional,
small partial pixel overlappings). We attribute these results to
the variable run-time distance between Annotations, leading
to the rule of thumb that Annotations that partially over-
lap (in pixels) will eventually collide (in grid tiles). As a
result they change position and there is no pixel overlapping
anymore.

6) SOLVING THE OPTIMIZATION PROBLEM

For the purpose of solving the integer linear program defined
in equations (2) — (6), the Gurobi 13 mathematical opti-
mization solver is used. An initial implementation with the
CPLEX'* optimizer wasn’t able to define the collision con-
straint efficiently, due to the optimizer’s lack in expressive
power. More specifically, the efficiency of Matrix operations
that include decision variables can not be leveraged, since
their values are determined only at run-time, and not during
the formulation of the optimization problem. This issue was
overcome in the implementation with Gurobi, which allows
some Matrix operations with still uninitialized decision vari-
ables. However, improved formulations that, for instance, uti-
lized the decision variables as indices to ““trim’ the posArray,
are not supported. Thus, we use the selectedPosArray for
collision computation, summing across all positions.

Since the formulated optimization problem is a variation
of the knapsack problem, which is known to be NP-hard,
we tested our approach with realistic examples, to verify that
it can be solved in real-time. In the Expert-based evaluation
we conducted, detailed in section IV, the DM was run with
display resolution 1920 x 1080 and Sampling rate 60px. The
number of LoDs for each Component were 3 and the possible
positions for each one of their LoDs was equal to 3. The Infor-
mation Elements provided by the KB were approximately
9-15, depending on the scenario. To this end, a commodity
gaming PC (Intel Core i7-8086K, 4GHz with 6 cores, 32GB
Ram, Windows 10, NVIDIA GeForce GTX 1080 Ti) was
utilized. On average, it took 0.0178 seconds with standard
deviation 0.0015, more than 2 times less that the 0.04 seconds
requirement for our application. In the user-based evaluation
we conducted, detailed in section V, the DM was run using
the same specs, with the difference that we had 9 positions
for each of 2 possible LoDs. In all simulation videos, the DM
required < 0.02 seconds for each frame, giving again real-time
results.

13https://www.gurobi.com/
14https://WWW.ibm.com/analytics/cplex-optimizer
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FIGURE 10. The generated Ul for Scenario B: Patrolling - high
crowdedness.

IV. EXPERT BASED EVALUATION

As a first qualitative assessment of our computational
approach, an expert-based evaluation was conducted, involv-
ing 10 experts: 5 User Experience (UX) and 5 LEA experts.
In general, an expert-based evaluation is recommended as a
means to ensure that, prior to testing a product with actual
end-users, a considerable number of problems, which can be
identified through other methods, has been eliminated. Such
evaluations are suggested to be used early in the development
life-cycle, and in complementarity with user testing [43].
The aim of this preliminary evaluation was to assess the
decisions of the DM, regarding Component selection (what),
Component LoD (how) and Component placement (where),
given a context instance. To this end, different scenarios
were created, encompassing various experimental conditions.
For each experimental condition, our algorithm was run on
selected images, generating a User Interface. In particular,
the conditions were concerned with the LEA’s expertise (high
or moderate), stress (high or low) and task (patrolling or
incident resolution), as well as the crowdedness of the envi-
ronment (low, high). For the purpose of this evaluation we
did not examine low LEA expertise, since this condition is
highly unlikely in realistic conditions, given that officers are
well trained before being engaged in incident resolution or
patrolling tasks.

A. PROCEDURE

In detail, our procedure was as follows. Before the study,
the Decision Making module was run for each condition on
appropriate images, given the context. In particular, 4 sce-
narios were created, one for each combination of task and
crowdedness level, where different persons and objects of
interest are present in the scene. A representative image
was selected, depending on the task, crowdedness level and
detected persons (e.g. suspects and victims), and objects (e.g.
unattended Object of the scenario). Then, for every scenario,
the algorithm run 3 times for the 3 user conditions of Stress
and Expertise, producing the Uls for the 12 conditions of
the experiment. In Figure 10, we can see an example of a
generated U, for Scenario B, for the condition with Low
Stress and Moderate Expertise.
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The study was conducted as an online session using a
teleconferencing platform, due to the ongoing Covid-19 pan-
demic. Participants were first explained the main parameters
which affect the decision making. More specifically, they
were introduced to the context factors taken into account
for the generation of the UI. Then, they were introduced
to the supported GUI Components, familiarizing themselves
with the different Component types and their variations with
regard to the LoD. After this introductory phase, the main
part of the experiment began. For each of the scenarios, the
participants were first introduced to the simulated situation
(e.g. there are two Foes, one of them armed, when the LEA
is patrolling in a crowded area). Then, the generated Uls for
the different user conditions where shown. The experimental
conditions were counterbalanced and randomly assigned to
participants, so that each participant would examine con-
ditions in a different order, aiming to alleviate carryover
effects [44].

For each of the Uls, the participants were asked to assess
the appropriateness of the visualization decisions of the algo-
rithm, given the conditions. In particular, they were asked the
following questions:

« Do you think that the components visualized are appro-

priate, for the current context?

e Do you think that the LoD for each component is

appropriate?

e Do you think that placement of components is

appropriate?

In answering these questions, they were prompted to elabo-
rate as much as they could and to try to justify their views.
To have a quantitative indication of their satisfaction in
relation to the three aspects assessed, we used a modified
version of the Success Rate metric [45] in which Success
(S) corresponded to participants responding positively to
a question, Partial Success (PS) to responding positively
but identifying points of improvement, and Failure (F) to
responding negatively. In particular, two independent evalua-
tors gave a score for each response, and any differences in the
assigned scores were then discussed via a consensus building
approach. In the cases of PS and F scores, participants’
comments and feedback were also noted, in order to guide
future improvements. The formula of the Success Rate has
as follows:

Nps
SuccessRate = Ng + 0.5 % N

where Ny is the number of answers scored as a success, Npg
the number of ‘Partial Success’ answers and N the total num-
ber of responses. At the end of the evaluation, the participants
were asked to provide general comments and suggestions,
and were debriefed.

B. RESULTS

In the following sections, the resulting scores for each of
the evaluation pillars, namely Component selection (what),
Component LoD (how) and Component placement (where),
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will be interpreted, and analyzed. Moreover, possible future
directions are presented for addressing some of the identified
limitations.

1) COMPONENT SELECTION

The choice of what components to visualize received a
high score and was appraised in the conditions involving
Low Stress (range [0.75, 1], mean = 0.893, std = 0.09,
median = 0.95). On the contrary, in the case of High Stress,
the component selection decision received poor reviews
across the rest of the conditions, with little score deviation
(range [0.60, 0.65], mean = 0.625, std = 0.025, median =
0.625). In particular, the participants agreed that the algorithm
sometimes wasn’t displaying all the necessary information
based on the scenario. For example, in some scenarios, some
unattended objects weren’t highlighted. This is due to the
stricter constraint of the UI optimizer on the number of
visualized components in case of High Stress, than in the
case of Low stress. Many participants expressed the view
that all detections should be highlighted. In addition, in the
scenarios of Incident Resolution (scenarios C, D), in the
case of High Stress, there was disagreement on whether to
show some Components. Approximately half of the partic-
ipants, primarily LEAs, suggested that minimum informa-
tion is shown (‘only the threat matters in such a situation’),
whereas the other half, primarily UX experts, suggested that
more information, e.g. regarding victims, is displayed, but in
low LoD.

Regarding the problem of not displaying all the necessary
components in the High Stress condition, the Visualization
Constraint of the UI Optimizer needs to be updated. Based
on the findings of the evaluation, one solution would be that
the Detection components, visualized as highlights, aren’t
counted against the maximum number of components that
can be displayed. Another, perhaps improved, solution would
be to restrict the percentage of occluded field of view by the
visualized Components, depending on the context, instead of
the number of visualized Components. The Detection Com-
ponents, being mere highlights wouldn’t contribute. With
respect to the disagreement of participants on whether to
show only the most essential Components in critical situ-
ations such as Incident resolution, personalization aspects
could be incorporated to address the difference in prefer-
ences. For example, the SA associated with the different
Component can be customized for each user, instead of hav-
ing global values.

2) COMPONENT LoD

The choice of how to present the Components Instances,
and in particular in which LoD, received a high score and
positive comments, in the conditions involving High Stress
or Low Stress with High Expertise (range [0.75, 1], mean =
0.893, std = 0.08, median = 0.925). However, this score
dropped in the condition involving Low Stress and Moderate
Expertise (range [0.5, 0.9], mean = 0.6875, std = 0.14,
median = 0.675). A primary cause for this, verified by the
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participants’ feedback, is the choice to prioritize the display
of Components in High LoD, resulting to the occlusion of
important parts of the scene. This choice was especially
criticized in the ‘Incident Resolution’ conditions (scores 0.50,
0.65), where occluding the LEAs field of view was consid-
ered particularly problematic.

To address the problem of occlusion of Components in
High LoD, a suggestion by a participant was to automatically
decrease their LoD after a few seconds.

3) COMPONENT PLACEMENT

Regarding the choice of where to place the Components
Instances, in the conditions of High Stress, and Low Stress
with High Expertise, with the exception of scenario C (score
0.60), the Uls generally received a high score and posi-
tive feedback (range [0.95, 1], mean = 0.979, std = 0.025,
median = 1). In the case of Low Stress with Moderate
Expertise, the score drops considerably (range [0.50, 0.80],
mean = 0.675, std = 0.115, median = 0.7). In general, the
problems identified related to the Annotation Components.
The placement of General Components received positive
feedback and the highlighting of the detections is standard.
In some cases, like the aforementioned exception in scenario
C, in the High Stress condition, participants reported that
it was confusing, to whom an annotation was referring to.
This problem was particularly prominent when the annota-
tion was displayed lateral to the detection and there were
civilians next to the detection. Since its possible that Anno-
tation Components are displayed for a detection without it
being highlighted, it was sometimes mistakenly perceived
that the annotations belonged to a civilian, who was perceived
as a person of interest e.g. Foe. Furthermore, although the
relative position of annotations was standard across condi-
tions (above, left and right of the corresponding detection),
in the Low Stress with Moderate Expertise conditions, the
choice to prioritize the High LoD led to Components of
bigger size. As a result, they were occluding important infor-
mation in the scene, e.g. civilians, being placed on top of
them. A reason for this is that collision checking and avoid-
ance applies only among detected persons and objects, and
Annotations.

To address the problem of ambiguity, regarding whom
annotations belong to, a first step would be to always high-
light detected objects and humans that have at least one
Annotation visualized. Another potential improvement would
be to have more possible positions for Components on top
of the corresponding detections, since participants seemed
to favor them. In particular, some participants suggested to
display the different Annotation Components of a detection
stacked, the one on top of the other, above the detection.
Regarding the problem of occlusion, caused by Component
Placement, an approach that would limit it could be receiving
as input detections of humans that are not persons of interest
e.g. civilians, just so that they will be considered for collision
avoidance with Components.
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C. CONCLUSION

All in all, this preliminary expert evaluation led to important
insights regarding the DM’s decisions, in particular, what
Components to visualize, how — in which LoD, and where
in the display. It identified limitations and directions for
improvement as well as strengths. In general, all participants
found the system very promising, having the potential to
support LEA’s during their operations. On the one hand, the
LEAs emphasized more on operational issues, suggesting that
the agent’s field of view should be as clear as possible, even in
non-stress situations. On the other hand, UX experts empha-
sized on usability aspects, giving useful suggestions. Certain
inconsistencies were noted in preferences across participants,
which need to be further explored. Further field studies with
larger participant samples were performed, as reported in the
next section, to identify additional issues and explore the
potential improvements introduced for each assessed aspect.

D. IMPROVEMENTS

The insights acquired from this expert-based evaluation
guided improvements in the DM, before continuing to a sub-
sequent user-based evaluation. A notable modification that
was carried out, based on the findings analysed in the previ-
ous sections, was that the Detection components, visualized
as highlights, are always displayed. As a result, collisions
among detections are not taken into account. However, detec-
tion collisions with any other Annotation Component or Gen-
eral Component are avoided, with the detection prevailing
and being displayed. Moreover, another improvement was the
incorporation of more possible positions for Components and
the suggestion for ““stacking’’, when possible.

V. USER BASED EVALUATION

To explore further benefits and limitations of our improved
computational approach and investigate whether it leads to
an enhanced Situational Awareness in our LEAs applica-
tion domain, we conducted a User-Based evaluation with
20 police officers. The evaluation was performed in the
form of an XR simulation, replicating real scenarios in a
reproducible and controllable way, while avoiding the risks
of performing them in reality [46], [47]. In particular, dur-
ing the experiment, the participants watched, in an AR
HMD, videos portraying staged terrorist attacks in differ-
ent experimental conditions. Through these videos, their SA
was measured using the Situation Awareness Global Assess-
ment Technique (SAGAT) query technique [48], answering
to questions which evaluated their perception of the situa-
tion at arbitrary instants. Standardized Questionnaires were
also utilized, to estimate their subjective SA, their mental
workload and their UX. Participants performed the task with
and without the system enabled. Moreover, given that the
mental state of the user, and in particular their Stress state,
is a key context factor for our use case, the task was per-
formed both with and without experimentally induced stress.
With respect to our research questions, we aimed to assess
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FIGURE 11. A frame of one of the simulation videos, in a non-stress
condition.

FIGURE 12. A frame of one of the simulation videos, in a stress condition.

1) whether our approach enhances SA, 2) the mental work-
load induced by the system, and 3) the total User Experi-
ence of the system, both in normal physiological state and
under stress. In Figures 11 and 12, frames from two different
simulation videos are displayed, in non-stressful and stressful
conditions, respectively.

In particular, our hypotheses were the following:

Hla. The system enhances situational awareness in stress
conditions

H1b. The system enhances situational awareness in non-
stress conditions

H2a. The system does not impose workload to the user in
stress conditions

H2b. The system does not impose workload to the user in
non-stress conditions

H3a. The overall UX of the system is positive when the
user is stressed

H3b. The overall UX of the system is positive when the
user is not stressed

A. METHODOLOGY
The following sections will describe the methodology that
was followed for designing of the study.

1) EXPERIMENTAL DESIGN

Regarding our experimental design, we used a within-subject
design with two independent variables, namely the Stress
state of the participant, taking values Stress and non-Stress,
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and whether our computational approach was used or not,
taking values with System and without System, yielding 4 con-
ditions under which the simulation videos were shown. The
order of the conditions was randomized across participants,
adopting a 4 x 4 Latin square design and assigning the
simulated scenarios to the following conditions with System-
Stress, without System-Stress, with System-non-Stress, and
without System-non-Stress. As dependent variables, we mea-
sured the perceived and observed SA in all experimental
conditions, as well as the workload and overall UX in the
conditions with the System. To this end, the SART question-
naire [49] was administered for estimating the perceived SA,
whereas the SAGAT query technique [48] was employed for
the observed SA. For measuring the workload and overall
UX, the NASA-TLX [50] and UMUX-Lite [51] question-
naires were completed. All questionnaires employed in this
study are standardized, ensuring the validity and accuracy of
results.

2) SAGAT QUERIES

To acquire an objective measure of the participants’ SA
in the different experimental conditions, the SAGAT query
technique was employed, an online probe method based on
queries during arbitrary freezes in a simulation [48]. This
method has been shown to have a high degree of validity and
reliability, and is one of the best publicized and most widely
utilized measure of SA, along with the SART question-
naire [52]. The SAGAT questions for our application domain
were developed in line with the SA requirements highlighted
in the requirements elicitation and analysis procedure, and
were evaluated by 2 LEA experts. They were administered
at arbitrary time points, appearing in the participants field of
view, during freezes of the simulation videos. They assessed
the participants perception of elements in the environment,
comprehension of the current situation and prediction of its
future status, corresponding to the three levels of SA depicted
in Endsley’s Model [9].

3) STRESS INDUCTION

There exist a diversity of stress induction methods, employing
stressors that are either physical, namely environmental
and physiological, or psychological/mental, namely cog-
nitive and emotional, or mixed [53]. In our experiment,
we were interested in experimentally inducing psycholog-
ical stress, an integral part of LEAs working conditions.
Mental Arithmetic (MA) tests are a reliable mental stress
induction technique, utilized in many studies [54]. In our
experiment, we employed the Paced Auditory Serial Addi-
tion Test (PASAT) [55], which is a neuropsychological test
for assessing attentional processing, also used towards this
direction. In particular, we utilized the computerized version
provided by the PEBL software [56].

4) APPARATUS AND VIDEOS
To simulate the experience of policing using AR glasses, the
VR Google Cardboard Headset was utilized. The simulation

23383



IEEE Access

Z. Stefanidi et al.: Real-Time Adaptation of Context-Aware Intelligent Uls, for Enhanced Situational Awareness

HO® Riﬂel )

FIGURE 13. Collage of frames from different simulation videos.

videos were streamed on a Google Pixel 5 Android Phone,
placed inside the headset. They comprised of 8 short
(< 1 min) 3D stereoscopic videos, portraying a diversity of
staged terrorist attacks in different situations and contexts.
In order to avoid detection errors, which could interfere with
the evaluation of our approach, the videos were manually
annotated. Each detection was associated with appropriate
information, depending on the simulated scenario (e.g. the
carried weapons of a foe), which was stored in the Knowledge
base and provided to the DM at run-time. The decisions
of the DM were propagated to the Visualizer, which dis-
played the video augmented with appropriate GUI elements.
In Figure 13, frames from different simulation videos are
displayed, augmented with GUI elements.

B. PROCEDURE

The experiment was structured in three phases: introduc-
tion, main part of the study, and debriefing Participants
were first welcomed and explained the aim and objectives
of the study.'> After signing a consent form, they com-
pleted a demographic questionnaire, which included ques-
tions regarding their age range and gender, as well as inquires
regarding their professional experience with different polic-
ing tasks and incidents (e.g. terrorist attacks and bomb
defusals). Then, in order to familiarize them with the system,
they were introduced to the GUI Component Types and their
LoDs, during a short Smin presentation. Finally, they were
asked to calibrate the AR HMD to ensure that the were com-
fortable with viewing content and to perform a short example
in order to familiarize themselves with the task, going through
a short video and being asked a few exemplary questions.

15This study has been approved by the Social and Societal Ethics Com-
mittee of the Katholieke Universiteit Leuven (KUL approval number G-2021
09 2072)
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In the main part of the experiment, each experimental con-
dition was preceded by a stress manipulation task. In the case
of a forthcoming Stress condition, the participants performed
the PASAT test for 5 minutes, otherwise they watched a video
featuring nature images and relaxing music for 5 minutes,
to prepare for the non-Stress condition. Then, they watched
2 simulation videos with or without the system, depending
on the condition, during which they answered to the corre-
sponding SAGAT queries. Finally, the condition concluded
by completing the respective questionnaires, which included
the SART questionnaire, followed by the NASA-TLX and
UMUX-Lite questionnaires in the with System conditions.
This process continued for all 4 experimental conditions, with
different simulation videos in each one. At the end of the
experiment, the participants were debriefed. The full study
lasted for approximately 60 mins per user.

C. PARTICIPANTS

We recruited 20 participants, 3 female and 17 male, between
18 and 54 years, from different Law Enforcement Agencies
in Greece. All but 3 participants had no prior experience with
AR systems and one did not wish to indicate. Most of the
participants (80%) were experienced LEAs with more than
10 years of professional experience. Furthermore 85% had
at least some experience with crime arrests or terrorism, with
60% having more than 5 years of expertise. On the other hand,
80% had no experience with diffusion of explosives, while
60% were inexperienced in crisis management or healthcare
provision, and hostage situations. The vast majority of the
participants (85%) did not have prior experience with AR.

D. RESULTS

In this section, the results of the experiment with respect to
our initial hypotheses are presented. We first demonstrate
the results with respect to the SA of the users, in the stress
and non-stress condition. We present SART and SAGAT
results with Conclusions in each condition and discussing
the qualitative feedback received. We then show the results
regarding the workload of the participants while using the
system, under stress and non-stress conditions, and compare
them to findings from a study with police officers in a field
shooting exercise. Subsequently, User Experience results are
presented, including the results from the UMUX-Lite ques-
tionnaire and qualitative feedback from the participants.

1) SITUATIONAL AWARENESS

In order to study the Situational Awareness of the partici-
pants, under stress and non-stress conditions (H/a and HIb),
the results from the SART questionnaire and the SAGAT
query technique were analysed, assessing the perceived and
observed SA respectively. In the SART questionnaire, par-
ticipants rate their own perception regarding their SA with
respect to ten dimensions after the simulation is completed.
These ten dimensions are classified into three main sub-
scales: Attentional Demand (AD), Attentional Supply (AS)
and Understanding (U). The score for each subscale is
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FIGURE 14. Perceived SA, in both stress states and overall.

Observed SA

70
60
50
40
30
20
10

0

Stress Non-Stress Overall

B With System B Without System

FIGURE 15. Observed SA, in both stress states and overall.

calculated as the sum of the participant’s rating in each of
the subscale’s questions. The final SART score is calculated
as per equation 1 below.

SARTscore = U — (AD — AS) 7

We note that data from one participant were eliminated from
the dataset, since it was incomplete. For scoring the results of
the SAGAT query technique, each correct response to a ques-
tion acquired one score point, whereas erroneous responses
did not receive any points. Then, all the individual scores for
each participant were accumulated and divided by the total
number of questions the participant was asked, acquiring the
final SAGAT score, which represents the percentage of their
correct responses.

Overall, use of the system improved perceived and
observed SA, by 25.63% and 9.25% respectively, cumula-
tively for both stress states. In particular, in the case of stress-
ful conditions, perceived SA was improved by 30%, whereas
observed SA by 3.95%. In non-stressful conditions, perceived
SA was improved by 15.65%, while observed SA by 15%.
These results are displayed graphically in Figure 14 for the
perceived SA and in Figure 15 for the observed SA, with the
error bars indicating the 95% confidence interval (CI).

In the following sections, we analyse the results of the
perceived and observed SA, for each stress condition, namely
the Stress Condition and the Non-stress Condition.
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a: PERCEIVED SA

The overall perceived SA was enhanced when using the
system, both in the stress (hypothesis Hla) and non-stress
condition (hypothesis HIb).

In the stress condition, with the system, the SART score
was above the midpoint (16) of its range ([—14, 46]) for
all participants, reflecting that they had good SA during the
simulation scenarios corresponding to this condition. On the
contrary, when not using the system, 30% of the participants
had a SART score below the midpoint of this range, highlight-
ing that some of them perhaps felt that their SA was not so
good. In more detail, with respect to the different subscales,
Attentional Demand was perceived higher when not using
the system, whereas Attentional Supply and Understanding
were perceived higher with the system. In Figure 16, we can
observe the differences in the average scores for the indi-
vidual SART subscales and the final SART score, with the
system and without the system, for the stress condition.

To compare the results of the overall SA, as well as all the
individual SART subscales, when using the system and with-
out it, paired two-tailed t-tests were conducted. Statistically
important differences were identified for the Understanding
subscale, when using the system (M = 15.05, SD =2.61) and
without it (M = 12.42, SD = 3.25); t(18) = 2.78, p = 0.02.
Furthermore, statistically important differences were identi-
fied for the overall SA score between the two conditions of
using the system (M = 23.26, SD = 5.08) and without it
(M = 17.89, SD = 6.87); t(18) = 2.44, p = 0.025.

In the non-stress condition, with the system, 20% of par-
ticipants achieved a SART score lower than the midpoint
of the SART scores range. This percentage doubled to 40%
when participants were not using the system. At the level of
individual subscales, they perceived that greater Attentional
Demand was required without the system and slightly less
Attentional Supply, while Understanding was, on average,
perceived as enhanced when using the system. In Figure 17,
we can observe the differences in the average scores for the
individual SART subscales and the final SART score, with the
system and without the system, for the non-stress condition.

Statistical analysis through paired two-tailed t-tests com-
paring the results of overall SA and all the individual SART
subscales when using the system and without it, did not reveal
any statistically important differences for any of the involved
scales.

b: OBSERVED SA
Regarding the observed SA, the performance of the partic-
ipants improved when using the system, both in the stress
(hypothesis Hla) and non-stress condition (hypothesis HID).
In the stress condition, users of the system achieved a better
SA score on average (M = 69.52, SD = 12.66), compared
to participants without the system (M = 66.88, SD = 8.96).
At the same time, system users exhibited higher variance
in their scores, implying that the system did not have the
same positive impact on all participants’ scores. Statistical
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Perceived SA for the Stress condition
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FIGURE 16. The average participants’ scores for the individual SART
subscales and the resulting SART score, with and without the system,
in the stress condition.

analysis through paired two-tailed t-tests comparing the
SAGAT scores when using the system and without it did not
reveal any statistically important differences between the two
conditions. A potential reason for this is that the information
displayed by the system is less detailed in the case that LEAs
are stressed. In particular, the system, as a general approach,
adapts the Ul based on the context, and in stressful conditions
prefers to decrease the LoD of Components, communicating
information when possible through icons. In this context,
it could be the case that the short training that preceded
the evaluation was not adequate to familiarize participants
with all the different icons and their meanings. This was also
pointed out by a considerable number of participants (35%)
during the debriefing session, saying that they would require
additional training prior to actually using it and stating that
they felt that they got better with the system the more they
used it.

In the non-stress condition, the participants’ observed SA
when using the system outperformed their observed SA with-
out it. This conclusion is further confirmed through a paired
two-tailed t-test that compared the SAGAT score results in the
two cases, yielding statistically important differences when
using the system (M = 70.86, SD = 14.62) and without it
(M = 61.62, SD = 14.49); t(19) = 2.24, p = 0.03.

¢: QUALITATIVE FEEDBACK

As analysed so far in this section, the system enhances SA
when using the system, both in stress and non-stress condi-
tions, confirming our hypotheses (H/a and H1b). This find-
ing is also supported by qualitative feedback, solicited during
the debriefing session. Overall, the participants’ reaction to
the system, in terms of their SA (as their general feeling)
was positive. In particular, 12 participants (60% of the total
sample) were strongly positive about the system’s usefulness
in improving their SA, providing statements like ‘it certainly
will’, ‘definitely’, etc. Moreover, 3 participants (15% of the
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Perceived SA for the Non-Stress condition

16 —

11 I I I
6

1

AD-SCORE AS-SCORE U-SCORE SART-SCORE

W With System B Without System

FIGURE 17. The average participants’ scores for the individual SART
subscales and the resulting SART score, with and without the system,
in the non-stress condition.

total sample) were rather positive, stating, for instance, that
the system would be helpful, but it requires training, or that
it is generally useful but not always. Another 15% of the
participants were neutral, highlighting that the system may
be useful in some circumstances, whereas in others it might
not be. Finally, one participant (5% of the total sample) was
rather negative, suggesting that they would not normally use
it, unless they were facing a crisis that has escalated, and
another participant (5% of the total sample) was strongly
negative, saying that they would prefer to not use the system.

d: CONCLUSION

In conclusion, the Situational Awareness of participants was
improved when using the system both in the Stress Condi-
tion and the Non-stress Condition, confirming our hypothesis
(Hla and HID). In the Stress Condition, their perceived SA
exhibited statistically important differences with the system,
in comparison to without it, whereas in the Non-stress Con-
dition, differences were statistically important regarding the
observed SA. Furthermore, these findings were supported by
qualitative feedback, provided during the debriefing session.

2) WORKLOAD

In order to study the workload of the participants while using
the system, under stress and non-stress conditions (hypothe-
ses H2a and H2b), the results from the NASA task load index
(NASA-TLX) questionnaire were analysed.

Regarding the workload of the participants in stress condi-
tions while using the system (hypothesis H2a), the average
of the overall workload score was 58.33. With respect to
the different dimensions of the NASA-TLX, on average, the
mental workload (65.79) was rather higher than the midpoint
(50), while the perceived effort (58.68) and temporal work-
load (53.16) were also higher. At the same time, it is notable
that, on average, the performance score was also highly
rated (62.89), whereas the frustration (35.53) and physical
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workload (20) was very low; the latter was anticipated given
the simulated nature of the study.

With regard to the workload of the participants in non-
stress conditions, while using the system (hypothesis H2b),
the average of the overall workload score was 43.54, which
is below the midpoint (50) and considerably lower than in
stressful conditions (58.33), indicating that when stressed, the
workload of LEAs is significantly higher, a finding which we
intuitively expected. Moreover, on average, similar to stress-
ful conditions, the mental workload (64), the temporal work-
load (54.5) and the performance scores (60.5) were higher
than the midpoint (50), whereas the frustration (35.5) and
physical workload (22.5) were considerably lower than the
midpoint. However, when the participants were not stressed
while using the system, the average effort (47.25) was lower
than when they were stressed (58.68). This could be explained
by the mental state of the user, as well as the fact that
the system during stressful conditions decreases the LoD,
displaying the information through icons without any textual
information, thus potentially requiring more effort to perceive
it, as indicated by the debriefing, detailed in a following
section.

In order to better understand these scores, in Figure 18
we summarize these results in comparison to findings from
a study with police officers in a field shooting exercise [57].
It is evident that the perceived workload, when using the
system for policing tasks, is in general aligned with findings
from actual policing tasks. This holds true for both stress
and non-stress conditions. Thus, the hypotheses H2a H2b
that the system does not impose workload are supported.
The main difference among the 6 dimensions was that the
physical workload was found considerably lower in our study.
This was an expected finding, since this study was a sim-
ulation and did not require actual physical effort. However,
despite the simulated nature of this study, this dimension was
meaningful in order to detect potential physical workload
induced by the AR HUD. In addition to this, an explicit
question regarding nausea was addressed to participants dur-
ing the debriefing session, which yielded negative results
for most of the participants (85%). Moreover, the Partici-
pants who experienced nausea rated it as of moderate impact
(6 out of 10).

3) USER EXPERIENCE

In order to study the User Experience (UX) of the participants
while using the system, under stress and non-stress conditions
(hypotheses H3a and H3D), the results from the UMUX-Lite
questionnaire were analysed. Moreover, the qualitative feed-
back obtained during the debriefing session was considered.

a: UMUX-LITE RESULTS
The overall UX score as well as the score for each dimension
of the UMUX-Lite can be observed, for both the stress and
non-stress conditions, in Figure 19.

In the stress condition, the overall UX score across par-
ticipants was 5.03 out of 7 (stdev: 1.50), with 95%CIs
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FIGURE 18. Perceived workload comparison with a field shooting
exercise.
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FIGURE 19. The results of the UMUX-Lite questionnaire. The error bars
represent the 95%Cl.

[4.31, 5.75]. The question regarding whether the system
meets their requirements (usefulness) had an average score of
4.95 (stdev: 1.35), with 95%Cls [4.30, 5.60]. Overall, 31.57%
of participants generally agreed that it meets their require-
ments (voted 6 or 7). At the same time, the scores also indicate
that the system is easy to use (usable), with an average
score of 5.11 (stdev: 1.94) and 95%ClIs [4.17, 6.04]. Overall,
52.63% of participants generally agreed that it is easy to use
(voted 6 or 7).

Furthermore, in the non-stress condition, the overall UX
score across participants was 5.05 out of 7 (stdev: 1.23),
with 95%ClIs [4.4, 5.63]. The ‘usefulness’ question had an
average score of 4.85 (stdev: 1.31), with 95%Cls [4.24, 5.46].
Overall, 30% of participants generally agreed that it meets
their requirements (voted 6 or 7). The results also indicate
that the system usable, with an average score of 5.25 (stdev:
1.37), with 95%Cls [4.61, 5.89]. Overall, 45% of participants
generally agreed that it is easy to use (voted 6 or 7).

From the aforementioned results, we can conclude that
the hypotheses H3a and H3b are confirmed, considering
that the average overall UX score is above the midpoint of
the UMUX-Lite scale (4), both in the stress and non-stress
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conditions. The same holds for both constituents of the over-
all UX, namely usefulness and usability for both experimental
conditions. Nevertheless, additional insights were sought in
the participants’ responses to the debriefing session, aiming
to identify potential shortcomings with regard to the system’s
usefulness and usability.

b: QUALITATIVE FEEDBACK
During the debriefing session, participants were inquired
about how easy it would be to use the system during their
daily tasks. It is notable that the majority of the comments
received pertained to the device itself (AR HMD) and not
the visualized UI. Feedback regarding the UI indicated that
training would be required for LEAs, and that, in real-life
field operations, the information displayed should not distract
them, taking their focus off the actual real-world operation.
This remark is aligned with observations from the expert-
based evaluation, as well as with requirements identified by
police officers during the Co-creation Workshops.
Regarding what participants liked the most about the sys-
tem, an analysis of their comments highlighted the following
aspects (comments are provided as they were given by the
participants):

« Increased situation awareness (30% of the participants),
by providing an overview of the field and insights to
better understand what is going on

o Information about carried weapons (25% of the
participants)

« Identification of foes (20% of the participants)

« Assessment of threats (20% of the participants)

« Stress-related information (15% of the participants)

e Victims’ identification and information about their
health status (15% of the participants)

o Information richness and usefulness (15% of the
participants)

o Clear icons (10% of the participants)

In terms of what they disliked, 20% of the participants
commented that, in some cases, too much information was
displayed, a valuable remark for future improvements of the
system. One participant (5%) identified that they disliked the
headset. Although this is a useful remark in terms of high-
lighting requirements for acceptable headsets for the deploy-
ment of the system, it is noted that the headset employed,
solely served the simulation needs of this study. Moreover,
one participant pointed out that they disliked the detection
rectangles in general, and another indicated that they did not
like the colour of the victims’ highlighting rectangle. Finally,
one participant expressed concerns regarding potential atten-
tion distraction that might be caused by the system. This is a
legitimate concern, since LEAs should focus their attention
at the crime scene in front of them. Similar concerns have
been raised during the Co-creation Workshops, highlighting
users’ need for a system that will support their operations in
an unobtrusive manner. However, we should note that such a
concern was not confirmed by the study; instead, the results
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indicated that the system assists LEAs in achieving increased
SA, without inducing workload.

With respect to additional functionality that was requested,
one participant suggested that a Map Component, with LEAs’
on the ground positions clearly marked, would be useful.
Another participant proposed that the system could provide
navigation instructions. It is noted that, both of these features
have been implemented as GUI Component Types, but were
not included in the current study, in order to avoid over-
whelming participants with extraneous information, taking
into account that it was their first encounter with the system.

With respect to whether they would eventually use the
system, participants’ responses were as follows:

o 40% of the participants indicated that they would defi-
nitely use it for the benefits it offers

e 30% of the participants would use it under specific
preconditions (e.g. by specific members of the team)
or in specific circumstances (e.g. when encountering
suspicious situations)

o 25% of the participants said that they might use it

e 5% of the participants identified that they would be
reluctant to use it

4) FURTHER TESTS

Apart from our initial, core research questions, we also
assessed the impact of stress and expertise in the perceived
and observed SA, the workload, and UX of the participants,
both with and without using the system. Moreover, we exam-
ined for all SA levels of observed SA, the impact of using the
system, as well as the effect of stress and expertise. Finally,
we performed a correlation analysis of all the measurements
acquired in this study.

a: IMPACT OF STRESS

To assess the effect of stress, paired two-tailed t-tests were
carried out on the participants’ scores regarding the perceived
and observed SA, the workload, and UX, between the stress
and non-stress condition.

When analysing the participants’ SART scores when using
the system, a statistically significant difference was found
between the perceived SA when using the system in the stress
condition M = 23.26, SD = 5.08) and in the non-stress
condition (M = 21.00, SD = 6.19); t(18) = 2.14, p = 0.04.
A potential reason for this could be that, in the stress con-
dition, the system minimizes displayed information to avoid
overloading the users and allow them to focus on the situation
at hand. To this end, it keeps only icons, eliminating textual
descriptions. On the contrary, in the non-Stress condition,
the system keeps textual information along with the icons,
thus requiring greater attentional demand from the users. This
might explain why the perceived SA score was lower during
the stress condition.

In addition, the analysis of the NASA-TLX effort score
indicated that there is a statistically significant difference
on the perceived effort between using the system in stress
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conditions (M = 58.68, SD = 17.7) and in non-stress condi-
tions (M = 47.25, SD = 24.14); t(18) = 2.65, p = 0.01. This
might also be caused by the minimization of the displayed
information, carried out by the system in the stress condition,
similar to the case of the perceived SA.

The rest of the measures, yielded no significant effect
between the stress and non-stress condition.

b: IMPACT OF EXPERTISE

To assess the impact of expertise, an expertise score for each
individual was calculated as follows. For each question on
the background information questionnaire, regarding profes-
sional expertise in different domains, a score was assigned in
the following manner:

« If no expertise at all: score 0

« If less than 5 years of expertise: score 1

o If 5to 10 years of expertise: score 2

o If more than 10 years of expertise score 3

These scores were then summed for each individual, charac-
terizing their expertise as ‘Low’ if the total score was below 3,
‘Moderate’ if it was between 3 and 7, and ‘High’ if it was
above 7. This scoring approach led to 8 participants with
‘High’ professional expertise 7 with ‘Moderate’, and 5 with
‘Low’.

To test the effect of professional expertise on the
measurements that were studied throughout the experiment,
we carried out 2-factor ANOVA without replication, since
the number of participants in each expertise category was
unequal.

When analysing the perceived SA without using the sys-
tem, an effect size of 0.7128 was found, indicating that
71.28% of variance in the overall SART scores was explained
by professional expertise (F(17.17) = 2.49, p = 0.03). Post
hoc t-tests applying the Bonferroni correction yielded sta-
tistically significant differences in perceived SA between
participants with high expertise (M = 15.43, SD = 5.69)
and participants with low professional expertise (M = 21.25,
SD = 2.76).

Regarding the perceived workload, an effect size of
0.9353 was found, indicating that 93.53% of variance in the
NASA-TLX scores was explained by professional expertise
(F(18.18) = 15.07, p < 0.0001). Post hoc t-tests applying the
Bonferroni correction did not reveal any statistically signifi-
cant differences between the three groups: high expertise vs
moderate expertise, high expertise vs low expertise, moderate
expertise vs low expertise.

Furthermore, the overall UX, it yielded an effect size of
0.819 indicating that 81.9% of variance in the UMUX Lite
scores was explained by professional expertise (F(16.16) =
4.60, p = 0.002). Post hoc t-tests applying the Bonferroni
correction did not reveal any statistically significant differ-
ences between the three groups: high expertise vs moderate
expertise, high expertise vs low expertise, moderate expertise
vs low expertise.
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However, for observed SA, no significant effect of pro-
fessional expertise was found on the overall SAGAT scores,
when using the system (F(19.19) = 0.7225, p = 0.76),
or without it (F(19.19) = 0.7468, p = 0.73). Similarly, no sig-
nificant effect was found for perceived SA when using the
system (F(18.18) = 0.5840, p = 0.86). This is an interesting
finding compared to the effect of professional expertise on
perceived SA without the system, suggesting that, when using
the system, any differences on perceived SA are diminished.

In conclusion, the results of the analysis indicate that
professional expertise can explain variance in perceived SA
without the system, perceived workload, and perceived UX.
Interestingly, professional expertise did not have any effect on
observed SA (with or without the system) and perceived SA
with the system. This led to the conclusion that the impact of
the system on the LEAs’ SA is not dependent on their field
expertise, and as such it can provide the same benefits for
all users. This finding is even more important considering
that professional expertise did have an effect on perceived
workload and perceived UX, confirming that, despite any
perceived issues with respect to workload or UX, the SA
achieved with the system remains the same for all users,
independently of their professional expertise.

c: SA LEVELS

As already mentioned, the theoretical model of SA [9]
involves 3 levels: perceiving critical factors in the scene
(Level 1 SA), understanding their meaning (Level 2 SA),
and predicting how they will evolve (Level 3 SA). In order
to further examine differences across conditions for all SA
levels, paired two-tailed t-tests were conducted.

The results have as follows:

Regarding Level 1 SA, in the stress condition, a statistically
significant difference was found between using the system
(M =74.58, SD = 40.6) and without the system (M = 98.33,
SD = 7.45); t(19) = —2.80, p = 0.01. This is an important
finding of this study, highlighting that participants’ observed
SA was better in stress conditions without the system’s Ul
in the case of level 1 SA. A possible conclusion would be
that the system should avoid providing obvious or trivial
information in highly stressful situations, unless it is accom-
panied by some additional information pertaining to higher
SA levels. For instance, when an ally is detected, it is not
necessary to highlight them if no additional information can
be provided. Future studies will explore if this was an effect
of the simulation or if it is also confirmed in in-situ studies.
A 2-factor ANOVA was also carried out to assess the impact
of professional expertise on observed level 1 SA in stress
condition, without any observed effect (F(19, 19) = 1.36,
p = 0.25).

Moreover, for Level 2 SA, in the no stress condition, the
paired t-test conducted to compare results with the system
(M = 68.49, SD = 15.07) and without it (M = 57.71, SD =
17.55), yielded statistically significant difference (t(19) =
2.16, p = 0.04). This finding sheds light to the particular con-
ditions in which the system has more impact, leading to the
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TABLE 4. Correlations between the measurements for the stress
condition.

UMUX-Lite | NASA-TLX | SART SAGAT
UMUX-Lite | 1
NASA-TLX | 0.14 1
SART 0.37 0.26 1
SAGAT -0.31 0.03 -0.1 1

TABLE 5. Correlations between the measurements for the non-stress
condition.

UMUX-Lite | NASA-TLX | SART SAGAT
UMUX-Lite | 1
NASA-TLX | -0.06 1
SART 0.29 0.44 1
SAGAT -0.15 0.09 -0.07 1

conclusion that, when LEAs are not stressed, their observed
level 2 SA is substantially increased. A 2-factor ANOVA was
also carried out to assess the impact of professional expertise
on observed level 2 SA, in the no stress condition, without
any observed effect (F(19, 19) = 1.16, p = 0.38).

With respect to the rest of the SA Levels, in both stress and
non-stress conditions, no statistically significant difference
was found when using the system.

Furthermore, paired t-tests were carried out to also explore
the effect of stress on observed SA for the three different SA
Levels. This resulted to a statistically significant difference
between the stress (M = 98.33, SD = 7.45) and the no
stress condition (M = 85.42, SD =21.61) regarding observed
SA at Level 1, without the system; t(19) = 2.41, p = 0.02.
This is an interesting finding since participants’ Level 1 SA
in stress outperformed their Level 1 SA when in no stress,
leading to the conclusion that increased stress led to increased
Level 1 SA for LEAs. No statistically significant difference
was found for the rest of the tests.

d: CORRELATIONS

A correlation analysis of all the measurements acquired in
this study did not reveal any strong correlations between
observed SA, perceived SA, perceived workload and per-
ceived UX in either stress or non-stress conditions, as can be
seen in Tables 4 and 5, respectively.

VI. CONCLUSION AND FUTURE WORK
In this work, we introduced a novel computational method-
ology, which aims at enhancing the Situational Awareness of
users, through a real-time, dynamic adaptation of Uls, while
taking into consideration the current context. Our approach
combines Combinatorial Optimization with Ontology mod-
eling and reasoning in order to graphically provide suitable
information at run-time, through deciding what information
to present, when to present it, where to visualize it in the dis-
play, and how. This is performed while considering placement
constraints of GUI elements, as well as avoiding prominent
“SA demons”’, such as information overload and induced
stress.

The proposed, general-purpose methodology was deployed
to the application domain of the DARLENE project, whose
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main objective is to improve the SA of Law Enforcement
Agents (LEAs), when responding to criminal and terrorist
activities, through Augmented Reality and Machine Learning
technologies. The proposed computational approach aims to
aid LEAs in making more informed and rapid decisions,
through in-situ dynamic adaptivity of the visual elements
that are presented on their AR headsets, taking into account
the variety of user characteristics, environmental and sys-
tem factors, as well as the current task. For the purpose of
identifying these factors that affect LEA’s SA, as well as
GUI elements that would increase their SA during policing,
co-creation workshops were conducted with end-users. The
requirements that resulted from these workshops enabled
us to model knowledge from this application domain into
an Ontology and formulate an optimization problem for the
adaptation of the LEA’s AR UL

To assess our methodology, two evaluations were con-
ducted, proving us with invaluable insight, with respect to the
benefits and limitations of our approach. The first one was
an expert-based evaluation with 10 LEAs and User Experi-
ence (UX) experts, assessing the appropriateness of the sys-
tem’s decisions, regarding what information was displayed,
how detailed it was and where it was positioned. The results
led to improvements in both the positioning and presentation
of the GUI elements, which were employed in the subsequent
evaluation with end-users.

In that second, user-based evaluation, 20 LEAs from dif-
ferent agencies were involved. Its aim was to assess our
approach and its adaptive capabilities with regard to three
key dimensions, namely SA, workload, and User Experience
(UX). Acknowledging the influence of stress in SA, these
metrics were evaluated both at normal stress states and under
experimentally induced stress. In addition, it was explored
if and how LEASs’ stress and professional expertise have
an impact on the aforementioned metrics. With respect to
Situational Awareness, the study examined perceived and
observed SA with the aim to identify whether the system
enhances LEAs’ SA in stressful and non-stressful conditions.
Overall, using the system improved perceived and observed
SA, by 25.63% and 9.25% respectively. In particular, in the
case of stressful conditions, perceived SA was improved by
30%, whereas observed SA by 3.95%. In non-stressful condi-
tions, perceived SA was improved by 15.65%, while observed
SA by 15%. Furthermore, the results indicate that the system
does not induce perceived workload, in both conditions, when
compared with findings from studies in real policing tasks,
and that it is both useful and usable, providing an overall
positive UX. Lastly, when using the system, professional
expertise did not have an effect on observed or perceived SA,
indicating that our system can benefit anyone, while stress
negatively influenced perceived effort, in comparison to the
no stress condition, but influenced positively perceived SA.
Although the finding that in the no stress condition partic-
ipants exhibited lower perceived SA may seem unconven-
tional, it is noted that perceived SA is calculated by taking into
account the attentional demand required, which was deemed
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as higher in the non-stress condition, since the GUI included
more information. It is noteworthy that in this case, observed
SA was substantially improved, despite participants’ scoring
lower in perceived SA.

With regard to future directions, a first step is to address
the issues discovered during the expert and user-based evalua-
tions. One of the aspects we seek to improve in future versions
is the better accommodation of the LEA’s stress. Concretely,
although the system enhances observed SA in all states, even
under stressful conditions, its benefit is not as emphatic as
in normal stress conditions, as indicated by our analysis.
Moreover, with regard to future experiments, we plan to
evaluate our system in in-situ simulations, with a larger pool
of participants, consolidating our results and acquiring new
findings that did not arise in our video-simulation approach.

Furthermore, the evaluations noted certain inconsisten-
cies in preferences across participants, which need to be
explored in more detail. To this end, we plan to accom-
modate further customization and personalization in our
approach, through enhanced user-modeling and incorpora-
tion of advanced content-recommendation techniques.

Moreover, a limitation in our modeling is that it takes into
account only the type of information and not its content.
Consequently, as an example, both a knife and an explosive
will be considered equally important for enhancing the user’s
SA by our optimization algorithm, since they are both ‘Car-
ried Weapons’. We plan to address this by modeling, and
considering in the optimization formulation, a ‘criticality’
attribute that would aid in differentiating between different
levels of priority, for the same kind of information.

In addition, as we have already established, given the
complexity of our optimization problem and the real-time
requirements for its deployment, achieving fine-grained pixel
placement of GUI elements without “down-sampling” of the
display, and, at the same time, having fine-grained collision
detection, is computationally intractable, using off-the-shelf
optimizers. In this respect, we have already started investi-
gating the adoption of Machine Learning methods for Com-
binatorial Optimization, a new prominent area of research in
recent years. Considering that our visualization problem is an
instance of the 0-1 Knapsack problem, which is NP-complete,
such a direction could substantially enhance the scalability
of our approach, allowing us at the same time to incorporate
more complex constraints and improve placement, without
resorting to coarse collision detection.
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