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ABSTRACT Emerging 5G cellular networks are expected to face a dramatic increase in the volume of
mobile traffic and IoT user requests due to the massive growth in mobile devices and the emergence of
new compute-intensive applications. Running high-intensive compute applications on resource-constrained
mobile devices has recently become a major concern, given the constraints of finite computation and limited
storage capacities. Mobile Edge Computing (MEC) has recently become the key technology to overcome
these issues by providing cloud computing capabilities and placing IT infrastructures at the mobile network
edge. In this survey, we present a list of relevant research papers for the MEC infrastructure implementation
phases, including (1) MEC infrastructure designing and dimensioning, (2) MEC infrastructure virtualization
using Network Function Virtualization (NFV) concept, and the use of virtualized service placement and
auto-scaling methods to deploy an agile system framework, (3) MEC resource management frameworks,
and (4) approaches used to optimize the MEC resources on the physical infrastructure. The main focus
of this survey is to determine the required aspects to implement an auto-scaled and proactive MEC-NFV
infrastructure to support a dynamic and heterogenous mobile users’ demand at mobile network operators.

INDEX TERMS Mobile edge computing, MEC infrastructure design and dimensioning, mobile network
operator, optimization approaches, proactive, resource management, virtualization, NFV, VNF autoscaling,
VNF placement.

I. INTRODUCTION
The 5G era has witnessed tremendous growth in mobile
subscriptions and mobile data traffic. Based on Ericsson’s
latest forecast for 2020–2026, it is expected that global
mobile subscriptions will grow from 7.9 billion to 8.8 billion,
and international mobile data traffic will double [1]. The
increased mobile network coverage drives this significant
increase in mobile data traffic, the massive IoT (Internet
of Things) device deployments, and mobile broadband sub-
scriptions. Therefore, the demand for traditional cloud-based
services in mobile networks increases dramatically, such as
video streaming, social networking, and online retail services.
Moreover, there is a high demand for new cloud services,
such as mobile cloud games, remote control services for air
and ground vehicles, and services that handle manufacturing
processes [2].
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To meet the increasing demand for computational requests
in cellular networks, conventional cloud computing platforms
(e.g., based on data centers) are continuously expanding
their servers’ capacities and thus, improving the Quality of
Service (QoS) they provide. However, for various reasons,
new computing platforms and architectures are needed to
better scale with the explosion of the mobile service require-
ments. For mobile users to access traditional cloud services,
mobile traffic must pass through multiple stages, including
the mobile backhaul and possibly the mobile core operator,
which creates additional communication latency that can
exceed the latency requirements of critical services. In addi-
tion, intensive investments in computing and communica-
tion resources are required for conventional cloud computing
platforms to enhance the quality of the services provided in
cellular networks, which further increases the costs of access
to cellular networks [3]. Finally, network knowledge and user
context information can help provide localized services to the
end-users and enhance their Quality-of-Experience (QoE).
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Mobile Edge Computing (MEC) is emerging as a promis-
ing technology to meet these needs [4], where it can provide
the cloud computing capabilities by placing computational
infrastructures at the network edge (i.e., radio access network
‘‘RAN’’) near mobile users to offer real-time information.
Taking advantage of the close distance to the mobile end
users, the mobile operators can improve QoE for their users
and provide context-aware services with the help of RAN
information [5] to reduce the network delay. Furthermore,
edge data centers also can co-work with centralized cloud
data centers for service orchestration. Such decentralization
and collaboration in MEC are expected to transform infras-
tructures and applications significantly [6].

In edge computing, where and how to place the edge server
is a vital issue. An appropriateMEC infrastructure implemen-
tation process is then required. To this aim, one needs to (1)
maximize the used computation resources at each edge node,
(2) provide efficient real-time services to the mobile users,
and (3) guarantee the quality of experience for the mobile
users. To do so, we identified three stages to implement MEC
infrastructure.

First, assuming no existing MEC infrastructure is already
deployed next to the Base Station (BS) at the mobile network
operator. MEC infrastructure is therefore built based on the
workload predictions for the mobile traffic received from the
end-users (mobile users, connected vehicles, or IoT devices)
at each BS location. For example, the massive mobile traf-
fic received at specific BS locations can increase network
congestion on the cloud and negatively impact network per-
formance. Deploying localized MEC infrastructure in high-
traffic BS areas can benefit conventional cloud providers,
mobile core operators, and Internet service providers.

Second, the MEC infrastructure interacts with the mobile
end users and defines how it manages MEC computational
resources to satisfy their needs. MEC resource manage-
ment is a multi-objective management process that could
be described as the way of deciding where the computing
MEC resource for each user should be performed, how much
of each resource is needed, and what resources should be
allocated, taking into consideration: (1) the unpredictability
of user mobility behavior, and (2) the dynamic properties
of the network. Generally, resource management depends
on other hardware or software architectures (for example,
the MEC resource orchestrator) integrated into the MEC
infrastructure to ensure optimal node selection for edge
computing.

Third, MEC infrastructure should be optimized to meet
the performance demand of the mission-critical applications
offered by MEC. It should efficiently utilize its computa-
tional resources and infrastructure. In this stage, identifying
which QoS parameters to optimize for each MEC environ-
ment component is essential, including the service provider,
the infrastructure provider, and the mobile end-user. To suc-
cessfully implement MEC infrastructure at mobile operators,
these three broad steps focus on the following four major
phases:

Phase 1: Estimate the volume of mobile traffic received
from mobile end-users at a specific BS location, design, and
size new MEC infrastructure, or expand the existing one.
Phase 2: Determine Virtualized Network Service (VNF)

auto-scaling and placement mechanisms used in MEC-NFV
infrastructure.
Phase 3: Install MEC framework using additional hard-

ware and software for MEC resource management and pro-
vide VNF scaling decision.
Phase 4:OptimizeMEC infrastructure to achieve adequate

QoS for end-user requests.
To the best of our knowledge, most current surveys focus

on investigating and presenting the works related to one or
more of these phases but not all four phases. Our survey is
different from the existing surveys as it presents a critical
evaluation of solutions that contribute to the practical end-to-
end implementation of MEC infrastructure in the NFV envi-
ronment, including all these four MEC deployment phases.
In other words, this survey provides a framework that covers
all steps to implement an agile, auto-scaled, and cost-efficient
MEC infrastructure at the distributed edge nodes to support
themobile traffic heterogeneity and dynamicity. Accordingly,
our main contributions are summarized as follows:

• Present and discuss existing MEC infrastructure design
and dimensioning techniques.

• Present a structured classification of virtualized ser-
vices placement and auto-scalingmethods inMEC-NFV
infrastructure based on the MEC use case.

• Review current framework solutions for MEC infras-
tructure and resource management, including resource
orchestration and centralized control for the distribution
of MEC servers.

• Present the optimization approaches to solveVNF place-
ment problems from three different points of view: end-
user, infrastructure owner, and service provider.

• Considering no existing MEC infrastructure at the
BS location, propose the main steps to deploy the
MEC-NFV framework that dynamically place and
proactively scale the VNFs at the distributed edge nodes
to ensure better network performance and avoid service
disruption. The proposed MEC-NFV framework adapts
well to the dynamic nature and the heterogeneity of IoT
traffic.

The publications listed in this survey will focus on the
following topics: (1) MEC infrastructure size and design,
(2) MEC infrastructure virtualization using NFV technique,
(3) VNF placement and auto-scaling in MEC-NFV envi-
ronment, (4) MEC resource management frameworks, and
(5) Optimization approaches in MEC-NFV infrastructure.

The remaining of this survey is organized as follows.
Section II in this survey explains the main components of
MEC architecture and how they interact to achieve the
MEC system benefits, such as supporting real-time appli-
cations with low latency, reducing mobile energy consump-
tion, reducing service cost, and supporting users’ mobility.
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Section III lists the MEC applications and the main moti-
vations to use the MEC. In addition, this section presents
the key benefits and challenges of the MEC systems.
Section IV examines and compares current findings on the
design and dimensioning of MEC infrastructure and dis-
cusses the importance of deploying MEC system on NFV
infrastructure to achieve its benefits and work efficiently.
Section V discusses MEC frameworks from different per-
spectives: Managing MEC server distribution using virtual-
ization technology (i.e., Software Defined Network ‘‘SDN’’),
resource orchestration among MEC multi-sites, building an
agile MEC framework that handles time-varying traffic using
different auto-scaling and placement approaches and optimiz-
ing MEC-NFV framework architecture considering different
QoS parameters. Section VI presents the learned lessons and
proposes a guideline with the main steps to deploy an end-
to-end MEC-NFV proactive auto-scaled architectural frame-
work. Finally, Section VII concludes the paper.

II. MEC OVERVIEW
MEC is an example of delivering cloud service capabil-
ities at the edge of mobile networks, close to the end-
user [7]. According to the European Telecommunications
Standards Institute (ETSI), the MEC is characterized by
low-end latency, local computing and storage resources, net-
work awareness, and enhanced service quality provided by
mobile operators [8]. MEC requires seamless integration of
both mobile network operators and the service providers in
architectural design and resource management [8]. MEC’s
development is further driven by several incentives for market
transformation, including the need for the mobile operators
to reduce the time-to-market of the new compute-intensive
applications to increase their profit. Thus, the participation of
different parties (i.e., network service providers, mobile net-
work operators, and mobile end-users) is required to ensure a
successful MEC deployment.

Referring to ETSI white paper [9], MEC is differentiated
by the following:
1) On-premises: MEC can be deployed and run in an

isolated environment where it has access only to its local
computing resources and is completely separated from the
rest of the network.
2) Proximity: MEC servers are typically placed in prox-

imity of mobile users. This close distancing would allow
mobile operators to collect and store real-time information
from mobile users and process it for different purposes such
as big data analytics and support location-aware services.
3) Low latency: MEC system can reduce the propagation

and communication latencies and avoid the network conges-
tions on the front haul and backhaul network links. Thus,
this will make it possible for MEC to be a key enabler for
latency-critical 5G applications while enhancing the content
and service responsiveness time.

This section discusses theMEC architecture from aflexible
resource management perspective, including communication
and computing resources.

A. MEC ARCHITECTURE
MEC delivers mobile end-user services in the form of com-
puting and storage resources. MEC resources are expected
to be deployed on mobile networks that are locally close
to end-users. Specifically, MEC resources can be used at
both indoors and outdoors base stations (BS), Access Points
(AP), as well as radio access networks (RANs) that connect
user equipment (UEs) to the core network of MNO [10].
The exact deployment of MEC resources depends on phys-
ical constraints (such as power supply, available space, and
deployment budget), performance requirements, and net-
work operators’ preferences [10]. Considering the different
MEC deployment options, Fig.1 presents MEC components
in three categories based on their functions and how they
interact to achieve MEC system goals [11]–[16]. The first
category is the MEC end-users, including mobile users, con-
nected cars, and Internet of Things (IoT) devices. The second
category is computing components that are used to handle
end-user applications. Finally, the end-user and computing
components are connected by communication components,
the third category of MEC components.

1) COMMUNICATION UNITS
These units include wireless and/or wired communication
networks:

Wireless networks are considered the primary way to pro-
vide connectivity for end-users in the MEC. End-users can
be either connected to an unlicensed radio spectrum (i.e.,
WiFi) or directly connected to base stations andmobile access
points that operate on licensed radio spectrum [17]. For
example, 5G networks should provide enhanced support for
bandwidth-intensive applications in MEC [18]. Additionally,
5G networks support Ultra-Reliable Low Latency Communi-
cation (URLLC), which is expected to achieve 1-millisecond
latency and support applications that require strict latency
requirements (e.g., process control and control services for
drones) [19]. In addition to connecting end-users, wireless is
considered an alternative to a wired backhaul, so wireless can
also be used to communicate to MEC resources [20].

As for wired networks, the mobile backhaul network inter-
connects the various RAN components and the mobile core,
establishes communication between the MEC components
and the base stations or access points, and finally, the end-
users. The physical infrastructure consists of cables (i.e.,
fiber) and various forwarding and routing devices. Because
transmission time is relatively short in wired environments,
packet processing time on routers and switches constitutes a
significant part of the delay.

In communication networks, network functions allow
monitoring and managing communication resources. Typ-
ical networking functions include resource provisioning,
orchestration, performance analysis, error detection, and load
balancing.

Network Functions Virtualization (NFV) is becoming
increasingly popular in the telecommunications industry, as it
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FIGURE 1. An illustration of main MEC components.

facilitates network management agility by virtualizing het-
erogeneous network functions provided by dedicated hard-
ware [21]. Moreover, MEC-related network functions can
also be virtualized [22].

2) COMPUTING COMPONENTS
These components are another MEC component category
that provides computing and storage resources to serve MEC
end users. These components include the MEC nodes and
orchestrator:

a) MEC nodes: The MEC node may be heterogeneous
depending on the performance requirements and deployment
conditions. These nodes can have out-of-the-box commer-
cial servers, small form factor servers, and purpose-built
servers (for example, built-in artificial intelligence capability
and high-volume storage capacity). MEC node consists of
three components: Virtualized Services (VS) corresponding
to the user application, a runtime environment that pro-
vides software support for running VS, and built-in hardware
components.

Due to the tight integration of MEC and mobile networks,
mobile network operators have the advantage of being owners
and operators of MEC nodes. However, third-party service
providers, such as property facility owners and cellphone
tower owners, may haveMECnodes for their benefit, depend-
ing on the cost and complexity of deployment [23].

b) Resource orchestrators oversee and operate MEC nodes
to efficiently use their computing resources and provide
the expected QoS. The main resource orchestrator functions
include resource allocation, virtual network service place-
ment, task scheduling, and software updates. Additionally,
resource orchestrators may be responsible for detecting fail-
ures in the MEC and enabling failed schemes [24].

III. MOTIVATION, APPLICATIONS, BENEFITS, AND
CHALLENGES
This section lists the current computational application sce-
narios that force the use of MEC platforms besides the vital
enablers that help MEC provide low-latency and context
awareness services. Moreover, a list of key benefits and
potential challenges for the MEC system are presented in
this section. MEC platform is ideal for dynamic content
optimization, computational offload in the IoT, extensive
mobile data analysis, and intelligent transport. Considering
that such applications are unsuitable for working on mobile
or portable devices, they require large storage capacity and
computational power.

A. MEC APPLICATIONS
Mobile edge computing has a high potential to offer a wide
range of computing application types to its mobile users.
The recent applications in MEC can be classified as offload-
ing computing resources, collaborative computing, storage
replication, and web content delivery [32]. These computing
applications process the user’s requests on the edge network,
minimizing the network delay and enhancing service quality.
The applications mentioned above use context information to
enhance the user experience by offering heterogenous service
types for mobile users.

1) COMPUTATIONAL OFFLOADING
Mobile applications like automatic speech recognition, video
streaming, mobile games are considered compute-intensive
applications. However, running this type of application
on resource-limited devices requires a lot of computing
resources and power. Instead, the task could be offloaded
to the remote cloud the final result is returned when a task
is completed successfully. Since the connection between the
edge device and the remote cloud requires a long time, mobile
edge computing servers could be deployed at the network
edges with little use of resources. That way, high-intensive
tasks can be offloaded.

Collaborative computing brings people and different com-
panies and organizations together in a distributed comput-
ing system. In MEC, examples of collaborative computing
applications range from simple sensors to robotically assisted
and remotely controlled telesurgery. In such applications,
device location and communication channel delay play a
critical role during communication among different system
users. Extending the real-time collaborative application in
a mobile edge environment offers a robust context-sensitive
collaboration model in the MEC system.

2) STORAGE REPLICATION
LTE has become the dominant technology for devices over
the past year. IoT devices are less computational and have less
storage capacity. These devices get the data over the network
and offload it as a storage object for further computation
in the scalable cloud infrastructure. As the number of IoT
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devices grows, the simultaneous replication of storage objects
increases network latency. The edge servers can host multiple
cloned clouds for each device, bringing computing power
closer to the IoT device and reducing network delay.

3) CONTENT DELIVERY
It enhances web content on web servers to offer high avail-
ability, high quality of service, and reduce network delay.
Conventional web content delivery cannot adapt to the
end-user demands when optimized. MEC can support the
dynamicity of web content optimization based on network
conditions and the system load. The proximity of devices
allows edge servers to utilize user mobility and QoE to opti-
mize the web content.

B. KEY ENABLERS
The real-world implementation of mobile edge computing
technology can be traced back to the support of various key
technologies. The critical enabler attribute represents mul-
tiple technologies that help provide context-related services
with low latency and high bandwidth for mobile network
users near the RAN.

1) CLOUD AND VIRTUALIZATION
Virtualization creates an abstraction layer over the underly-
ing hardware, introducing a logical infrastructure variant in
the same physical hardware. The existence of computational
resources at the network edge makes it possible to deploy
different virtual machines using virtualization technology to
offer different cloud computing services.

2) HIGH VOLUME EDGE SERVERS
In the MEC platform, powerful physical servers are collo-
cated in each mobile base station at the edge network. These
edge servers are responsible for processing the offloaded
computational tasks from the mobile users efficiently and in
a real-time manner.

3) NETWORK TECHNOLOGIES
Multiple small cells are used in the MEC environment. Wire-
less network protocols such as WiFi and mobile cellular
networks are the leading network technologies to provide
connectivity between mobile devices and the edge server.

4) MOBILE DEVICES
Such devices can be used to process energy-saving and
hardware-related tasks that cannot be offloaded to the edge
network. Wearable devices also perform peer-to-peer cal-
culations within the edge network using device-to-device
communication.

5) SOFTWARE DEVELOPMENT KIT
This standard application programming interface (API) helps
to adapt existing services, accelerate new flexible compute-
intensive applications, and be easily integrated into the appli-
cation development process.

C. MEC BENEFITS
In MEC systems, the computing resources are not centralized
at the conventional cloud servers. They are distributed at the
mobile network edges near the end-users. MEC infrastructure
may include tens of large data centers and thousands of small
ones collocated with cell towers and separated by less than
10 miles [25], as shown in Figure.2.

This scalable and flexible architecture allowsMEC to offer
the benefits below:

1) HIGHLY DISTRIBUTED AND HETEROGENEOUS
RESOURCES
Edge DCs in MEC are allocated in different geographical
locations, and they vary in scale and type in terms of comput-
ing resources such as processing resources, storage resources,
and network resources.

2) SUPPORT REAL-TIME APPLICATIONS WITH LOW LATENCY
MEC is an excellent choice for services that require guaran-
teed QoS or low-latency communication, receive high traffic
from end-user devices or need extensive data analysis.

3) LESS MOBILE ENERGY CONSUMPTION
In MEC, compute-intensive applications can be offloaded
from the mobile devices to edge servers. Computation
offloading will significantly reduce their energy consumption
and prolong battery life.

4) MOBILITY SUPPORT
MEC can support mobile end users, including smartphones,
IoT devices, sensors, and provide them with seamless access
to the network by changing their attachment points to the
network as they move.

5) IMPROVING SECURITY
The distributed deployment and the small-scale nature of
the edge servers in MEC make it less vulnerable to security
attacks. Moreover, MEC prevents uploading critical data to
remote data centers. The IT administrator is responsible for
maintaining the authorization and access control rules within
the enterprise and categorizing various service requests with-
out needing an external unit.

6) INTEROPERABILITY WITH THE TRADITIONAL
CENTRALIZED CLOUD
In some cases, getting resources from the distant centralized
clouds with much greater computing and storage capabilities
is cheaper than MECs. So MECs should exploit resource
allocation techniques to allocate end-users with computing
resources with less latency, cost, energy consumption, and
improved performance.

D. MEC POTENTIAL CHALLENGES
In MEC systems, despite the various opportunities that MEC
can offer, several potential challenges are needed to be
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FIGURE 2. General MEC Architecture.

investigated to allow network players such as mobile end-
users, infrastructure providers, and mobile network operators
to get an advantage from the edge services:

1) DISTRIBUTED RESOURCE ALLOCATION MANAGEMENT
A multi-criteria resource management technique is required
to handle the dynamic behaviors of the MEC system
due to devices mobility and the regular change in the
computing application requirements [26]. Implementing a
multi-objective resource management technique requires to
be combined with multi-criteria schedulers. This requirement
could be challenging due to the variable application types,
heterogeneous MEC servers, various user requirements, and
the different QoS requirements of the communication chan-
nels. Furthermore, the wireless channel would become con-
gested with the massive increase in mobile devices, and users
would compete fiercely for the limited computing resources.
This issue could be resolved using the centralized approach,
but it has one drawback: high computing complexity and high
reporting overhead. As a result, the centralized process is not
convenient for distributed MEC systems [27]. Based on that,
reliable and distributed MEC resource allocation schemes
needed to be investigated.

2) SYSTEM INTEROPERABILITY AND APPLICATION
PORTABILITY
Depending on the users’ locations and the technical require-
ments, physical nodes can be deployed at different locations
within the MEC infrastructure. As a result, a new crucial
challenge is MEC’s transparent integration into the underly-
ing existing infrastructure and interfaces without affecting the
standard specifications of the core network and end device.
According to [28], the ability of the MEC system to commu-
nicate with other system elements in the 5G network to man-
age users’ workloads and get appropriate control information
is a critical component of MEC integration. Furthermore,
the application migration points to a requirement known as
application portability to eliminate the need for the soft-
ware designers to create multiple instances for various MEC
frameworks.

3) RELIABILITY AND MOBILITY
Managing mobility and ensuring reliability in a dense envi-
ronment is extremely difficult. First, when multiple small
servers are used, usermobility can lead to frequent handovers,
service outages, and overall poor network performance [29].
Second, mobile users can change their positions during the
computation offloading time (e.g., vehicles, mobile devices).
In such a case, mobile users may be unable to access the
computation outcome after processing their request as they
left the service area of the home serving node. As a result, reli-
able computational offloading methods are required for the
task computation’s success taking into account the dynamic
changes in the number of offloading users [30]. Third, consid-
ering the dynamicity of wireless connections and user mobil-
ity, providing efficient edge computing services in mobile
environments is extremely difficult. For example, real-time
applications like Augmented Reality (AR) necessitate real-
time response and reliable connectivity between the edge
nodes and end-users. Furthermore, these requirements would
not be fully met due to dynamic channel quality and intermit-
tent connectivity.

4) THE SYNCHRONICITY OF DECENTRALIZED MEC AND
CENTRALIZED CLOUD
The conventional centralized cloud datacenters, with massive
computational and communication resources, can process
big-data applications in real-time and serve many users.
However, the decentralized MEC infrastructure is highly
desirable because it meets QoS user requirements and reduces
latencies caused by traffic congestion and transmission delay.
It is advantageous to implement MEC hierarchically, that is
consists of three main layers: mobile user, edge-computing,
and cloud-computing layers, like the HetNet architecture.
The MEC provider also adds computational resources to the
smaller eNBs, enabling HetNets to diversify radio transmis-
sions and spread computing demands [31]. It is observed
that decentralized MEC may not have enough computing
resources to process all user requests, raising concerns about
providing latency-critical services. As a result, it makes sense
to distribute the latency-critical computing applications to
decentralized MEC servers while moving compute-intensive
and delay-tolerant applications to the conventional remote
cloud [31].

5) SECURITY AND PRIVACY
MEC system has security and privacy difficulties. First, MEC
can coexist with various network equipment, so using tradi-
tional privacy and security mechanisms used earlier in con-
ventional cloud systems is inappropriate for MEC systems.
Second, malicious leakers can perform overhead computation
tasks. Thus, task offloading over wireless channels can be
unsafe. The encryption on the user side and decryption on the
destination server-side should secure the transfer of compute-
intensive applications. However, this security procedure can
increase the propagation and execution delays and reduce
application performance [32].
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Despite all these challenges, there is a potential need for
a Mobile Edge Computing system in many critical real-
life applications scenarios. The rest of this paper will focus
on the entire process of MEC implementation, assuming
there is no existing infrastructure deployed. This process
includes reviewing and comparing current contributions to
MEC infrastructure design and dimensions. Also, examining
different works in MEC infrastructure virtualization, iden-
tifying virtual network services concept, VNF placement
and autoscaling methods, and assessing the feasibility of the
MEC framework.Moreover, the capabilities and performance
approaches to optimize MEC infrastructure and resources are
reviewed. Finally, an original implementation method is pro-
posed to deploy an auto-scaled proactive MEC infrastructure
at the mobile network edge.

IV. MEC DESIGN AND DIMENSIONING
MEC design and dimensioning process is defined as identify-
ing the MEC edge node location and indicates the amount of
computational resources required to be installed at each edge
node based on the mobile traffic received at each site.

In recent years, there have been some related works on the
placement of cloudlets [41]–[43]. For instance, Jia et al. [41]
proposed cloudlet placement and mobile user allocation algo-
rithm in the wireless area network. They presented two
heuristic algorithms for the K-cloudlet placement problem:
(1) a simple heavy-AP first algorithm that places cloudlets
at the access points where the users’ number is the largest.
(2) a density-based clustering algorithm that eliminates the
drawbacks of the heaviest-AP algorithm and decreases the
probability of oversaturating a densely populated region with
cloudlets. Xu et al. [42] examined the issue of cloudlet
deployment in an extensive wireless metropolitan area net-
work, addressing a new capacitated cloudlet placement prob-
lem to select the strategic locations in the WMAN network
to place K cloudlets. The placement decision depends on
the resources demands received by all user requests at a
specific location. Xu et al. solved this problem using a heuris-
tic algorithm to reduce the average communication latency
between mobile users and the cloudlets that serve the users.
Xiang et al. [43] proposed a GPS-assisted adaptive cloudlet
placement method for mobile applications. In this method,
the cloudlet locations are identified based on the gathering
areas of the mobile devices. Placing such mobile cloudlets
improves the cloud service quality for dynamic context-aware
mobile applications. Although the above methods are effec-
tive, they did not consider the workload of edge clouds in
mobile edge networks or the delay in communication of
remote users.

Some studies focused on MEC dimensioning topic by
identifying the computational and communication resources
demanded at each edge node to satisfy the system’s work-
load. Some of these studies [11], [44] modeled the needed
resources at each BS location as the number of MEC nodes
that should be deployed, while other studies [45]–[47] mod-
eled the required resources at each site as the workload of

user requests. Wang et al. in [44] formulated a resource
size problem to calculate MEC node locations and balance
end-user communication latency and workload. MEC node
locations are limited to base station locations. The result-
ing problem is NP-hard and is solved with an optimization
solver. Takeda et al. in [11] addressed placing a fixed number
of MEC nodes problem in mobile networks with a set of
BSs associated with this edge node to offload computational
tasks. They formulated four resource size sub-problems with
various tradeoff targets between different performance met-
rics, including the maximum load of a single network link,
the entire workload of a single MEC node, and the max-
imum network traffic. Li et al. [45] proposed a high-level
approach to resource dimensioning where each BS collects
workloads from its users, and these workloads are not tied
to any specific type of computational resource. The authors
in this work formulated the problem of resource dimension-
ing for placing MEC nodes to reduce energy consumption.
The consumption of the system arises from two sources:
(1) energy usage that occurs even when the server is idle,
and (2) energy usage caused by the hosting user application.
They, therefore, proposed an algorithm to maximize resource
utilization and reduce the energy consumption at the MEC
node. Authors in [46], [47] provided exemplary system usage
models based on traffic coming from base stations or user
requests. Zeng et al. in [46] assumed that the computational
effort at each BS is proportional to the amount of its network
traffic, which can be determined from historical data. They
examined the problem of minimizing the number of MEC
nodes deployed while imposing restrictions on communica-
tion latency and the number of BS that aMEC node can serve.
Wang et al. in [47] modeled each BS site as the arrival rate
of workloads and characterized each workload as the number
of requested resources in terms of CPU cycles, memory size,
and disk space. They propose a three-step algorithm which:
(1) selects the locations of the MEC nodes to reduce the
number of used MEC nodes, (2) calculates the number of
resources to be placed on each MEC node by dividing the
resources on the MEC nodes and adjusts the number of
resources based on the actual workload, and (3) determines
the connection capacity of the network. Note that the authors
of this work did not consider the network latency requirement
when dimensioning the MEC system.

Authors in [48], [49] considered network latency require-
ments when taking MEC dimensioning decision. For exam-
ple, Ta et al., in [48], solved the server deployment problem
to increase the number of users that fit the delay require-
ment. They proposed a technique of placing the edge servers
in high user density locations and developed two heuris-
tic solutions to achieve that. Kasi et al. in [49] studied
the MEC dimensioning problem to minimize the latency
between MEC nodes and BSs, suggesting that each BS is
assigned to a MEC node to obtain the required computa-
tional resources. They proposed three algorithms based on
genetic and local search heuristics to solve the dimensioning
problem.
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Other works considered the users’ mobility when solving
the dimensioning problem. In [50], the authors assumed that
the user mobility would result in a certain known amount of
workload to be shifted from one MEC node to another. The
authors calculated an upper limit on the maximum supported
number of VMs that can be transferred from oneMECnode to
another, based on the available computing resources to meet
the resource demand for service migration.

Considering the reliability parameter in MEC dimension-
ing problem, the authors in [22] investigated the problem of
assigning a fixed number of MEC nodes to serve users in
the local area. They advocated using the reset power metric
as the number of MEC nodes that each user can access
and formulate the resource size problem as a multipurpose
integer programming (IP) problem. The resulting problem
is an NP-hard problem and is solved by an approximation
algorithm to maintain system reliability.

Those above dimensioning and design MEC methods do
not follow an auto-scaled and proactive approach when deter-
mining the required number of MEC nodes and resources
allocated for each mode to serve the user request. The MEC
system’s workload is assumed to be fixed in these works,
which is not the case in the real environment. Static dimen-
sioning approaches may lead toMEC resources not being uti-
lized effectively over time and could also cause the blocking
requests rate to increase as there are not enough resources
to process the user request at a specific time. To efficiently
deploy aMEC system at the network edge, the operator needs
to find the proper server placement and the actual amount
of communicational and computational resources required to
process user requests dynamically varying over time. Thus,
the operator should virtualize the MEC infrastructure using
Network Function Virtualization (NFV) technology.

In an NFV environment, MEC network functions are
implemented as Virtual Network Functions (VNFs), which
can be deployed and executed on a virtualized platform (i.e.,
virtual machine or container). These VNFs can be easily
placed at the hosted edge nodes and close to the end-user to
process their requests. Placing VNFs at the right edge nodes
and assigning them the proper amount of resources should be
carefully managed by the operator considering the edge node
capacity limitations, service latency requirements, and time-
varying traffic. Some works related to VNF auto-scaling and
placement in the MEC system are presented in section V.

VNF placement and orchestration could be challenging for
the operator due to the mobile traffic variation based on user
distributions and mobility models. This emerging behavior
will result in uneven traffic distribution within the MEC sys-
tem. Thus, the number of required VNF instances to be placed
at the edge server will fluctuate frequently. To overcome these
challenges, the operators should adopt a proactive auto-scaled
approach to place VNFs in a distributed MEC-NFV infras-
tructure dynamically, allocate/release resources to a VNF
automatically, and add/remove one or more VNF instances.
The proactive VNF auto-scaling approach combines traffic
prediction and threshold-based methods to produce scaling

decisions ahead of time. Section V discusses different VNF
auto-scaling and placement approaches used in dimension-
ing the MEC framework. Section VI provides a high-level
description of the necessary steps to deploy the MEC-NFV
infrastructure from scratch that proactively scaled the virtual-
ized services at the distributed edge nodes in MEC according
to the received users’ traffic.

V. MEC FRAMEWORK
In the MEC system, the distributed servers in the infrastruc-
ture layer must provide the end-users services in a cloud-
like manner, which means users should be unaware of such
decentralization and distribution. As a result, the distribution
of MEC servers over the physical infrastructures must be
appropriately managed and orchestrated to offer service in a
unified manner. Two factors should be considered to achieve
this requirement when implementing the MEC framework:
(1) Proper management for the server distribution in the
MEC infrastructure, (2) Resource Orchestration over the dis-
tributed heterogeneous infrastructure, (3) Building an agile
MEC framework that supports mobile traffic dynamicity
using VNF auto-scaling and placement approaches, and (4)
Optimizing the performance for the MEC framework. This
section reviews the research proposals for managing MEC
servers’ distribution and resources among multi-sites.

A. MEC EDGE SERVERS DISTRIBUTION MANAGEMENT
MEC edge servers’ distribution in the MEC infrastructure
is not suitable to co-work with the existing cloud comput-
ing’s united service model. Fortunately, Software Defined
Networks (SDN), a newly emerging control technique,
guarantees edge computing requirements, and it can offer
centralized orchestration and virtualization capabilities over
decentralized platforms [51]. While reviewing this current
topic, one can notice that SDN could work with the MEC
in three ways: (1) SDN can be used to control the edge to
provide the unified service to its users; this approach is called
SDN-Controlled edge, (2) Edge computing nodes can extend
their infrastructure capabilities to implement SDN controllers
at each node and reduce the response time for control mes-
sages and reduce delay; this approach is called Edge-Enabled
SDN, and (3) Distributed computing edge elements and the
SDN controllers can work together to manage and control
users’ requests; this model is known as SDNCollaborate with
Edge.

1) SDN-CONTROLLED EDGE
Jararweh et al. [52] introduced a software-defined network-
ing framework to provide MEC efficient storage and com-
puting services. The centralized management nature of SDN
conforms to the decentralized nature of edge computing;
therefore, SDN can be improved to manage and control
computing resources at the network edges [52]. From a sys-
tem standpoint, this improvement is accomplished by apply-
ing global and local software-defined controllers responsible
for ensuring that all edge features in the MEC system are
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working efficiently. Xu et al. [53] proposed a prototype of
an edge computing node based on the SDN concept. The
SDN controller suggested in this work allows edge servers
to control functionalities and provides a reliable platform
for performing critical data analytics required at the IoT
source. Abdullahi et al. [54] developed and implemented an
SDN-based edge computing control platform to coordinate
clustering in Information-Centric Networks. Targeting the
Internet of Vehicles (IoV), Hou [55] proposed using vehi-
cles as infrastructures for communication and computation
resources. In this work, SDN was augmented with the ability
to manage various distributed vehicular resources and char-
acteristics such as devices capabilities and mobility in the
vehicular edge computing systems.

2) EDGE-ENABLED SDN
MEC broadens computational infrastructures and capabili-
ties, providing more options for implementing SDN con-
trollers as software instances on these infrastructures. For
example, Liu et al. in [56] proposed an SDN-enabled network
architecture aided by MEC that integrates various types of
access technologies. SDN control components can be spread
to the physical MEC infrastructure using the proposed archi-
tecture to minimize control message response time. More
specifically, the control plane can get device location, speed,
direction, and accessibility to the network in real-time in such
an architecture.

3) SDN COLLABORATE WITH EDGE
MEC is built on distributed IT elements, and SDNwas created
to manage and control computing resources over the edge
network. Depending on this connection, they can collaborate
to accomplish a common goal. For example, Aggarwal et al.
in [57] proposed a collaboration model to ensure IoT devices’
security with SDN and edge computing. Thismodel considers
the intelligent SDN networking paradigm in network device
reconfiguration, traffic rerouting, and applying authentication
and access rules that can open the way for improved security.

B. MEC RESOURCE ORCHESTRATION
In addition to centralized control of distributed MEC infras-
tructures, computational and communication resources in
such infrastructures must be managed to provide cloud-like
network services to the end-users. This subsection presents
the existing work of resource orchestration from two
viewpoints: load balancing and multiple edge servers’
collaboration.

1) LOAD BALANCING
Load-balancing can be viewed as distributing the work-
load among edge data centers to make the operations more
efficient by avoiding congestion, low load, and overload.
Users’ traffic can be dispatched to various edge servers to
accomplish load balancing in MEC, which offers many edge
servers as candidate service points. Because users’ work-
loads change over time, the load distribution among different

MEC servers may need to be adjusted accordingly. Users’
traffic can be dispatched based on the balancing strategies
and objectives. For instance, Song et al. in [58] proposed a
dynamic graph partitioning approach to assign the workload
of each edge DC. The main goal of this approach is to have
a dynamic load balancing method that can efficiently mini-
mize intra-DC migration and thus minimize the node migra-
tion consumption caused by the continuous MEC system
changes. An example of the dynamic graph-repartitioning
algorithmwas proposed in [63]. This algorithm takes an input
prior load-balancing results and reduces the gap between
the load-balancing result and the initially proposed status.
The authors focused on deploying an effective dynamic load-
balancing algorithm with an authentication method for edge
servers [63]. Each edge node is represented using the cur-
rent workload and the maximum allowed resource capacity
required to process this workload in this work. Based on
the proposed system and using Breadth-First Search (BFS)
algorithm, tasks are assigned to an under-utilized edge node.
The authentication method allows the load-balancing algo-
rithm to find an authorized edge node. Targeting the mobile
networks, Fernando et al. in [59] proposed a work-sharing
model known as Honeybee. It is used to balance the workload
of independent tasks among various edge nodes. This model
can handle the variation in user load as users’ locations
change and accommodate mobile nodes randomly leaving
and joining the system. In [60], Oueis et al. proposed an algo-
rithm to deploy small cell clusters and customize the resource
management to optimize the complexity of load balancing
algorithms for edge computing. This complexity is caused by
the dynamic computations and the frequent changes in the
load condition among the edge nodes.

2) MULTIPLE EDGE SERVERS’ COLLABORATION
MEC servers are usually located near the mobile end-users
to ensure low latency and high QoE services. Therefore,
the MEC servers’ capacity is generally limited to manage
infrastructure costs. Consequently, one MEC server can-
not work independently to serve all users’ requests, and
it requires cloud DC support when necessary. Multi edge
server collaboration in MEC could be classified into two
categories: Horizontal or Vertical. Tran et al. in [61] proposed
the horizontal collaboration approach, which coordinates IT
resources within the same layer. This approach is helpful to
achieve load balancing, system reliability, and failure recov-
ery. This failure recovery scheme, which focuses on user
device collaboration, is intended for situations in which no
nearby MEC servers are accessible within the transfer range.
In this case, some close mobile devices will be selected as
ad hoc relay nodes and connect the affected user devices to
unreachable MEC servers. Cardoso et al. in [62] proposed
the vertical collaboration approach that coordinates mobile
devices, physical edge servers, and remote cloud centers for
performance optimization. They extended the current edge
computing software stack to allow efficient collaboration and
orchestration. In this work, external drivers are designed by
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a company to support new network equipment in an edge-
computing system. Test results show few drawbacks of the
proposed solution in terms of latency and throughput and
that deployment times are shorter than similar maintenance
operations on traditional computer networks.

C. MEC AUTO-SCALING APPROACHES
The three-tier edge architecture previously shown in
Figure 2 has demonstrated MEC benefits such as the reli-
ability and availability of the local and global services.
However, the MEC framework is being challenged by three
major trends: the rapid growth of the data generated by end-
users, latency-critical requirements by modern computing
applications such as augmented reality applications [64], and
the dynamicity of traffic patterns in 5G mobile networks.
Considering these challenges, many works were conducted
to find an intelligent edge between mobile devices and
centralized cloud architecture. That could be achieved by
virtualizing the underlying MEC infrastructure using the
NFV technique. In the MEC-NFV architecture framework,
theMEC network functions are isolated from their underlying
hardware, and they are deployed as virtual network functions
and on VMs or containers within the MEC edge server.
To support the varying workload dynamics considering the
edge node capacity limitations and service latency-critical
requirements, mobile network operators should deploy and
manage VNF auto-scaling mechanism at its edge nodes.
Existing research on VNF auto-scaling can be split into two
categories: Proactive approaches and Reactive approaches.
The following subsections discuss each mode and list the
current research related to it.

1) REACTIVE AUTO-SCALING APPROACH
In the reactive auto-scaling approach, the threshold levels
are statically pre-defined and are easily implemented. The
thresholds are hard to choose to handle the dynamic traffic
in 5G networks. In [65]–[68], the authors proposed VNF
auto-scaling mechanisms based on static thresholds (lower
and upper scale thresholds). The auto-scaling process is trig-
gered if the traffic load falls below or exceeds these thresh-
olds. For example, the proposed VNF auto-scaling technique
in [65] aims to utilize cloud resources and improve QoE
cloud services efficiently. Carella et al. in [66] presented
an Autoscaling Engine (AE) mechanism that dynamically
adapts the network services provided by Telecom operators
and increases the reliability, stability, and resource utiliza-
tion of these services. Authors in [67] proposed threshold-
based auto-scaling for VMs to dynamically scale the vir-
tual instances based on the application computing resources
utilization.

Similarly, in [68], Hung et al. introduced an auto-scaling
algorithm to enable the automated provisioning and balancing
of VM resources depending on the active session of the end-
user application. The techniques mentioned above could lead
to an oscillation in the scaling decision and, thus, unsta-
ble behavior that may affect overall system performance.

Alternatively, [69] and [70] introduced queueing theory
and reinforcement learning mechanism into threshold-based
auto-scaling techniques to improve the system performance.
Still, it stays reactive approaches with the same weaknesses.

2) PROACTIVE AUTO-SCALING APPROACH
In proactive scaling approaches, forecasting techniques allow
systems to automatically learn and predict future demands on
which auto-scaling decisions are made.

Machine learning (ML) is considered one of the leading
prediction techniques used to forecast the future workload for
auto-scaling. ML introduces intelligent network operations
into the mobile edge architectures as the network system
automatically achieves its goals without human interference.
The system reacts and responds to any change in its envi-
ronment and learns from experience based on the historical
statistical information gathered during its operation. This ML
intelligence will minimize costs and errors, increase system
efficiency, and reduce resource management in scalable net-
works.

ML has the potential to expand the boundaries of what
MEC can achieve, allowing for the construction of more com-
plex systems. Such systems, in turn, provide more computing
resources and better potential of delivering high QoS. MEC
with ML, for example, makes the use of mobile and satellite
servers possible, ensures more collaboration between servers
in different networks, and predicts the network status. [71]
also highlights which various ML solutions can solve MEC
computation and communication challenges.

Machine Learning plays a dual role in the context of edge
computing which was presented in [72]:

X ML introduces new capabilities to optimizeMEC infras-
tructure: Distributed control and system orchestration,
predictive network infrastructuremaintenance, initiation
of MEC resources, and proactive application offloading
decision depending on the workload on each MEC node
or end-user mobility across the MEC system.

X Training ML: distributed edge platforms promptly pro-
vide massive amounts of local data to ML models.
ML gets the input from the underlying edge platform
to enhance its operational efficiency. This topic opens
up novel research directions to explore ML optimization
approaches based on the workload information received
from the edge system, including predicting the changes
in the workload at the edge nodes to orchestrate the
computational resources and task offloading in runtime.
The most effective ML-based optimization approaches
of MEC infrastructure are listed in the following.

In the context of proactive VNF auto-scaling in a dis-
tributed NFV-based edge infrastructure, authors in [73], [74]
proposed a dynamic mechanism like reinforcement learning
to enhance NFV scaling policies based on dynamic thresh-
olds. As it outperforms static approaches, it is still a reactive
solution with the same flaws. For instance, Arteaga et al. [73]
proposed an adaptive scaling mechanism for NFV based
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on Q-Learning and Gaussian Processes. An agent uses it
to manage performance variations better and implement an
effective scaling policy strategy. This mechanism was val-
idated through simulations in a virtualized Evolved Packet
Core (EPC) case study, proving that it is more accurate than
approximations.

On the other hand, [75] proposed a time series model to
predict resource usage based on a historical dataset. Other
authors, including Mijumbi et al. [76] andMestres et al. [77],
used ML models to handle the fluctuation in managing the
amount of the virtualized resources assigned to specific VNF
instances by anticipating resource requirements and thus
improving the resource allocation algorithm efficiency. For
example, a neural network-based model is used to predict the
future resource requirements for each VNF instance based
on VNF forwarding graph topology information (VNFC) has
been proposed in [76]. Each VNFC’s topology information
is derived by combining its previous resource utilization
and the modeled effect on its neighborhood. The proposed
approach was evaluated for real VoIP traffic traces, and the
results showed a reduction in the dropped calls rate and an
improvement in the call setup latency.

D. SERVICE PLACEMENT IN MEC
Service placement in the MEC system is about to place
the virtual network functions (VNF) on the available MEC
nodes. Each VNF is a service instance that processes the
end user’s request. The service placement could be sub-
ject to available computational and communication resources
based on the service type and the use case. VNF placement
algorithms could provide three service types: (1) latency-
sensitive services, (2) services for mobile users, and (3) ser-
vice chain. Finally, the VNF placement problem is optimized
to reduce the operation cost, resource utilization, service
latency, and/or energy consumption. A review of these opti-
mization approaches is discussed in this section. This sub-
section presents the used placement algorithms policies and
available services for VNFs.

1) VNF PLACEMENT POLICIES
Some VNF placement proposals mainly focused on meeting
the computational resource requirements when placing the
VNF [78]–[81], [14]. In contrast, other proposals focused
on allocating communication resources in either the wireless
network [82], [85] or the wired network (e.g., a mobile back-
haul network) [86] to provide services with high data rates in
theMEC system while performing the placement of the VNF.

a: VNF PLACEMENT BASED-ON COMPUTATIONAL
RESOURCES
In [80], the authors formulated a service placement prob-
lem to maximize the rewards for the service to the users.
The authors showed that the proposed service placement
problem is NP-hard and then presented an approximation
algorithm using the set cover problem. In [79], the service
placement problem was investigated to reduce the total cost

of computing and communication resources. The authors pro-
posed a heuristic based on a genetic algorithm. Since MECs
are closely linked to cellular networks, it is interesting to
investigate whether the combined consideration of service
placement and RAN design can facilitate the integration
of cellular networks and MEC systems. This problem was
examined in [81] to compute a Pareto-optimal solution for
network cost and service delay. The problem in question is
NP-hard, and the authors proposed an algorithm based on
Bender’s decomposition to calculate approximate solutions.
The algorithm breaks down the general problem into a master
problem for computing service placement and a sub-problem
for computing RAN configuration. The solutions for the
master problem and the sub-problem have a lower and upper
bound of the resulting solution, and the algorithm stops when
the upper and lower bounds match. The results showed that
the general approach could significantly reduce the overall
cost compared to a non-optimized cloud RAN.

The authors of [14] suggested a decentralized service
placement approach in which location decisions are made
jointly by end-users and MEC service providers. MEC ser-
vice placement is done in two stages. In the first stage, each
user is assigned an algorithm to determine whether to perform
tasks on a local server or MEC nodes, while in the second
stage, the MEC nodes required to process the user service
are computed. Then, based on the calculated workload and
costs, the login algorithm determines the order of services
be entered by the MEC service provider. Joslio et al. in [82]
proposed a decentralized workload of the algorithm with
a bounded approximate relationship and assumed that the
end-users share communications and computing resources
in the MEC system. In this approach, each user decides
which MEC node will load their work to reduce the weighted
amount of their power consumption and response time.
In [83], the authors considered the same MEC system with
users generating functions periodically. They proposed a
decentralized algorithm that would gradually allow new users
to make task loading and assignment decisions.

b: VNF PLACEMENT BASED-ON COMMUNICATION
RESOURCES
In this context, we will discuss allocating the communication
resources in both the wireless and wired networks. In wire-
less networks, allocating the communication resources allows
end-users to get achievable data rates according to their needs.
For example, the authors in [82] considered the possibility
of hosting a group of services in the MEC to meet the
mobile users’ requirements, considering the computational
and communication capabilities of MEC nodes to reduce
traffic congestion. In particular, the throughput of the MEC
node is viewed as the number of available resource blocks
(RBs), which meet the individual data rate requirements. Two
sources are required to host a particular service: the first part
is the power consumption of the main activities of the service,
while the second part is directly proportional to the number of
mobile users served. This paper proposed a greedy algorithm
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of a single MEC node where each node selects the services to
be hosted based on their resource efficiency and utilization.
Moreover, it presented a decentralized plan based onmapping
andmutual preference betweenMEC nodes and services. The
results showed that a collaborative approach to service and
radio resource deployment reduces traffic congestion and sig-
nificantly improves computing resource efficiency. Authors
in [85] investigated the allocation of wireless communication
resources for the offloading requests in MEC. They modeled
the interaction between BS and end-users as a Stackelberg
game and proposed decentralized approximation algorithms
concerning different operator resource allocation policies to
minimize the completion time of task offloading.

When discussing allocating resources in wired networks
like mobile backhaul, joint consideration of service place-
ment and communication resource allocation was pro-
posed [86]. This approach facilitates meeting end-user
demand and is used to place VNF in MEC. The authors
formulated a multi-criteria problem to reduce the implemen-
tation cost and balance theworkload on network links, subject
to the latency requirement of individual services and available
computing resources. The authors expressed the resulting
problem as a Mixed Integer Linear Program (MILP) and
proposed an effective heuristic algorithm.

2) VNF SERVICES
VNF placement in the MEC system could be used to provide
services that are impacted by the latency or user mobility or
providing a service chain that should be processed bymultiple
VNF as follows:

a: LATENCY-CRITICAL SERVICES
In MEC, service delay is impacted by the end-users loca-
tions and the MEC nodes hosting each service. Many stud-
ies [15], [16], [87], [88] have been conducted to solve the
VNF placement problemwith a target to minimize the latency
for the critical services. The approach in [16], [88] solved the
VNF placement problem to support latency-critical services
by prioritizing the delay performance overall performance
measurements, which minimizes delays as the primary goal
of the VNF placement. In this approach, the service latency
can be expressed as the summation of MEC nodes’ com-
munication and processing latency. For example, the authors
in [16] intended to place multiple VNF instances to serve a set
of users, considering the MEC node capacity. Authors in [88]
modeled a MEC system with access to central clouds. The
authors suggest that it is better to allocate users’ requests that
need intensive resources on the cloud DC instead of the MEC
system. The E2E delay should include the significant cloud
delays in such a case. The authors formulated the NP-hard
placement problem to reduce the average latency of service.
The authors proposed a brute-force algorithm that lists all
possible placements to calculate the optimal solution. In these
two approaches, the latency performance of the user services
may not be guaranteed as their main objective is to minimize
the overall latency of the edge computing system onlywithout

any threshold. This issue could be solved by taking the latency
threshold of the user service as a constraint to solve the VNF
placement problem. For instance, authors in [15] followed
this approach to increase the number of hosted services in
the edge computing system. The authors first proposed an
algorithm to calculate the best solution without limiting the
capacity of MEC nodes. In the case of qualified MEC nodes,
the authors proved that the problem is NP-hard and followed
the approximation approach to solve it. In [87], the authors
observed the same approach while considering deploying a
service to balance the workload betweenMEC nodes, subject
to MEC node capacity limitations. The problem is proven to
beNP-hard. Using the tabu search, the authors have suggested
a solution, starting with the earliest possible solution and
gradually improving the proposed solution by changing ser-
vice events. The algorithm ends when the maximum number
of rounds is reached.

b: MOBILITY SERVICES
Due to the mobility ofMEC users, adjusting VNF placements
based on users’ real-time locations can enhance the user expe-
rience [89]. A common approach has been used by different
studies [90]–[92] to solve the VNF placement problem for
mobile users. This approach divides the time into successive
time slots and assumes that the connection between mobile
users and BS within each slot is stable, and the user moves
within BS coverage. Therefore, service placements for each
location slot can be calculated, and services can be switched
between different time slots to follow the user. In [90], the
authors formulated the service placement problem with user
mobility tominimize the average response time of the system.
The resulting problem is an integer nonlinear programming
problem, and the authors proved that the problem is NP-hard.
The first step uses a genetic algorithm to determine whether
service migration is necessary based on current system delays
and latency caused by service transfers. If the service is
decided to be migrated, then a sub-problem, NP-hard, is used
to calculate the new placement and is solved by optimiza-
tion solvers. However, this work is not suitable for latency-
critical services, as it is not considering the user request’s
latency requirements. In [91], the authors considered host-
ing virtual reality (VR) games for dynamic user groups to
reduce communication and computing costs and the latency
of communication between users within each group. They
considered the general pattern of user mobility in a time slot
and proposed predictive control (MPC) method to estimate
the number and locations of users for each time slot and then
place the services according to the prediction, which is proven
to be NP-hard. This placement problem could be solved using
an efficient algorithm that defines an approximation limit for
the service placement for each time slot.

Another method of capturing user mobility is to model the
cost-of-service migration to track user movement. Migration
costs are proportional to the amount of network traffic and
computational resources. This method was used in the time
slot system [92], where the authors assumed the general idea
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that migration costs are proportional to the user’s workload
and inversely proportional to the distance between users
and MEC nodes. The authors formulated a joint problem to
enhance QoE while reducing service migration costs. Other
approaches considered a system with infinite time intervals,
such as in [93], where an online approach was suggested to
solve the service placement problem to meet the demand for
end-user by reducing the weight of computational latency,
communication delays, and transfer delays. The authors first
developed a dynamic service placement problem as a con-
textual multi-armed bandit problem then suggested using
Thompson sampling to estimate users’ expected performance
for various location decisions. The authors only considered
communication delays as system parameters in this model
and did not include bandwidth allocation.

c: SERVICE CHAIN
A service chain in MECmeans that the end-user request must
be processed by multiple services that depend on each other.
Inter-service dependency adds a new dimension to manag-
ing service chain placement. For instance, the end-to-end
latency of a user request in the service chain should include
communication latency between the dependent services and
traffic flow. Some constraints can be relaxed to make it easier
to develop solutions to address the complexities of service
chain placement. For example, authors in [94] investigated
service chain placement problems regardless of the MEC
node capability constraint. They proposed a heuristic based
on a local search and Hungarian algorithm to reduce the total
cost of computing and communication resources.

Additionally, authors in [95] worked on the service chain
placement in MEC to balance the workload of nodes. The
authors modeled each service chain as a graph, where each
vertex and edge in this graph corresponds to the service or
communication path. The resulting deployment problem is
NP-hard, and the work suggested two solutions. The first
solution focused on the best placement of a single service
chain, and then the second solution took an online approach
to place multiple service chains, each of which is a tree in the
diagram.

Service chain placement can also be performed under the
capability of MEC nodes, including available CPU cycles,
memory size, and hard drive space. Works in [96], [97]
modeled the capacity of MEC nodes in the service place-
ment problem. For example, authors in [96] proposed service
chain placement to increase resource utilization efficiency.
They suggested a polynomial solution based on graphs and
the Hungarian algorithm. Furthermore, the authors of [97]
studied the problem of placing a service chain to reduce
deployment costs. They proposed a heuristic solution based
on the genetic algorithm and suggested two strategies for
applying the proposed solution. One is to calculate the assign-
ment of the service chain sequentially, and the other is to cal-
culate the allocation of the service chain together. Simulation
results showed that the latter strategy reduces the total cost
and requires more execution time.

Other works solved the service chain placement for user
requests with high traffic demand, where network traffic
transfer paths should be calculated under network capacity,
traffic load, and dependence between services limitations.
This problem was studied in [98], where the authors con-
sidered the combined problem of service chain placement
and flow distribution to optimize proper flow and energy
consumption jointly. The resulting problem was expressed as
anNP-hardmodel and solved using an approximate algorithm
based on linear relaxation and estimation techniques. The
proposed solution first calculates the placement of services
and then calculates the optimal flow distribution. Statistical
results showed that a combined computing and communica-
tion resources allocation is necessary to optimize efficiency
for systems and services.

E. MEC OPTIMIZATION APPROACHES
ETSI primarily classifies MEC use cases into three cat-
egories: consumer-oriented services, operator-oriented ser-
vices, and network performance-oriented services [99]. The
MEC systems should support all these categories to enable
a wide range of new services and computing applications at
the edge nodes. In general, the categorization of the MEC
use case depends on who could benefit from the applica-
tion advantages. For example, the ‘‘consumer-oriented ser-
vices’’ use case seeks to provide direct benefits to the
end-users by enabling the execution of computation-intensive
and latency-critical applications at the edge nodes. It could
be achieved using the computation offloading method, where
mobile devices can use a massive amount of computational
resources on the edge nodes. Second, the ‘‘operator-oriented
services’’ use case directly benefits the mobile operators and
third parties to use the computational and storage resources
at edge nodes to allocate their applications and services.
Operators and third-party vendors’ applications and services
can include extensive data analysis, active device location
tracking, security, safety, and data analytics. Finally, the ‘‘net-
work performance-oriented services’’ use case aims to opti-
mize network operations, improving network performance
and QoE local content caching at the edge server like video
delivery optimization for TCP.

MEC framework is designed and deployed in a way to
be able to offer high QoS to its user. To fulfill the targeted
performance requirements of the latency-critical applications
offered by MEC, it should exploit its resources and infras-
tructure efficiently. Thus, several QoS parameters should be
considered in the optimization approaches. Identifying which
QoS parameters should be optimized depends on the compo-
nent that will get an advantage from theMEC system, such as
the service provider, the infrastructure provider, and the end-
user. So, let us examine the current optimization approaches
in the MEC system based on these three perspectives and
which QoS parameter is being optimized.

QoS parameters examined in this section are Latency,
Computing Resources (including processing, memory, and
Bandwidth), Energy, and Combined Resources. Most of the
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works in this section used the VNF placement algorithm to
formulate the optimization problem then solved it to meet
the required QoS. Table.1 shows a summary of the MEC
framework optimization approaches listed here.

1) OPTIMIZATION APPROACHES FROM INFRASTRUCTURE
PROVIDER PERSPECTIVE
From the infrastructure perspective, the proposed optimiza-
tion approaches are formulated and solved to benefit the
infrastructure provider to either minimize the energy con-
sumption of MEC servers, reduce communication latency,
or utilize the computing resources efficiently on the edge
nodes. For example, the energy consumption in MEC is
primarily caused by MEC servers, network equipment, and
user devices. To improve the energy consumption at the edge
nodes, the authors of [100] proposed a power consumption-
clustering scheme that minimizes MEC environment power
consumption while keeping the average traffic processing
time below the threshold. The optimization problem in this
work has been solved to find the optimal number of clus-
ters to reduce the power consumption of the MEC system.
The average system power consumed is approximated as the
average utilized CPU for all the edge nodes of the network.
The average power consumed at each edge node depends
on the number of requests received within the workload.
One of the limitations of the proposed method is that each
virtual machine deployed on an edge node can process the
requests assigned to one virtualized network function at a
time, making this solution unsuitable for large-scale MEC
environments.

To implement an effective 5G service comprised of virtu-
alized network functions, an energy-aware VNF placement
strategy is needed. The authors of [101] designed cloud-
enabled small cells in a 5G environment. The main objective
of the proposed energy-aware VNF placement problem is to
minimize the power consumed in the MEC system limited
by network service latency requirements and infrastructure
terms. The overall system power consumption depends on
the power required by all VNFs to process their assigned
workload. The power consumption of each VNF is identified
by these three factors: 1) processing resources utilized of the
hosting virtual machine; 2) small cell power consumption;
and 3) power consumption of physical network equipment
that switches traffic among different VNFs. Furthermore, the
authors of [101] used a solid constraint to overestimate the
allocated resources to predict traffic peaks. One of the limita-
tions of this proposed approach is that each virtual machine
can host only one VNF instance.

Authors in [102] investigated the joint offloading and
autoscaling problem in energy harvesting MEC systems.
They discovered that foresight and adaptability are critical
factors to ensure the reliability of renewable-powered MEC
operations. In this work, a reinforcement learning ‘‘RL’’
algorithm was developed to learn the optimal offloading and
autoscaling policy in the presence of a priori unknown set
of parameters. Compared to standard RL algorithms such

TABLE 1. MEC framework optimization approaches.

as Q-Learning, the proposed scheme uses online and offline
RL algorithms to improve learning and process runtime effi-
ciency. The simulations revealed that the suggested model
could effectively enhance MEC performance using sporadic
and uncertain renewable energy. In the above work, each base
station determines its offloading and autoscaling actions con-
sidering energy harvesting based on the workload received
from end-users.

Authors in [103] proposed an optimization problem of
VNF placement in a MEC environment to minimize the
communication and network delay and find the optimal place-
ments of VNFs. A dynamic resource allocation mechanism
was used to adapt the current VNF placements to address
time-varying workload when hosting edge nodes reached
their capacity limits. This mechanism could predict the sys-
tem’s future workload and identify which edge nodes will
over-utilize their capacities. One of the scenarios intended
here is that the current edge node cannot handle and process
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the anticipated workload as it violates the latency require-
ment. Thus, a new edge node should host VNF to process the
workloadwithin the latency threshold. This could be achieved
by using the online adaptive greedy heuristic algorithm. This
proposed algorithm determines the location of the new node
while balancing the load to the new service-hosting nodes.

Authors in [104] proposed a task offloading approach
using Q-learning to minimize execution time considering
energy consumption constraints and the inherent dependency
of the tasks. However, the work focused on demonstrating
the flexibility and efficiency of the RL-based approach for
MEC without considering more complicated MEC use cases
involving multiple mobile devices.

Authors in [105] proposed a VNF placement scheme to
avoid wasting edge servers’ computational and communica-
tion resources, including processing, storage, memory, and
network resources. Enhancing the resources utilization in the
edge environment is the primary goal of the proposed NFV
Chain Placement problem. This objective could be achieved
by minimizing resource portioning on edge servers. The main
point is to keep the available resources on each edge node as
small as possible after the VNFs are deployed. A heuristic
algorithm is used to identify the optimal new VNF places
while reducing the available capacity of the hosting edge node
after deploying VNF.

Authors in [106] proposed a VNF placement approach
that facilitates the implementation and placement of
service-chained virtualized functions in a cloud environment
that can be extended to MEC infrastructure to provide ser-
vices for mission-critical applications. The main objective
of the VNF placement problem was to minimize hardware
installation expenses while maintaining the required com-
munication delay. The communication delay depends on the
latency introduced by the traffic propagation, traffic trans-
mission delay, traffic processing delay, and server queueing
delay. According to the Tabu Search meta-heuristic, a subop-
timal algorithm was also developed to get VFN placement
solutions quickly. One of the drawbacks of the proposed
approach is that it was not tested against compute-intensive
applications’ real-time characteristics and requirements.

2) OPTIMIZATION APPROACHES FROM INFRASTRUCTURE
SERVICE PROVIDER PERSPECTIVE
Because MEC servers are geographically distributed, their
location determines network transmission latency caused by
the distance between MEC servers when fetching related
services. Furthermore, given a set of MEC servers, the work-
load assigned to each MEC server determines the process-
ing latency in the application layer. As a result, service
latency is mainly identified by service placement and work-
load distribution. In this context, a VNF placement algo-
rithm was proposed by Yala et al. [107]. From the service
provider perspective, the latency of the service provided
by the VNF depends on the access latency of the physical
edge node that hosts the virtual machine. In comparison,
the service availability is impacted by the reliability of the

physical edge nodes and the hosting VMs. In [107], the VNF
placement problem is formulated as a multi-criteria opti-
mization problem with processing resource utilization and
energy consumption constraints, limiting the cost of deployed
services. The VNF placement algorithm solves the problem
by balancing latency and the high availability of services.
Lievadeas et al. in [108] proposed a novel placement and
deployment approach for the service-chained VNFs in MEC
infrastructure. The approach’s primary goal was to reduce
E2E delay supporting mission-critical and delay-sensitive
traffic while satisfying the service providers’ target of low
deployment cost.

The authors of [109] proposed a clustered NFV service
chaining technique to optimize total service time in a com-
puting edge network. A deterministic algorithm was used
to group virtualized functions based on the users’ demands,
determined by the probability of workload requests.

Efficient VNF placement minimizes the operation and
installation costs while increasingMEC application availabil-
ity. As a result, the authors of [110] investigated the VM
placement problem as a randomized programming model
reducing MEC service costs. A heuristic algorithm is used
in the proposed model to create a trade-off between service
availability and low bandwidth cost and make it possible
to use this model in the real world. This trade-off could be
achieved by hosting the optimum number of virtual machines
to process specific workloads on the same physical node.
Thus, reducing the cost of network bandwidth. The authors
used these two assumptions when working on the algorithm:
(i) the failure of a virtual machine is not impacted by the
failures on other machines, and (ii) the failure of a physical
edge node is unrelated to another edge node in the MEC
system.

Liang et al. [111] proposed an optimization problem to
optimize energy consumption in aMEC and caching network.
To minimize energy consumption in the MEC system, link
bandwidth availability and content source selection parame-
ters should be determined. Based on the proposed model, the
energy consumed at each edge node depends on the operation
and transmission energy required to process the offloaded
work. The operation energy is calculated as the sum of the
power consumption needed by the computation resources,
electric circuits, and control signals. In contrast, transmission
energy is determined by wireless and backhaul traffic. Sev-
eral limitations were determined to ensure that the allocated
resource of links does not exceed the backhaul bandwidth and
radio resource. However, this approach presents some draw-
backs because the following parameters were not considered:
(1) the user mobility, (2) the handover, and (3) the energy
consumed by the edge server.

In [112], the authors proposed an optimization problem
to fit MEC applications’ latency and reliability requirements
from a service provider perspective while reducing the ser-
vice migration, processing capacity, and bandwidth expenses.
If the main ones fail, the application reliability is guaran-
teed by assigning the available computing resources and
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bandwidth at the backup servers and physical links. The
handover rate among cellular cells is also considered when
solving the optimization problem to meet the critical-latency
applications requirements. A set of heuristic algorithms for
allocating resources and efficiently routing users’ workload
to data centers was presented to address this issue. Yet, this
approach does not consider the time-varying traffic patterns

Authors in [113] discussed the optimal utilization for
computational resources in MEC systems using ML from
the service provider perspective. ML can be considered
as an effective solution in such a complicated scenario
where the number of sophisticated devices grows rapidly,
and the number of configuration parameters becomes larger
accordingly.

3) OPTIMIZATION APPROACHES FROM AN END-USER
PERSPECTIVE
From an end-user perspective, optimization approaches focus
on supporting the execution of critical and intensive comput-
ing applications and services at the edge nodes. For example,
Cziva et al. in [114] investigated the VNF allocation prob-
lem on various edge nodes to reduce the total approximated
end-to-end delay between mobile devices and their assigned
VNFs. The proposed scheme automatically allocates VNFs
on the physical nodes depending on the delay variations,
heterogenous users’ requirements, and device mobility. The
optimization goal of this work was to enable running latency-
critical applications at the edge nodes. One drawback of
this paper is that the authors assumed that their proposed
approach’s total migration cost is time-independent, which is
not the case in real environments.

Chen et al. in [115] proposed a model for the inter-MEC
handover problem to accomplish service delay needed by
mobile devices in a MEC-based 5G network. Their model
determines the initial places of VNF, source and destination
edge nodes, when and where VNFs should be transferred
from one edge node to another, and the amount of computa-
tional resources should be kept aside on each edge node. The
issue is formulated as an optimization problem to minimize
the overall handover cost. A heuristic algorithm was used to
solve the problem in the MEC server while maintaining the
required sequencing order and the service latency limitation.

The high availability of the applications provided to
end-users by the MEC system is guaranteed if the required
virtualized functions responsible for processing the applica-
tion requests are hosted and implemented on a wide range
of heterogeneous edge nodes. Because of the computational
resources constraints in the MEC system, [116] ensures the
computing applications’ availability using redundant VNFs.
Implementing VNF redundancy was formulated as an opti-
mization problem that reduces resource utilization costs.
In this work, the failures of hosted virtualized network func-
tions are unrelated to the other failures in the MEC system
since the network functions are configured separately. This
proposed approach cannot optimize scalable MEC infras-
tructure’s performance that could support multiple real-time

applications and services chains related to each other and
require more complicated resource management and orches-
tration system.

The authors of [117] proposed the VNF placement prob-
lem considering the service function chains (SFCs) requests
received from multiple users located at various positions
in a hierarchical and geo-distributed architecture. The main
goal of the optimization problem is to find the optimal VNF
places while reducing the overall utilization cost of the com-
putational resources by finding a tradeoff between the con-
sumed bandwidth and computational resources. This could be
accomplished by placing VNF requests with the same type on
the same virtualized function instance, and thus it minimizes
the number of deployed virtualized function instances on the
edge node.

The authors in [118] investigated 5G heterogeneous net-
works to improve energy efficiency when offloading com-
puting applications. Each mobile device decides whether to
offload its task to the edge node or process it locally based
on the energy consumption. In this case, the total energy con-
sumption is determined by the transmission energy and pro-
cessing energy. The proposed optimization problem reduces
the overall service energy cost while considering latency-
critical applications requirements.

In [119], the authors presented an energy-efficient Device
to Device’’ D2D edge computing offloading architecture.
Both D2D and cooperative relay-aided transmission tech-
niques are used to offload the computational applications and
the wireless traffic received from the end-users in a multi-
cell scenario. Traffic offloading and balancing technologies
improved overall energy efficiency and service quality to
edge users while reducing inter-and intra-cell interference
and computational congestion.

The authors of [120] considered the case of a MEC
system with multiple smart mobile devices that acquire
compute-intensive applications from edge nodes. They
proposed a new model for jointly optimizing offloading
selection and radio and computational resource allocation.
The optimization problem was formulated as a mixed-
integer nonlinear programming (MINLP) problem to improve
energy consumption efficiency considering the latency lim-
itation. The authors proposed a reformulation-linearization-
technique-based Branch-and-Bound (RLTBB) method to
solve the optimization problem that ensures at minimum a
suboptimal solution. Note that their optimization approach
considers only the energy consumptionwithout evaluating the
latency or computing resources required.

Wang et al. in [121] proposed a multi-stack RL algo-
rithm for MEC to allocate computational resources effi-
ciently to process users’ requests. In this algorithm, each
BS can store historical user information and resource allo-
cation schemes to prevent learning the same resource allo-
cation scheme while enhancing convergence speed and
learning performance. Compared to the standard Q-learning
algorithm, the delay among all users can be reduced by
up to 18%.
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FIGURE 3. ETSI MEC-NFV Reference Architecture.

FIGURE 4. MEC-NFV Architectural Framework.

VI. LEARNED LESSONS AND PERSPECTIVE
Having presented various related research works for design-
ing and deploying MEC systems, we present the learned
lessons and our perspective to implement an auto-scaled
proactive MEC-NFV infrastructure from scratch at the
mobile operator site. Our proposed framework ensures that
the mobile operator can efficiently support and process the
received heterogeneous computation requests from mobile
users with a high acceptance rate, less delay, guaranteed QoS,
and less cost. We rely on the ETSI MEC reference architec-
ture in anNFV environmentmodel shown in Figure 3 [122] to
design theMEC-NFV architectural framework. In this model,
ETSI proposed the following changes [122] in the MEC
architecture: (1) MEC applications are deployed as VNFs
and are managed and orchestrated by the NFV components
(i.e., Virtual Infrastructure Manager ‘‘VIM,’’ Virtual Net-
work Function Manager ‘‘VNFM,’’ and Network Function
Virtualization Orchestrator); (2) VNFs are managed using
VNFM on the MEC platform; (3) the VIM manages the
virtualized computing and communication resources of MEC
infrastructure, (4) MEC platform manager is responsible for
assigning the VNFs lifecycle to the VNFM; (5) MEC appli-
cation Orchestrator is linked to the NFVO for resources and
services orchestration.

In our proposed MEC-NFV architectural framework,
we simplified the ETSI MEC-NFV reference architecture in
Figure 4 and selected the blocks and reference points required
to deploy a scalable proactive system. This enhanced system

is expected to handle the dynamic heavy computational traffic
received from the mobile end-user and support real-time low
latency applications and services with guaranteed QoS.

MEC-NFV Management and Orchestration block should
proactively scale VNFs in synergy with varying network
traffic dynamics using the machine learning model output.
The VNFs are dynamically placed on the MEC nodes to
offer low latency and high-quality services based on the auto-
scaling decision.

We considered a geographical region with no MEC infras-
tructure and an expected increase in computation-intensive
traffic in this framework. We also assumed that the MEC
nodes are located within the radio access network at the base
station.

VII. CONCLUSION
Mobile Edge Computing provides an alternative to the con-
ventional centralized Cloud processing with improved QoE
and low latency tomobile end-users applications. As the num-
ber of computation-intensive and critical-mission applica-
tions increases, MEC infrastructure implementations become
essential. We have defined four phases to implement a MEC
infrastructure and proposed the high-level steps to deploy
combined end-to-end MEC-NFV infrastructure. We com-
pared current design and sizing approaches that produce a
blueprint of a MEC infrastructure to support critical-latency
applications and heavy dynamic workloads.We identified the
importance of virtualizing the MEC infrastructure using the
NFV concept to provide scalable and flexible infrastructure
regardless of the underlying physical hardware. We classi-
fied existing VNF placement and auto-scaling mechanisms
that could be used in MEC-NFV infrastructure. We ana-
lyzed the main approaches of MEC frameworks. Then,
we reviewed the optimization approaches for MEC infras-
tructure to meet the required QoS threshold. The optimization
approaches were explored depending on the component that
will benefit from theMEC environment. Finally, we proposed
a high-level understanding of the necessary considerations of
building a proactive auto-scaledMEC-NFV infrastructure for
dynamic mobile traffic support.

REFERENCES
[1] Ericsson. (Nov. 2020). Ericsson Mobility Report. [Online]. Available:

https://www.ericsson.com/4adc87/assets/local/mobility-report/
documents/2020/november-2020-ericsson-mobility-report.pdf

[2] N. Abbas, Y. Zhang, A. Taherkordi, and T. Skeie, ‘‘Mobile edge com-
puting: A survey,’’ IEEE Internet Things J., vol. 5, no. 1, pp. 450–465,
Feb. 2018.

[3] S. Singh, ‘‘Optimize cloud computations using edge computing,’’ inProc.
Int. Conf. Big Data, IoT Data Sci. (BID), Dec. 2017, pp. 49–53.

[4] P. Demestichas, A. Georgakopoulos, D. Karvounas, K. Tsagkaris,
V. Stavroulaki, J. Lu, C. Xiong, and J. Yao, ‘‘5G on the horizon: Key
challenges for the radio-access network,’’ IEEE Veh. Technol. Mag.,
vol. 8, no. 3, pp. 47–53, Sep. 2013.

[5] A. Ahmed and E. Ahmed, ‘‘A survey onmobile edge computing,’’ inProc.
10th Int. Conf. Intell. Syst. Control (ISCO), Jan. 2016, pp. 1–8.

[6] Y. Zhao, W. Wang, Y. Li, C. C. Meixner, M. Tornatore, and J. Zhang,
‘‘Edge computing and networking: A survey on infrastructures and appli-
cations,’’ IEEE Access, vol. 7, pp. 101213–101230, 2019.

VOLUME 10, 2022 27607



L. A. Haibeh et al.: Survey on MEC Infrastructure: Design, Resource Management, and Optimization Approaches

[7] N. Hassan, K.-L. A. Yau, and C.Wu, ‘‘Edge computing in 5G: A review,’’
IEEE Access, vol. 7, pp. 127276–127289, 2019.

[8] M. Patel, Y. Hu, J. Joubert, and C. Thornton, ‘‘Mobile-edge computing
introductory technical white paper,’’ Mobile-Edge Comput. (MEC) Ind.
Initiative, New York, NY, USA, White Paper, 2014, pp. 854–864.

[9] L. Bittencourt, R. Immich, R. Sakellariou, N. Fonseca, E. Madeira,
M. Curado, L. Villas, L. DaSilva, C. Lee, and O. Rana, ‘‘The Internet of
Things, fog and cloud continuum: Integration and challenges,’’ Internet
Things, vols. 3–4, pp. 134–155, Oct. 2018.

[10] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, ‘‘Mobile
edge computing: A key technology towards 5G,’’ ETSI, Sophia Antipolis,
France, White Paper 11, 2015.

[11] A. Takeda, T. Kimura, and K. Hirata, ‘‘Evaluation of edge cloud server
placement for edge computing environments,’’ in Proc. IEEE Int. Conf.
Consum. Electron. Taiwan (ICCE-TW), May 2019, pp. 1–2.

[12] D. Lu, Y. Qu, F. Wu, H. Dai, C. Dong, and G. Chen, ‘‘Robust server
placement for edge computing,’’ in Proc. IEEE Int. Parallel Distrib.
Process. Symp. (IPDPS), May 2020, pp. 285–294.

[13] J. Meng, C. Zeng, H. Tan, Z. Li, B. Li, and X.-Y. Li, ‘‘Joint heterogeneous
server placement and application configuration in edge computing,’’ in
Proc. IEEE 25th Int. Conf. Parallel Distrib. Syst. (ICPADS), Dec. 2019,
pp. 488–497.

[14] Z. Cao, H. Zhang, and B. Liu, ‘‘Performance and stability of application
placement in mobile edge computing system,’’ in Proc. IEEE 37th Int.
Perform. Comput. Commun. Conf. (IPCCC), Nov. 2018, pp. 1–8.

[15] D. Harris, J. Naor, and D. Raz, ‘‘Latency aware placement in multi-
access edge computing,’’ in Proc. 4th IEEE Conf. Netw. Softwarization
Workshops (NetSoft), Jun. 2018, pp. 132–140.

[16] A. M. Maia, Y. Ghamri-Doudane, D. Vieira, and M. F. de Castro,
‘‘Optimized placement of scalable IoT services in edge computing,’’ in
Proc. IFIP/IEEE Symp. Integr. Netw. Service Manage. (IM), Apr. 2019,
pp. 189–197.

[17] G. Fodor, J. Vinogradova, P. Hammarberg, K. K. Nagalapur, Q. Zhiqiang,
H. Do, R. Blasco, and M. U. Baig, ‘‘5G new radio for automotive, rail,
and air transport,’’ 2021, arXiv:2101.08874.

[18] H. Haile, K. J. Grinnemo, S. Ferlin, P. Hurtig, andA. Brunstrom, ‘‘End-to-
end congestion control approaches for high throughput and low delay in
4G/5G cellular networks,’’ Comput. Netw., vol. 186, pp. 1–22, Feb. 2020.

[19] S. Gangakhedkar, H. Cao, A. R. Ali, K. Ganesan, M. Gharba, and
J. Eichinger, ‘‘Use cases, requirements and challenges of 5G commu-
nication for industrial automation,’’ in Proc. IEEE Int. Conf. Commun.
Workshops (ICC Workshops), May 2018, pp. 1–6.

[20] F.-C. Kuo, F. A. Zdarsky, J. Lessmann, and S. Schmid, ‘‘Cost-efficient
wireless mobile backhaul topologies: An analytical study,’’ in Proc. IEEE
Global Telecommun. Conf. (GLOBECOM), Dec. 2010, pp. 1–5.

[21] V. G. Nguyen, A. Brunström, K. J. Grinnemo, and J. Taheri, ‘‘SDN helps
velocity in big data,’’ in Big Data and Software Defined Networks, 1st ed.
London, U.K.: IET Digital Library, 2018, pp. 207–228.

[22] K. Antevski, C. J. Bernardos, L. Cominardi, A. de la Oliva, and
A. Mourad, ‘‘On the integration of NFV and MEC technologies: Archi-
tecture analysis and benefits for edge robotics,’’ Comput. Netw., vol. 175,
Jul. 2020, Art. no. 107274.

[23] S. Kekki, W. Featherstone, Y. Fang, P. Kuure, A. Li, A. Ranjan,
D. Purkayastha, F. Jiangping, D. Frydman, G. Verin, and K. W. Wen,
‘‘MEC in 5G networks,’’ ETSI, Sophia Antipolis, France,White Paper 28,
2018.

[24] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, ‘‘A survey on
mobile edge computing: The communication perspective,’’ IEEE Com-
mun. Surveys Tuts., vol. 19, no. 4, pp. 2322–2358, 4th Quart., 2017.

[25] B. Varghese and R. Buyya, ‘‘Next generation cloud computing: New
trends and research directions,’’ Future Gener. Comput. Syst., vol. 79,
pp. 849–861, Feb. 2018.

[26] L. F. Bittencourt, M. M. Lopes, I. Petri, and O. F. Rana, ‘‘Towards virtual
machine migration in fog computing,’’ in Proc. 10th Int. Conf. P2P,
Parallel, Grid, Cloud Internet Comput. (3PGCIC), Nov. 2015, pp. 1–8.

[27] Q. V. Pham, T. L. Anh, N. H. Tran, B. J. Park, and C. S. Hong, ‘‘Decen-
tralized computation offloading and resource allocation for mobile-
edge computing: A matching game approach,’’ IEEE Access, vol. 6,
pp. 75868–75885, 2018.

[28] Q.-V. Pham, F. Fang, V. N. Ha, M. J. Piran, M. Le, L. B. Le, W.-J. Hwang,
and Z. Ding, ‘‘A survey of multi-access edge computing in 5G and
beyond: Fundamentals, technology integration, and state-of-the-art,’’
IEEE Access, vol. 8, pp. 116974–117017, 2020.

[29] N. W. Sung, N.-T. Pham, T. Huynh, and W.-J. Hwang, ‘‘Predictive asso-
ciation control for frequent handover avoidance in femtocell networks,’’
IEEE Commun. Lett., vol. 17, no. 5, pp. 924–927, May 2013.

[30] Y. Dong, Z. Chen, P. Fan, andK. B. Letaief, ‘‘Mobility-aware uplink inter-
ference model for 5G heterogeneous networks,’’ IEEE Trans. Wireless
Commun., vol. 15, no. 3, pp. 2231–2244, Mar. 2016.

[31] L. N. T. Huynh, Q.-V. Pham, X. Q. Pham, T. D. T. Nguyen,
M. D. Hossain, and E. N. Huh, ‘‘Efficient computation offloading in
multi-tier multi-access edge computing systems: A particle swarm opti-
mization approach,’’ Appl. Sci., vol. 10, no. 1, pp. 1–17, 2019.

[32] E. Ahmed and M. H. Rehmani, ‘‘Mobile edge computing: Opportuni-
ties, solutions, and challenges,’’ Future Generat. Comput. Syst., vol. 70,
pp. 59–63, May 2017.

[33] R. R. Sarukkai and A. Mendhekar, ‘‘Method and apparatus for access-
ing targeted, personalized voice/audio web content through wireless
devices,’’ U.S. Patent 6 728 731, Apr. 27, 2004.

[34] G. Simmons, G. A. Armstrong, and M. G. Durkin, ‘‘An exploration
of small business website optimization: Enablers, influencers and an
assessment approach,’’ Int. Small Bus. J., vol. 29, no. 5, pp. 534–561,
Feb. 2011.

[35] J. Zhu, D. S. Chan, M. S. Prabhu, P. Natarajan, H. Hu, and F. Bonomi,
‘‘Improving web sites performance using edge servers in fog computing
architecture,’’ in Proc. IEEE 7th Int. Symp. Service-Oriented Syst. Eng.,
Mar. 2013, pp. 320–323.

[36] L. Atzori, A. Iera, and G. Morabito, ‘‘The Internet of Things: A survey,’’
Comput. Netw., vol. 54, no. 15, pp. 2787–2805, Jun. 2010.

[37] R. R. Sarukkai and A. Mendhekar, ‘‘Method and apparatus for access-
ing targeted, personalized voice/audio web content through wireless
devices,’’ U.S. Patent 6 728 731, Apr. 27, 2004.

[38] M. Chen, S. Mao, and Y. Liu, ‘‘Big data: A survey,’’Mobile Netw. Appl.,
vol. 19, no. 2, pp. 171–209, Apr. 2014.

[39] D. Dev and R. Patgiri, ‘‘Dr. Hadoop: An infinite scalable metadata
management for Hadoop—How the baby elephant becomes immortal,’’
Frontiers Inf. Technol. Electron. Eng., vol. 17, no. 1, pp. 15–31, Jan. 2016.

[40] S. Madakam and R. Ramaswamy, ‘‘The state of art: Smart cities in India:
A literature review report,’’ Int. J. Innov. Res. Develop., vol. 2, no. 12,
pp. 115–119, 2013.

[41] M. Jia, J. Cao, and W. Liang, ‘‘Optimal cloudlet placement and user to
cloudlet allocation in wireless metropolitan area networks,’’ IEEE Trans.
Cloud Comput., vol. 5, no. 4, pp. 725–737, Oct./Dec. 2017.

[42] Z. Xu, W. Liang, W. Xu, M. Jia, and S. Guo, ‘‘Efficient algorithms for
capacitated cloudlet placements,’’ IEEE Trans. Parallel Distrib. Syst.,
vol. 27, no. 10, pp. 2866–2880, Oct. 2016.

[43] H. Xiang, X. Xu, H. Zheng, S. Li, T.Wu,W. Dou, and S. Yu, ‘‘An adaptive
cloudlet placement method for mobile applications over GPS big data,’’ in
Proc. IEEE Global Commun. Conf. (GLOBECOM), Dec. 2016, pp. 1–6.

[44] S. Wang, Y. Zhao, J. Xu, J. Yuan, and C.-H. Hsu, ‘‘Edge server place-
ment in mobile edge computing,’’ J. Parallel Distrib. Comput., vol. 127,
pp. 160–168, May 2019.

[45] Y. Li and S. Wang, ‘‘An energy-aware edge server placement algorithm
in mobile edge computing,’’ in Proc. IEEE Int. Conf. Edge Comput.
(EDGE), Jul. 2018, pp. 66–73.

[46] F. Zeng, Y. Ren, X. Deng, and W. Li, ‘‘Cost-effective edge server place-
ment in wireless metropolitan area networks,’’ Sensors, vol. 19, no. 1,
p. 32, 2019.

[47] X. Wang, M. Razo, M. Tacca, and A. Fumagalli, ‘‘Planning and online
resource allocation for the multi-resource cloud infrastructure,’’ in Proc.
IEEE Int. Conf. Commun. (ICC), Jun. 2014, pp. 2938–2943.

[48] D. Ta, S. Zhou, W. Cai, X. Tang, and R. Ayani, ‘‘Network-aware server
placement for highly interactive distributed virtual environments,’’ in
Proc. 12th IEEE/ACM Int. Symp. Distrib. Simulation Real-Time Appl.,
Oct. 2008, pp. 95–102.

[49] S. K. Kasi, M. K. Kasi, K. Ali, M. Raza, H. Afzal, A. Lasebae, B. Naeem,
S. U. Islam, and J. J. P. C. Rodrigues, ‘‘Heuristic edge server placement in
industrial Internet of Things and cellular networks,’’ IEEE Internet Things
J., vol. 8, no. 13, pp. 10308–10317, Jul. 2021.

[50] A. Ceselli, M. Premoli, and S. Secci, ‘‘Mobile edge cloud network design
optimization,’’ IEEE/ACM Trans. Netw., vol. 25, no. 3, pp. 1818–1831,
Feb. 2017.

[51] A. C. Baktir, A. Ozgovde, and C. Ersoy, ‘‘How can edge computing
benefit from software-defined networking: A survey, use cases, and future
directions,’’ IEEE Commun. Surveys Tuts., vol. 19, no. 4, pp. 2359–2391,
4th Quart., 2017.

27608 VOLUME 10, 2022



L. A. Haibeh et al.: Survey on MEC Infrastructure: Design, Resource Management, and Optimization Approaches

[52] Y. Jararweh, A. Doulat, A. Darabseh, M. Alsmirat, M. Al-Ayyoub,
and E. Benkhelifa, ‘‘SDMEC: Software defined system for mobile edge
computing,’’ in Proc. IEEE Int. Conf. Cloud Eng. Workshop (IC2EW),
Apr. 2016, pp. 88–93.

[53] Y. Xu, V. Mahendran, and S. Radhakrishnan, ‘‘Towards SDN-based
fog computing: MQTT broker virtualization for effective and reliable
delivery,’’ in Proc. 8th Int. Conf. Commun. Syst. Netw. (COMSNETS),
Jan. 2016, pp. 1–6.

[54] I. Abdullahi, S. Arif, and S. Hassan, ‘‘Ubiquitous shift with information
centric network caching using fog computing,’’ in Computational Intelli-
gence in Information Systems. Cham, Switzerland: Springer, 2015.

[55] X. Hou, Y. Li, M. Chen, D. Wu, D. Jin, and S. Chen, ‘‘Vehicular
fog computing: A viewpoint of vehicles as the infrastructures,’’ IEEE
Trans. Veh. Technol., vol. 65, no. 6, pp. 3860–3873, Jun. 2016.

[56] J. Liu, J. Wan, B. Zeng, Q. Wang, H. Song, and M. Qiu, ‘‘A scalable and
quick-response software defined vehicular network assisted by mobile
edge computing,’’ IEEE Commun. Mag., vol. 55, no. 7, pp. 94–100,
Jul. 2017.

[57] C. Aggarwal and K. Srivastava, ‘‘Securing IoT devices using SDN and
edge computing,’’ in Proc. 2nd Int. Conf. Next Gener. Comput. Technol.
(NGCT), Oct. 2016, pp. 877–882.

[58] N. Song, C. Gong, X. An, and Q. Zhan, ‘‘Fog computing dynamic load
balancing mechanism based on graph repartitioning,’’ China Commun.,
vol. 13, no. 3, pp. 156–164, 2016.

[59] N. Fernando, S. W. Loke, and W. Rahayu, ‘‘Computing with nearby
mobile devices: Awork sharing algorithm for mobile edge-clouds,’’ IEEE
Trans. Cloud Comput., vol. 7, no. 2, pp. 329–343, Apr. 2019.

[60] J. Oueis, E. C. Strinati, and S. Barbarossa, ‘‘The fog balancing: Load
distribution for small cell cloud computing,’’ in Proc. IEEE 81st Veh.
Technol. Conf. (VTC Spring), May 2015, pp. 1–5.

[61] T. X. Tran, A. Hajisami, P. Pandey, and D. Pompili, ‘‘Collaborative
mobile edge computing in 5G networks: New paradigms, scenarios, and
challenges,’’ IEEE Commun. Mag., vol. 55, no. 4, pp. 54–61, Apr. 2017.

[62] I. D. Cardoso, J. P. Barraca, C. Gonçalves, and R. L. Aguiar, ‘‘Seamless
integration of cloud and fog networks,’’ Int. J. Netw. Manage., vol. 26,
no. 6, pp. 435–460, 2016.

[63] D. Puthal, M. S. Obaidat, P. Nanda, M. Prasad, S. P. Mohanty, and
A. Y. Zomaya, ‘‘Secure and sustainable load balancing of edge data cen-
ters in fog computing,’’ IEEE Commun. Mag., vol. 56, no. 5, pp. 60–65,
May 2018.

[64] Q.-V. Pham, F. Fang, V. N. Ha, M. J. Piran, M. Le, L. B. Le, W.-J. Hwang,
and Z. Ding, ‘‘A survey of multi-access edge computing in 5G and
beyond: Fundamentals, technology integration, and state-of-the-art,’’
IEEE Access, vol. 8, pp. 116974–117017, 2020.

[65] S. Dutta, T. Taleb, and A. Ksentini, ‘‘QoE-aware elasticity support in
cloud-native 5G systems,’’ in Proc. IEEE Int. Conf. Commun. (ICC),
May 2016, pp. 1–6.

[66] G. A. Carella, M. Pauls, L. Grebe, and T. Magedanz, ‘‘An extensi-
ble autoscaling engine (AE) for software-based network functions,’’ in
Proc. IEEE Conf. Netw. Function Virtualization Softw. Defined Netw.
(NFV-SDN), Nov. 2016, pp. 219–225.

[67] M.M.Murthy, H. A. Sanjay, and J. Anand, ‘‘Threshold based auto scaling
of virtual machines in cloud environment,’’ Intl. Conf. Netw. Parallel
Comput., p. 247256, 2014.

[68] C. Hung, Y. Hu, and K. Li, ‘‘Auto-scaling model for computing system,’’
Intl. J. Hybrid Info. Tech., vol. 5, no. 2, pp. 181–186, Apr. 2012.

[69] C. H. T. Arteaga, F. Risso, and O. M. C. Rendon, ‘‘An adaptive scaling
mechanism for managing performance variations in network functions
virtualization: A case study in an NFV-based EPC,’’ in Proc. 13th Int.
Conf. Netw. Service Manage. (CNSM), Nov. 2017, pp. 1–7.

[70] T. Lorido-Botran, J. Miguel-Alonso, and J. A. Lozano, ‘‘A review of auto-
scaling techniques for elastic applications in cloud environments,’’ J. Grid
Comput., vol. 12, no. 4, pp. 559–592, Dec. 2014.

[71] T. K. Rodrigues, K. Suto, H. Nishiyama, J. Liu, and N. Kato, ‘‘Machine
learning meets computation and communication control in evolving edge
and cloud: Challenges and future perspective,’’ IEEE Commun. Surveys
Tuts., vol. 22, no. 1, pp. 38–67, 1st Quart., 2020.

[72] J. Park, S. Samarakoon, M. Bennis, and M. Debbah, ‘‘Wireless network
intelligence at the edge,’’ Proc. IEEE, vol. 107, no. 11, pp. 2204–2239,
Nov. 2019.

[73] S. Waidande, ‘‘A literature survey on scaling approaches for VNF in NFV
monitoring,’’ Int. Res. J. Eng. Technol., vol. 5, no. 12, pp. 1–4, 2018.

[74] T. Lorido-Botran, J. Miguel-Alonso, and J. A. Lozano, ‘‘A review of auto-
scaling techniques for elastic applications in cloud environments,’’ J. Grid
Comput., vol. 12, no. 4, pp. 559–592, Dec. 2014.

[75] A. Bilal, T. Tarik, A. Vajda, and B. Miloud, ‘‘Dynamic cloud resource
scheduling in virtualized 5G mobile systems,’’ in Proc. IEEE Global
Commun. Conf. (GLOBECOM), Dec. 2016, pp. 1–6.

[76] R. Mijumbi, S. Hasija, S. Davy, A. Davy, B. Jennings, and R. Boutaba,
‘‘Topology-aware prediction of virtual network function resource require-
ments,’’ IEEE Trans. Netw. Service Manage., vol. 14, no. 1, pp. 106–120,
Mar. 2017.

[77] A. Mestres, A. Rodriguez-Natal, J. Carner, P. Barlet-Ros, E. Alarcón,
M. Solé, V. Muntés-Mulero, D. Meyer, S. Barkai, M. J. Hibbett, and
G. Estrada, ‘‘Knowledge-defined networking,’’ ACM SIGCOMM Com-
put. Commun. Rev., vol. 47, no. 3, pp. 2–10, 2017.

[78] N. Yu, Q. Xie, Q. Wang, H. Du, H. Huang, and X. Jia, ‘‘Collaborative
service placement for mobile edge computing applications,’’ in Proc.
IEEE Global Commun. Conf. (GLOBECOM), Dec. 2018, pp. 1–6.

[79] N. Kiran, X. Liu, S. Wang, and C. Yin, ‘‘VNF placement and resource
allocation in SDN/NFV-enabledMEC networks,’’ in Proc. IEEEWireless
Commun. Netw. Conf. Workshops (WCNCW), Apr. 2020, pp. 1–6.

[80] S. Pasteris, S. Wang, M. Herbster, and T. He, ‘‘Service placement with
provable guarantees in heterogeneous edge computing systems,’’ in Proc.
IEEE INFOCOM Conf. Comput. Commun., Apr. 2019, pp. 514–522.

[81] A. Garcia-Saavedra, G. Iosifidis, X. Costa-Perez, and D. J. Leith, ‘‘Joint
optimization of edge computing architectures and radio access networks,’’
IEEE J. Sel. Areas Commun., vol. 36, no. 11, pp. 2433–2443, Nov. 2018.

[82] S. Jošilo and G. Dán, ‘‘Selfish decentralized computation offloading
for mobile cloud computing in dense wireless networks,’’ IEEE Trans.
Mobile Comput., vol. 18, no. 1, pp. 207–220, Jan. 2019.

[83] S. Josilo and G. Dan, ‘‘Computation offloading scheduling for periodic
tasks in mobile edge computing,’’ IEEE/ACM Trans. Netw., vol. 28, no. 2,
pp. 667–680, Apr. 2020.

[84] M. Shafi, A. F. Molisch, P. J. Smith, T. Haustein, P. Zhu, P. D. Silva,
F. Tufvesson, A. Benjebbour, and G. Wunder, ‘‘5G: A tutorial overview
of standards, trials, challenges, deployment, and practice,’’ IEEE J. Sel.
Areas Commun., vol. 35, no. 6, pp. 1201–1221, Jun. 2017.

[85] S. Josilo and G. Dan, ‘‘Joint management of wireless and computing
resources for computation offloading in mobile edge clouds,’’ IEEE
Trans. Cloud Comput., vol. 9, no. 4, pp. 1507–1520, Oct. 2021.

[86] B. Addis, D. Belabed, M. Bouet, and S. Secci, ‘‘Virtual network functions
placement and routing optimization,’’ in Proc. IEEE 4th Int. Conf. Cloud
Netw. (CloudNet), Oct. 2015, pp. 171–177.

[87] B. Brik, P. A. Frangoudis, and A. Ksentini, ‘‘Service-oriented MEC
applications placement in a federated edge cloud architecture,’’ in Proc.
IEEE Int. Conf. Commun. (ICC), Jun. 2020, pp. 1–6.

[88] L. Zhao and J. Liu, ‘‘Optimal placement of virtual machines for support-
ing multiple applications in mobile edge networks,’’ IEEE Trans. Veh.
Technol., vol. 67, no. 7, pp. 6533–6545, Jul. 2018.

[89] R. Urgaonkar, R. Urgaonkar, S. Wang, T. He, M. Zafer, K. Chan, and
K. K. Leung, ‘‘Dynamic service migration and workload scheduling in
edge-clouds,’’ Perform. Eval., vol. 91, pp. 205–228, Sep. 2015.

[90] B. Gao, Z. Zhou, F. Liu, and F. Xu, ‘‘Winning at the starting line:
Joint network selection and service placement for mobile edge comput-
ing,’’ in Proc. IEEE INFOCOM Conf. Comput. Commun., Apr. 2019,
pp. 1459–1467.

[91] Y. Zhang, L. Jiao, J. Yan, and X. Lin, ‘‘Dynamic service placement for
virtual reality group gaming onmobile edge cloudlets,’’ IEEE J. Sel. Areas
Commun., vol. 37, no. 8, pp. 1881–1897, Aug. 2019.

[92] H. Badri, T. Bahreini, D. Grosu, and K. Yang, ‘‘Energy-aware appli-
cation placement in mobile edge computing: A stochastic optimiza-
tion approach,’’ IEEE Trans. Parallel Distrib. Syst., vol. 31, no. 4,
pp. 909–922, Apr. 2020.

[93] T. Ouyang, R. Li, X. Chen, Z. Zhou, and X. Tang, ‘‘Adaptive user-
managed service placement for mobile edge computing: An online learn-
ing approach,’’ in Proc. IEEE INFOCOM Conf. Comput. Commun.,
Apr. 2019, pp. 1468–1476.

[94] T. Bahreini and D. Grosu, ‘‘Efficient algorithms for multi-component
application placement in mobile edge computing,’’ IEEE Trans. Cloud
Comput., early access, Nov. 17, 2020, doi: 10.1109/TCC.2020.3038626.

[95] S. Wang, M. Zafer, and K. K. Leung, ‘‘Online placement of multi-
component applications in edge computing environments,’’ IEEE Access,
vol. 5, pp. 2514–2533, 2017.

[96] M. Wang, B. Cheng, W. Feng, and J. Chen, ‘‘An efficient service function
chain placement algorithm in a MEC-NFV environment,’’ in Proc. IEEE
Global Commun. Conf. (GLOBECOM), Dec. 2019, pp. 1–6.

[97] M. A. Khoshkholghi, J. Taheri, D. Bhamare, and A. Kassler, ‘‘Optimized
service chain placement using genetic algorithm,’’ in Proc. IEEE Conf.
Netw. Softwarization (NetSoft), Jun. 2019, pp. 472–479.

VOLUME 10, 2022 27609

http://dx.doi.org/10.1109/TCC.2020.3038626


L. A. Haibeh et al.: Survey on MEC Infrastructure: Design, Resource Management, and Optimization Approaches

[98] I. Jang, D. Suh, S. Pack, and G. Dán, ‘‘Joint optimization of service
function placement and flow distribution for service function chaining,’’
IEEE J. Sel. Areas Commun., vol. 35, no. 11, pp. 2532–2541, Nov. 2017.

[99] Requirements, Standard ETSI GS MEC 002 V2.1.1, Oct. 2018.
[100] J. Ahn, J. Lee, S. Park, and H.-S. Park, ‘‘Power efficient clustering

scheme for 5G mobile edge computing environment,’’ Mobile Netw.
Appl., vol. 24, no. 2, pp. 643–652, Apr. 2019.

[101] B. Blanco, I. Taboada, J. O. Fajardo, and F. Liberal, ‘‘A robust optimiza-
tion based energy-aware virtual network function placement proposal for
small cell 5G networks with mobile edge computing capabilities,’’Mobile
Inf. Syst., vol. 2017, pp. 1–14, Oct. 2017.

[102] J. Xu, L. Chen, and S. Ren, ‘‘Online learning for offloading and autoscal-
ing in energy harvesting mobile edge computing,’’ IEEE Trans. Cogn.
Netw., vol. 3, no. 3, pp. 361–373, Sep. 2017.

[103] B. Yang, W. K. Chai, G. Pavlou, and K. V. Katsaros, ‘‘Seamless sup-
port of low latency mobile applications with NFV-enabled mobile edge-
cloud,’’ in Proc. 5th IEEE Int. Conf. Cloud Netw. (Cloudnet), Oct. 2016,
pp. 136–141.

[104] S. Pan, Z. Zhang, Z. Zhang, and D. Zeng, ‘‘Dependency-aware compu-
tation offloading in mobile edge computing: A reinforcement learning
approach,’’ IEEE Access, vol. 7, pp. 134742–134753, 2019.

[105] Z. Chen, S. Zhang, C. Wang, Z. Qian, M. Xiao, J. Wu, and I. Jawhar,
‘‘A novel algorithm for NFV chain placement in edge computing
environments,’’ in Proc. IEEE Global Commun. Conf. (GLOBECOM),
Dec. 2018, pp. 1–6.

[106] A. Leivadeas, G. Kesidis, M. Ibnkahla, and I. Lambadaris, ‘‘VNF place-
ment optimization at the edge and cloud,’’ Future Internet, vol. 11, no. 3,
p. 69, Mar. 2019.

[107] L. Yala, P. A. Frangoudis, and A. Ksentini, ‘‘Latency and availability
driven VNF placement in a MEC-NFV environment,’’ in Proc. IEEE
Global Commun. Conf. (GLOBECOM), Dec. 2018, pp. 1–7.

[108] A. Leivadeas, M. Falkner, I. Lambadaris, M. Ibnkahla, and G. Kesidis,
‘‘Balancing delay and cost in virtual network function placement and
chaining,’’ in Proc. 4th IEEE Conf. Netw. Softwarization Workshops
(NetSoft), Jun. 2018, pp. 433–440.

[109] Y. Nam, S. Song, and J.-M. Chung, ‘‘Clustered NFV service chaining
optimization in mobile edge clouds,’’ IEEE Commun. Lett., vol. 21, no. 2,
pp. 350–353, Feb. 2017.

[110] H. Zhu and C. Huang, ‘‘EdgePlace: Availability-aware placement for
chained mobile edge applications: EdgePlace: Availability-aware place-
ment for chained mobile edge applications,’’ Trans. Emerg. Telecommun.
Technol., vol. 29, no. 11, Nov. 2018, Art. no. e3504.

[111] C. Liang, Y. He, F. R. Yu, and N. Zhao, ‘‘Energy-efficient resource
allocation in software-defined mobile networks with mobile edge com-
puting and caching,’’ in Proc. IEEE Conf. Comput. Commun. Workshops
(INFOCOM WKSHPS), May 2017, pp. 121–126.

[112] R. Ford, A. Sridharan, R. Margolies, R. Jana, and S. Rangan, ‘‘Provi-
sioning low latency, resilient mobile edge clouds for 5G,’’ in Proc. IEEE
Conf. Comput. Commun. Workshops (INFOCOM WKSHPS), May 2017,
pp. 169–174.

[113] H. Wu, Z. Zhang, C. Guan, K. Wolter, and M. Xu, ‘‘Collaborate edge and
cloud computing with distributed deep learning for smart city Internet of
Things,’’ IEEE Internet Things J., vol. 7, no. 9, pp. 8099–8110, Sep. 2020.

[114] R. Cziva, C. Anagnostopoulos, and D. P. Pezaros, ‘‘Dynamic, latency-
optimal vNF placement at the network edge,’’ in Proc. IEEE INFOCOM
Conf. Comput. Commun., Apr. 2018, pp. 693–701.

[115] Y.-T. Chen and W. Liao, ‘‘Mobility-aware service function chaining in
5G wireless networks with mobile edge computing,’’ in Proc. IEEE Int.
Conf. Commun. (ICC), May 2019, pp. 1–6.

[116] N. T. Dinh and Y. Kim, ‘‘An efficient availability guaranteed deployment
scheme for IoT service chains over fog-core cloud networks,’’ Sensors,
vol. 18, no. 11, p. 3970, 2018.

[117] D. Li, P. Hong, K. Xue, and J. Pei, ‘‘Virtual network function place-
ment and resource optimization in NFV and edge computing enabled
networks,’’ Comput. Netw., vol. 152, pp. 12–24, Apr. 2019.

[118] K. Zhang, Y. Mao, S. Leng, Q. Zhao, L. Li, X. Peng, L. Pan, S. Maharjan,
and Y. Zhang, ‘‘Energy-efficient offloading for mobile edge computing in
5G heterogeneous networks,’’ IEEE Access, vol. 4, pp. 5896–5907, 2016.

[119] J. Wen, C. Ren, and A. K. Sangaiah, ‘‘Energy-efficient device-to-device
edge computing network: An approach offloading both traffic and com-
putation,’’ IEEE Commun. Mag., vol. 56, no. 9, pp. 96–102, Sep. 2018.

[120] P. Zhao, H. Tian, C. Qin, and G. Nie, ‘‘Energy-saving offloading by
jointly allocating radio and computational resources for mobile edge
computing,’’ IEEE Access, vol. 5, pp. 11255–11268, 2017.

[121] S. Wang, M. Chen, X. Liu, C. Yin, S. Cui, and H. V. Poor, ‘‘A machine
learning approach for task and resource allocation in mobile-edge
computing-based networks,’’ IEEE Internet Things J., vol. 8, no. 3,
pp. 1358–1372, Feb. 2021.

[122] ‘‘Multi-access edge computing (MEC); Framework and reference archi-
tecture,’’ ETSI, Sophia Antipolis, France, White Paper 003 v2.2.1
Jan. 2019.

LINA A. HAIBEH received the M.S. degree in
electrical telecommunication engineering from the
Université du Québec en Abitibi-Témiscamingue,
Canada, in 2018. She is currently pursuing the
Ph.D. degree with the School of Electrical and
Computer Engineering, University of Ottawa,
Ottawa, ON, Canada.

She is interested in the resource management in
large-scale distributed systems, software-defined
networking and network function virtualization,

network performance evaluation and optimization, and network intelligence.
Her research interests include voice over IP, 5G networks, wireless networks,
network virtualization, cloud computing, edge computing, and mobile ad-
hoc networks.

MUSTAPHA C. E. YAGOUB (Senior Member,
IEEE) received the Dipl.-Ing. degree in elec-
tronics and the Magister degree in telecommu-
nications from École Nationale Polytechnique,
Algiers, Algeria, in 1979 and 1987, respectively,
and the Ph.D. degree from the Institute National
Polytechnique, Toulouse, France, in 1994.

After few years working in industry as a design
engineer, he joined the Institute of Electronics,
Université des Sciences et de la Technologie

Houari Boumédiene, Algiers, as a Lecturer, from 1983 to 1991, and then as an
Assistant Professor, from 1994 to 1999, and the Head of the Communication
Department, from 1996 to 1999. From 1999 to 2001, he was a Visiting
Scholar with the Department of Electronics, Carleton University, Ottawa,
ON, Canada, working on neural networks applications in microwave areas.
In 2001, he joined the School of Electrical Engineering and Computer
Science (EECS), University of Ottawa, Ottawa, ON, Canada, where he is
currently a Professor. He has authored or coauthored over 500 publications
in these topics in international journals and referred conferences. He has also
authored Conception De Circuits Linéaires Et Non Linéaires Micro-Ondes
(Cépadues, Toulouse, France, 2000). His research interests include wire-
less communications systems design, RF/microwave CAD, RFID design,
antenna design, active devicemodeling and characterization, neural networks
for high frequency applications, and applied electromagnetics.

Dr. Yagoub is a Senior Member of the IEEE Microwave Theory and
Techniques Society and a member of the Professional Engineers of Ontario,
Canada, and the Ordre des ingénieurs du Québec, Canada.

ABDALLAH JARRAY (Member, IEEE) received
the M.S. and Ph.D. degrees in computer science
from the University of Montreal, QC, Canada,
in 2005 and 2010, respectively.

His research interests include network virtu-
alization, cloud computing, wireless body area
networks, femtocell networks, and optical net-
works. He is also interested on the development of
optimization techniques for network design prob-
lems, integer linear programming, decomposition

approaches, column generation, metaheuristics, and game theory.

27610 VOLUME 10, 2022


