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ABSTRACT Selective image segmentation is one of the most significant subjects in medical imaging and
real-world applications. We present a robust selective segmentation model based on local spatial distance
utilizing a dual-level set variational formulation in this study. Our concept tries to partition all objects using a
global level set function and the selected item using a different level set function (local). Our model combines
themarker distance function, edge detection, local spatial distance, and active contour without edges into one.
The new model is robust to noise and gives better performance for images having intensity in-homogeneity
(background and foreground). Moreover, we observed that the proposed model captures objects which do
not have uniform features. The experimental results show that our model is robust to noise and works better
than the other existing models.

INDEX TERMS Euler-Lagrange equation, selective segmentation, level set function, local spatial distance,
local similarity factor.

I. INTRODUCTION
Image segmentation plays an important role in image pro-
cessing and computer vision both. The aim of the image
segmentation techniques is to differentiate various objects in
the image foreground from the background; and consistently
select special characteristics of an image that have enough
features of interest. In addition, image segmentation has been
widely used in a variety of applications, including medical
imaging, object recognition, video analysis, traffic manage-
ment systems, surveillance, and automated operations, to
visualize relevant things in a given scene or picture.

For this purpose, different methods have been developed
such as active contours and edge detection [1]–[3], region
growing [4], [5], thresholding and histogram analysis [6]–[8].
In image segmentation, active contour models are widely
studied and used due to their robustness and reliability. They
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are classified into two main categories that are region-based
models [2], [9]–[11] and edge-based models [3], [12]–[14].
The region-based models use image intensities to guide the
motion of active contours, while the edge-based models use
edge information for guiding the active contours towards
the object boundary. These models could segment all the
features in a given image, which means that these are global
segmentation models. However, they are not enough mature
to overcome the problem of segmenting a particular object of
interest in a given image.

In selective segmentation, the main problem is how to
differentiate one feature from another if the objects have
the similar/same intensity or the background and foreground
are in-homogeneous with different intensities. For example,
in Figure 18 the three objects have the same intensities,
but in Figure 15 the intensities differences between the two
objects are, extremely, small in amedical image.Moreover, as
shown in Figure 13, three different images with multi objects,
background, and foreground are in-homogeneous and have
different intensities.
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In the literature, different techniques have been devel-
oped to overcome the selective segmentation problem such
as graph-cut using graph cut theory [15], geodesics using
edge-based function [16], and random walks using prob-
ability distributions [17]. Guyader et al. [18] proposed a
model which is based on edge information of the object,
while Badshah et al. [19] proposed a model which com-
bines an edge-based model with region-based information.
[18], [19] are useful and good work for a range of images.
Badshah et al. [19] reproduced the same solution of the two
piece-wise constants, however, if we solve in the time-
marching framework, as in [2]; therefore, in this case, the
capability of segmenting a particular object is lost, and we get
a global segmentation. For successful segmentation and fast
convergence, Nguyen et al. [20] combined the geometrical
constraints and the Split Bregman method [21]. This model
works properly if the object is smooth and well described
by the weighted shortest boundary length. After all of this,
Rada et al. [31] improved the models [18], [19], and com-
petes the state-of-the-art model Nguyen et al. [20].
In this paper, we propose a variational model, which

ensures better performance than the state-of-the-art mod-
els [31]–[33] for in-homogeneous, objects with the
same/different intensities, in-homogeneous background,
in-homogeneous foreground, and noisy images. At the same
time, our model will handle two tasks, first global segmenta-
tion using region information, and second selective segmen-
tation using both local region and local edge information.
Dual-level set functions are employed because each task
global function ψG and local function are characterized by
level set function [22]–[26], [31]. The re-initialization may be
required because the level set function is not unique. The local
similarity factors (LSF) [34] depend on local spatial distance
(to balance the intensity difference between the object and its
neighbor) is incorporated in the proposed model to improve
the segmentation results.

The rest of the paper is organized as follows. In Section II,
we give a brief review of related models [31]–[33]. The pro-
posed model and its Euler Lagrange equation are presented
in Section III. For solving the PDE we describe an additive
operator splitting method (AOS) in Section IV. In Section V,
we presented some experimental results on different data set
and comparedwith state-of-the-art models. Final remarks and
conclusions are made in Section VI.

II. A REVIEW OF THE RELATED WORKS
As mentioned above, there are many variational (local and
global) segmentation models. We will shortly summarize
some of them related to this work. In the global segmen-
tation, all objects in the image are segmented, while in
selective segmentation one object of interest is segmented.
For global segmentation, Mumford–Shah [9] is one of the
most popular region-based model, for the best segmenta-
tion it aims to reconstruct a piece-wise smooth function
to represent the given image. Using the piece-wise smooth
function by Mumford–Shah [9] to find the edges of a given

image, that varies over the image domain. But this model is
computationally expensive and complex. A new variational
global segmentation model is introduced by Chan-Vese [2],
by replacing the piece-wise smooth function with a piece-
wise constant function and the level set representation for
intensities inside and outside the contour. It can detect con-
tours without a gradient. This model may not efficiently
segment images with intensity in-homogeneity or texture.
To overcome such a problem, Ali et al. [27] introduced a
global segmentation model based on generalized averages for
segmentation of images having multiple objects and inten-
sity in-homogeneity. But this model cannot segment a single
object in the image having multi-objects. For this particular
problem, there are many variational models [28]–[30] are
introduced.

Mondal et al. [39] unveiled a newmodel that balances local
and global data. For photos with in-homogeneous intensity,
noise, and outliers, the model performs well. The model
can handle intensity in-homogeneity pictures, hazy border or
discontinuous edges, and the existence of moderated noise,
according to the experimental findings demonstrated in vari-
ous data sets. Chuang et al. [40] and Tripathy et al. [41] pro-
posed models that are better for noisy MRI images but may
not be as good for pictures with intensity in-homogeneity.
Because this model is not convex, the initial guess must be
adjusted multiple times until the desired results are obtained.
Wu has suggested a convex variational segmentation model
that ignores the factor and uses the idea of coefficient of
variation (CoV). Wu et al. [42] has suggested a convex varia-
tional segmentation model based on the notion of coefficient
of variation (CoV), which ignores the factor as well as the
existence of noise and outliers in pictures. The fact that their
CoV-based image data fitting term is sum of squares divided
by sum of picture intensity supports this claim.

To introduce our new selective and global segmentation
model, for segmenting the object of interest and all objects
in a given image having intensity in-homogeneity, first
we shortly summarize some selective segmentation models
related to this work.

A. DUAL LEVEL-SET MODEL FOR
SELECTIVE SEGMENTATION
Rada et al. [31], introduced a model for global and local
selective segmentation, based on two level-sets, that is local
and global level-sets. For local level sets, region-based terms
are required for this model. Using CG = ∂�G in � for the
global curve to locate the features of the image I , and CL =
∂�L in � for the desired selective curve, the Rada et al. [31]
minimization equation is

minψL (x,y),ψG(x,y),e1,e2Fζ (ψL(x, y), ψG(x, y), e1, e2)

= β1

∫
�

d(x, y)g(|∇I (x, y)|)δζ (ψL(x, y))|∇ψL(x, y)|

Hζ (ψG(x, y)+ r)dxdy+
βL

2

∫
�

(|∇ψL(x, y)| − 1)2dxdy

+β2

∫
�

g(|∇I (x, y)|)δζ (ψG(x, y))|∇ψG(x, y)|dxdy+
βG

2
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∫
�

(|∇ψG(x, y)| − 1)2dxdy+ η1G

∫
�

|I (x, y)− le1|Hζ

(ψG(x, y))dxdy+ η2G

∫
�

|I (x, y)− le2|

×(1−Hζ (ψG(x, y)))

dxdy+ η1

∫
�

|I (x, y)− le1|Hζ (ψL(x, y))dxdy+ η2

∫
�

|I (x, y)− le1|(1−Hζ (ψL(x, y)))H(ψG(x, y))dxdy+ η3∫
�

|I (x, y)− le2|(1−Hζ (ψL(x, y)))(1−Hζ (ψG(x, y)))

dxdy, (1)

where β1, β2, βL , βG, η1G, η2G, η1, η2 and η3 are all positive
parameters, d(x, y) is a distance function and g is the edge
detector function defined in [19]. le1, le2 are the intensity
means in the local interior and local exterior, respectively.
Keeping ψ fixed and minimizing Eq. (1) with respect to le1
and le2, let (1 − HL(ψL)) = ZL we obtained the following
equations:

le1 =

[
η1G

∫
�
IHG(ψG)dxdy+ η1

∫
�
IHL(ψL)dxdy

+η2
∫
�
I (ZL)HG(ψG)dxdy

]
[
η1G

∫
�
HG(ψG)dxdy+ η1

∫
�
HL(ψL)dxdy

+η2
∫
�
(ZL)HG(ψG)dxdy

] ,

le2 =

[
η2G

∫
�
I (1−HG(ψG))dxdy

+η3
∫
�
I (1−HL(ψL))(1−HG(ψG))dxdy

]
[

η2G
∫
�
(1−HG(ψG))dxdy

+η3
∫
�
(1−HL(ψL))(1−HG(ψG))dxdy

] ,
if the interior and exterior of ψG(x, y) are non-empty. κσ

is a Gaussian kernel function with the standard deviation σ .
Keeping le1, le2 fixed, and minimizing Eq. (1) with respect
to ψL(x, y) and ψG(x, y).

β1δζ (ψL)∇
(
WHζ (ψG + r)

∇ψL

|∇ψL |

)
+βL∇

((
1−

1
|∇ψL |

)
∇ψL

)
+δζ (ψL)(−η1(I (x, y)− le1)2 + η2(I (x, y)− le1)2

HζψG + η3(I (x, y)− le2)2(1−Hζ (ψG))) = 0, in �,
∂ψL

∂ Em
= 0, on �,

(2)

β2δζ (ψG)∇
(
g(x, y)

∇ψG

|∇ψG|

)
+βG∇

((
1−

1
|∇ψG|

)
∇ψG

)
+δζ (ψG + r)(−η1W(x, y)|∇Hζ (ψL)|)
+δζ (ψG)(−η1G(I (x, y)− le1)2

+η2G(I (x, y)− le2)2 − η2(I (x, y)− le2)2(1−HψG))
+η3(I (x, y)− le2)2(1−H(ψL)) = 0, in �,
∂ψG

∂ Em
= 0, on �,

(3)

whereW = dg(∇I ).

This model may not work well for images with intensity
in-homogeneity and noise, for examples Figs. 11 and 12.

B. TEXTURAL AND IN-HOMOGENEOUS OBJECT
EXTRACTION MODEL
For the segmentation of multiple objects with intensity dif-
ference and in-homogeneity, Mabood et al. [32] introduced
a selective segmentation model. This model is based on the
average image of channels (AIC), and segment images hav-
ing texture and noise. For texture image segmentation, the
authors utilize the extended structure tensor (EST) in order to
obtain the AIC.

The classical structure tensor (CST) Jσ is given by
Gaussian smoothing of tensor product of the image gradient,

Jσ = κσ ? (∇z∇zτ ) =
(
κσ ? I2x κσ ? IxIy
κσ ? IxIy κσ ? I2y

)
(4)

κσ is a Gaussian kernel function with standard deviation σ ,
x, y in the subscript denote the partial derivatives.
The EST JEσ for a gray-scale image I defined by

JEσ = κσ ? (uu
τ ) =

 κσ ? I2x κσ ? IxIy κσ ? IxI
κσ ? IxIy κσ ? I2y κσ ? IyI
κσ ? IxI κσ ? IyI κσ ? I2

 (5)

where u = [zx zy z]τ . By Computing the EST one
can obtain the AIC of all the channels JEσ,i ∈ JEσ for i =
1, 2, . . . , 9. The AIC is given by:

ζ ∗ =
1
9

9∑
i=1

JEσ,i. (6)

Mabood et al. [32] minimization functional as follows:

F2D
= µ

∫
�

d(x, y)g(|∇z|)δψ |∇(ψ)|dxdy+ λD(ζ ∗(x, y)),

(7)

where the first term is the edge detector function and blends
of metric, while the second term is the data term which
uses the information from the AIC to tackle textural and
noisy objects of interest. The data term D performs better for
detecting homogeneous intensity objects and is robust against
noise [19], but for the images with intensity in-homogeneity,
the performance is poor.

C. WEIGHTED VARIATIONAL MODEL FOR SELECTIVE
IMAGE SEGMENTATION (Liu)
Liu et al. [33] proposed a model, which applies the weighting
ω to the data fitting terms for adjusting the fidelity and
smoothing terms, and the minimization problem is given by

F(u) = µ
∫
�

|∇u|d�+ µ2

∫
�

|∇u|2d�

+λ

∫
�

ω2(x, y)|z− u|2d�, (8)

where the parameters µ,µ2, λ ≥ 0, ω(x, y) = 1 −
D(x, y)g(|∇z|), D is a distance function from marker set
M (see [33]).
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D. SELECTIVE SEGMENTATION MODEL FOR
MULTI-REGIONS WITHIN THE
OBJECT OF INTEREST
Ali et al. [38] proposed a selective segmentation model based
on generalized averages, the minimization functional is given
by:

F(e2, ψ) = µ
∫
�

d(x, y)g(|∇I (x, y)|)δζ (ψ)|∇ψ |dxdy

+η1

∫
�

|I (x, y)− le1|2Hζ (ψ)dxdy

+η2

∫
�

|I (x, y)− le1|2(1−Hζ (ψ))dxdy

+v
(∫

�

Hζ (ψ(x, y))dxdy− A1

)2

+v
(∫

�

(1−Hζ (ψ(x, y)))dxdy− A2

)
, (9)

where the parameters µ, η1, η2 and v are non-negative, g is
the edge detector function, d is a distance function, A1,A2 are
the areas inside and outside the initial polygon respectively,
le1 is the generalized mean of the polygon constructed with
the help of markers, le2 is the generalized mean intensity
outside the desired object, ψ is a level set function and Hζ

is the regularized Heaviside function.
They aims that the method is working good for detecting

single-region and an outperforming for multi-region selective
segmentation.

III. PROPOSED MODEL
Motivated by the local and global region-based active contour
models [15], [18], they may fail to segment images with
the in-homogeneous intensities, or if the intensity difference
between two objects is very small. We proposed a new effi-
cient and robust region-based model for noisy images having
intensities homogeneous and in-homogeneous.

Let us denote the given image by I , the global evolving
curve by CG = ∂�G in �, and the desired selective curve by
CL = ∂�L in �. Assume that �L ⊂ �G, this implies that
in(CL) = �L , out(CL) = �\�̄L , in(CG) = �G, out(CG) =
�\�̄G. Defining the two zero level set functionsψL(x, y) and
ψG(x, y) by:

CL = ∂�L = {(x, y) ∈ � : ψL(x, y) = 0},
in(CL) = �L = {(x, y) ∈ � : ψL(x, y) > 0},
out(CL) = �\�̄L = {(x, y) ∈ � : ψL(x, y) < 0}.
CG = ∂�G = {(x, y) ∈ � : ψG(x, y) = 0},
in(CG) = �G = {(x, y) ∈ � : ψG(x, y) > 0},
out(CG) = �\�̄G = {(x, y) ∈ � : ψG(x, y) < 0}.

In such a way, the unknown quantities CL , CG are replaced
respectively by ψL , ψG. To seek the possible advantages of
having expanded domain of �G within a distance r , define

�G,r = {(x, y) ∈ � : ψG(x, y) > −r},

where the parameter r = 0 or r = 3, and �L ⊂ �G ⊆

�G,r ⊂ �.

By keeping in mind the idea of searching selective features
�L in the local domain �G, and all features �G in the whole
image domain �, we consider a new variational model:

minCL ,CG,e1,e2F(CL ,CG, e1, e2)

= β1

∫
CL
d(x, y)g(|∇I (x, y)|)ds+ β2

∫
CG
g(|∇I (x, y)|)ds

+η1G

∫
inside(CG)

|I (x, y)− e1|2dxdy+ η2G

∫
outside(CG)

|I (x, y)− e2|2dxdy+ η1

∫
inside(CL )

|I (x, y)− e1|2dxdy

+η2

∫
outside(CL )∩inside(CG)

|I (x, y)− e1|2dxdy

+η3

∫
outside(CL )∩outside(CG)

|I (x, y)− e2|2dxdy, (10)

where

g(|∇I (x, y)|) =
1

1+ |∇Gσ (x, y) ∗ I (x, y)|2
, (11)

β1, β2, η1G, η2G, η1, η2 and η3 are all positive parameters,
d(x, y) is distance function defined in [19]. Gσ (x, y) ∗ I (x, y)
is a smooth version of I (x, y) with the Gaussian kernel

Gσ (x, y) = σ
−1
2 exp

−|x2+y2|
4σ to control the possible noise.

To derive the level set formulation for the Eq. (10), first
ψL(x, y) and ψG(x, y) will be scaled automatically with new
term as in [14]. For computing the weight length of CL to
�G,r in place of � we compel the search domain,∫
CL
d(x, y)g(|∇I (x, y)|)ds

=

∫
�

d(x, y)g(|∇I (x, y)|)|∇H(ψL(x, y))|dxdy

+

∫
�G,r

d(x, y)g(|∇I (x, y)|)|∇H(ψL(x, y))|dxdy

+

∫
�

d(x, y)g(|∇I (x, y)|)|∇H(ψL(x, y))|H(ψG(x, y)+r)

dxdy. (12)

Replacing the non-differentiable function H by regularized
Heaviside function Hζ as in [1], [2]. We will use the follow-
ing Heaviside functions

H1ζ =


0, z < −ζ
1
2

[
1+

z
ζ
+

1
π
cos

πz
ζ

]
, |z| ≤ ζ

1, z > ζ

H2ζ =
1
2

(
1+ erf

(
ζ

z

))
,

H3ζ =
1
2

(
1+

2
π
arctan

(
z
ζ

))
where the gauss error function (erf (y)) is double of the inte-
gral of Gaussian distribution N (0, 12 ) having the form:

erf (y) =
2
√
π

∫ y

0
e−t

2
dt.
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The functionH1ζ ,H2ζ and its corresponding delta functions
δ1ζ , δ2ζ have small support in the interval [−ζ, ζ ], but H3ζ
and δ3ζ are non-zero all over. We suggest to use H1ζ or H2ζ
because δ3ζ may not be good for the case where the features
of interest is lower than two pixels aside from other features,
the problem will be resolved if we adjust ζ while we lose the
automatic efficiency.

The Eq. (10) with the regularized Heaviside function and
local similarity factor in [34], can be written as:

minψL (x,y),ψG(x,y),e1,e2Fζ (ψL(x, y), ψG(x, y), e1, e2)

= β1

∫
�

d(x, y)g(|∇I (x, y)|)δζ (ψL(x, y))|∇ψL(x, y)|

Hζ (ψG(x, y)+ r)dxdy+
βL

2

∫
�

(|∇ψL(x, y)| − 1)2dxdy

+β2

∫
�

g(|∇I (x, y)|)δζ (ψG(x, y))|∇ψG(x, y)|dxdy

+
βG

2

∫
�

(|∇ψG(x, y)| − 1)2dxdy+ η1G

∫
(y∈Nx )6=x

|I (x, y)− le1|2

d(x, y)
Hζ (ψG(x, y))dxdy+ η2G

∫
(y∈Nx )6=x

|I (x, y)− le2|2

d(x, y)
(1−Hζ (ψG(x, y)))dxdy+ η1

∫
(y∈Nx )6=x

|I (x, y)− le1|2

d(x, y)
Hζ (ψL(x, y))dxdy+ η2

∫
(y∈Nx )6=x

|I (x, y)− le1|2

d(x, y)
(1−Hζ (ψL(x, y)))H(ψG(x, y))dxdy

+η3

∫
(y∈Nx )6=x

|I (x, y)− le2|2

d(x, y)
(1−Hζ (ψL(x, y)))

(1−Hζ (ψG(x, y)))dxdy, (13)

where βL > 0, βG > 0 and le1, le2 are the intensity means
in the local interior and local exterior respectively. Nx is a
neighborhood of x. Simply we will write d , I , ψL and ψG for
d(x, y), I (x, y), ψL(x, y) and ψG(x, y) respectively. Assume
that ψG(x, y) has neither empty interior nor empty exterior,
then keeping ψ fixed and minimizing Eq. (13) with respect
to le1 and le2, we obtained the following equations:

le1 =
κσ ∗

[
η1G(IHG(ψG))+ η1(IHL(ψL))
+η2(I (1−HL(ψL)))HG(ψG)

]
κσ ∗

[
η1G(1HG(ψG))+ η1(1HL(ψL))
+η2(1−HL(ψL))HG(ψG)

] , (14)

le2 =
κσ ∗

[
η2G(I (1−HG(ψG)))

+η3(I (1−HL(ψL)))(1−HG(ψG))

]
κσ ∗

[
η2G(1−HG(ψG))

+η3(1−HL(ψL))(1−HG(ψG))

] , (15)

κσ is a Gaussian kernel function with the standard
deviation σ .
Keeping le1, le2 fixed, and minimizing Eq. (13) with

respect to ψL(x, y) and ψG(x, y). To find the first variation
of Fζ with respect to ψL , we minimize Fζ with respect to ψL

by using the Gâteaux derivative

lim
h→0

d
dh

(Fζ (ψL + hφ, le1, le2)) = 0.

Following the same procedure as in [19], we get the
Euler-Lagrange equation for ψL :

β1δζ (ψL)∇
(
WHζ (ψG + r)

∇ψL

|∇ψL |

)
+βL∇

((
1−

1
|∇ψL |

)
∇ψL

)
+δζ (ψL)(−η1(I (x, y)− le1)2

+η2(I (x, y)− le1)2HζψG

+η3(I (x, y)− le2)2(1−Hζ (ψG))) = 0, in �,
∂ψL

∂ Em
= 0, on �,

(16)

where W = d(x, y)g(∇I (x, y)) and the boundary conditions
reduce to Neumann boundary conditions:

β1WHζ (ψG + r)
δζ (ψL)
|∇ψL |

∂ψL

∂ Em
= 0

and

βL(|ψL | − 1)
1
|∇ψL |

∂ψL

∂ Em
= 0.

By the same procedure, we can get the Euler-Lagrange
equation for ψG.

To speedify the convergence, we add the ballon terms
αW|∇ψL |, αg(x, y)|∇ψG| in equation forψL andψG respec-
tively. So the equation for ψL and ψG are:

β1δζ (ψL)∇
(
WHζ (ψG + r)

∇ψL
|∇ψL |

)
+βL∇

((
1− 1

|∇ψL |

)
∇ψL

)
+δζ (ψL)(−η1(I (x, y)− le1)2

+η2(I (x, y)− le1)2HζψG + η3(I (x, y)− le2)2

(1−Hζ (ψG)))+ αW(x, y)|∇ψL | = 0, in �,
∂ψL
∂ Em = 0, on �,

(17)



β2δζ (ψG)∇
(
g(x, y) ∇ψG

|∇ψG|

)
+βG∇

((
1− 1

|∇ψG|

)
∇ψG

)
+δζ (ψG + r)(−η1W(x, y)|∇Hζ (ψL)|)
+δζ (ψG)(−η1G(I (x, y)− le1)2 + η2G(I (x, y)− le2)2

−η2(I (x, y)− le2)2(1−HψG))+ η3(I (x, y)− le2)2

(1−H(ψL))+ αg(x, y)|∇ψG| = 0, in �,
∂ψG
∂ Em = 0, on �.

(18)

To get the linear system of equations, we freeze the non-
linear coefficients in Eqs. (17) and (18), then it can be solved
by the fixed point method. The deficiency of the fixed point
method is the computational cost of the related linear system
for large images. We develop a fast technique analogously
to [2], [19], [36].
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IV. SOLUTION OF THE PROPOSED METHOD
For solving Eqs. (17) and (18), we choose an efficient addi-
tive operator splitting technique (AOS) [35], [36] which is
low computationally cost and fast convergent. Consider the
parabolic equations related to Eqs. (17) and (18) respectively.

ψL(x, y, 0) = ψ0
L(x, y)

∂ψL

∂τ
= β1δζ (ψL)∇

(
WHζ (ψG + r)

∇ψL

|∇ψL |

)
+βL∇

((
1−

1
|∇ψL |

)
∇ψL

)
+ δζ (ψL)

×(−η1(I (x, y)− le1)2 + η2(I (x, y)− le1)2

×Hζ (ψG)+ η3(I (x, y)− le2)2

×(1−Hζ (ψG)))+ αW(x, y)|∇ψL |,
∂ψL

∂ Em
|∂� = 0,

(19)



ψG(x, y, 0) = ψ0
G(x, y)

∂ψG

∂τ
= β2δζ (ψG)∇

(
g(x, y)

∇ψG

|∇ψG|

)
+ βG∇

×

((
1−

1
|∇ψG|

)
∇ψG

)
+ δζ (ψG + r)

×(−η1W(x, y)|∇Hζ (ψL)|)+ αg(x, y)
×|∇ψG| + δζ (ψG)(−η1G(I (x, y)− le1)2

+η2G(I (x, y)− le2)2 − η2(I (x, y)− le2)2

×(1−HψL))+ η3(I (x, y)− le2)2

×(1−H(ψL)),
∂ψG

∂ Em
|∂� = 0.

(20)

Let’s denote this by:

hL = δζ (ψL)(−η1(I (x, y)− le1)2 + η2(I (x, y)− le1)2

×Hζ (ψG)+ η3(I (x, y)− le2)2(1−Hζ (ψG)))

+αW(x, y)|∇ψL |,
hG = δζ (ψG + r)(−η1W(x, y)Hζ (ψL))+ δζ (ψG)(−η1G

×(I (x, y)− le1)2 + η2G(I (x, y)− le2)2 − η2
×(I (x, y)− le1)2(1−HψL))+ η3(I (x, y)− le2)2

×(1−H(ψL))+ αg(x, y)|∇ψG|,

FL =
WHζ (ψG + r)
|∇ψL |

, FG =
g
|∇ψG|

,

HL = 1−
1
|∇ψL |

HG = 1−
1
|∇ψG|

.

So the compact form of Eqs. (19) and (20) can be written
as:

∂ψL
∂τ
= β1δζ (ψL)∇ (FL∇ψL)+ βL∇ (HL∇ψL)+ hL

= β1δζ (ψL)(∂x(FL∂xψL)+ ∂y(FL∂yψL))
+βL(∂x(HL∂xψL)+ ∂y(HL∂yψL))+ hL ,
∂ψG
∂τ
= β2δζ (ψG)∇ (FG∇ψG)+ βG∇ (HG∇ψG)+ hG

= β2δζ (ψG)(∂x(FG∂xψG)+ ∂y(FG∂yψG))
+βG(∂x(HG∂xψG)+ ∂y(HG∂yψG))+ hG.

(21)

We have to iterate Eq. (21) because it has nonlinear coef-
ficients and ψL , ψG are dependent on each other. Both the
equations in Eq. (21) are of the same disjoint form. It will be
enough to solve the second equation:

∂ψG

∂τ
= β2δζ (ψG)(∂x(FG∂xψG)+ ∂y(FG∂yψG))

+βG(∂x(HG∂xψG)+ ∂y(HG∂yψG))+ hG (22)

In x coordinate direction,the semi implicit form of Eq. (22)
for a step size s1 = s2 = s = 1,

ψk+1
i,j − ψ

k
i,j

2∇τ

= β2δζ (ψi,j)

((
Fk
i,j + Fk

i+1,j

2s2

)
(ψk+1

i+1,j − ψ
k+1
i,j )

)

−β2δζ (ψi,j)

((
Fk
i,j + Fk

i−1,j

2s2

)
(ψk+1

i,j − ψ
k+1
i−1,j)

)

+βG

((
Hk
i,j +Hk

i+1,j

2s2

)
(ψk+1

i+1,j − ψ
k+1
i,j )

)

−βG

((
Hk
i,j +Hk

i−1,j

2s2

)
(ψk+1

i,j − ψ
k+1
i−1,j)

)
+
1
2
hi,j, (23)

H⇒ ψk+1
i,j

= ψk
i,j + 2∇τ (v1ψ

k+1
i+1,j − v2ψ

k+1
i,j + v3ψ

k+1
i−1,j)

+∇τhi,j, (24)

where

v1 = β2δζ (ψi,j)
Fk
i,j + Fk

i+1,j

2s2
+ βG

Hk
i,j +Hk

i+1,j

2s2
, (25)

v2 = β2δζ (ψi,j)
F k
i−1,j+2F

k
i,j+F k

i+1,j

2s2

+βG
Hk
i−1,j+2H

k
i,j+Hk

i+,j

2s2
,

(26)

v3 = β2δζ (ψi,j)
Fk
i,j + Fk

i−1,j

2s2
+ βG

Hk
i,j +Hk

i−1,j

2s2
. (27)

In the same way, in y coordinate direction:

H⇒ ψk+1
i,j = ψ

k
i,j + 2∇τ (v̄1ψ

k+1
i,j+1 − v̄2ψ

k+1
i,j

+v̄3ψ
k+1
i,j−1)+∇τhi,j. (28)

Solving the uncoupled system of Eqs. (24) and (28) in the
equality of AOS, with the time step 2∇τ in the directions of
x, y respectively, and then take the mean of the two solutions
with the result equivalent to a coupled semi-implicit system
and time step ∇τ . The matrix form of Eqs.(24) and (28) is:

(I − 2∇τBI (ψ
k ))ψk+1

I = ĥk , for I = 1, 2.

ψk+1
=

1
2

2∑
i=1

ψk+1
I , k = 1, 2, . . . ,
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FIGURE 1. (a-d) Tomographic and medical images with markers, (e-h) successful Local segmentation
and (i-l) segmented features with dt = 0.01.

FIGURE 2. Performance of the proposed method for Image with a noise
(salt and pepper noise) density of 0.02. (a-c) Noisy images with initial
contour, (d-f) successful Local segmentation results and (g-i) segmented
features with dt = 0.2.

where I is the identity matrix, ĥk = ψk
+ ∇τhk , BI is a

tri-diagonal matrix containing (v1,−v2, v3) and v̄1,−v̄2, v̄3
respectively for I = 1, 2.

V. EXPERIMENTAL RESULTS
This section includes experimental results to clarify the per-
formance, robustness, and accuracy of the proposed model,
also some comparison with the exiting models [31]–[33]
on homogeneous, in-homogeneous, and noisy images. We
executed the experiment on medical, synthetic, artificial, and
real images with different shapes and contours. The test
images are taken from the datasets available online at kaggle.1

1https://www.kaggle.com/

TABLE 1. Efficiency comparison of the proposed model with
Rada et al. [31] on 10 different images.

The better performance of our proposed model in terms of
efficiency, quality, robustness, and speed will be observed.
All the experiments were carried out using Matlab 9.10.0
on a core i7 computer with 8GB RAM, 2.70GHz processor,
window 10 operating system. The image size choose 128 or
256 and the parameters are η1 = η2 = η3 = 1, η1G = η1G =
1, τ = 4, step space h = 1, time step ∇t = 0.1 or 0.01 or
0.001 or 0.2, α = 0.001, ηL = ηG = 0.4, β1 = β2 =

m2

10 .
The initial global and local level sets have the form:

ψ0
G =

√
(x − x0G)

2(y− y0G)
2 − r0G

ψ0
L =

√
(x − x0L)

2(y− y0L)
2 − r0L ,

where (x0G, y
0
G), (x

0
L , y

0
L) are the center of the circle and center

of the markers in a set D, respectively. Moreover, r0G =
m
5 is

radius, r0L = mina6=b||pa − pb|| is the minimum distance of
the markers, a, b ∈ D, where

x0L =

∑
x

n(markers)
y0L =

∑
y

n(markers)
.
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FIGURE 3. For a clean image with three objects, the first row is the Rada et al. results, and the second row is our proposed model
results with dt = 0.001. First column: Image with markers points and the initial zero level set contours. The second, third, fourth,
and fifth columns are the local, global, segmented features and local+global comparison respectively.

FIGURE 4. The first row is the Rada et al. results and the second row is our proposed model results with dt = 0.01. First column:
Image with markers points and the initial zero level set contours. The second, third, fourth, and fifth columns are the local, global,
segmented features and local+global comparison of the proposed model with Rada et al. respectively.

FIGURE 5. The first row is the Rada et al. results and the second row is our proposed model results with dt = 0.001. First column:
Image with markers points and the initial zero level set contours. The second, third, fourth, and fifth columns are the local, global,
segmented features and local+global comparison of the proposed model with Rada et al. respectively.

The choices of parameters and the initialization of the initial
level are the same as for [31] and [19]. Further, we divide this
section as follows:

A. TEST SET-1: ROBUSTNESS OF THE PROPOSED MODEL
Test Set-1 consists of experimental results on different images
of our proposed model. In Figure 1, the first-row containing
images with many features, that is the tomographic image
taken from Furat et al. [37] and the medical image. The sec-
ond row is their successful local segmentation results and the
third row is their segmented features. On these images, we test
the proposed model where one object is to be selected. These

show better selective segmentation results. Similarly, Figure 2
demonstrates the performance of the proposed method for
Image with a noise (salt and pepper noise) density of 0.02.
For example: (a-c) Noisy images with initial contour, (d-f)
successful local segmentation results and (g-i) segmented
features with dt = 0.2.

B. TEST SET-2: LOCAL AND GLOBAL COMPARISON
WITH RADA et al.
In Test Set-2, we compare our model locally and globally
with Rada et al. [31] for 10 different images. Figure 3 is
the comparison for a simple clean image, Figs. 4, 7 are
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FIGURE 6. The first row is the Rada et al. results and the second row is our proposed model results with dt = 0.01. First column:
Image with markers points and the initial zero level set contours. The second, third, fourth, and fifth columns are the local,
global, segmented features and local+global comparison of the proposed model with Rada et al. respectively.

FIGURE 7. The first row is the Rada et al. results and the second row is our proposed model results with dt = 0.01. First column:
Image (background intensity is in-homogeneous) with markers points and the initial zero level set contours. The second, third,
fourth, and fifth columns are the local, global, segmented features and local+global comparison of the proposed model with Rada
et al. respectively.

FIGURE 8. The first row is the Rada et al. results and the second row is our proposed model results with dt = 0.01. First column:
Image with markers points and the initial zero level set contours. The second, third, fourth, and fifth columns are the local, global,
segmented features and local+global comparison of the proposed model with Rada et al. respectively.

for images with background intensities are in-homogeneous,
Figs. 5, 6, 8 are for images having objects with different
intensities, Figs. 9, 10 and 11 are for medical images having
the intensity difference is small between the object and its
neighbor and Figure 12 for a noisy image. Better performance
can be seen in all these test as compare to Rada et al. [31].
Table 1, which is CPU time and iterations comparisons of the
proposed model and Rada et al. [31] shows that the proposed
model is more efficient than the other.

C. TEST SET-3: SELECTIVE COMPARISON WITH
MABOOD et al. AND LIU et al.
For the same images as in Test Set-2 and different cases
with respect to intensity in-homogeneity Figure 13, are the
comparison of our proposed model with the existing models
Liu et al. [33] andMabood et al. [32]. Better performance can
be seen of our proposed model, while Liu et al. is not work-
ing for these images, and the Mabood et al. results are not
good.
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FIGURE 9. The first row is the Rada et al. results and the second row is our proposed model results with dt = 0.02. First
column: Medical image (foreground intensity is in-homogeneous) with markers points and the initial zero levels set contours.
The second, third, fourth, and fifth columns are the local, global, segmented features and local+global comparison of the
proposed model with Rada et al. respectively.

FIGURE 10. The first row is the Rada et al. results and the second row is our proposed model results with dt = 0.01. First
column: Medical image (the foreground intensity is in-homogeneous) with markers points and the initial zero level set
contours. The second, third, fourth, and fifth columns are the local, global, segmented features and local+global comparison of
the proposed model with Rada et al., respectively.

FIGURE 11. The first row is the Rada et al. results and the second row is our proposed model results with dt = 0.01. First
column: Medical image (the foreground intensity is in-homogeneous) with markers points and the initial zero level set
contours. The second, third, fourth, and fifth columns are the local, global, segmented features and local+global comparison of
the proposed model with Rada et al., respectively.

FIGURE 12. The first row is the Rada et al. results and the second row is our proposed model results with dt = 0.001. First
column: Noisy image (with 20 percent Gaussian noise) with markers points and the initial zero level set contours. The second,
third, fourth, and fifth columns are the local, global, segmented features and local+global comparison of the proposed model
with Rada et al., respectively.
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FIGURE 13. First column: Image with markers points and the initial zero level set contour. The second,
third, and fourth columns are the segmentation results of Liu et al., Mabood et al. and our model,
respectively, with dt = 0.01.

FIGURE 14. First coloumn: Image with markers points and the initial zero level set contour. The second,
third, and forth columns are the segmentation results of Liu et al., Mabood et al. and our model,
respectively, with dt = 0.01.

D. QUANTITATIVE ANALYSIS
To ensure the transparency of the experimental analysis we
use the Jaccard ans Sφrensen-Dice similarity similarities

indices. Let IS is the segmented result found by the
model algorithm and IG is the ground truth of the same
image.
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FIGURE 15. First column: Medical image with markers points and the initial zero level set contour. The
second, third, and fourth columns are the segmentation results of Liu et al., Mabood et al. and our model,
respectively, with dt = 0.2.

FIGURE 16. First column: Medical image with markers points and the initial zero level set contour.
The second, third, and fourth columns are the segmentation results of Liu et al., Mabood et al. and
our model, respectively, with dt = 0.1.

FIGURE 17. First, second, and third columns are the segmentation results
of Liu et al., Mabood et al. and our model, respectively, with dt = 0.01.

1) JACCARD SIMILARITY
The Jaccard similarity coefficient computed as:

JS(IS , IG) =
|IS ∩ IG|
|IS ∪ IG|

,

where | . | denotes the cardinality. The range of the Jaccard
value is in [0, 1]. The higher Jaccard value shows better
segmentation result.

2) SφRENSEN-DICE SIMILARITY
The Sφrensen-Dice similarity is computed as

D(IS , IG) =
2|IS ∩ IG|
|IS | + |IG|

.

FIGURE 18. First,second, and third columns are the segmentation results
of Liu et al., Mabood et al. and our model, respectively, with dt = 0.001
for the first and dt = 0.2 for the second image.

The Sφrensen-Dice similarity value is also in [0, 1]. The
higher Dice value shows better segmentation result.
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FIGURE 19. Comparison of our proposed model with Ali et al. [38] on Tomographic image. (a), (b) are the
markers points, (c), (e), (g) and (i) are the results of Ali et al., while (d), (f), (h) and (j) are the results of our
proposed model. It is clear that our model is robust and more efficient as compared to Ali et al.

TABLE 2. Jaccard similarity coefficients for Liu et al. [33], Mabood et al. [32], Rada et al. [31], Ali et al. [38] and the proposed model on 10 different images.

TABLE 3. Sφrensen-Dice similarity for Liu et al. [33], Mabood et al. [32], Rada et al. [31], Ali et al. [38] and the proposed model on 10 different images.

Table 2 shows the JS coefficients comparison and Table 3
shows Sφrensen-Dice coefficients comparison of our pro-
posed model with other competing models Liu et al. [33],
Mabood et al. [32] and Rada et al. [31]. The results are
obtained from experiments on 10 different images suitable
for interactive segmentation with a pre-labeled ground truth
consisting of the mean of the labeled ground truth. It can be
observed that Rada et al. produced relatively better results
compared to Liu et al. and Mabood et al., but for a high noisy
or low intensity image it loses the details. From the results it is
clear that our model perform better than the other competing
models.

VI. CONCLUSION AND FUTURE WORK
This article mainly focuses on designing a new varia-
tional model with dual-level set functions for local and
global segmentation which performs better segmentation for
images havingmulti-region, multi-object, noisy, and intensity
in-homogeneity.Moreover, the newmodel is efficient inmed-
ical and synthetic images having objects with non-uniform
features. Experimental results show that the new model is
faster, efficient and reliable than the models Rada et al. [31]
(global and selective segmentation), Mabood et al. [32],
Liu et al. [33] (selective segmentation). To achieve proper

picture segmentation in the presence of noise and outliers,
outliers must be identified and isolated during the denoising
pre-processing or appropriate limitations must be imposed on
the segmentation framework. For accurate picture segmen-
tation in the future, we will apply appropriate eliminating
outliers requirements backed by a well-designed theory in a
variational framework.
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