
Received January 26, 2022, accepted February 15, 2022, date of publication February 18, 2022, date of current version March 8, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3152781

uTango: An Open-Source TEE for IoT Devices
DANIEL OLIVEIRA , TIAGO GOMES , AND SANDRO PINTO
Centro ALGORITMI, University of Minho, 4800-058 Guimaraes, Portugal

Corresponding author: Daniel Oliveira (daniel.oliveira@dei.uminho.pt)

This work was supported in part by the Fundação para a Ciência e Tecnologia (FCT) within the Research and Development Units under
Grant UIDB/00319/2020, and in part by FCT within the Ph.D. Scholarship under Grant 2020.04585.BD.

ABSTRACT Security is one of the main challenges of the Internet of Things (IoT). IoT devices are mainly
powered by low-cost microcontrollers (MCUs) that typically lack basic hardware security mechanisms to
separate security-critical applications from less critical components. Recently, Arm has started to release
Cortex-MMCUs enhanced with TrustZone technology (i.e., TrustZone-M), a system-wide security solution
aiming at providing robust protection for IoT devices. Trusted Execution Environments (TEEs) relying on
TrustZone hardware have been perceived as safe havens for securing mobile devices. However, for the past
few years, considerable effort has gone into unveiling hundreds of vulnerabilities and proposing a collection
of relevant defense techniques to address several issues. While new TEE solutions built on TrustZone-M
start flourishing, the lessons gathered from the research community appear to be falling short, as these
new systems are trapping into the same pitfalls of the past. In this paper, we present uTango, the first
multi-world TEE for modern IoT devices. uTango proposes a novel architecture aiming at tackling the
major architectural deficiencies currently affecting TrustZone(-M)-assisted TEEs. In particular, we leverage
the very same TrustZone hardware primitives used by dual-world implementations to create multiple and
equally secure execution environments within the normal world. We demonstrate the benefits of uTango by
conducting an extensive evaluation on a real TrustZone-M hardware platform, i.e., Arm Musca-B1. uTango
will be open-sourced and freely available on GitHub in hopes of engaging academia and industry on securing
the foreseeable trillion IoT devices.

INDEX TERMS Arm, IoT, isolation, separation, trusted execution environment (TEE), TrustZone.

I. INTRODUCTION
With the increasing complexity of the Internet of Things (IoT)
devices and the door left open by Internet connectivity
to hackers and attackers, developing secure IoT devices is
becoming increasingly challenging [1]–[3]. Complex func-
tional requirements are met by integrating multiple code-
bases, drivers, and libraries from different 3rd party entities
with distinct assurance levels. Such problems are exacer-
bated in devices composed by microcontrollers (MCUs) that
typically lack reliable mechanisms to enforce the separa-
tion among these multi-source and mixed-criticality compo-
nents [4], [5]. Therefore, with the IoT ecosystem evolving at a
breathtaking pace, the need for reliable security architectures
is rising; however, due to the heterogeneity and limitation
of computational resources on MCUs, creating and adopting
these architectures still challenges most IoT system develop-
ers [6]–[9].

The associate editor coordinating the review of this manuscript and

approving it for publication was Giovanni Pau .

In the context of secure computing systems, security
through separation is a well-established principle imple-
mented by microkernels, hypervisors, and Trusted Execu-
tion Environments (TEEs) [10]–[23]. In particular, billions
of mobile devices operating worldwide rely on TEEs lever-
aging TrustZone hardware primitives for the protection of
security-critical applications (e.g., digital rights management,
fingerprints, and keys) [13], [15], [18], [19], [24], [25].
TrustZone enables the partition of system resources into two
domains: the secure world for secrets and critical functional-
ity; and the normal world for everything else, including the
operating system (OS) and its applications. Within the realm
of the tiniest IoT devices, Arm has adapted TrustZone tech-
nology for the Cortex-M family, introducing TrustZone-M
into the new Armv8-MMCUs, e.g., Cortex-M23 and Cortex-
M33 [5], [26], [27].

A. PROBLEM AND MOTIVATION
TrustZone-assisted TEEs are assumed to be highly secure.
However, over the past years, TrustZone-assisted TEEs have

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 23913

https://orcid.org/0000-0003-4119-8482
https://orcid.org/0000-0002-4071-9015
https://orcid.org/0000-0003-4580-7484
https://orcid.org/0000-0002-5798-398X


D. Oliveira et al.: uTango: Open-Source TEE for IoT Devices

been attacked several times [19], [28]–[31]. A recent study
performed on five major commercial TrustZone-assisted
TEEs (i.e., Qualcomm, Trustonic, Huawei, Nvidia, and
Linaro) has identified that TrustZone-assisted TEEs have sev-
eral architectural deficiencies, critical implementation bugs,
and overlooked hardware properties [31]. The architectural
issues have the largest share from these three classes of prob-
lems. Among the identified deficiencies, we highlight (i) the
excessively large trusted computing base (TCB), e.g., QSEE
has 1.6 MiB, (ii) a large number of interfaces, e.g., QSEE
has 69 syscalls, (iii) the existence of several privileged secure
kernel drivers, and (iv) the asymmetrical isolation between
the worlds, e.g., trusted applications can map normal world
memory [31].

In general, although these problems have mainly affected
commercial TEE systems targeting Cortex-A processors, new
TEE solutions built on TrustZone-M MCUs are falling into
the same pitfalls of the past. The Arm Trusted Firmware-
M (ATF-M) [32] implements a large number of kernel com-
ponents and security services within the secure world and
existing memory protection mechanisms (i.e., secure Mem-
ory Protection Unit (MPU)) are configured with too coarse-
grained regions. As a result, ATF-M has a TCBwith hundreds
of KiloBytes (150+ KiB). The Kinibi-M was adapted from
the original Kinibi TEE for mobiles and not re-invented
for the IoT [33]. And lastly, Arm is currently spreading an
ambiguous message concerning what should be deployed
within the secure world. Multiple official Arm TrustZone-M
documents [34]–[36] suggest different approaches. Very crit-
ical, in Ref. [34], for an IoT application targeting a wire-
less communication interface, Arm suggests including (i) the
secure boot, (ii) the communication stack, (iii) device drivers,
(iv) OS kernel, and (v) firmware update within the secure
world and a communication buffer on the normal world.

B. EXISTING SOLUTIONS
As the current dual-world model is becoming inadequate to
address the increasing complexity and requirements of mod-
ern IoT devices, the academia presented several works that
extend this model into unique multi-domain TEE architec-
tures aiming to address this critical limitation. TrustICE [13]
and Sanctuary [12] are two prominent solutions that extend
the TrustZone model by creating full-isolated enclaves within
the normal world. In another line of works, the vTZ [24],
OSP [37], and PrivateZone [38] solutions leverage virtu-
alization mechanisms to provide multiple isolated environ-
ments within the normal world. However, all these works are
developed on top of high- to middle-end processors, which
feature mechanisms not available on MCUs. Targetting low-
end MCUs, the number of systems that propose architectures
with multiple isolated environments is still scarce. As of this
writing, the commercial Multizone TEE [39] is one solution
that follows this multi-domain concept and distinguishes it
from other traditional systems such as ATF-M, Kinibi-M, and
ProvenCore-M. To the best of our knowledge, the Multizone
TEE is the closest solution to uTango, but it targets Armv7-M

processors, which inherently brings several disadvantages,
namely, the need for trap and emulation techniques and binary
translation of privileged instructions. Thus, we believe that
a novel multi-world architecture enabling the execution of
multiple environments within strongly isolated compartments
would provide higher flexibility and increase security guaran-
tees for the new generation of MCU-powered IoT devices.

C. CONTRIBUTIONS
In this paper, we present uTango, an open-source TEE
that aims at tackling the main architectural flaws that cur-
rently affect TrustZone(-M)-assisted TEEs (i.e., large TCBs
and poor isolation between different world domains [31]).
To shrink the TCB, uTango sits solely in the secure world
and creates an unlimited number of non-secure domains to
host not only normal applications but also typical TEE-based
kernel components (e.g., secure services). To ensure the
strict isolation of virtual worlds, uTango leverages the
dynamic reconfiguration capabilities of TrustZone-M con-
trollers. Each controller is dynamically programmed to par-
tition system resources according to each execution envi-
ronment memory, devices, and interrupt assignments. To the
best of our knowledge, uTango is the first multi-world TEE
for TrustZone-M IoT devices. The novel TEE architecture
leverages the very same TrustZone-M hardware primitives
used by dual-world implementations to provide multiple
equally-secure execution environments and augmented TEE
capabilities (e.g., more than two sandboxed environments and
availability guarantees).

The design follows three main principles: (i) principle of
minimal implementation, by providing a minimal and clean-
slate implementation, with a small number of well-defined
interfaces, thereby drastically reducing the overall system
TCB; (ii) principle of least privilege, by ensuring that uTango,
as the highest privilege entity, is the single component run-
ning within the secure world; (iii) and principle of con-
tainment, by enforcing that each functional block executes
on its isolated execution domain, which inherently prevents
lateral movement and privilege escalation. To comply with
these design principles, the materialization of uTango comes
with several interesting challenges to be resolved: (i) how
to enforce strict separation between worlds leveraging ade-
quate usage of typical seldomMCU-based protection mecha-
nisms; (ii) how de-privileged security services need arbitrated
access to hardwired secure peripherals; (iii) how uTangomust
provide a set of secure communication channels to worlds
exchange messages between them; and (iv) how to offer
tangible improvements in real-world scenarios, i.e., uTango
must be as less intrusive as possible and provide near-native
performance.

We have implemented uTango on the ArmMusca-B1 plat-
form, where we performed an extensive performance evalua-
tion by using the Embench benchmark suite. Our comparison
between native runs of the benchmark against different con-
figurations of the benchmark under the uTango system shows
that uTango introduces a minimal performance overhead,

23914 VOLUME 10, 2022



D. Oliveira et al.: uTango: Open-Source TEE for IoT Devices

averaging - in a minimal configuration of the system - a resid-
ual value of 0.05%. As the number of environments increases,
we observed that the performance overhead increases lin-
early, which we conclude to be a natural result of uTango’s
design. Moreover, the TCB of the system (≈ 4.3 KiB) is an
order of magnitude smaller than alternative solutions.

Finally, as TrustZone’s dual-world model has proved its
inability to cope with the increasing complexity of modern
devices, new solutions that enable multiple isolated execution
environments have arisen to be suitable architectures [13],
[18], [24], [24], [31], [37]–[39]. With uTango TEE, our main
goal is to tackle the aforementioned problems and emphasize
that multi-world architectures are possible to endow orthog-
onally in all TrustZone systems, specifically in TrustZone-
M-based devices that bring another set of challenges. To that
end, our main contributions are as follows:

1) We present the design of uTango as a novel TEE archi-
tecture leveraging TrustZone-M hardware primitives to
provide an unlimited number of equally-secure execu-
tion environments (Section III).

2) We provide a proof-of-concept implementation of
uTango targeting the first public available TrustZone-
M platform, i.e., ArmMusca-B1 (Section IV). All soft-
ware components will be open-sourced and available
on GitHub.

3) We perform a comprehensive security analysis and dis-
cuss how uTango can mitigate potential attack vectors
that a malicious adversary may explore (Section V).

4) We extensively evaluate uTango focusing on secu-
rity metrics, performance, interrupt latency, and TCB
size and overall complexity (Section VI). Our results
demonstrate why our solution has minimal impact on
the overall system and why it is a perfect fit for modern
resource-constrained IoT devices.

II. BACKGROUND
A. ARM TRUSTZONE-M
Arm TrustZone follows a system-wide approach to security,
providing hardware-enforced protection mechanisms at the
CPU and System-on-Chip (SoC) level [19]. This technology
is centered around the concept of protection domains named
secure world and normal world. TrustZone was firstly intro-
duced into Arm application processors (Cortex-A) in 2004,
achieving mainstream adoption in the mobile industry. The
technology has provided the hardware foundations to foster
the creation of mainly TEE systems [13], [15], [18], [19],
[24], [25], but also virtualization infrastructures [5], [40].
However, the later solutions still face several limitations, and,
therefore, the technology has been continuously being more
used in the context of enabling TEEs.

In 2016, Arm decided to span TrustZone for the new gen-
eration of Arm MCUs, i.e., Armv8-M (e.g., Cortex-M23 and
Cortex-M33), naming this new version of the technology as
TrustZone-M. From a high-level perspective, both technolo-
gies follow the same dual-world architecture. However, at the

low level, there are significant differences, mainly because
TrustZone-M is entirely optimized for low-end devices
(e.g., deterministic behavior, low overhead, and low-power
consumption) [34].

1) PROGRAMMING MODEL
Armv7-M MCUs provide two operation modes: thread and
handler mode. In thread mode, the processor executes appli-
cation code, which can be either privileged or unprivileged.
In handler mode, the processor executes exception handler
code, which is always privileged. In (Armv8-M) TrustZone-
enabled MCUs, these operation modes are orthogonal to the
two security states, i.e., there is both a thread and handler
mode for each security state. The security state does not
depend on a specific security bit, but the division is memory
map based. This means that when the code is running from
the secure memory, the processor state is secure, and when
the code runs from non-secure memory, the processor state
is non-secure. Transitions between the two worlds are sup-
ported by three new instructions: branch with exchange to
non-secure state (BXNS), secure gateway (SG), and branch
with link and exchange to non-secure state (BLXNS). Calling
non-secure software from the secure state is possible by per-
forming a BLXNS instruction. In contrast, non-secure soft-
ware cannot directly call secure software. Instead, non-secure
software must use indirect entry points located in a Non-
Secure Callable (NSC) memory region. The first instruction
of any entry point must be an SG, which marks a valid branch
to secure code. After the secure function completes, a BXNS
instruction issues a return to the non-secure software. Further-
more, state transitions can also happen due to exceptions or
interrupts.

2) RESOURCES PARTITIONING
In Armv8-MMCUs, the memory space is partitioned through
the so-called attribution units. The Security Attribution
Unit (SAU) is always available and provides dynamic address
partitioning. The chip designer defines the number of regions,
which is typically 8. The SAU is programmable in the secure
state. The Implementation-Defined Attribution Unit (IDAU)
is external to the core and implementation-defined. The
IDAU provides static address partitioning and supports up
to 256 non-programmable regions. The configuration of the
memory region’s security state results from the OR logic
operation between the SAU and IDAU.Memory can also have
a set of privilege permissions defined by a TrustZone-aware
Memory Protection Unit (MPU). MPUs are banked among
worlds; however, MPUs are optional and implementation-
defined. Additionally to the attribution units, other com-
ponents, referred to as security wrappers and gates (i.e.,
block-based, watermark-based, and select-based), propagate
the security model defined at the core level to the remaining
system bus masters and slaves. Security wrappers are placed
in front of non-security aware masters to wrap their transac-
tions into secure or non-secure transactions. Flash and SRAM
memory slaves can use block-based (memory divided into

VOLUME 10, 2022 23915



D. Oliveira et al.: uTango: Open-Source TEE for IoT Devices

multiple, alternating blocks of secure and non-secure regions)
or watermark-based gates (memory splitted into two regions,
one secure and the other non-secure) to filter transactions.
The select-based gates are used to filter transactions based on
the device slave address and the assigned world. These com-
ponents are controlled by a central system security controller,
specified by silicon manufacturers.

3) INTERRUPT HANDLING
In TrustZone-enabled MCUs, interrupts can be set as secure
or non-secure by configuring the Interrupt Target Non-secure
(ITNS) interface on the Nested Vector Interrupt Control
(NVIC). Arm’s M-profile architectures support automatic
hardware stacking and un-stacking of some CPU registers
during exception entrance to reduce the interrupt latency.
Armv8-M-based architectures follow the same concept, with
notable exceptions. If the arriving interrupt has the same
security state as the processor, the execution flow is almost
identical. The main difference occurs when a non-secure
interrupt triggers while secure code is executing. To avoid
information leakage, the processor automatically pushes all
non-banked registers to the secure stack and erases all
its contents, which increases interrupt latency. The vector
table is banked between states, i.e., the processor supports
two separated exception vector tables. Furthermore, secure
and non-secure interrupts can share the same priority level,
or secure interrupts can be programmed to have higher pri-
ority than non-secure ones (i.e., to avoid denial-of-service
(DoS) attacks).

4) FINDINGS OF SECURITY OBSERVATIONS
Arm TrustZone-M is already subject to some security issues
and disclosed vulnerabilities. Luo et al. [8] presented a com-
prehensive security analysis that observed several potential
software security issues in TrustZone-M-enabledMCUs. The
list of potential exploits to subvert TrustZone-M’s security
foundations are based on four types of attacks: (i) code
injection, (ii) code reuse, (iii) heap-based buffer overflows,
(iv) format strings, and (v) specific NSC attacks. These
attacks were successfully performed in the Microchip
SAML11 platform with TrustZone-M extensions. Arm has
also unveiled another high impact vulnerability (CVE-2020-
16273) that enables a non-secure adversary to manipulate the
secure world control flow [41]. The attack exploits the poor
management of the secure stacks that can open doors to a
malicious attack that causes incorrect code execution through
a stack underflow scenario.

B. ARM TRUSTED FIRMWARE-M
The Arm Trusted Firmware-M (ATF-M) is an open-source,
secure world firmware reference implementation, which
offers the foundations of a TEE for Armv8-M MCUs. The
ATF-M implements: (i) a secure boot to verify the integrity
and authenticity of secure and non-secure binaries; (ii) a
core module (i.e., ATF-M Core) that controls the isolation,
communication, and execution; and (iii) a set of security

TABLE 1. ATF-M TCB size, code size, and security metrics for
NUCLEO-L552ZE-Q and Musca-B1 platforms.

services offering secure storage, crypto, and attestationmech-
anisms. The implementation follows the traditional Trust-
Zone dual-world architecture, i.e., all secure components
(e.g., bootloader, kernel modules, secure services, and 3rd
party security functions) are encapsulated within the secure
world. The solution implements the isolation levels defined in
the Platform Security Architecture (PSA) [42], which rely on
platform hardware (e.g., SAU, secure MPU, etc.) to enforce
isolation boundaries. As of this writing, ATF-M only imple-
ments isolation levels 1 and 2, which partitions the system
into three major domains. Isolation level 1 establishes the
two specific security domains enabled by TrustZone (i.e., the
secure and non-secure worlds). Isolation level 2 goes a step
further and leverages the secure MPU to isolate the ATF-M
core and services from 3rd party security services. These
services are expected to be developed by multiple entities,
and are not the same services as the ones provided by the ATF
(i.e., secure storage, attestation, etc.). Isolation level 3 is still
under development and will provide fine-grained isolation
among different 3rd party security services.

1) ATF-M PRELIMINARY EVALUATION
To understand the ATF-M codebase complexity, we per-
formed a preliminary evaluation with regard to binary size,
code size, and security metrics of the ATF-M implemen-
tation for two different platforms: Arm Musca-B1 and
STMNUCLEO-L552ZE-Q. Table 1 summarizes the assessed
results. The off-the-shelf implementation of the ATF-M for
the Arm Musca-B1 has a total size of 50 KiB for the secure
bootloader and 250 KiB for the ATF-M core and security
services. The implementation has a large code size, encom-
passing approximately 40 K source lines of code (SLoC).
We also evaluated the number of indirect calls and Return-
Oriented Programming (ROP) gadgets, which are impor-
tant security metrics as further explained in Section VI.
We counted 257 indirect calls and 15597 ROP gadgets across
the different binaries that comprise the TCB. The numbers
for the STM port are slightly better but in the same order of
magnitude, i.e., 192 KiB for the ATF-M core and security
services, 33 K SLoC, 9957 ROP gadgets, and 147 indirect
calls. In summary, this preliminary evaluation suggests that
the same architectural issues highlighted in the literature [31]
are being repeated. Furthermore, the formally verified micro-
kernel seL4 [10], which targets high-end Linux-capable plat-
forms endowed with a memory management unit (MMU),
has a smaller TCB and a simpler codebase [31] than ATF-M,
that is expected to run on resource-constrained MCUs.

23916 VOLUME 10, 2022



D. Oliveira et al.: uTango: Open-Source TEE for IoT Devices

2) FINDINGS OF SECURITY VULNERABILITIES
Since its release, ATF-M has already provided some fixes to
solve software-related security vulnerabilities, namely CVE-
2021-27562, CVE-2021-32032, and CVE-2021-40327 [43].
The first security issue directly affected the inter-process
communication model, where an attacker could potentially
crash the secure world or reset the whole system. Regarding
the other two vulnerabilities, both affect the Crypto secure
service and cause memory leakage that corrupts the service
or even leak the secure keys to the non-secure world. Such
findings need to be carefully addressed, and as the solution
starts to spread, more vulnerabilities are likely to surface
as the increasing TCB further opens the attack surface of
ATF-M.

III. UTANGO DESIGN
uTango aims at tackling the main architectural deficien-
cies prevailing on TrustZone-(M)-assisted TEE systems [31].
To do so, uTango evolves from the classic dual-world security
model (Figure 1a) to a multi-world architecture (Figure 1b).
Themulti-world architecture is based on the zero-trust model,
which dictates that every single software component, with
the exception of the TEE kernel, cannot be trusted. Thus,
uTango enables the consolidation of multiple applications,
services, or workloads (e.g., embedded OSes) on equally
secure, isolated domains - called Non-Secure Virtual Worlds
(NSVW).

FIGURE 1. Architectural differences between uTango and typical TEE
systems.

Another particularity of the uTango design, is related to the
augmentation of the TEE model and capabilities. TrustZone-
(M) TEEs implement remote procedure call (RPC) architec-
tures, i.e., a client-server model mainly used for mobiles.

Modern TEEs aim at providing a broader range of features
and fulfilling a much large spectrum of use cases and require-
ments [22], [39]. Thus, uTango not only supports the tradi-
tional core of the TrustZone design but also extends it with
more than two fully-sandboxed worlds and offers availability
guarantees [13], [18], [20]. Within the NSVWs, uTango runs
unmodified binaries, which can be user-space applications,
services, libraries, or privileged OS/RTOS and respective
applications. Furthermore, uTango goes a step further by
providing increasing availability guarantees.
Design Principles: The design of the uTango multi-world

architecture is centered on three fundamental principles, i.e.,
principle of minimal implementation, principle of least priv-
ilege, and principle of containment, which are critical during
the design of (secure) TEE systems [44]. Such principles are
inherently followed by other systems that enable multiple
isolated execution environments in their infrastructures [13],
[18], [24], [24], [37], [38]. Therefore, uTango complies with
them, and we show that its systematic application results
in (i) a reduced TCB and attack surface, (ii) a well-defined
layered access control to prevent privilege escalation, and
(iii) strong isolation boundaries to restrict workloads access
to only their resources (preventing exploits containment).

VOLUME 10, 2022 23917



D. Oliveira et al.: uTango: Open-Source TEE for IoT Devices

A. ARCHITECTURE OVERVIEW
Figure 1a depicts the traditional dual-world TrustZone-M
architecture. The uTango architecture, illustrated in Figure 1b,
presents a multi-world scheme, where each functional
block (i.e., IoT-OS, baremetal, or trusted applications) is
mapped to an NSVW and sandboxed under its boundaries.
Thus, as highlighted in Figure 1b, the uTango kernel is
the single component running at the most privileged level
(i.e., secure handler mode), while all NSVWs run in the non-
secure state. Following the aforementioned design principles,
uTango must strive for a clean-slate minimal implementation.
Thereby, the uTango kernel is built around three components:
(i) the system partitioner (SP), (ii) the worlds scheduler (WS),
and (iii) the worlds communication channel (WCC). The SP
relies on a configuration file detailing the overall system
configuration and partition.

1) SYSTEM CONFIGURATION
The first piece of uTangoworkflow starts with a configuration
file that defines each NSVW’s properties. These properties
encompass memory regions (e.g., code and data), devices
(e.g., serial peripherals, timers, etc.), interrupts assigned to
each NSVW, and the overall system time quantum.

2) SYSTEM PARTITIONER
The SP is responsible for partitioning the platform resources
at boot-time according to the system configuration. The SP
leverages the SAU and additional platform-specific bus filters
(security gates) to achieve such partitioning. The number
of SAU regions limits only the number of memory-mapped
resources per NSVW and not the number of NSVWs. The
maximum number of NSVWs is only limited by the amount
of available memory in the target platform. Based on each
NSVW configuration, the SP prepares a corresponding SAU
configuration and saves it on the world’s control block
(WCB). Regarding the security gates, the SP only performs a
one-time setup. uTango enforces that all accesses and trans-
actions issued by NSVWs to other bus masters (e.g., DMA,
cryptographic engines, etc.) are always trapped andmediated.
This prevents the reconfiguration of each bus filter during the
context switch, avoiding additional performance burdens.

3) WORLDS SCHEDULER
uTango enforces temporal separation through the WS.
According to the system time quantum, the WS, supported
by an architectural timing unit (e.g., Arm SysTick), sched-
ules each NSVW in a round-robin fashion. Every NSVW
has a unique WCB data structure for preserving the world
state, i.e., CPU register bank, selective System Control
Block (SCB) registers, SAU configuration table, and inter-
rupts state. At every scheduling point, the WS performs
four main activities: (i) saves the suspended NSVW context
to the WCB; (ii) schedules a new NSVW to be resumed;
(iii) sets new partition regions on SAU; and (iv) restores
the context of the new NSVW. Notice that, while setting a

new configuration to the SAU, the resources from suspended
NSVWs are preserved and marked as secure, preventing pos-
sible unauthorized accesses from the running NSVW.

4) WORLDS COMMUNICATION CHANNEL
The uTango offers a communication infrastructure that
allows the exchange of secure messages across NSVWs.
To reduce the risk of vulnerabilities, uTango uses a message-
passing mechanism, i.e., no-shared memory. Shared memory
channels across isolated boundaries are perceived as a sig-
nificant source of vulnerability in secure systems since its
data must be treated as untrusted and volatile [45]. Messages
have a fixed 12-byte data stream length. uTango provides four
APIs (i.e., blocking and non-blocking) to send and receive
messages. The WCC acts as a messaging gateway, checking
each NSVW’s inbox and forwarding each message to its
respective NSVW. The system designer is responsible for
defining messages and semantic for the application. Stan-
dardized APIs, such as the Global Platform TEE API, can
be built atop these primitives.

IV. UTANGO IMPLEMENTATION
System Setup: The uTango TEE was firstly implemented for
the Arm Musca-B1 Test Chip Board, which implements the
SSE-200 subsystem that features a multi-core system with
two Cortex-M33 processors. Despite the dual-core architec-
ture, uTango currently only supports a single-core configura-
tion. Figure 2 depicts a low-level view of uTango running a
two NSVW configuration on the ArmMusca-B1. At the time
of this writing, we are currently working on the support for
two additional platforms: NXP LPC55S69-EVK and STM
NUCLEO-L552ZE-Q.
uTango Hardware Components: The main software com-

ponents of uTango rely on hardware primitives available on
TrustZone-based MCUs. As previously mentioned, the WS
uses the secure SysTick as the temporal source for scheduling
all NSVWs. To partition the system, the SP configures the
SAU to overlap the fixed IDAU memory security regions
and specify the overall system memory layout. With the
SAU correctly configured, core transactions (including data
read/write, instruction fetches, and debug access) are secured.
As previously stated, we assume bus masters are always
secured and managed by uTango, so TrustZone-aware bus
slaves (i.e., memories and peripherals) need to be configured
according to the overall system security model. We config-
ure Musca-B1 security gates, i.e., the block-based Memory
Protection Controllers (MPC) and the select-based Peripheral
Protection Controller (PPC), to match all NSVWs’ memory
and devices assignments. The remaining memory blocks or
device sets are kept secure.
uTango Secure Boot: The processor starts in the secure

state by default, enabling root-of-trust implementations such
as the secure boot. uTango features a 2-stage secure boot-
loader to verify the integrity and authenticity of the firmware
image against a store signature (SHA-512) held in secure
memory. Upon detecting a verification error, the uTango boot

23918 VOLUME 10, 2022



D. Oliveira et al.: uTango: Open-Source TEE for IoT Devices

FIGURE 2. uTango full system implementation view (CPU and bus) for the Arm Musca-B1 targeting a two NSVWs configuration. Snapshot
of system configuration while NSVW #1 is running.

FIGURE 3. uTango execution life cycle for a system configured with 2 NSVWs.

is aborted, and the system is locked in a secure state until the
next reset/power cycle. If the image is valid, the boot process
continues until it handles control to the first NSVW to run.

A. EXECUTION LIFE CYCLE
The uTango execution life cycle for a system configured
with two NSVWs is depicted in Figure 3. The complete
boot process consists of three stages: (i) Initialization; (ii) SP
Partitioning; (iii) and finallyKicking-off. At run-time, uTango
is just responsible for the WS Scheduling. In the following,
we describe each stage.

1) UTANGO INITIALIZATION
After reset, the uTango boot agent initializes preliminary
CPU- and platform-specific hardware components. Then,
it reads the full system raw binary file (loaded onto the
Flash) and copies each software piece (i.e., uTango kernel and
NSVWs) to its respective memory region. The boot agent is
also responsible for verifying the integrity and authenticity of
the uTango kernel image and, in case of success, copying the
image to the Tightly-Coupled Memory (TCM). This imple-
mentation detail ensures almost all uTango kernel instructions

and memory accesses take 1-2 clock cycles because (i) there
are no wait states and bus/memory stalls (performance) and
(ii) code and data are not cached (security). After copying
each NSVW to the respective memory segment, the initial-
ization concludes by configuring the secure MPU to enforce
policies among TEE kernel code and data sections, setting up
the vector table address of uTango, and jumping to the main
initialization routine. After boot, the uTango kernel starts
executing by first enabling and configuring fault exceptions.
Non-secure exceptions are configured with lower priority
than secure ones, thus preventing starvation of the secure side,
i.e., avoiding DoS attacks. The secure SysTick timer is then
configured according to the system quantum configuration,
i.e., the reload value is loaded, and the timer exception is
enabled. The last part of the Initialization process fills the
internal WCB structures with the respective NSVWs’ static
configurations. The WCB encompasses 11 general-purpose
registers (r4-r14), 8 special purpose registers (i.e., msp, psp,
msp_lim, psp_lim, basepri, primask, faultmask, and control),
and a subset of specific SCB registers (e.g., vtor, scr, etc.).
To speed up the re-configuration of the world switching
operation, the SAU configuration for each NSVW is defined

VOLUME 10, 2022 23919



D. Oliveira et al.: uTango: Open-Source TEE for IoT Devices

as part of the WCB. The last part of the WCB includes an
interrupt descriptor that keeps the NVIC registers’ context
(e.g., priority level, enable and pending status, and security
state), which we further detail in Section IV-B.

2) SP PARTITIONING
After the uTango Initialization, the execution flow contin-
ues through the SP Partitioning. The SP is responsible for
leveraging all available hardware mechanisms to partition the
system resources according to the NSVW’s settings. First,
the SP unrolls all NSVW’s memory regions and checks for
overlapping regions; if an overlap is identified, uTango aborts
execution. If all memory regions are valid, the SP starts
programming the SAU with the memory regions assigned
to the first NSVW (NSVW #1 in Figure 2). The SAU is
programmed through a set of memory-mapped registers,
namely the Region Number Register (RNR), Region Base
Address Register (RBAR), and Region Limit Address Reg-
ister (RLAR). The RNR controls which region is active or
selected, while the RBAR and RLAR set its start address
and limit, respectively. This process results in a configura-
tion similar to the SAU table depicted in Figure 2. After
programming the SAU, the SP uses the platform-specific
memory gates, i.e., the MPCs, to configure the system’s
overall memory partition. TheMPC is a block-based gate that
divides thememory intomultiple, alternating blocks of secure
and non-secure regions. Transactions are filtered based on
the programmed regions. Each block has a well-defined size,
which can be configured as secure or non-secure. Therefore,
the SP must first check if a set of blocks can represent all
NSVW’s memory regions. If regions are within the bounds
of the MPCs, the SP configures the controller, which results
in a configuration similar to the Flash and RAMMPC’s tables
depicted in Figure 2. Next, the SP configures the PPC to
define non-secure access settings for each NSVW’s devices,
and, lastly, the SP configures the NVIC’s ITNS registers to
re-direct the interrupts of the first NSVW to the normal world.

3) UTANGO KICKING-OFF
In the last boot stage, uTango is responsible for configuring
the CPU state for the first NSVW and kick off the execution.
A non-secure call is issued to the entry point of the NSVW #1
(Figure 3). This function will switch the CPU state from
secure to non-secure by issuing a BLXNS instruction. All
the register banks are cleared to avoid information leakage.
The boot sequence is complete at this stage, and the processor
starts executing the first NSVW.

4) WS SCHEDULING
At run-time, uTango is mainly responsible for scheduling
and context switching NSVWs. TheWS keeps the suspended
NSVW states and resources in the secure world while remap-
ping the next-to-run NSVW resources as non-secure. TheWS
process consists of four main steps (4.1-4.4). In the first step
(4.1), the WS saves the processor context of the suspended
NSVW. Thus, all general-purpose and special CPU registers,

as well as selective SCB registers, are stored in the respec-
tive WCB. The WS is implemented in assembly, enabling
these multiple accesses to the WCB memory segment to be
combined into a single store-multiple instruction (STM) to
improve performance. The NVIC state is also preserved in
the WCB interrupt descriptor (details in Section IV-B). Next
(4.2), the scheduler selects the next-to-run NSVW, according
to a round-robin policy. The WS retrieves the stored SAU
data table from the scheduled NSVW’s WCB entry to pro-
gram SAU in step three (4.3). The SAU re-configuration also
leverages fine-grain assembly customizations by leveraging
load-multiple instructions (LDM). However, due to the lack
of fast-reconfiguration optimization mechanisms available in
the SAU, the WS needs to program all eight SAU regions by
iteratively accessing the RNR register. Finally, in step (4.4),
the context of the scheduled NSVW is loaded to the CPU.
At this point, a branch is issued, and processor execution is
switched to the non-secure state.

B. WORLDS INTERRUPT HANDLING
In TrustZone-M MCUs, the NVIC registers are not banked
between security states. The ITNS register enables the con-
figuration of the interrupt’s security target. Once an interrupt
is configured as secure, accesses to the associated fields
in non-secure aliases are read-as-zero. Thus, NVIC’s non-
secure state must be preserved for each interrupt assigned to
anNSVW. TheWCB structure features a descriptor that holds
the Interrupt Set Enable Register (ISER), Interrupt Set Pend-
ing Register (ISPR), Interrupt Priority Register (IPR), and
ITNS. Interrupt management was first implemented using a
non-preemptive mechanism where interrupts are served as
soon as the respective NSVW is scheduled. In this case, i.e.,
the worst-case scenario, the interrupt latency is delayed by
the amount of time needed to perform a complete round of
NSVWs (i.e., ((NSVW − 1) ∗ tick)+ schedtime). However,
for real-time applications, this latency may be prohibitive.
Current efforts are going through the extension of uTango
to implement a preemptive priority-based mechanism. In the
following, we only explain the current implementation, but
in Section VII, we explain the challenges of implementing
the preemptive mechanism. However, for the sake of clar-
ity, we illustrate an example of the execution flow of both
approaches in Figure 4.
Non-Preemptive World Interrupt Handling: Figure 4a

illustrates the non-preemptive interrupt handling flow. The
vertical axis depicts the execution environment and its respec-
tive priority. uTango is represented as the system’s higher-
priority workload (smaller number in priority level) since,
by design, the secure world is more privileged than the normal
world. NSVW #1 and NSVW #2 have the same priority
level and take equal CPU quantum. A timer interrupt is
assigned to NSVW #1, while an SPI interrupt is assigned to
the NSVW #2. As previously explained, interrupts assigned
to non-executing NSVWs, such as the SPI triggered at t2, will
only be served as soon as its respective NSVW is put into con-
text (from t4 to t6). For this particular case, the SPI interrupt

23920 VOLUME 10, 2022



D. Oliveira et al.: uTango: Open-Source TEE for IoT Devices

FIGURE 4. uTango world interrupt handling mechanisms.

latency is equal to t4 − t2. The same behavior happens to
the timer interrupt. The interrupt is triggered at t5 (while
NSVW #2 is running) but just served when NSVW #1 is
resumed at t7. uTango enables this non-preemptive behavior
by saving and restoring each interrupt state during the context
switching of NSVWs (t3 to t4 and t6 to t7). In particular, at the
first scheduling point (t3 to t4), the WS will save the NVIC’s
state for the timer interrupt and restore the SPI’s pending
bit and security target before resuming the NSVW #2. Once
NSVW #2 is resumed at t4, if the SPI interrupt is enabled, the
pended request will force the processor to attend the interrupt
and start executing the respective SPI’s interrupt handler.

Figure 4b illustrates the priority-based interrupt handling
flow. Each NSVW is assigned (i.e., system designer) with
a priority according to its criticality level. Higher-priority
NSVWs will preempt the processor and grant execution to
attend asynchronous events. In contrast, low-priority NSVWs
will be blocked from interrupting the processor during the
execution of high-priority workloads.

C. WORLDS COMMUNICATION
uTango implements a secure blocking and non-blocking
request-response messaging mechanism (read/write APIs for
each protocol - 4 in total) to enable NSVWs to communi-
cate with each other. A blocking operation forces WCC to
schedule the callee-NSVW, and the API will only return once
the NSVW responds, thus completing the operation. Alter-
natively, when a caller-NSVW issues a non-blocking opera-
tion, the callee-NSVW only responds when it gets scheduled
by the WS. The messages exchanged in these channels are
limited to a 12-byte data stream and are sent via registers.
The WCC uses the internal inbox structure of each NSVW
to pass messages across senders and receivers. These APIs
are implemented through secure entry points located in a
pre-defined NSC memory region (light-blue NSC region in
Figure 2), i.e., the WCC gateway. When an NSVW uses the
sending API, the 12-byte data stream is copied to registers
(i.e., r4-r6), which are read and placed into the receiver’s

inbox by the WCC. When the receiver NSVW reads the mes-
sage, it calls the WCC via the receiving API that copies the
inbox message (if full) to the registers. The WCC carefully
avoids information leakage by clearing the remaining CPU
registers before returning to the active NSVW.

D. REFERENCE IOT APPLICATION
Figure 5 depicts the uTango IoT reference application.
Typically, IoT-based applications are monolithic firmwares
composed of well-defined and easily isolable 3rd party
libraries that are linked and compiled into a bloated
binary. uTango’s unique design allows system develop-
ers to separate each single building block into an iso-
lated environment. Therefore, from a system developer per-
spective, they must to first (i) identify the application’s
sub-components (and their resources) that need to be func-
tionally protected, (ii) integrate the building block in an
isolated NSVW that offers a stripped main application,
(iii) define each resource property of the target NSVW
in the configuration file (memory regions, devices, inter-
rupts, and communication channels) and (iii) finally, use the
inter-NSVW communication channels (i.e., the blocking or
non-blocking APIs) to exchange messages between NSVWs.

FIGURE 5. uTango IoT reference application.

In our reference application, we selected a set of building
blocks aiming at demonstrating the applicability of uTango to
develop secure IoT devices. These building blocks implement
the main features required by IoT devices, ranging from
secure connectivity, real-time operation, and local manage-
ment. Specifically, in Figure 5, the proof of concept sys-
tem controls - via a local terminal console (NSVW #2) -
a servo motor, operating under an RTOS (i.e., Zephyr in
NSVW #1). The RTOS receives commands from the local
terminal console via the secure non-blocking APIs provided
by uTango’s WCC. The NSVW #4 implements a full-blown
TCP/IP stack that can receive commands from the other
NSVWs to send data to a web service. The NSVW #3
blinks a LED at each timer overflow interrupt to demonstrate
the world’s interrupt handling mechanism. The uTango’s SP

VOLUME 10, 2022 23921



D. Oliveira et al.: uTango: Open-Source TEE for IoT Devices

provides hardware-enforced separation among all consoli-
dated workloads.

V. SECURITY ANALYSIS
TrustZone-M hardware primitives ensure hardware-enforced
isolation of system resources, i.e., code, data, devices, and
interrupts. Thus, TrustZone-M hardware hooks are sufficient
to materialize the uTango’s vision of providing a new security
model that allows the consolidation of multiple, equally-
secure, execution environments. Despite offering a strong
foundation for system-level security, such as data and code
protection, TrustZone lacks in defining anti-tampering mech-
anisms and side-channel protection. Therefore, physical and
side-channel attacks are out-of-the-scope of this work. Hence,
we trust Arm to provide a non-compromised TrustZone-M
design in the Musca-B1 platform.

Our threat model is based on the very same assumptions
delivered by the TrustZone-M [34], [36]. Firstly, we assume
that an adversary cannot escalate an attack to the secure
software (i.e., uTango) through a compromised piece of
non-secure software (i.e., an NSVW) via a local or remote
software attack. Secondly, our multi-world security model
takes advantage of the same hardware mechanisms that iso-
late the secure and non-secure worlds to guarantee that a
compromised NSVW cannot hijack other execution environ-
ments. In a nutshell, we must assume the following:

• NSVWs running on the non-secure side are untrusted.
• uTango kernel, including all its software components,
e.g., WS, and SP, are trusted.

• TrustZone-M hardware security extensions guarantee
strong isolation between secure and non-secure states.

• The misuse of the TrustZone-M hardware components,
such as the SAU and IDAU, can compromise the security
model. Thus, the configuration file which defines the
overall system partition must be trusted.

Next, we discuss how uTango can mitigate potential attack
vectors that a malicious adversary could exploit.

A. PROTECTION OF UTANGO KERNEL
Enabled by TrustZone hardware controllers, the first isolation
layer of the system separates the uTango kernel from the
NSVWs. When the kernel partitions the system using the
SAU, it ensures that all NSVWs run in the normal world,
while the kernel is kept protected in the secure world. There-
fore, the SAU controller validates all NSVW’s memory trans-
actions, blocking access to resources outside of its domain.
NSVWs can also attempt to extract information from uTango
by leaking non-banked CPU registers. The attack can be
carried out after a state transition, i.e., from secure to non-
secure, which can happen after the (i) boot stage or (ii) after
context switching periods. The kernel prevents the leakage
by (i) clearing all registers before jumping to the non-secure
state and by (ii) inherently replacing the CPU state with the
scheduled NSVW context.

B. ISOLATION OF NSVWS
The uTango partition prevents NSVWs to share memory
regions, devices, and interrupt sources. The bi-directional
isolation of the NSVWs is enforced by the SAU and addi-
tional SoC security gates. In TrustZone-M platforms the
configuration of the SAU and security gates is restricted to
the secure world and managed by the uTango kernel. The
uTango architecture allows developers to easily deploy 3rd
party workloads. This feature can be leveraged by attackers
to install malicious libraries or applications. Nevertheless,
uTango hardware-enforced isolation prevents a compromised
NSVW from overcoming its boundaries and escalating to
other domains.

C. SECURE BUS MASTERS
As discussed in Section IV, we assume that NSVWs interac-
tions with additional bus masters are protected and mediated
by the uTango. This design decision avoids the overhead
of configuring each bus filter (i.e., MPC, PPC) during con-
text switching, saving a considerable amount of CPU clock
cycles. Moreover, this also prevents an attacker from gaining
access to the overall system’s secure or non-secure memory.
However, in an application scenario where an NSVW needs
access to a DMA controller, uTango will offer a set of secure
services to interface such modules.

VI. EVALUATION
We evaluated uTango on an Arm Musca-B1 Test Chip
Board, which features two Cortex-M33 processors, run-
ning at 40 MHz (CPU0) and 160 MHz (CPU1). Firstly,
in Section VI-A, we assess a set of security metrics derived
from the BenchIoT suite [46]. On Section VI-B, we evaluate
performance, and in Section VI-C we focus on the interrupt
latency. Lastly, in Section VI-D, we evaluate code and binary
sizes.

A. SECURITY METRICS
BenchIoT [46] is a recent benchmark suite and an evalua-
tion framework to evaluate security solutions for IoT-based
MCUs. The suite enables the automatic collection of 14 met-
rics for security, performance, memory usage, and energy
consumption. As of this writing, BenchIoT can only sup-
port Armv7-M architectures [46], i.e., BenchIoT cannot be
used to evaluate uTango. Notwithstanding, we performed
a best-effort evaluation of uTango’s security based on the
BenchIoT’s eight security metrics while keeping as close as
possible to the framework principles and metrics criteria.

According to the evaluation model presented in Ref. [46],
we organized the security metrics in three goals: (i) minimiz-
ing privileged execution (i.e., a total of privileged and system
call cycles); (ii) enforcing memory isolation (i.e., maximum
code and data region ratio); and (iii) control-flow hijacking
protection (i.e., number of available ROP gadgets and indirect
calls, and data execution prevention).

23922 VOLUME 10, 2022



D. Oliveira et al.: uTango: Open-Source TEE for IoT Devices

1) MINIMIZING PRIVILEGED EXECUTION
For Armv7-M MCUs, BenchIoT counts as privileged cycles
all instructions executed in privileged thread and handler
mode. For TrustZone-enable Armv8-M MCUs, all CPU
modes are banked, but the secure world is always consid-
ered more privileged than the normal world. Thus, we count
all instructions executed in the secure privileged thread and
secure handler mode as privileged cycles. In the context of
our architecture, uTango is the single component running
in secure privilege thread mode, at boot time, and secure
handler mode, at run-time. All NSVWs run within the normal
world, so all execution cycles are not considered. Our results
show that, at run-time, uTango runs a total of 215 privileged
cycles at each system tick (Section VI-B1). At boot-time,
the total number of thread privileged cycles is 7749 cycles
(for 1 NSVW) and increases, on average, 1236 cycles for
each extra added NSVW. BenchIoT also counts the number
of SuperVisor Call (SVC) cycles. Unprivileged code can
leverage this instruction to trigger a system call intended
at executing privileged thread code. This mechanism can
be leveraged as a potential attack vector. In the context of
TrustZone-M MCUs, SVC calls can be issued in secure and
non-secure states. As aforementioned, non-secure SVCs are
not considered as normal world code is always considered
non-privileged. uTango does not issue any SVC call, i.e., the
number of secure SVC calls is zero. The execution flow has
a well-defined entry and exit point, always running in secure
handler mode.

2) ENFORCING MEMORY ISOLATION
Another two security metrics evaluated by BenchIoT are the
(i) maximum data region ratio and (ii) maximum code region
ratio. These two metrics aim at assessing memory isolation’s
effectiveness by computing the size ratio of the maximum
available code/data regions to an attacker with respect to the
total code/data size of the application binary [46]. uTango
isolates each environment within a strong compartment, with
boundaries of the NSVW defined per binary needs. Thus, the
maximum data and code region ratio is 0.

3) CONTROL-FLOW HIJACKING PROTECTION
Code reuse attacks (i.e., ROP gadgets and indirect calls) are
among the most common attack vectors used to hijack the
control flow of an application. Tomeasure the number of ROP
gadgets, we used the ROPGadget tool. uTango has a total
of 303 ROP gadgets. Notwithstanding, a deeper investigation
unveiled that these ROPs belong to the boot-related code and
are not executed during runtime. As stated in Section IV-A,
all the world scheduling logic is implemented in assembly.
Although this number is an order of magnitude smaller com-
pared to ATF-M and the results presented in Ref. [46], we are
aiming at squeezing this value in the near future by also
implementing the boot logic in assembly or leveraging inline
substitution optimizations. Indirect calls are another type of
code reuse attacks that relies on using function pointers to

hijack the control flow. In the case of uTango, we parsed the
binary file, and we found only one indirect call related to
the secure to non-secure exit point, issued through a BLXNS
instruction.

Another important aspect in defending against control-flow
hijacking is related to data execution prevention (DEP) mech-
anisms. In the context of Arm MCUs, proposed defense
mechanisms leverage the MPU to enforce memory regions,
either writable (data) or executable (code) [46]. uTango
currently leverages the secure MPU to enforce DEP among
kernel code and data sections. Furthermore, as mentioned
in Section VII-A, we will also leverage the secure MPU
to enforce isolation and deploy a DEP defense mechanism
among security gates.

B. PERFORMANCE OVERHEAD
1) WORLD SWITCH TIME
a: EXPERIMENTAL SETUP
The world switch time is defined as the amount of time
that the uTango kernel takes to switch between NSVWs.
As explained in Section IV-A4, this operation includes saving
and restoring the worlds’ context (i.e., core registers, system
registers, and NVIC), re-configuring the SAU regions (to
enforce memory isolation), and running the scheduler algo-
rithm. We used the Data Watchpoint and Trace (DWT) unit
from the CoreSight debug system tomeasure theworld switch
time, which features a 32-bit cycle counter running at the
CPU clock frequency. The DWT cycle counter is read before
and after completing the WS operation.

b: RESULTS AND CONCLUSIONS
During ourmeasurements, we collected 1000 samples, and all
the collected samples reported a world switch time of exactly
215 clock cycles, i.e., 5.4 microseconds (µs) at 40 MHz.

The high determinism is a reflex of (i) the characteristics of
the Armv8-M architecture and (ii) from the fact uTango runs
from a TCM (Section IV-A1). The reduced world switch time
is a consequence of (i) the raw assembly implementation of
theWS logic and the (ii) TCM. For instance, when configured
with a 10 milliseconds (ms) tick rate, the expected perfor-
mance penalty is a negligible 0.054%. These results (i) are
from the same order of magnitude of MultiZone commercial
solution (i.e., MultiZone’s zones switch penalty is 175 clock
cycles) and (ii) some specific use cases may minimize transi-
tions between worlds (e.g., wfi/sleep modes).

2) RUN-TIME OVERHEAD
a: BENCHMARK SUITE
To evaluate the run-time overhead, we used Embench
(version 0.5) [47]. Embench is a free and open-source bench-
mark suite specially designed for deeply embedded sys-
tems. Assuming the presence of no OS and minimal C
library support, Embench targets small devices with a few
kilobytes of Flash (ROM) and RAM. Embench consists of
19 real programs, representatives of the following metrics:

VOLUME 10, 2022 23923



D. Oliveira et al.: uTango: Open-Source TEE for IoT Devices

FIGURE 6. Performance overheads (ratio) of Embench benchmark suite relative to bare-metal execution.

branch, memory, and computing requirements. Each bench-
mark reports a single summarizing performance score that
outputs the geometric mean and geometric standard deviation
ratios relative to a reference platform or setup, which in our
case represents the Musca-B1 Test Chip Board.

b: EXPERIMENTAL SETUP
Despite Arm Musca-B1 featuring a dual asymmetric Cortex-
M33 MCU, uTango currently only supports a single-core
configuration. Thus, in our experiments, we have only
enabled the CPU0, running at 40 MHz. We ran the bench-
marks natively on the target platform. Then, each benchmark
was executed with uTango, configured to support 1, 2, 3,
and 4 NSVWs, which represents a reasonable number of
environments on a typical application scenario. We compiled
each benchmark to the target platform and ran them unmod-
ified in the first NSVW environment with the configuration
described in Table 2. The other NSVWs were running a toy
bare-metal application, implementing a bare infinite loop.

TABLE 2. Platform, toolchain, and compilation details.

These worlds do not yield (i.e., they consume all their CPU
quantum) and, therefore, even if a more realistic application
is used, the benchmark results would be the same. The DWT
cycle counter is used to measure the total number of clock
cycles taken to complete the benchmark (i.e., trigger points
are placed before the beginning of the benchmark operation
and after it finishes). Experiments were repeated for different
tick rate configurations, ranging from 0.5 ms to 10 ms. The
achieved results for 0.5 and 10 ms are illustrated in Figure 6,
where each bar (representing 1, 2, 3, and 4 NSVWs) depicts
the respective ratios relative to the baseline. On top of the first
and second bar, the absolute execution time, in clock cycles,
and total execution time in ms (within parentheses) is also
presented.

c: RESULTS AND CONCLUSIONS
Looking at Figure 6, we can draw four main conclusions,
discussed throughout the following paragraphs.
C1 Residual Overhead With 1 NSVW: With a 1 NSVW

configuration, the overhead introduced by uTango is almost
residual. For instance, for a 10 ms tick rate, the average
performance overhead is 0.05%, which is within the expected
theoretical overhead (see world switch time). For a 500 µs
tick rate, which is considered an unusual high switching
rate (i.e., highly responsive system), the average performance
overhead is less than 1%.
C2 Linearly Overhead With the Increase of NSVWs: From

the conducted experiments, we can observe that the perfor-
mance overhead increases (almost) linearly with the num-
ber of NSVW’s, i.e., the third, fourth, and fifth bars (2, 3,
and 4 NSVWs, respectively) increase the performance over-
head by a similar ratio. We observed this same phenomenon
in other testbed scenarios with more than 4 NSVWs, which
we have decided not to present due to space limitations. This
impact is expected and is a natural consequence of sharing

23924 VOLUME 10, 2022



D. Oliveira et al.: uTango: Open-Source TEE for IoT Devices

the CPU among all NSVWs, i.e., each NSVW gets a CPU
quantum equal to the tick rate.
C3 Relative Overhead Decrease With Higher Tick Rates

A third and interesting observation is related to the hetero-
geneity in the performance overhead ratio when the sys-
tem is configured with multiple NSVWs, particularly for
3 and 4 NSVWs. This phenomenon becomes even more
evident for the experiments conducted with a 10 ms tick rate.
We observed that increasing the uTango tick rate may suggest
that, for the majority of the benchmarks, the system gets an
increase of performance (i.e., a decrease of the performance
overhead ratio). The most evident case is observed for the
huffbench benchmark, which for a 10 ms tick rate suggests
that there is no performance penalty, i.e., the ratio is always
1 no matter how many NSVWs are running in the system.
While this may look a bit surprising at first sight, a deeper
investigation pointed out that this is a consequence of the
execution time of the benchmark. As presented on top of
the first two bars (in parentheses), the native execution time
of benchmarks ranges from a few ms to dozens of ms. For
instance, the bare execution of the huffbench takes around
4.39 ms while the nettle-aes takes 133.22 ms. So, when
the system shares the CPU among multiple NSVWs, and
depending on the tick rate, the benchmark may finish in
fewer rounds, decreasing the performance overhead ratio.
We repeated the experiments also for a tick rate of 1, 2, and
5 ms, and these again show very clearly the explained pattern.
C4 Overhead Increase in Corner Cases Finally, and as

complementary to the phenomenon described above, we also
observe that there are some exotic benchmarks, i.e., crc32,
nbody, picojpeg, and qrduino, that present an increase of
the performance overhead ratio. In this case, this apparent
increase of performance overhead is justified by the warm-up
time of the benchmark. Thus, when a higher warm-up time is
required, most of the available time slots in the first round
are wasted, which results in an additional impact on the final
performance overhead ratio.

d: EXPLORING FURTHER C3
Figure 7 depicts the impact of the uTango tick rate varia-
tion on the overall performance overhead. We have repeated
this experiment for four different tick rates (0.5 ms, 1 ms,
2 ms, and 10 ms), where each obtained value corresponds
to the geometric mean ratio for the full-run of the Embench
suite running in systems configured with different NSVWs.
From the obtained results, we can validate the phenomenon
described in C2. While increasing the uTango tick rate,
there is an apparent decrease of the performance overhead
(Figure 7). Looking at Figure 7a, we can also conclude
that the performance overhead increases exponentially while
decreasing the tick rate. However, this exponentially increase
is highly acceptable because, for a 500 µs tick rate, the per-
formance overhead is less than 1%. This impact will be less
noticeable in platforms running at higher frequencies, e.g.,
the NXP LPC55S69-EVK and STM NUCLEO-L552ZE-Q,

FIGURE 7. Performance overhead vs variation of uTango tick for different
configurations.

which run approximately three times higher, and, therefore,
the overhead would decrease by a factor of three.

C. INTERRUPT LATENCY
To measure the interrupt latency, we crafted a minimal
bare-metal benchmark application, running in the NSVW#1,
that continuously configures a timer (25 nanoseconds resolu-
tion) to trigger an interrupt every 10 ms. Since the time stamp
when the interrupt was triggered is known, the latency can be
calculated as the difference between the expected wall-clock
time and the actual instant it starts handling the interrupt.
We have performed two experiments for different uTango
tick rates (0.5 ms and 10 ms) while varying the number of
NSVWs to be scheduled. The results were obtained by taking
1000 samples. Figure 8 depicts the relative frequency of each
interrupt latency measurements. The results are expressed
in the number of clock cycles required by the CPU to start
executing the timer handler. According to Figure 8, we can
drawn two major conclusions.

FIGURE 8. Relative frequency of interrupt latency expressed in clock
cycles.

VOLUME 10, 2022 23925



D. Oliveira et al.: uTango: Open-Source TEE for IoT Devices

Firstly, depending on when the interrupt is triggered,
we can achieve better or worse execution times: (1) if the
interrupt is triggered while the NSVW handler is executing,
the measured latency is near its native values (observed for
all configurations with one world). The NSVW receives the
interrupt transparently through normal hardware interrupt
behavior, and the final interrupt handler executes within a
fixed 24 clock cycles; (2) if the interrupt triggers when a
different NSVW is active, the interrupt latency increases
significantly since the interrupt will only be handled when
the assigned NSVW is scheduled.

The second takeaway comes from observing a direct rela-
tion between the system tick rate, the number of NSVWs,
and the time interval selected for the interrupting timer
(10 ms). Considering the scenario with 2 NSVW, depicted in
Figure 8a, the interrupt latency for the 1000 collected samples
shows a relative frequency of 100% for 24 clock cycles.
Such results are explained by the number of rounds (each
one taking 1 ms) needed to complete the 10 ms interval (at
a tick rate of 0.5 ms) when two worlds are configured, which
is 20. This means that the timer interrupt will be triggered
approximately when the handling world is executing. On the
other hand, in the scenario with 3 NSVW, each round takes
1.5 ms to complete; therefore, the system needs≈6.67 rounds
to complete 10 ms. Such variation shifts the trigger point
of the interrupt to a specific point in time where a different
NSVW is executing, delaying the interrupt to be serviced.

D. CODE AND BINARY SIZE
uTango was developed from-scratch with no dependencies on
compiler or external libraries. Table 3 reports (i) the number
of SLoC and (ii) the binary size.

TABLE 3. Source lines of code (SLoC) and binary size (bytes) by directory.

1) SOURCE LINES OF CODE
To count the number of SLoC, we used the SLOCCount tool.
uTango implementation code is divided into three main direc-
tories: (i) arch, targetting Armv8-M architectural-specific
functionalities; (ii) platform, containing platform-specific
code (e.g., memory and peripheral protection controllers);
and (iii) core, i.e., uTango boot and scheduler logic
(e.g., memory and devices partition, and system timer con-
figuration). From Table 3, it is possible to conclude that
the architectural and platform-specific code represents most
of the total SLoC. Since uTango’s heavy lifting work is
during boot-time, i.e., system resources partition, hardware
initialization, and configuration, it is normal that these two

components reflect the major part of the uTango code
complexity (≈2K SLoC). On the other side, the run-time
logic, i.e., worlds scheduling and the re-partition of system
resources, which is implemented in assembly, encompasses a
total of≈200 SLoC, corresponding to 4.6% of the total SLoC.

2) BINARY SIZE
To measure the size (bytes) of uTango, we use the GCC size
tool (Berkeley format). Table 3 presents the .text, .data, and
.bss sections, according to system component, i.e., organized
by directories. As highlighted above, target-specific function-
ality (e.g. SAU, SysTick, MPC, and PPC drivers) included in
arch and platform directories represent approximately 2/3 of
the total uTango’s size. At boot-time, uTango core allocates
the WCB structure and performs initialization routines. For
each configured world, the system allocates 324 bytes of data
for its private WCB. During WCB’s initialization, uTango
retrieves from the config structure (60 bytes) each world’s
configuration. This structure is filled by the system designer
to describe, per world, the memory layout, available devices,
and assigned interrupts. Regarding run-time code, the total
size is 488 bytes, which represents the code implementing
the scheduling logic. Thus, the resulting TCB size is 4.3 KiB.

VII. DISCUSSION
In this section, we discuss main uTango’s limitations and
possible future improvements.

A. SECURE SERVICES
We intend to demonstrate a set of secure services, such as
secure storage, cryptography operations, remote attestation,
and secure updates over-the-air. These secure services will
be encapsulated in dedicated NSVWs. However, depending
on the peculiarities of the target platform, some hardware
modules may be hardwired to the secure world. To address
this challenge, we envision the development of lightweight
(de-privileged) secure gateways to mediate access to secure
world resources. Additional hardware primitives (i.e., secure
MPU) will be leveraged to enforce isolation within the secure
world.

B. NON-TRUSTZONE PLATFORMS SUPPORT
As of now, uTango only supports Armv8-M architectures
with TrustZone-M security extensions. We intend to extend
this support to Armv7-M and RISC-V architectures in the
future. In Armv7-M architectures, we envision uTango run-
ning in the highest privilege level (i.e., privileged handler
mode); however, a set of challenges need to be addressed:
(i) the MPU, which enforces access permissions to memory
regions, has less flexibility (i.e., restricted regions sizes and
alignment conditions); and (ii) the need to support trap and
emulation due to special privileged instructions and impre-
cise bus faults [25]. Regarding RISC-V architectures, such
challenges can be alleviated in MCUs providing machine
(M), supervisor (S), and user (U) mode (although without
virtual-memory support) [48]. Legacy applications may run

23926 VOLUME 10, 2022



D. Oliveira et al.: uTango: Open-Source TEE for IoT Devices

TABLE 4. Examples of academic and commercial solutions that contribute with relevant TEE (or TEE-like) implementations.

unmodified and with access to privileged operations. uTango
will run in M-mode with full access to the hardware features,
including the Physical Memory Protection (PMP) that can
enforce isolation between NSVWs with higher flexibility
(i.e., more fine-grained regions).

C. PRIORITY-BASED WORLD INTERRUPT HANDLING
Despite the collected data showing a deterministic behav-
ior (including worst-case scenarios), the current interrupt
handling mechanism presents high interrupt latency in
some scenarios. Nevertheless, current efforts are focused
on a preemptive priority-based strategy, as mentioned in
Section IV-B. When suspended, low-priority NSVW’s inter-
rupts will be temporarily configured as secure and dis-
abled (prevent priority escalation). In contrast, high-priority
NSVW’s interrupts will be configured as secure and enabled;
thereby, if an interrupt is triggered, the processor is pre-
empted, and the WS will handle the execution to the high-
priority NSVW. By endowing uTango with this mechanism,
it is expected that the interrupt latency can decrease signifi-
cantly; however, the implementationmust be carefully crafted
to prevent unacceptable overheads on the world switch time,
given the increase of the WS complexity.

VIII. RELATED WORK
There is a rich body of runtime environments, isolation tech-
niques and mechanisms, and architectures for secure execu-
tion and isolated environments [10]–[24], [37], [49], [50],
[52], [53]. Due to the extensive list of works, we focus on
three main classes of solutions: (i) TEE systems targeting
high- to middle-end IoT devices, i.e., powered by application
processors; (ii) TEE systems for low-end IoT devices, i.e.,
powered by MCUs; and reliable systems for low-end IoT
devices. Table 4 summarizes and compares several academic
and commercial TEE systems across several dimensions,
identifies solutions for low-end IoT devices (the target and

niche of our work), and highlights uTango as the first open-
source, multi-world TEE for TrustZone-M-based MCUs.

A. TEES FOR HIGH-/MIDDLE-END IOT DEVICES
For Arm application processors, TrustZone has been pivotal
for building TEE systems. There are plenty of commer-
cial TrustZone-assisted TEEs (e.g., QSEE, Kinibi [31]), but
academia has been focusing on enhancing TrustZone TEE
systems with increasing isolation capabilities and security
guarantees. TrustICE [13] and Sanctuary [18] leverages the
TZASC to create enclaves within the normal world. TrustICE
has severe multi-core limitations, while Sanctuary falls short
on depending on TZASC features not available in any COTS
SoC released to date. Komodo [15] strengthens software
isolation between secure applications by relying on a for-
mally verified microkernel that enables SGX-like enclaves.
vTZ [24], OSP [37], and PrivateZone [38] leverage the hard-
ware virtualization extensions available in the normal world
to implement multiple isolated environments. TEEv [20] and
PrOS [54] use same-privilege techniques to secure aminimal-
ist hypervisor in the secure world. All these systems target
high- to middle-end processors and leverage techniques and
mechanisms not available on resource-constrained MCUs.
For RISC-V, there are two main classes of solutions. A set of
works leverage the open hardware model to enhance RISC-V
cores and SoCs with prime security mechanisms, e.g., Sanc-
tum [14], HECTOR-V [55], TIMBER-V [50], CURE [23].
A second line of works leverage the standard RISC-V hard-
ware primitives to provide frameworks for customizable
TEEs, e.g., Keystone [22] and MultiZone-Linux [39].

B. TEES FOR MCU-POWERED IOT DEVICES
TEE systems for resource-constrained IoT devices are in
their infancy, and only a few commercial and academic
solutions have been proposed so far. Janjua et al. [17]
have developed the Security MicroVisor (SuV), a pure-
software TEE for resource-constrained devices that lack basic

VOLUME 10, 2022 23927



D. Oliveira et al.: uTango: Open-Source TEE for IoT Devices

hardware-based security features such as MPU (e.g., AVR
ATmega). MultiZone TEE [25] is an innovative hardware-
enforced, software-defined TEE for (Armv7-M) Cortex-M
and RISC-V MCUs. MultiZone leverages the Arm MPU
or the RISC-V Physical Memory Protection (PMP) to
create multiple isolated environments. In the context of
TrustZone-M MCUs, ATF-M [32] provides an open source
reference implementation of a TEE for Armv8-M devices.
Kinibi-M [33] and ProvenCore-M [51] are preeminent exam-
ples of commercial TEE solutions adapted from existingwell-
established Cortex-A implementations. mTower [56] is an
open source initiative from Samsung aiming at developing
a TEE specially designed to protect size-constrained IoT
devices based on the Cortex-M23. Contrary to the aforemen-
tioned TrustZone-M solutions, which are a strict materializa-
tion of the TrustZone dual-world architecture, uTango relies
on a multi-world design, providing multiple isolated environ-
ments within the normal world, and thus addressing the main
architectural deficiencies observed in commercial TrustZone
systems while providing augmented TEE capabilities. To the
best of our knowledge, MultiZone [25] is the closest solu-
tion to uTango. Notwithstanding, comparing to our approach,
MultiZone for Arm Cortex-M requires (i) static binary trans-
lation to handle special privileged instructions and imprecise
bus faults and (ii) implements trap and emulation. There is
also a preeminent class of solutions that proposes a set of
mechanisms for TrustZone-M devices. CoreLockr-TZ [57]
is a lightweight service dispatch layer and CFI CaRE [26]
implements a prime control-flow integrity (CFI) mechanism.
Finally, ASSURED [27] proposes a secure firmware update
framework for TrustZone-M devices.

C. RELIABLE SYSTEMS FOR MCU-POWERED IOT DEVICES
Classic approaches to provide isolation and implement reli-
able systems on low-end embedded devices have been
evolving from constructive (language/compiler-based) mem-
ory protection [58]–[62] and hardware-enforced RTOS
mechanisms [21], [63], [64], to lightweight virtualization
infrastructures [4], [5], [65], [66]. Tock [59] leverages
limited hardware protection mechanisms as well as the
type-safety features of the Rust programming language to
provide a reliable multiprogramming environment forMCUs.
EPOXY [60] proposes a technique called privilege overlaying
and uXOM [61] implements a protection mechanism that
leverages the LLVMcompiler to translate all memory instruc-
tions into unprivileged ones, constraining the code region
using the MPU available on Cortex-M MCUs. Peach et al.
proposed eWASM [62], a runtime environment to constrain
memory accesses and control flow, enabled by the aWsm
compiler. Several widespread embedded (RT)OSes such as
Mbed OS [67], FreeRTOS [68], and Zephyr [69] have already
upstream support for task isolation using the MPU. Another
class of approaches have proposed lightweight virtualiza-
tion solutions for resource-constrained devices. F. Bruns et
al. [65] and R. Pan et al. [4] have proposed virtualization
infrastructures leveraging the MPU. Pinto et al. [5] have

also proposed a TrustZone-based virtualization solution for
Cortex-M MCUs.

IX. CONCLUSION
In this paper, we presented uTango, the first multi-world TEE
for TrustZone-M IoT devices. Our innovative design enables
the execution of multiple environments within strongly iso-
lated compartments with increasing flexibility and security
guarantees. uTango will be publicly available in hopes of
engaging both academia and industry on research and deploy-
ment of innovative TEE solutions for the tiniest IoT devices.

REFERENCES
[1] S. L. Keoh, S. S. Kumar, and H. Tschofenig, ‘‘Securing the Internet of

Things: A standardization perspective,’’ IEEE Internet Things J., vol. 1,
no. 3, pp. 265–275, Jun. 2014.

[2] O. Alrawi, C. Lever, M. Antonakakis, and F. Monrose, ‘‘SoK: Security
evaluation of home-based IoT deployments,’’ in Proc. IEEE Symp. Secur.
Privacy (SP), May 2019, pp. 1362–1380.

[3] E. Cozzi, P.-A. Vervier, M. Dell’Amico, Y. Shen, L. Bilge, and
D. Balzarotti, ‘‘The tangled genealogy of IoT malware,’’ in Proc. Annu.
Comput. Secur. Appl. Conf., Dec. 2020, pp. 1–16.

[4] R. Pan, G. Peach, Y. Ren, and G. Parmer, ‘‘Predictable virtualization on
memory protection unit-based microcontrollers,’’ in Proc. IEEE Real-Time
Embedded Technol. Appl. Symp. (RTAS), Apr. 2018, pp. 62–74.

[5] S. Pinto, H. Araujo, D. Oliveira, J. Martins, and A. Tavares, ‘‘Virtualization
on TrustZone-enabled microcontrollers? Voilà!’’ in Proc. IEEE Real-Time
Embedded Technol. Appl. Symp. (RTAS), Apr. 2019, pp. 293–304.

[6] A.-R. Sadeghi, C. Wachsmann, and M. Waidner, ‘‘Security and privacy
challenges in industrial Internet of Things,’’ in Proc. 52nd Annu. Design
Autom. Conf., Jun. 2015, pp. 1–6.

[7] D. Oliveira, M. Costa, S. Pinto, and T. Gomes, ‘‘The future of low-end
motes in the Internet of Things: A prospective paper,’’ Electronics, vol. 9,
no. 1, p. 111, Jan. 2020.

[8] L. Luo, Y. Zhang, C. C. Zou, X. Shao, Z. Ling, andX. Fu, ‘‘On runtime soft-
ware security of trustzone-m based IoT devices,’’ 2020, arXiv:2007.05876.

[9] J. Noorman, J. V. Bulck, J. T. Mühlberg, F. Piessens, P. Maene, B. Preneel,
I. Verbauwhede, J. Götzfried, T. Müller, and F. Freiling, ‘‘Sancus 2.0:
A low-cost security architecture for IoT devices,’’ ACM Trans. Privacy
Secur., vol. 20, no. 3, pp. 1–33, Aug. 2017.

[10] G. Klein, M. Norrish, T. Sewell, H. Tuch, S. Winwood, K. Elphinstone,
G. Heiser, J. Andronick, D. Cock, P. Derrin, D. Elkaduwe, K. Engelhardt,
and R. Kolanski, ‘‘SeL4: Formal verification of an OS kernel,’’ in
Proc. ACM SIGOPS 22nd Symp. Operating Syst. Princ. (SOSP), 2009,
pp. 207–220.

[11] P. Koeberl, S. Schulz, A.-R. Sadeghi, and V. Varadharajan, ‘‘TrustLite: A
security architecture for tiny embedded devices,’’ in Proc. 9th Eur. Conf.
Comput. Syst. (EuroSys), 2014, pp. 1–14.

[12] F. Brasser, B. El Mahjoub, A.-R. Sadeghi, C. Wachsmann, and P. Koeberl,
‘‘TyTAN: Tiny trust anchor for tiny devices,’’ in Proc. 52nd Annu. Design
Autom. Conf., Jun. 2015, pp. 1–6.

[13] H. Sun, K. Sun, Y. Wang, J. Jing, and H. Wang, ‘‘TrustICE: Hardware-
assisted isolated computing environments on mobile devices,’’ in Proc.
45th Annu. IEEE/IFIP Int. Conf. Dependable Syst. Netw., Jun. 2015,
pp. 367–378.

[14] V. Costan, I. Lebedev, and S. Devadas, ‘‘Sanctum: Minimal hard-
ware extensions for strong software isolation,’’ in Proc. USENIX, 2016,
pp. 857–874.

[15] A. Ferraiuolo, A. Baumann, C. Hawblitzel, and B. Parno, ‘‘Komodo: Using
verification to disentangle secure-enclave hardware from software,’’ in
Proc. 26th Symp. Operating Syst. Princ., Oct. 2017, pp. 287–305.

[16] P. Maene, J. Gotzfried, R. de Clercq, T. M’́uller, F. Freiling, and
I. Verbauwhede, ‘‘Hardware-based trusted computing architectures for iso-
lation and attestation,’’ IEEE Trans. Comput., vol. 67, no. 3, pp. 361–374,
Mar. 2018.

[17] H. Janjua, M. Ammar, B. Crispo, and D. Hughes, ‘‘Towards a standards-
compliant pure-software trusted execution environment for resource-
constrained embedded devices,’’ inProc. 4thWorkshop Syst. Softw. Trusted
Execution (SysTEX), 2019, pp. 1–6.

23928 VOLUME 10, 2022



D. Oliveira et al.: uTango: Open-Source TEE for IoT Devices

[18] F. Brasser, D. Gens, P. Jauernig, A.-R. Sadeghi, and E. Stapf, ‘‘SANC-
TUARY: ARMing TrustZone with user-space enclaves,’’ in Proc. Netw.
Distrib. Syst. Secur. Symp., 2019, pp. 1–15.

[19] S. Pinto and N. Santos, ‘‘Demystifying arm TrustZone: A comprehensive
survey,’’ ACM Comput. Surv., vol. 51, no. 6, pp. 1–36, Nov. 2019.

[20] W. Li, Y. Xia, L. Lu, H. Chen, and B. Zang, ‘‘TEEv: Virtualizing
trusted execution environments on mobile platforms,’’ in Proc. 15th ACM
SIGPLAN/SIGOPS Int. Conf. Virtual Execution Environ. (VEE), 2019,
pp. 2–16.

[21] S.-I. Hahm, J. Kim, A. Jeong, H. Yi, S. Chang, S. N. Kishore, A. Chauhan,
and S. P. Cherian, ‘‘Reliable real-time operating system for IoT devices,’’
IEEE Internet Things J., vol. 8, no. 5, pp. 3705–3716, Mar. 2021.

[22] D. Lee, D. Kohlbrenner, S. Shinde, K. Asanović, and D. Song, ‘‘Keystone:
An open framework for architecting trusted execution environments,’’ in
Proc. 15th Eur. Conf. Comput. Syst., Apr. 2020, pp. 1–16.

[23] R. Bahmani, F. Brasser, G. Dessouky, P. Jauernig, M. Klimmek,
A.-R. Sadeghi, and E. Stapf, ‘‘CURE: A security architecture with
CUstomizable and resilient enclaves,’’ in Proc. USENIX Secur., 2021,
pp. 1073–1090.

[24] Z. Hua, J. Gu, Y. Xia, H. Chen, B. Zang, and H. Guan, ‘‘vTZ: Virtualizing
ARM TrustZone,’’ in Proc. USENIX Secur., 2017, pp. 541–556.

[25] S. Pinto and C. Garlati, ‘‘Multi zone security for Arm cortex-M devices,’’
in Proc. of Embedded World Conf., 2020, p. 6.

[26] T. Nyman, J. Ekberg, L. Davi, and N. Asokan, ‘‘CFI CaRE: Hardware-
supported call and return enforcement for commercial microcontrollers,’’
in Proc. RAID, 2017, pp. 259–284.

[27] N. Asokan, T. Nyman, N. Rattanavipanon, A.-R. Sadeghi, and G. Tsudik,
‘‘ASSURED: Architecture for secure software update of realistic embed-
ded devices,’’ IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 37, no. 11, pp. 2290–2300, Nov. 2018.

[28] N. Zhang, H. Sun, K. Sun, W. Lou, and Y. T. Hou, ‘‘CacheKit: Evading
memory introspection using cache incoherence,’’ in Proc. IEEE Eur. Symp.
Secur. Privacy (EuroS&P), Mar. 2016, pp. 337–352.

[29] A. Tang, S. Sethumadhavan, and S. Stolfo, ‘‘CLKSCREW: Exposing the
perils of security-oblivious energy management,’’ in Proc. USENIX Secur.,
2017, pp. 1057–1074.

[30] K. Ryan, ‘‘Hardware-backed heist: Extracting ECDSA keys from qual-
comm’s TrustZone,’’ in Proc. ACM SIGSAC Conf. Comput. Commun.
Secur., Nov. 2019, pp. 181–194.

[31] D. Cerdeira, N. Santos, P. Fonseca, and S. Pinto, ‘‘SoK: Understanding the
prevailing security vulnerabilities in TrustZone-assisted TEE systems,’’ in
Proc. IEEE Symp. Secur. Privacy (SP), May 2020, pp. 1416–1432.

[32] Arm. Arm Trusted Firmware. Accessed: Jan. 12, 2021. [Online]. Available:
www.trustedfirmware.org/

[33] Trustonic. Trustonic Kinibi-M. Accessed: Jan. 12, 2021. [Online]. Avail-
able: www.trustonic.com/technology/

[34] Arm Ltd., ‘‘Arm TrustZone technology for the ARMv8-M architecture,’’
Cambridge, U.K., Tech. Rep. 100690, Oct. 2018.

[35] Arm Ltd., ‘‘Arm platform security architecture overview,’’ Cambridge,
U.K., White Paper (Rev. 1.2), Oct. 2018.

[36] Keil, ‘‘Using TrustZone on ARMv8-M,’’ USA, Appl. Note 291 (Rev. 1.4),
Dec. 2016.

[37] Y. Cho, J. Shin, D. Kwon, M. Ham, Y. Kim, and Y. Paek, ‘‘Hardware-
assisted on-demand hypervisor activation for efficient security critical code
execution on mobile devices,’’ in Proc. USENIX ATC, 2016, pp. 565–578.

[38] J. Jang, C. Choi, J. Lee, N. Kwak, S. Lee, Y. Choi, and B. B. Kang, ‘‘Pri-
vateZone: Providing a private execution environment using ARM Trust-
Zone,’’ IEEE Trans. Depend. Secure Comput., vol. 15, no. 5, pp. 797–810,
Sep. 2018.

[39] C. Garlati and S. Pinto, ‘‘A clean slate approach to Linux security RISC-V
enclaves,’’ in Proc. Embedded World Conf., 2020, pp. 1–5.

[40] S. Pinto, J. Pereira, T. Gomes, A. Tavares, and J. Cabral, ‘‘LTZVisor:
Trustzone is the key,’’ in Proc. ECRTS, 2017, pp. 1–22.

[41] Arm Ltd., ‘‘ARMv8-M architecture: Stack sealing and why it is needed in
TrustZone for ARMv8-M,’’ Cambridge, U.K., White Paper 102446, 2021.

[42] Arm. Arm PSA. Accessed: Jan. 30, 2021. [Online]. Available: www.arm.
com/why-arm/architecture/platform-security-architecture

[43] Arm. ATF-M Security Vulnerabilities. Accessed: Jan. 12, 2021.
[Online]. Available: https://tf-m-user-guide.trustedfirmware.
org/docs/security/security_advi%sories/index.html

[44] J. Saltzer and M. Schroeder, ‘‘The protection of information in computer
systems,’’ Proc. IEEE, vol. 63, no. 9, pp. 1278–1308, Sep. 1975.

[45] Arm Ltd., ‘‘Arm firmware framework for M 1.1 extensions,’’ Cambridge,
U.K., Tech. Rep. 39 (Rev. 1.2), Dec. 2020.

[46] N. S. Almakhdhub, A. A. Clements, M. Payer, and S. Bagchi, ‘‘Ben-
chIoT: A security benchmark for the Internet of Things,’’ in Proc. 49th
Annu. IEEE/IFIP Int. Conf. Dependable Syst. Netw. (DSN), Jun. 2019,
pp. 234–246.

[47] D. Patterson, J. Bennett, P. Dabbelt, C. Garlati, G. S. Madhusudan, and
T. Mudge. Embench: A Modern Embedded Benchmark Suite. Accessed:
Dec. 22, 2020. [Online]. Available: www.embench.org/

[48] B. Sa, J. Martins, and S. E. S. Pinto, ‘‘A first look at RISC-V virtualization
from an embedded systems perspective,’’ IEEE Trans. Comput., early
access, Nov. 13, 2021, doi: 10.1109/TC.2021.3124320.

[49] J. Jang, S. Kong, M. Kim, D. Kim, and B. B. Kang, ‘‘SeCReT: Secure
channel between rich execution environment and trusted execution envi-
ronment,’’ in Proc. Netw. Distrib. Syst. Secur. Symp., 2015, pp. 1–15.

[50] S. Weiser, M. Werner, F. Brasser, M. Malenko, S. Mangard, and
A.-R. Sadeghi, ‘‘TIMBER-V: Tag-isolated memory bringing fine-grained
enclaves to RISC-V,’’ in Proc. Netw. Distrib. Syst. Secur. Symp., 2019,
pp. 1–16.

[51] Prove&Run. ProvenCore-M. Accessed: Jan. 12, 2021. [Online]. Available:
www.provenrun.com/products/provencore/

[52] J. Noorman, P. Agten, W. Daniels, R. Strackx, A. V. Herrewege,
C. Huygens, B. Preneel, I. Verbauwhede, and F. Piessens, ‘‘Sancus: Low-
cost trustworthy extensible networked devices with a zero-software trusted
computing base,’’ in Proc. USENIX Secur., 2013, pp. 479–496.

[53] A. Azab, K. Swidowski, R. Bhutkar, J. Ma, W. Shen, R. Wang, and
P. Ning, ‘‘SKEE: A lightweight secure kernel-level execution environ-
ment for ARM,’’ in Proc. Netw. Distrib. Syst. Secur. Symp., 2016,
pp. 21–24.

[54] D. Kwon, J. Seo, Y. Cho, B. Lee, and Y. Paek, ‘‘PrOS: Light-weight
privatized se cure OSes in ARMTrustZone,’’ IEEE Trans.Mobile Comput.,
vol. 19, no. 6, pp. 1434–1447, Jun. 2020.

[55] P. Nasahl, R. Schilling, M. Werner, and S. Mangard, ‘‘HECTOR-V: A
heterogeneous CPU architecture for a secure RISC-V execution environ-
ment,’’ 2020, arXiv:2009.05262.

[56] T. Drozdovskyi and O. Moliavko, ‘‘MTower: Trusted execution environ-
ment for MCU-based devices,’’ J. Open Source Softw., vol. 4, no. 40,
p. 1494, Aug. 2019.

[57] S. Labs. (2017). CoreLockr-TZ. Accessed: Jan. 1, 2021. [Online]. Avail-
able: https://www.sequithowpublishedabs.com/corelockrtz/

[58] N. Cooprider, W. Archer, E. Eide, D. Gay, and J. Regehr, ‘‘Efficient
memory safety for TinyOS,’’ in Proc. 5th Int. Conf. Embedded Netw.
Sensor Syst. (SenSys), 2007, pp. 205–218.

[59] A. Levy, B. Campbell, B. Ghena, D. B. Giffin, P. Pannuto, P. Dutta,
and P. Levis, ‘‘Multiprogramming a 64kB computer safely and effi-
ciently,’’ in Proc. 26th Symp. Operating Syst. Princ., Oct. 2017,
pp. 234–251.

[60] A. A. Clements, N. S. Almakhdhub, K. S. Saab, P. Srivastava, J. Koo,
S. Bagchi, and M. Payer, ‘‘Protecting bare-metal embedded systems with
privilege overlays,’’ in Proc. IEEE Symp. Secur. Privacy (SP), May 2017,
pp. 289–303.

[61] D. Kwon, J. Shin, G. Kim, B. Lee, Y. Cho, and Y. Paek, ‘‘UXOM: Efficient
eXecute-only memory on ARM cortex-M,’’ in Proc. USENIX Secur., 2019,
pp. 231–247.

[62] G. Peach, R. Pan, Z. Wu, G. Parmer, C. Haster, and L. Cherkasova,
‘‘EWASM: Practical software fault isolation for reliable embedded
devices,’’ IEEE Trans. Comput.-AidedDesign Integr. Circuits Syst., vol. 39,
no. 11, pp. 3492–3505, Nov. 2020.

[63] O. Hahm, E. Baccelli, H. Petersen, and N. Tsiftes, ‘‘Operating systems for
low-end devices in the Internet of Things: A survey,’’ IEEE Internet Things
J., vol. 3, no. 5, pp. 720–734, Oct. 2016.

[64] M. Silva, D. Cerdeira, S. Pinto, and T. Gomes, ‘‘Operating systems for
Internet of Things low-end devices: Analysis and benchmarking,’’ IEEE
Internet Things J., vol. 6, no. 6, pp. 10375–10383, Dec. 2019.

[65] F. Bruns, D. Kuschnerus, and A. Bilgic, ‘‘Virtualization for safety-critical,
deeply-embedded devices,’’ inProc. 28th Annu. ACMSymp. Appl. Comput.
(SAC), 2013, pp. 1485–1492.

[66] F. Paci, D. Brunelli, and L. Benini, ‘‘Lightweight IO virtualization onMPU
enabled microcontrollers,’’ ACM SIGBED Rev., vol. 15, no. 1, pp. 50–56,
Mar. 2018.

[67] Arm. Mbed OS. Accessed: Jan. 12, 2021. [Online]. Available:
https://os.mbed.com/mbed-os/

[68] Amazon. FreeRTOS. Accessed: Jan. 12, 2021. [Online]. Available:
www.freertos.org/

[69] L. F. Project. Zephyr. Accessed: Jan. 12, 2021. [Online]. Available:
https://zephyrproject.org

VOLUME 10, 2022 23929

http://dx.doi.org/10.1109/TC.2021.3124320


D. Oliveira et al.: uTango: Open-Source TEE for IoT Devices

DANIEL OLIVEIRA received the M.Sc. degree
in electronics and computer engineering from the
University of Minho, Portugal, where he exploited
Arm TrustZone Technology. He is currently pursu-
ing the Ph.D. degree focused on mixed-criticality
systems in low-end embedded devices with a
strong background in (real-time) operating sys-
tems, embedded security, and automotive HMI
systems. His main research interests include virtu-
alization, real-time operating systems, and security

for low-end embedded devices.

TIAGO GOMES received the master’s degree in
telecommunications engineering and the Ph.D.
degree in electronics and computers engineering
from the University of Minho, Portugal. He is
currently a Research Scientist and an Invited Pro-
fessor at the University of Minho. His current
research interests include embedded systems hard-
ware/software co-design for resource constrained
wireless devices, wireless protocols for low-rate
wireless personal area networks, and network pro-

tocols for the Internet of Things low-end devices.

SANDRO PINTO received the Ph.D. degree in
electronics and computer engineering. During his
Ph.D., he was a Visiting Researcher at the Asian
Institute of Technology, Thailand; the Univer-
sity of Wurzburg, Germany; and Jilin University,
China. He is currently an Associate Research Pro-
fessor at the University of Minho, Portugal. He has
a deep academic background and several years
of industry collaboration focusing on operating
systems, virtualization, and security for embedded

systems, cyber-physical systems, and IoT-based system. He has published
dozens of scientific papers in top-tier conferences/journals.

23930 VOLUME 10, 2022


