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ABSTRACT War game simulations are decision-making tools that may provide quantitative data about the
scenario analyzed by stakeholders. They are widely used to develop tactics and doctrines in the military
context. Recently, unmanned air vehicles (UAVs) have become a relevant element in these simulations
because of their prominent role in contemporary conflicts, surveillance missions, and search and rescue
missions. For instance, it is possible to admit aircraft losses from a tactical formation in favor of the victory
of a squadron in a given combat scenario. The optimization of the position of UAVs in beyond visual
range (BVR) combat has attracted attention in the literature, considering that the distribution of UAVs can be
a determining factor in this scenario. This work aims to optimize UAV tactical formations considering enemy
uncertainties such as firing distance and position using six metaheuristics and a high-fidelity simulator.
A tactical formation often employed by air forces called line abreast was chosen for the RED swarm for
a case study. The objective of the optimization is to obtain a tactical formation of the BLUE swarm that
wins the BVR combat against the RED swarm. A procedure to confirm the robustness of the optimization
is employed, varying the position of each UAV of the RED swarm up to 8 km from its initial configuration
and using the war game approach. A tactical analysis is performed to confirm whether the formations found
in the optimization are applicable.

INDEX TERMS Optimizationmethods, computer simulation, unmanned aerial vehicles (UAV), autonomous
agents, decision support systems, computational intelligence.

I. INTRODUCTION
War games are analytical games that simulate warfare at
the tactical, operational, or strategic level and are used to
analyze combat concepts and train and prepare commanders
and subordinates, explore scenarios, and assess how planning
affects outcomes. These simulations are very useful for devel-
oping tactical, strategic, and doctrinal solutions, providing
participants with insight into the decision-making process
and stress management [1].

Recently, unmanned aerial vehicles (UAVs) have emerged
as a new high-tech force. Using them to achieve air
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supremacy could result in a deep military transformation [2].
As a result, their effectiveness has frequently been tested and
evaluated in war games.

With several performance advantages such as increased
agility, increased overload durability, and increased stealth
capability, UAVs have been gradually evolving and are
replacingmanned systems inmany air missions [3]. However,
replacing a manned platform with an unmanned system in
air combat beyond the visual range is challenging because
of the dynamic nature of combat. A UAV can be remotely
controlled in aerial combat, but it will be at a disadvantage
against a manned platform because of the limited situational
awareness of the UAV pilot. However, this limitation can be
overcome through automated combat maneuvers [4] and the
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optimization of tactical formations. In addition, the use of
UAVs can allow some tactical formations and strategies that
would not be considered with human-crewed aircraft, such
as allowing an aircraft of the squadron to be shot down if
it helped the team win the combat. One of the first articles
in the literature aimed at optimizing the tactical formation
of aircraft in beyond visual range (BVR) combat [5] shows
that air combat tactics are candidates for optimization with
a genetic algorithm (GA). The implementation uses a hierar-
chical concept that builds large formation tactics from small
conventional combat units and starts with formations of two
aircraft, then four aircraft, and thenmultiples of those.Missile
launches were not modeled in the simulations. The simplified
engagement simulator declares a casualty when an aircraft
places its opponent in the high probability-of-kill (Pkill)
region of the weapons engagement zone (WEZ) for a spec-
ified period. The application of the proposed methodology
proved to be effective, eliminating all aircraft in the team that
did not optimize the formation and providing for the survival
of the entire aircraft team that optimized its formation.

Keshi et al. [6] used the same hierarchical concept of
building large tactical formations from elements composed
of two aircraft that were used in [5]. The simulated annealing
genetic algorithm (SAGA) was used to optimize the forma-
tion, allowing it to overcome convergence to the local optimal
solutions. An optimization of the formation of 16 aircraft was
implemented, and the optimal solutions presented showed
that SAGA was more efficient than the basic GA. Finally,
to explore a robust SAGA, comparisons of different Markov
chains were made, and the self-adjusting Markov current
proved to be more appropriate for the problem presented.

Junior et al. [7] proposed the use of computer simula-
tion as a solution to determine the best tactics for BVR
air combats that maximize the probability of shooting down
an enemy aircraft. Generic parameters were used to model
both aircraft and missiles at low resolution with an adapta-
tion of the simulation optimization algorithm called COM-
PASS and simulating a BVR combat of two aircraft against
one. The low-resolution model assumes a uniform rectilinear
movement in two dimensions in a horizontal plane. Using
optimized tactics demonstrated an increase in the average
success rate in the shooting down of enemy aircraft from
16.69% to 76.85%.

Yang et al. [8] proposed a methodology to optimize the
best attack position and best path of an aircraft against a set
of targets. The work considers that the aircraft is capable of
firing a missile for each target at the same time and uses
the aircraft’s offensive and vulnerability factors in relation
to the targets as metrics for evaluating the attack position.
A high-fidelity simulation was used to model the dynamic
characteristics of each missile’s aircraft, radar, missiles, and
WEZ. This work does not address the problem of optimizing
the formation of a set of aircraft against another group of
aircraft within a BVR combat scenario.

Li et al. [9] proposed a method for formation optimization
based on the commanders’ subjective understanding of the

problem of selecting an aircraft formation with uncertain
equipment information about the target in air combat. Ini-
tially, the combat power of the fighter is calculated, which
is the basis of the assessment of the target’s combat power
through the subjective recognition of the commanders. The
fighter’s combat power is expressed in the form of capabil-
ities, including attack, detection, survivability, communica-
tion, electronic warfare, and the warning system. Thus, air
combat training is optimized by employing prospect theory
and comprehensive fuzzy assessment. Finally, an application
example demonstrates the feasibility of the method in small-
scale air combat. The authors claim the ability to assess
the combat situation using combat power provides a new
approach to optimize training in air combat.

Özpala et al. [10] proposed a decision-making method
for aerial combat with multiple unmanned combat air vehi-
cles (UCAVs) in two opposing teams. First, the superiority
of each agent on both teams was determined. Superiority
status includes the weighted sum of the angle, distance, and
speed superiorities. After each agent in a team is compared
against each agent in the opposing group, each air vehicle
is assigned a target for their team’s advantage rather than
their own advantage. A zero-sum game was implemented for
a pair of opposing teams. A reduction method is proposed
for mixed Nash equilibrium strategies when many agents are
involved. The solution is based on game theory approaches;
therefore, this approach is tested on a numerical case, and its
effectiveness is demonstrated.

Huang et al. [11] developed new methods to deal with the
cooperative target assignment and path planning (CTAPPP)
problems of UCAV formation against multiple targets. The
formation of the UCAV is based on cooperative decision
making and control. After completing target reconnaissance,
a training command center transmits task assignment com-
mands to each UCAV quickly according to the battlefield
environment and combat mission. The UCAV maneuvers
into the best position calculated by its fire-control sys-
tem to launch the weaponry. The cooperative target assign-
ment (CTAP) problem is solved by enhanced particle swarm
optimization (IPSO), the ant colony algorithm (ACA), and
the genetic algorithm (GA), and a comparative analysis is
performed on the aspects of attribution, accuracy, and search
speed. The cooperative path planning (CPPP) problem for
UCAV formation for multiple targets is developed based
on an evolution algorithm, in which a unique chromosome
encoding method, crossover operator, and mutation operator
are provided and redefined, and cooperative paths are planned
considering the cost of fuel, cost of threat, cost of risk, and
cost of remaining time.

The work developed by Ma et al. [12] addressed the prob-
lem of optimizing the predominance between two groups
(R and B) opponents of UAVs in a BVR combat scenario.
The predominance of a UAV ri ∈ R over a UAV bj ∈ B is
estimated through the distance between ri and bj, the lower
and upper limits of the missile firing distance of ri, the differ-
ence between the altitude of ri and the altitude of bj, and the
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best firing altitude of ri. The decisive variables are the spatial
distribution of the UAVs in the two groups and the allocation
of targets for each aircraft in these groups. The possible
positions of a UAV in the three-dimensional combat space
BVR are simplified (discretized) and represented through the
central positions of the cubes. There was a set of cubes for
each UAV group. The optimization problem is modeled as a
zero-sum game and is solved to obtain a Nash equilibrium.

The work presented in Ma et al. [12] does not use high-
fidelity simulation to analyze the effects of the choices of
spatial distributions of UAVs and the targets assigned to
them on BVR combat. High-fidelity simulations model the
dynamic characteristics of aircraft, radars, missiles, and the
WEZ of their missiles. These dynamic characteristics also
influence the trigger of actions of each aircraft during BVR
combat and, therefore, the final result. For example, if a high-
fidelity BVR combat simulation is considered during a time
window after the first clash between the two sets of UAVs,
new clashes may occur until the simulation ends. Thus, each
UAV surviving an engagement will be able to select a new
target, depending on the predominance values of the avail-
able targets. Uncertainties related to the behavior of UAVs
were not considered in [12]. Information regarding the exact
position of the enemy UAV in tactical formation and its mis-
sile firing distance are examples of behavioral uncertainties.
These two pieces of information and the other information
described above are relevant in the context of a BVR combat:
they directly influence the result of the engagement between
the aircraft.

In this study, we seek to solve some of the limitations
identified in the literature, such as low-resolution simulations,
treatment of uncertainties associated with the enemy, and lack
of confirmation of the robustness of the optimized solutions,
aiming to increase the quality of war game results. The goal
is to verify which BLUE swarm tactical formations would
allow BVR combat victory against the RED swarm. As a
case study, the RED swarm uses a tactical formation often
employed by air forces called line abreast [13]. To evaluate
the robustness of the solutions obtained for the BLUE swarm,
new problems are solved, altering the position of each aircraft
of the RED swarm aiming to estimate the impact of the new
RED swarm formation on the efficiency of the optimized
tactical formation of the BLUE swarm.

We use autonomous agents and high-fidelity computer
simulations to optimize tactical formations of UAVs in
BVR combats, considering uncertainties associated with the
enemy, such as the position error in tactical formation and
missile launch distance. The unified behavior framework
(UBF) was adopted as the base to create autonomous agents.
The aircraft and missiles are modeled with six degrees of
freedom (DoFs) in a three-dimensional environment.

The procedure is further discussed in the next sections.

II. PROBLEM FORMULATION
BVR combat consists of the use of radar sensors and radar
warning receivers (RWR) for the detection and tracking of

targets and the use of specific air-to-air missiles for this type
of combat. Engagement is the main phase of BVR combat.
In summary, this phase is a sequence of the following activi-
ties: the pilot performs the target tracking procedure, checks
the possibility of shooting, decides whether to shoot and if
so, performs the triggering procedure, performs the trigger
support procedure, and makes an evasive maneuver regarding
the end of the engagement [14].

An important step during the engagement is the tactical
formation of the aircraft, as their positioning can be deci-
sive for the combat result. This work addresses high-fidelity
simulations of BVR combat involving two opposing swarms,
containing up to four UAVs each, with the same types of
aircraft, sensors, and weapons, to optimize the position of
each aircraft in the swarm used in war games.

Two relevant aspects of uncertainty will be addressed in
this study: first, the position uncertainty of enemy aircraft,
because in addition to the radar position error, the aircraft do
not maintain a fixed position in the formation. Their position
can vary up to hundreds of meters around a pre-established
position in the swarm. The second aspect of uncertainty is
the enemy swarm’s firing distance, which determines the
moment when each UAV will launch its missile. Firing dis-
tance is more conservative when the aircraft fires the missile
at a distance considered safe or more aggressive launching at
a distance closer to the opponent.

The aspects of uncertainty will be evaluated from a war
game perspective to give the player or decision maker a
probability of success, providing additional information to
proceed or not with the engagement, depending on the game
strategy.

A. COMPUTER SIMULATION MODEL
Constructive and continuous simulations based on autono-
mous agents were used in this study. The autonomous agent
is the computational implementation of a set of algorithms
composed of:

- Mathematical models that simulate UAV systems and
sensors; and

- Artificial intelligence techniques that simulate the possi-
ble behavior of a UAV in a BVR combat.

The structure of an autonomous agent is shown in Figure 1.
Autonomous agents have been developed as multi-agent

systems. Thus, an agent can share information collected from
the environment with other allied agents. Each agent elabo-
rates a superstate, containing information of itself (attitude,
position, altitude, speed, etc.), environmental information
from its sensor system (data on targets detected by radar, mis-
sile alerts, etc.), plus relevant information sent by other agents
on themselves and elements of the environment captured by
them (position of each allied agent, of targets detected by each
ally, etc.). The superstate, containing information from the
group of UAVs and the sensing of the environment carried out
by each one, makes the collective decision-making process
possible, improving the effects of planned/adopted behaviors
in response to a state. Among a set of autonomous agents, this
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FIGURE 1. Structure of an autonomous agent.

process of collective and decentralized decision-making is a
type of swarm intelligence [15], [16].

The input and output data of the autonomous agents were
associated with the scenario (external environment).

A behavior can be understood as a function that maps a
state into an action. Thus, the behavior of index i at an instant
t can be defined by

behaviori(state(t)) = actioni(t) (1)

An action is created and sent to be executed on an actuator,
to carry out communication, or to change some information
of the agent’s own state.

This work makes use of the computational platform named
Aerospace Simulation Environment (ASA) [17] to build fic-
titious operational scenarios in which combat simulations are
performed between two opposing swarms of UAVs, named
BLUE and RED. The ASA platform uses a mixed reality
simulation platform (MIXR) [18] as its simulation engine.

The MIXR platform was designed for the rapid develop-
ment of robust and scalable applications for constructive or
virtual simulations. The platform allows such applications
to be independent (stand-alone) or distributed [18]. MIXR
has been widely used to build deterministic applications that
demand performance in real-time. Deterministic applications
mean that a given input data always produce the same result.

Simulated UAVs, that is, autonomous agents, were devel-
oped based on a high-fidelity JSBSim [19] dynamic model.

JSBSim is open-source, configurable, and compatible with
several operating systems’ dynamic flight models. The air-
craft model represents a high-performance aircraft fighter
based on open data available as an example in the JSB-
Sim framework. The model, named ‘‘General Dynamics
F-22A’’ and available in [20], does not simulate the actual
F-22. However, the implementation ensures a high-fidelity
generic 6DoFmodel, including flight control system, aerody-
namics, and propulsion, all of which operate at 100 Hz during
all the simulations.

Using information from the superstate, the decision-
making process, that is, the artificial intelligence of an
autonomous agent, is performed through a finite-state
machine (FSM) and a targeting module (choice of targets).
FSM defines the agent’s behavior: navigate in formation;
navigate towards a target; shoot (fire) a missile at the tar-
get; after the shot, perform a maneuver to illuminate the
target with the radar; perform a defensive maneuver (evasive
maneuver); receive or send communication data. Actions cor-
responding to maneuver behaviors are sent and executed by
the UAV’s navigation control system (autopilot). Fire actions
and communication actions are sent and executed by the
weapon control system and UAV datalink, respectively. The
targeting module selects the target with the highest offensive-
ness value to the agent, that is, the target with the highest
probability of being shot down by a missile.

In the MIXR platform, the decision-making process of
each autonomous agent was modeled using a computa-
tional architecture called the unified behavior framework
(UBF) [21].

The UBF architecture, proposed in [21], was developed
to model the behavior of autonomous agents encompassing
the concepts of reactive controllers. The main advantage
of UBF is that it allows the development of behaviors in
a modular way, aiming to simplify the development and
testing of new functions, code reuse, support projects that
easily adapt to large hierarchies, restrict code complexity,
and allow the developer of behavior-based systems the free-
dom to use different behavior options and select the most
suitable ones [21].

The UBF architecture allows independent behaviors to be
encapsulated in other behaviors with the purpose of creating
compound behaviors and increasing their abstraction level.

The use of high-fidelity simulation is an excellent tool
for evaluating UAV tactics in BVR combats, as it models
the aerodynamics of aircraft and missiles, the electromag-
netic envelopes of emitters and sensors, and the behavior of
autonomous agents inserted in combat with adequate real-
ism for the study in question. Additionally, the autonomous
agents model the target assignment tactic, the missile fir-
ing time, the missile support time, and the type of evasive
maneuver.

The ASA allows us to perform simulations with different
situations. Given the initial configuration of the swarms in
the chosen scenario, it is possible to carry out a deterministic
simulation, in which the simulator uses the implemented
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models to define the next steps of the confrontation. It is
also possible to use stochastic parameters to include natural
uncertainties of the confrontation process. The ones used in
this work, so far, are:
• RED swarm firing distance: the firing distance used
in the simulations, to simplify the missile model used,
is based on a static range in which the shortest firing
distance is 35 km (19 NM), and the maximum is 53.7 km
(29 NM). The ASA can select a shooting philosophy
that is associated with the aggressiveness of the air-
craft. In an aggressive approach, the aircraft fires at
the shortest possible firing distance (e.g., 19 NM). In a
conservative approach, the shot is fired at the longest
shooting distance. A distance of 44.4 km (24 NM) was
adopted for the two swarms in the simulations. However,
to create an uncertainty in the firing distance of the
RED swarm, a random number generator (in ASA) with
normal distribution was used with a mean of 24 NM
and variance of 0.025 in some simulations, following the
procedure adopted in [22].

• Choice of targets (Target Commit/binary): the assign-
ment of targets performed by agents in the ASA is based
on the target offering the highest level of offensiveness in
relation to the aircraft that allocates the target (attacking
aircraft), but if there is equality of offensiveness, the
attacker tends to allocate the target from the left, owing
to the radar sweep. To try to minimize this tendency,
in some experiments, a stochastic target assignment pro-
cess was used with a 50% chance of choice for each side
when there was a tie in the target assignment.

In the case of using stochastic controls, a set of simulations
with the same initial conditions (‘‘batch’’) can be performed
by the ASA, and the result considered is an average of the
results obtained.

B. GAME FORMULATION AND OPTIMIZATION
The war game proposed in this work is a confrontation
between two swarms of opposing UAVs, a BLUE team and
a RED team, in BVR type combat, containing up to four
UAVs each, with the same types of aircraft, sensors, and
weapons. The purpose of this study was to assess which
tactical formation maximizes BLUE survival and lethality.

The game arena starts with a given tactical formation of
the RED swarm. The BLUE swarm aircraft are initialized
randomly in the arena but constrained in latitude and longi-
tude by a rectangle (P1, P2, P4, P3). Figure 2 illustrates a
distribution of four BLUE aircraft in the arena. The position
of BLUE01, BLUE02, BLUE03, and BLUE04 is wb1, wb2,
wb3, and wb4, respectively.
In BVR combat, altitude is a factor that directly influences

the result, as the higher the aircraft, the greater the range
of the missile. Therefore, to give equal combat conditions
for the two swarms, it was considered that each aircraft of
the two swarms had equal altitude at the start of combat.
The simulator uses information of the radar contact from the
enemy swarm (around 52 km away) to dynamically vary the

position (latitude, longitude, altitude) of each UAV of each
swarm during the combat simulation. Thus, the problem is a
3D optimization of the tactical formation inwhich the swarms
have the same altitudes at the beginning of the simulation.

The game corresponds to finding the best initial tactical
position of the BLUE aircraft relative to the opposing swarm.

FIGURE 2. Initial position of the BLUE swarm in the game. The positions
of the aircraft are randomly generated. The RED swarm is not represented.

The swarm simulation optimization problem is defined by
the objective function:

f (XB,XR) = KB−KR (2)

in which:
• XB is the configuration of the BLUE swarm;
• XR is the configuration of the RED swarm;
• KB is the number of aircraft shot down by the BLUE
swarm at the end of the simulation;

• KR is the number of aircraft shot down by the RED
swarm at the end of the simulation.

A positive value of f(XB, XR) means BLUE swarm victory;
any other value means that the RED swarmwins. The optimal
initial distributions of the BLUE swarm are obtained by
maximizing (2). Conversely, minimizing (2) optimizes the
RED swarm formation.

Notice that the optimization problem formulation does not
impose additional restrictions on the initial distribution of the
RED and BLUE swarms.

Considering a given initial distribution of the RED swarm,
the BLUE swarm configuration corresponds to the set of input
parameters (or free parameters): the latitude, longitude, and
altitude of each UAV. Latitude and longitude can assume
continuous values between the coordinates defined by the
rectangle with vertices P1, P2, P4, and P3, and the altitude can
take any value but is restricted by the operational parameters
of the aircraft.

A simulation optimization [23], [24] is used that consists
of searching for configurations of a set of input parameters of
a simulation to maximize the value of the objective function
based on the output of this simulation.

The basic operation of simulation-based optimization is
presented in the simplified scheme in Figure 3. Considering
an initial parameter setting (x0, y0), each iteration i generates
a set of input parameters that are evaluated by the simulation
to obtain the value of an objective function f(xi, yi). The
optimization method aims to find a good approximation for
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the extreme E of f(xi, yi), according to a set of constraints
imposed by the problem.

FIGURE 3. Simulation-based optimization.

In simulation-based optimization, the simulation is usually
not represented by an algebraic model [23]. The simulation is
interpreted as a black box that receives the input parameters
and returns the outputs. In this context, the optimization
algorithm generates the input parameters, and the simulator
uses the given input to evaluate the clash result.

In this study, the optimization process was carried out
using populational and single-solution-based metaheuristics
(MH). Metaheuristics have been successfully applied to solve
simulation-based optimization problems [24], [25]. A meta-
heuristic is an algorithm created to find satisfactory solutions
for different classes of problems that may include uncer-
tainties, stochastic parameters, or dynamic information in its
mathematical formulation [25].

III. METHODOLOGY
The procedure for optimizing aircraft tactical formations
in BVR combats uses high-fidelity computer simulations
and autonomous agents created through the unified behavior
framework (UBF), considering uncertainty in enemy behav-
ior. The simulation with uncertainties uses stochastic factors,
and the value of f (XB,XR) is the average of ten independent
simulations performed in ‘‘batch’’ by ASA with the same
input data.

War games theory was used to analyze the results obtained.
The main steps adopted are:
1) Studies to optimize the formation of the BLUE swarm

for 2 vs. 2 and 4 vs. 4 fights using deterministic sim-
ulation; the main objective is to verify the behavior of
eachMH and the parameters to be used in the next step.

2) Optimization of the BLUE swarm for 4 vs. 4 combats
using stochastic simulations; a fine adjustment of the
control parameters of each MH is done.

3) Study of the robustness of solutions found for a BLUE
swarm: Fights 4 vs. 4.

In the first step, experiments are performed considering two
identical swarms of two (2) or four (4) aircraft. Several MHs
are used to identify configurations that result in the greatest
number of successes for the BLUE swarm. The optimization
processes were performed using a computational optimiza-
tion tool developed in-house [26], named LEV optimization
framework (LOF), through which several populational and
single-solution based MH and their control parameters can
be selected, the number of times the problem has to be

solved by each MH, and the sequence of application of MH
running independently or in a hybridization scheme. The LOF
computational tool allows exploration of parallel/distributed
execution, among other possibilities.

Because each MH explores different approaches to find
the extrema of the objective function, using different ways
to do local and global searches, it is interesting to explore
different MHs to study the problem instead of only adjusting
the control parameters of a givenMH. The optimizationswere
performed with widely used MHs, taking advantage of their
different search methodologies: particle swarm optimization
(PSO) [27], black hole (BH) [28], vortex search (VS) [29],
modified vortex search (MVS) [30], sine cosine algorithm
(SCA) [31] and simulated annealing (SA) [32], with different
population sizes, neighborhood sizes, numbers of iterations,
and numbers of tests. Deterministic simulations are used to
evaluate these MH parameters, and then uncertainties are
used for the RED swarmfiring distance and target designation
for the BLUE swarm. Design-of-experiment techniques, such
as fractional factorial [33], were used to plan the experiments
and define the parameters listed above.

LOF generates different initial configurations for the
swarm and uses ASA to evaluate the result of the con-
frontation with this configuration, according to the problem
defined in the previous section. The MH search algorithm
uses ASA results to guide the search process for the optimal
configuration.

The two software tools, LOF and ASA, are independent
and interact using a particular protocol. Such an approach
presents a time overhead. Each optimization iteration implies
the necessity of loading many instances of ASA. Config-
uration file readings are needed for each instance. In this
context, the focus of our analysis is not related to the time
spent to obtain a solution. The total optimization time can be
considerably reduced by integrating both tools, avoiding the
loading of executables and mass storage device readings.

The second step follows the same procedure but considers
two swarms of four aircraft in a stochastic simulation.

The first two steps assume a RED swarm initial tactical
formation called line abreast, often employed by air forces,
as the case study. In these cases, the game arena starts with the
RED swarm aligned under the following condition for step 2:

d (wr1,wr2) = d (wr2,wr3) = . . . = d (wrN−1,wrN ) (3)

where wr1, wr2, wr3, wrN−1 and wrN are the posi-
tions of RED01, RED02, RED03, RED(N-1) and REDN,
respectively. d(a,b) represents the distance between points a
and b.

The third step is dedicated to analyzing the strength and
effectiveness of some of the optimized formations of the
BLUE swarm obtained in the previous step. Five different
experiments were carried out to accomplish this task. In each
experiment, each RED swarm aircraft was positioned ‘‘ran-
domly’’ in a region of radius R centered in its initial position
assumed in step 2, as illustrated in Figure 4. In each experi-
ment, the radius R assumes the values 0.5, 1, 2, 4, and 8 km,
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as shown in Figure 4, maintaining the optimized formation
of the BLUE swarm. Again, the BLUE swarm’s victories
are verified for all simulations performed in the optimization
of the RED swarm position. The BLUE swarm wins if the
objective function (2) results are positive.

FIGURE 4. Variation of the RED swarm in the third step of evaluation:
(a) position of the RED swarm in the optimization performed in step 2
and (b) example of the distribution of RED aircraft in step 3, with the
formation of the BLUE swarm fixed in an optimized configuration.

In a military operation, the commander is advised by the
general staff and decides the acceptable risk level [34] and
themetrics of operational success and robustness [35]. As this
work uses simulations of swarms of UAVs, a higher risk level
is considered acceptable; that is, any result other than a loss
and draw (i. e., KB - KR > 0) is accepted as a BLUE swarm
victory. The robustness of each optimized BLUE swarm for-
mation obtained in step 2 is evaluated in step 3 in terms of
the efficiency metric. It is defined as the sum of all objective
functions f (XB,XR) whose value is greater than zero (for
which the BLUE swarm obtained some numerical advantage
in combat) divided by the total number of f (XB,XR) calcu-
lated on the test. The robustness analysis considers the mean,
standard deviation, and median. In this work, an efficiency of
80% was chosen to evaluate the mission’s success.

IV. RESULTS OBTAINED
A. BLUE SWARM FORMATION OPTIMIZATION
This section shows the results of the experiments used to
identify optimized formations of the BLUE swarm, assuming
line abreast formation for the RED swarm.As presented in the
Methodology section, various MHs andMH parameters were
explored through several tests to obtain the solutions.

The MHs are particle swarm optimization (PSO), black
hole (BH), vortex search (VS), modified vortex search
(MVS), sine cosine algorithm (SCA) and simulated annealing
(SA) [32], with different population or neighborhood size,
numbers of iterations, and numbers of tests.

An experiment is considered complete when an MH is
executed with a given population or neighborhood size, max-
imum number of iterations, and number of tests.

Combats of 2 vs. 2 and 4 vs. 4 were simulated with a deter-
ministic approach and with stochastic factors. The maximum
value of the objective function (2) in the 2 vs. 2 combats is 2,
and for 4 vs. 4 combats is 4.

The following scenarios were used in the 2 vs. 2 com-
bat experiments: RED aircraft according to Table 1; BLUE
aircraft ranging in latitude and longitude from −0.7675◦ to
−0.7500◦, and from −0.018◦ to 0.018◦, respectively, and all

aircraft initially at 6096 m (20,000 ft) (Figure 5). The initial
positions of the aircraft in the RED swarm are presented in
Table 2 and Figure 6 for the 4 vs. 4 combat experiments.
The initial altitude of the BLUE swarm aircraft follows the
RED swarm profile, and its horizontal positioning varies
from −17.5925◦ to −17.4665◦ and between −45.2573◦ and
−44.9973◦.

TABLE 1. RED swarm coordinates in 2 vs. 2 combats.

TABLE 2. RED swarm positions in 4 vs. 4 combats.

FIGURE 5. Initial position of the BLUE and RED swarms in the game in
Combats of 2 vs. 2.

The parameters used in the main experiments with MH are
presented in Table 3.

1) ANALYSIS OF EXPERIMENTS WITH DETERMINISTIC
SIMULATIONS
In these experiments, we sought to set the MH population or
neighborhood size as a multiple (or close to a multiple) of
the problem input variables. There are four variables in 2 vs.
2 combats: latitude and longitude of BLUE01 and BLUE02.
There are eight variables in 4 vs. 4 combats: latitude and
longitude of BLUE01, BLUE02, BLUE03, and BLUE04.
In both cases, the altitude of each aircraft of the BLUE swarm
at the beginning of the combat assumes the value of the RED
counterpart.
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TABLE 3. Description of experiments performed with MH.

FIGURE 6. Initial position of the BLUE and RED swarms in the game in
Combats of 4 vs. 4.

With the PSO (combat 2 vs. 2), experiments were carried
out with a population of 20 individuals, and 20 iterations were
sufficient to reach convergence. PSO did not find cases in
which the BLUE swarm had an advantage.

The experiment carried out with BH uses a population of
30 individuals, 20 iterations and two tests. In the initial tests in
the 2 vs. 2 combat experiments, it converged to a value of 1 in
the 1st iteration. In the 4 vs. 4 combat experiment performed
with a population of 20 individuals, 30 iterations, and four
tests, BH converged quickly to the maximum value on this
type of problem. BH proved to be an MH that worked well
for this problem.

The experiments performed with VS converged to objec-
tive function values equal to 1 and 4 for 2 vs.2 and 4 vs.4
combats, respectively, in a few iterations.

Two deterministic experiments were carried out with the
MVS, the first (2 vs. 2) with four vortices and five individuals
per vortex, 100 iterations and four tests, and the second
(4 vs. 4) with the same configuration, but with 30 iterations.
The MVS converged to the value 1 in the 2 vs. 2 combats and
converged to 4 (the maximum value) in the 4 vs. 4 combats
in the first iteration in both experiments.

An experiment carried out with SCA (2 vs. 2), with a
population of 20 individuals, 300 iterations, and five tests
converged to unfavorable values for the BLUE swarm in
the second iteration. This MH was not suitable to solve the
problem and was discarded in the following experiments.

An experiment was also carried out with SA, with a neigh-
borhood of 20, 30 iterations, and four tests. SA obtained the
value 4 in the first iteration by chance in all tests.

In this step, the MHs that presented the best performance
to solve the deterministic problem were BH, VS, and MVS.

2) ANALYSIS OF EXPERIMENTS WITH STOCHASTIC
SIMULATIONS
The stochastic simulations were carried out with random
factors in the firing distance of the RED swarm and in
the choice of targets for the BLUE swarm, as described in
Section 3. The experiments use BH, VS, MVS, and SA.
A configuration with 20 individuals (five individuals and four
vortices in MVS) in population-based MH or 20 neighbor-
hood size in single-solution-based MH, 10 iterations, a batch
of 10 stochastic simulations per individual, and four tests
were sufficient to guarantee obtaining in all experiments the
value 4 of the objective function at least once before the
10th iteration. Notice that this configuration results in 8,000
simulations per MH. Figure 7 illustrates the convergence of
the four tests using MVS. All tests achieve the maximum
value of the objective function in up to six iterations.

Table 4 shows the number of iterations and time to attain
convergence of each metaheuristic obtained using a work-
station with 28 processors and 64 GB of RAM. Again,
we emphasize that the time registered is only for reference
because of the need to launch executables several times and
an additional time needed to read the configuration files,
as explained in the Methodology section.

MVS shows better performance to achieve optimal values
both with the median and with the average; the VS did not
reach the maximum value on average until the 10th iteration.
SA obtained the best value in the first iteration andmaintained
this value to the end in all tests. Despite the mean and median
in these few tests having reached the value of 3.7, additional
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FIGURE 7. MVS convergence graph. Note 1: Test 2 is superimposed on
Test 4.

studies should be done using SA to better explore the search
parameters used in the MH.

Based on these results, a robustness study was carried out
using MVS with the same parameters, that is, a population of
five individuals and four vortices, 10 iterations, 10 ‘‘batch’’
(simulation) sets per individual, and four tests.

TABLE 4. Comparative Chart of MH: BH, VS, MVS and SA performances.

B. STUDY OF THE ROBUSTNESS OF THE BLUE SWARM
FORMATION
In a real BVR combat scenario, it is common for aircraft to
perform variations in the positions of their tactical forma-
tions. Therefore, this subsection is dedicated to analyzing the
robustness and effectiveness of some optimized BLUE swarm
positions obtained in the previous subsection, as mentioned in
step 3 of the methodology.

The experiments aim to perform position optimizations of
the RED swarm, considering radius distances of 0.5, 1, 2, 4,
and 8 km in relation to the initial positions of each aircraft,
keeping the optimized position of the aircraft of the BLUE
swarm fixed. According to [13], the side-by-side formation
allows a position variation of up to 914 m (3000 feet); how-
ever, in this study, this limit was extrapolated up to 8 km to
verify the robustness of the optimized position against other
possible formations.

For each optimization of the RED swarm within a
given radius, 8,000 simulations were performed, making a
total of 40,000 simulations per MH. For this analysis, the

optimization procedure searched for solutions that minimize
the objective function (2).

To perform the robustness analysis, one optimized initial
formation of the BLUE swarm obtained in step 2 by BH, two
by VS, and one by MVS were selected. The optimizations
of the RED swarm were performed with the MVS, with a
population of five individuals and four vortices, 10 iterations,
10 batches per individual, and four tests. SA and PSO were
not used in this step.

Figures 9, 11, 13, and 15 show the histograms of the
distribution of objective functions obtained in each optimiza-
tion process, considering the results of all experiments. The
horizontal axis is the value of the objective function expressed
in an amplitude of 0.5, with negative values when there
is a numerical advantage for the RED swarm and positive
values when there is a numerical advantage for the BLUE
swarm. The numbers of the BLUE and RED swarm wins
were obtained considering all the simulations performed in
the optimization of the position of the RED swarm.

The same procedure was used to calculate the mean, stan-
dard deviation and median presented in Table 5 to 8.

The results are presented as follows.

1) FIRST EXPERIMENT (BH)
The BH optimized formation of the BLUE swarm used
has the aircraft in the following latitude, longitude, altitude
positions: Blue 01: −17.4765◦, −45.0992◦, 6400 m; Blue
02: −17.5776◦, −45.0341◦, 7010 m; Blue 03: −17.4779◦,
−45.1758◦, 7620 m; Blue 04: −17.4770◦, −45.2200◦,
8229 m (Figure 8). As explained previously, the initial alti-
tude of each BLUE aircraft follows Table 2. The position of
the RED swarmwas optimized, as mentioned in the third step
of Section 3. The results are presented in Table 5 and Figure 9.

FIGURE 8. BLUE Swarm optimized with BH. 0.01◦ is equivalent to
approximately 1.11 km.

2) SECOND EXPERIMENT (1st VS)
In this experiment, the RED swarm was optimized assuming
for the initial BLUE swarm formation the positions obtained
in one of the VS optimization processes: Blue 01:−17.5301◦,
−44.9976◦; Blue 02: −17.4665◦, −45.2176◦; Blue 03:
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FIGURE 9. Histogram of RED swarm optimization at different distances,
using a BLUE swarm position optimized with BH. Note: The horizontal
axis represents the value of the objective function, and the vertical axis
represents the amount of objective function.

−17.5092◦/−45.1670◦; Blue 04: −17.4665◦/−45.0720◦,
(Figure 10). The altitudes correspond to those indicated in
Table 2. The results are presented in Table 6 and Figure 11.

3) THIRD EXPERIMENT (2nd VS)
In the third experiment, the initial BLUE swarm forma-
tion was also obtained by the VS optimization processes:
Blue 01: −17.5718◦, −45.0502◦; Blue 02: −17.4666◦,

FIGURE 10. BLUE Swarm optimized in the second experiment (1st VS).
0.01◦ is equivalent to approximately 1.11 km.

TABLE 5. Comparative chart of the optimization of the RED swarm at
different distances, using a position of the BLUE swarm optimized
with BH.

TABLE 6. Comparative chart of the optimization of the RED swarm at
different distances, using a position of the BLUE swarm optimized with
the 1st VS.

TABLE 7. Comparative chart of the optimization of the RED swarm at
different distances, using a position of the BLUE swarm optimized with
the 2nd VS.

−45.2244◦; Blue 03: −17.4762◦, −45.0984◦; Blue 04:
−17.5689◦, −45.1745◦, (Figure 12). The results are pre-
sented in Table 7 and Figure 13.
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FIGURE 11. Histogram of RED swarm optimization at different distances,
using a BLUE swarm position optimized with the 1st VS. Note: The
horizontal axis represents the value of the objective function, and the
vertical axis represents the amount of objective function.

4) FOURTH EXPERIMENT (MVS)
As the initial BLUE swarm formation, the fourth exper-
iment uses the optimized solution obtained by MVS:
Blue 01: −17.4667◦, −45.0075◦; Blue 02: −17.4668◦,
−45.0108◦; Blue 03: −17.4764◦, −45.0602◦; Blue 04:
−17.5727◦,−44.9973◦ (Figure 14). The results are presented
in Table 8 and Figure 15.

FIGURE 12. BLUE Swarm optimized in the third experiment (2nd VS).
0.01◦ is equivalent to approximately 1.11 km.

TABLE 8. Comparative chart of the optimization of the RED swarm at
different distances, using a position of the BLUE swarm optimized
with MVS.

5) ANALYSIS OF RESULTS OF THE FOUR EXPERIMENTS
The authors have performed a tactical analysis of the four
initial BLUE swarm formations with the support of experts
considering firepower, the number of aircraft in missile sup-
port, missile support time, and the formation’s ability to
deceive the enemy radar (binary variable: yes/no). Firepower
consists of the aircraft’s ability to launch a missile on the first
engagement; as each aircraft in the game can only launch one
missile at a time, the swarm score ranges from 1 to 4. Aircraft
support time is related to the time interval that a retreated
aircraft follows the missile by radar providing data to adjust
the missile trajectory; the swarm score ranges from 1 to 4.
The following classification is adopted for the missile support
time: low-supporting, if the support aircraft is 2 to 6 km back;
medium-supporting, if the aircraft is 6 to 10 km back; high
support if the distance is from 10 to 14 kmback. The summary
is presented in Table 9.

The first tactical formation is very similar to the Cham-
pagne formation [36], which is often used by many air forces.
However, the last aircraft is usually aligned with the center
position in the Champagne formation. The aircraft in the front
uses the armament, evades, and missiles are supported by the
aircraft behind.

The second tactical formation can be considered a variation
of the side-by-side formation with a short two-aircraft retreat.
This swarm has medium firepower and low time support
owing to the two slightly trailing aircraft.
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FIGURE 13. Histogram of RED swarm optimization at different distances,
using a BLUE swarm position optimized with the 2nd VS. Note: The
horizontal axis represents the value of the objective function, and the
vertical axis represents the amount of objective function.

The third tactical formation is a widely used formation
called box (or offset square) [36], in which the swarm has
a balance of firepower and support.

The fourth tactical formation is a variation of the Cham-
pagne formation, but two aircraft fly very close and separated
in altitude to confuse the enemy radar.

Considering the results of the optimization of the for-
mation of the RED swarm against the different optimized

FIGURE 14. BLUE Swarm optimized with MVS. 0.01◦ is equivalent to
approximately 1.11 km.

TABLE 9. Tactical analysis of the four optimized blue swarm formations.

positions of the BLUE swarm (Table 10), we evaluated the
robustness of these tactical formations of the BLUE swarm
regarding the side-by-side formation of the RED swarm. The
optimization performed with BH and MVS exhibited good
robustness up to 1 km. However, from 1 km on, the BH
formation becomes fragile, and the robustness of the MVS
formation is compromised above 2 km. In the 1st VS, the
results at 0.5 km seem favorable to the BLUE swarm. How-
ever, by analyzing the mean, median, and standard deviation
(Table 6), it appears that this formation is already fragile
at this distance, with a reasonable effectiveness reduction.
The 2nd VS solution loses effectiveness for all variations in
the RED swarm side-by-side formation, except for the 4 km
variation.

TABLE 10. Comparison of the effectiveness between the different
formations of the BLUE swarm.

In the context of war games, different tactics should be
adopted by the BLUE swarm, depending on the scenario. For
example, if the enemy swarm (RED) assumes a side-by-side
formation with no more than 1 km of position variation for
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FIGURE 15. Histogram of RED swarm optimization at different distances,
using a BLUE swarm position optimized with MVS. Note: The horizontal
axis represents the value of the objective function, and the vertical axis
represents the amount of objective function.

each aircraft, the results presented thus far suggest that the
BLUE swarm should prioritize the tactics BH, MVS, and
1st VS, in that order. This sequence of options is based on
the values of the means, standard deviations, and medians
indicated in Tables 5–8. For instance, consider Table 8. If the
positions of the aircraft of the RED swarm vary up to four
km in the line abreast formation, the mean and the median
are positive, meaning that the BLUE swarm wins. However,

the standard deviation is very high, and there is a distinct
probability that the result of the clash in actual combat is not
so favorable.

In contrast, the MVS configuration seems to be the best
tactic if we consider the possibility of a variation of up to 2 km
for each aircraft of the enemy swarm regarding the central
position of the side-by-side formation.

The BLUE swarm can use the 2nd VS option when the
vehicles of the RED swarm are at a distance greater than 2 km
regarding the original side-by-side formation.

V. CONCLUSION
Computational optimization using metaheuristics associated
with a high-fidelity simulator was carried out to obtain for-
mations of the BLUE swarm suitable for combating the RED
swarm organized in side-by-side formation. Furthermore, the
effectiveness and robustness of the optimized positions of the
BLUE swarm were verified using an optimization procedure
of the enemy swarm in a war game approach. This study
also overcomes other limitations presented in the literature,
approaching, for instance, the uncertainties related to the
enemy.

The operational applicability of four randomly selected
optimized solutions was verified, and all were feasible.
Furthermore, three are well established by operational
manuals [36].

The procedure adopted is not limited to the line abreast
formation. This formation was selected for the case study and
allows the analysis of the effectiveness of the optimized initial
BLUE swarm formation even if the original formation of the
RED swarm is very different from the side-by-side one.

The two software tools used in this approach, LOF and
ASA, are independent and interact using a particular protocol.
However, such an approach presents a time overhead because
of the need to launch executables several times and additional
time needed to read the configuration files. Integrating these
tools will significantly reduce the time spent in the optimiza-
tion process.
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