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ABSTRACT Evaluating group separability is fundamental to pattern recognition. A plethora of dimension
reduction (DR) algorithms has been developed to reveal the emergence of geometrical patterns in a low-
dimensional space, where high-dimensional sample similarities are approximated by geometrical distances.
However, statistical measures to evaluate the group separability attained by DR representations are missing.
Traditional cluster validity indices (CVIs) might be applied in this context, but they present multiple limita-
tions because they are not specifically tailored for DR. Here, we introduce a new rationale called projection
separability (PS), which provides a methodology expressly designed to assess the group separability of data
samples in a DR geometrical space. Using this rationale, we implemented a new class of indices named
projection separability indices (PSIs) based on four statistical measures: Mann-Whitney U-test p-value, Area
Under the ROC-Curve, Area Under the Precision-Recall Curve, and Matthews Correlation Coefficient. The
PSIs were compared to six representative cluster validity indices and one geometrical separability index using
seven nonlinear datasets and six different DR algorithms. The results provide evidence that the implemented
statistical-based measures designed on the basis of the PS rationale are more accurate than the other indices
and can be adopted not only for evaluating and comparing group separability of DR results but also for
fine-tuning DR algorithms’ hyperparameters. Finally, we introduce a second methodological innovation
termed trustworthiness, a statistical evaluation that accounts for separability uncertainty and associates to
the measure of each index a p-value that expresses the significance level in comparison to a null model.

INDEX TERMS Pattern recognition, dimension reduction, data embedding, group separability, cluster
validity indices.

I. INTRODUCTION
One of the main current problems in data science, machine
learning, and pattern recognition is to develop appropri-
ate visual representations of complex data [1]–[4]. This
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has a large practical impact and implications, for instance,
in the analysis of high-dimensional data in biomedicine
(e.g., single-cell [5] or facial imaging analysis [6]) and
neuroscience (e.g., visual object space representation in the
brain [7] or the representation of pain patterns in brain net-
works [8]). Indeed, in high-dimensional datasets, the process
of discovering patterns is further complicated by the fact
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FIGURE 1. Group separability and cluster validity While evaluating data segregation, we can define two main concepts. In the blue
circle, we have the cluster validity indices (CVIs) that focus their evaluation of data segregation by assessing (mainly) the
compactness of the different groups (here, black versus red points). Since the congregation inside the same group is aimed, these
indices tend to neglect the intra-group variability. In the yellow circle, we have the group separability indices (GrSIs), which on the
other hand, focus their evaluation of data segregation by assessing (only) the separability of the different groups. Thus, indices based
on this approach, such as the geometrical separability index (GSI) or the projection separability indices (PSIs) proposed in this study,
can conserve the data’s intra-group variability, an important feature to retain in the analysis of dimension reduction.

that data often cannot be immediately visualized to deter-
mine the similarity and separability of groups of samples.
Thus, the development of different techniques for dimen-
sion reduction (DR) or data embedding has attracted con-
siderable attention [9]–[11]. These techniques produce a
low-dimensional representation where the geometrical dis-
tances between samples (data points) preserve the similar-
ities of high-dimensional data together with their relevant
structure [12].

Multiple DR algorithms have been developed, such as Prin-
cipal Component Analysis (PCA) [13], [14], Multidimen-
sional Scaling (MDS) [15], t-Distributed Stochastic Neighbor
Embedding (t-SNE) [16], [17], Isometric Feature Mapping
(Isomap) [18], Minimum Curvilinear Embedding (MCE) [2],
Discriminative Sparse Embedding (DSE) [19], Uniform
Manifold Approximation and Projection (UMAP) [20],
among others. Despite attempts to preserve the original data
structure, many of these algorithms may partially fail. For
instance, in parameter-dependent DR algorithms, appropriate
tuning of their hyperparameters to optimal values is essential;
indeed, a misconfiguration of these inputs might result in
a poor low-dimensional representation. The process can be
further complicated if a selection between different ways to
scale or normalize the data is required. Therefore, a measure
or index that can quantify and evaluate the separation of
groups of samples (group separability) according to the geo-
metrical patterns revealed by these DR techniques is crucial.
In this regard, with the help of the conceptual representation
and toy examples presented in Fig. 1, we clarify the differ-
ence between two important concepts in data representation

analysis: group separability and cluster validity. Ameasure of
group separability aims to maximize the separation between
two or more groups without any constraint on their level of
internal diversity (Fig. 1b), which can therefore be preserved
by dimension reduction representation. A measure of cluster
validity is more stringent and requires not only maximizing
group separability but also minimizing intra-group diversity
to the extent that all members in a group converge to the
same point and acquire the same label that represents a cluster
assignment. In brief, the simultaneous constraint on these two
features (inter-group separability and intra-group diversity)
can be interpreted as the general aim of cluster validity to
maximize the compactness of the groups (Fig. 1c). Hence,
cluster validity measures are a subtype of group separability
measure that aims to group compactness (Fig. 1a), which is
a sufficient but not a required property for group separabil-
ity (for details on the different methods to evaluate group
separability and the theories behind them, please refer to
the initial part of Methods section II.C.2). Indeed, cluster
validity measures were designed for the evaluation of clus-
tering [21], and therefore can be aberrant for the evaluation
of dimension reduction where the mapping of intra-group
diversity is important for an appropriate data representation.
Nevertheless, in the past, clustering validity indices (CVIs)
were routinely used also for the evaluation of dimension
reduction because, as a matter of fact, they are group sepa-
rability measures that can assess the compactness of groups
in the dimension reduction results [22]–[24]. Hence, CVIs
can be applied naïvely to validate the results of the DR
techniques. Recent studies have relied on these approaches
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to validate their results [25]–[27]. Therefore, we considered
in this study six representative CVIs (Fig. 1a) for evaluat-
ing group separability of DR results such as Dunn index
(DI) [28], which relies on the distances among clusters and
their diameters; Davies-Bouldin index (DB) [29] based on the
idea that for a good partition inter-cluster separation as well as
intra-cluster homogeneity and compactness should be high;
Calinski-Harabasz index (CH) [30] based on the average
between-cluster means and within-cluster sum of squares;
Silhouette index (SIL) [31], which validates the clustering
performance based on the pairwise difference of between-
cluster and within-cluster distances; Generalized Dunn Index
(GDI) one of the most reliable improved variants of the
Dunn Index described in [32]; and Cluster Validity index
based on Density-involved Distance (CVDD) [33], a mod-
ern index sensitive to density-separated clusters. Moreover,
we included the Geometrical Separability Index (GSI) – also
known as Thornton’s separability index – [34], which is
not a CVI but a geometrically-driven separability approach
(Fig. 1a) that calculates the proportion of instances that share
the same class label as their first nearest neighbor.

However, our experiments show that the majority of these
indices are not suitable for validating the separability given
by DR techniques because: i) most of them may not have any
relation to the geometrical structure of the data [35] because
they mainly focus on assessing the compactness instead of
separability (compare Fig. 1a and Fig. 1b); thus, they tend to
neglect the intra-group diversity often given by DR results;
ii) several of them are boundless (i.e., they do not have an
upper or lower bound); thus, they are extremely sensitive to
changes in scale, and they are not tailored for comparison of
results across different dimensions (for instance, the value of
an index applied in two dimensions is not directly comparable
with the value of the same index applied in three dimensions);
and iii) the few bounded indices do not always address the
problem of group separability adequately in a geometrical
space (for instance, they are affected by the presence of
artificial microclusters). In addition, other limitations have
been documented for some CVIs: they can be hardly affected
by group overlapping and sample outliers (e.g., DB and
SIL, among others) [22], [36], [37]; they can be sensitive
to clusters with arbitrary shapes (e.g., their evaluation can
be affected while dealing with nonspherical datasets) espe-
cially for high-dimensional data (this issue has been encoun-
tered with CH, DB, and DI, among others) [33], [35], [38].
We clarify that an arbitrary cluster shape does not necessarily
imply nonlinear separability. For instance, it might occur that
two clusters have a nonspherical shape but are still linearly
separable. Hence, the robustness to nonlinear separability in
the presence of different levels of isotropic and anisotropic
noise (i.e., outliers) was specifically investigated in this study.
Table 1 summarizes the characteristics discussed above (plus
some new ones that we will discuss in this study) and reports
for each of these indices whether they can satisfy or not some
of these fundamental proprieties in the evaluation of group
separability. Hence, the investigation of suitable measures for

quantifying and evaluating group separability revealed by DR
results remains a salient open research topic.

Here, we propose a novel rationale named projection sep-
arability (PS), which is specifically designed to assess the
group separability of data samples in a geometrical space,
such as dimension reduction analyses based on embedding
algorithms. Our PS rationale provides a new methodology
that states that any statistical separability measure that is
bounded or that can be bounded with an adequate transforma-
tion function, such as the ones commonly used to measure the
performance of a binary classification model, can be used to
evaluate the group separability of dimension reduction results
based on the geometrical projection of the samples (data
points) of two different groups on their projection separability
line. The projection separability line is a line that, given two
groups of samples in a multidimensional geometrical space,
provides a one-dimensional geometrical representation of the
data separating the two groups. This projection separability
line can be defined according to the different principles,
methods, or criteria discussed in the Methods section II.2.C.
Then, repeating this procedure for all pairs of groups, for
which a separability evaluation is desired, the average sep-
arability is considered as the final estimation.

Based on this new rationale, we implemented four sta-
tistically driven separability measures called projection sep-
arability indices (PSIs). The first index, PSI-P, evaluates
group separability using the Mann-Whitney U-test p-value
(MWp-value) [39], which is a ranking-based statistical test.
The second index, PSI-ROC, performs this evaluation by
applying the Area Under the ROC-Curve (AUC-ROC) [40],
which provides a measure of the trade-off between the true
positive and false positive rates. The third index, PSI-PR, uses
the Area Under the Precision-Recall Curve (AUC-PR) [41],
which provides a measure of the trade-off between precision
and sensitivity (also known as recall). And the fourth index,
PSI-MCC, implements the Matthews Correlation Coefficient
(MCC) [42], which provides a correlation coefficient between
the observed and predicted binary classifications. It should be
noted that because these indices are based on bounded sta-
tistical measures, they inherit these boundaries. In addition,
we introduce a second methodological innovation termed
trustworthiness, which is a statistical evaluation that accounts
for uncertainty and associates to the separability measure
provided by each index an empirical p-value that expresses
the extent to which this measure is statistically significant in
comparison to a null model.

We compared the six representative CVIs and the
geometrically-driven separability index GSI against our
approaches and demonstrated the effectiveness of the PSIs
in evaluating the group separability given by six different
dimension reduction techniques on three synthetic and four
real (high-dimensional) datasets.

II. METHODS
Six representative CVIs and one geometrically-driven sep-
arability index, which are described in this section, were
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TABLE 1. Indices properties.

compared with our PSIs. For comparison, we used two syn-
thetic datasets to explain the technicalities and set the basis
of the proposed methodology. One synthetic and four real
high-dimensional datasets were analyzed using six different
dimension reduction (DR) algorithms, considering the first
two dimensions of mapping (2D), and in some cases, the
first three dimensions of mapping (3D). In general, DR tech-
niques can efficiently reduce the features/variables space to
a much smaller number of dimensions without a significant
loss of information [43]. We applied these DR techniques
based on the idea that the indices may pinpoint different best-
performing DR methods (i.e., different methods with the best
group separability) owing to the diversity of the datasets.
The DR results may change when considering datasets with

a small number of samples (few data points), unbalanced
sample groups, or noisy data. Under these contexts, some
indicesmay report an incorrect evaluation of the DRmethods,
selecting those with a nonsignificant or inaccurate group
separability as the best.

The applied DR methods are both linear and nonlinear
because linear approaches might fail to represent hidden non-
linear relations among the samples in the features/variables
space. The techniques used are as follows: Principal Com-
ponent Analysis (PCA) [13], [14], Non-metric Multidimen-
sional Scaling with Sammon Mapping (NMDS) [44], [45],
Multidimensional Scaling based on Bray-Curtis dissimi-
larity (MDSbc) [46], Minimum Curvilinearity Embedding
(MCE) [2], Isometric Feature Mapping (Isomap) [18],
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TABLE 2. Dataset details.

and t-Distributed Stochastic Neighbor Embedding (t-SNE)
[16], [17]. Owing to the high dimensionality and diversity
of the datasets, each method can produce a different parti-
tioning or grouping of samples. Moreover, linear approaches
might suffer from the absence of sample group separation
in the low-dimensional space of representation, which does
not necessarily imply the absence of separation in general.
Indeed, nonlinear techniques for DR may instead prove it.
For this reason, the role of the indices is key to discerning
and quantitatively assessing which DR methods provide the
best group separability of the samples. Because this study
focuses on the separability indices, we do not provide any
further explanation of the DRmethods (see the corresponding
references for more details).

The code for computing the proposed PSIs is available
in MATLAB at https://github.com/biomedical-cybernetics/
projection-separability-indices and as a Python package at
https://pypi.org/project/psis.

A. DATASET DESCRIPTION
We considered three artificial and four real datasets to com-
pare the proposed PSIs with other indices. It is important
to mention that the datasets employed in this study present
a nonlinear structure. This selection was made to confirm
whether our PSIs can correctly evaluate how the DR methods
accurately detect nonlinearity within the data. A complete
description of the number of samples, features/variables, and
classes/groups for each dataset is presented in Table 2. Their
source files are available at https://github.com/biomedical-
cybernetics/projection-separability-indices.

1) APPLE-STEM
The first artificial dataset was created using a web tool (avail-
able at https://guoguibing.github.io/librec/datagen.html) that
allows data points to be drawn in a two-dimensional space and
automatically obtains the coordinates and classes associated
with each sample. It provides a test scenario with an arbitrary
shape, as shown in Fig. 2, where two main groups are drawn:
an apple (red) containing 201 data points and its stem (green)
containing 321 data points.

2) HALF-MOONS
A second synthetic dataset was created using the Scikit-learn
Python module [47]. This dataset contains two interleaving
half-circles, commonly named ‘‘half-moons’’ (Fig. 3 and
Fig. 4). The dataset is defined in a two-dimensional (2D)
space and consists of two groups: a red half-moon and a
green half-moon, each containing a total of 750 data points.
This offers an emblematic example of nonlinear separability
(curvilinear) because the two half-moon groups cannot be
linearly separated by a line. In addition to the difficulty of
analyzing its nonlinearity, we used this dataset to evaluate
the stability of the separability indices under two specific
contexts.

The first scenario has different increasing levels of
isotropic noise (Fig. 3d-n, where six noise levels are con-
sidered on the x-axis: 0, 0.075, 0.15, 0.225, 0.3, and
0.375). For its creation, we used the function described
in https://scikit-learn.org/stable/modules/generated/sklearn
.datasets.make_moons.html. As input, we passed the total
number of samples (1500 data points), the respective noise

VOLUME 10, 2022 22445



A. Acevedo et al.: Measuring Group Separability in Geometrical Space

FIGURE 2. Workflow for implementing a projection separability index (PSI) based on the projection separability (PS) rationale. In this
example, we can visually identify two groups; the apple (regular cluster) in red and its stem(irregular cluster) in green. Two different ways
of implementing a projection separability index are represented: 1) Centroid separability line: In (a), the implementation of a PSI starts by
determining the centroids (black points) of the clusters (a), then by projecting the sample points on the line that connects the cluster
centroids (b). 2) Linear Discriminant Analysis (LDA) separability line: In (d), the implementation of a PSI starts by computing LDA, then by
projecting the sample points on the line formed by the first LDA discriminant. Once projected, either via centroid line or LDA line, the
sample points are transformed from D-dimensional space to 1D space (also referred to as separability line) by fixing one extreme point as
reference (p0) and taking the distance from it to the rest of the other points (DP i = d (p0,pi)) (c) and (f). Then, considering the array of all
distances (DPscores) and the labels (green and red), any statistical separability measure f (·) – for instance, the ones commonly used to
measure the performance of a classification model - can be applied for evaluating pairwise group separability (h). In the presence of more
than two groups (a condition that for simplification is not contemplated in the current figure), the procedure is repeated for all pairs of
groups (G) in the dataset. Finally, assuming that f is a bounded measure, the respective projection separability index (PSI) is calculated as
an overall estimation based on the mean µf and the standard deviation σf (penalty factor) of the obtained results. For instance, if f
maximizes (i.e., the best group separability is given by its upper bound), the first PSI expression is applied. On the other hand, if f
minimizes (i.e., the best group separability is given by its lower bound), then the second PSI expression is applied. In (i), three statistical
measures were implemented based on the Area Under the ROC-Curve (PSI-ROC), Area Under the Precision-Recall (PSI-PR), and the
Matthews Correlation Coefficient (PSI-MCC) for both centroid line (black) and LDA line (blue).

level (each one of the values mentioned previously), and
a random seed state equal to 1 (for reproducibility). This
procedure generated six variants of half-moons where the
injection of isotropic noise in the two clusters ‘‘fuzzyfies’’
their borders and therefore represents an appropriate pro-
cedure to test the stability of the group separability indices
when the clusters are geometrically perturbed. Moreover,
it is important to mention that isotropic noise should not
be confused with overlapping because groups with isotropic
noise do not necessarily overlap. However, it might occur in
specific cases that groups start to overlap their borders when
increasing the level of isotropic noise.

The second scenario was generated based on the second
noise variant (with an isotropic noise level of 0.075). Here,
we introduced anisotropic noise, which can be interpreted as
outliers (Fig. 4d-n, where six outlier levels are considered
in the x-axis: 0%, 2%, 4%, 6%, 8%, and 10% of the origi-
nal size). For its creation, each anisotropic noise percentage
was progressively added (half-percentage for each group; for
instance, 2% means that 1% of outliers were added to each
group, with regard to their original size), and the resulting
outliers were randomly placed on top of each half-moon. Six
variants were generated, where the addition of anisotropic
noise was used to test the stability of the separability indices
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FIGURE 3. Half-moons with isotropic noise. In this example, we can visually identify two interleaving half-circles commonly called
‘‘half-moons’’ (a); the top one in red, and the bottom one in green. Different increasing isotropic noise levels were injected, which ‘‘fuzzyfies’’ the
groups’ borders and represents an appropriate scenario to test the stability of the group separability indices when clusters are geometrically
perturbed (b-f). Also, in (a-f), the two main approaches for computing the separability line when implementing a projection separability index (PSI) are
represented; the centroid line (black line) and the Linear Discriminant Analysis (LDA) line (blue dashed line). These projection separability lines are
differently perturbed by the injection of the isotropic noise, which is represented by the variations on their slope coefficient (g). Different PSIs were
implemented for both projection separability lines and used to evaluate the group separability of each noise variant (h-k). Also, the other indices were
applied (l-r) to see how their evaluation of separability is perturbed by the injection of noise.

when certain points are placed far from the group to which
they belong.

Both isotropic and anisotropic noise scenarios are defined
in a two-dimensional (2D) space; thus, they are evaluated
without the need to apply any dimension reduction method.

3) TRIPARTITE-SWISS-ROLL
The synthetic Tripartite-Swiss-Roll dataset is proposed
here by discretizing the Swiss-Roll [18] manifold in a
three-dimensional space (3D). It contains 723 sample
points divided into three groups characterized by nonlinear
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FIGURE 4. Half-moons with anisotropic noise (outliers). In this example, we can visually identify two interleaving half-circles commonly called
‘‘half-moons’’ (a); the top one in red and the bottom one in green. Different increasing anisotropic noise (outliers) levels were injected, which represents
a scenario to test the stability of the group separability indices when points are misplaced (outside) from the group they belong (b-f). Also, in (a-f), the
two main approaches for computing the separability line when implementing a projection separability index (PSI) are represented; the centroid line
(black line) and the Linear Discriminant Analysis (LDA) line (blue dashed line). These projection separability lines are differently perturbed by the
injection of the anisotropic noise, which is represented by the variations on their slope coefficient (g). Different PSIs were implemented for both
projection separability lines and used to evaluate the group separability of each outliers variant (h-k). Also, the other indices were applied (l-r) to see
how their evaluation of separability is perturbed by the injection of outliers.

structures. The difficulty in analyzing this dataset lies
in the fact that the typical nonlinearity of the Swiss-
Roll shape is further impaired by the discontinuity gen-
erated by the manifold’s tripartition, which is challenging
to retain in the 2D representation obtained by dimension
reduction.

4) GASTRIC MUCOSA MICROBIOME
An actual 16S rRNA gene sequence dataset was studied
by Sterbini et al. [48]. It is publicly available at the NCBI
Sequence Read Archive (SRA) (http://www.ncbi.nlm.nih.
gov/sra, accession number SRP060417), where all details
pertaining to the experimental sequencing design are also
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reported. It contains 24 biopsy specimens of the gastric
antrum from 24 individuals referred to the Department of
Gastroenterology of Gemelli Hospital (Rome) with dyspepsia
symptoms (heartburn, nausea, epigastric pain and discom-
fort, bloating, and regurgitation). In this dataset, 12 of these
individuals had been taking Proton Pump Inhibitors (PPIs)
for at least 12 months (PPIs are increasingly being used
for the treatment of the most frequent causes of dyspep-
sia, besides being part of anti-Helicobacter pylori treatment
regimens [48]), whereas the others were not being treated
(naïve) or had stopped their treatment at least 12 months
before sample collection. In addition, 9 individuals (4 treated
and 5 untreated) were positive for H. pylori infection, and
H. pylori positivity or negativity was determined by his-
tology and rapid urease tests. Metagenomes were obtained
by pyrosequencing the 16S rRNA gene fragments on a GS
Junior platform (454 Life Sciences, Roche Diagnostics).
Then, the sequence data were processed, replicating the
bioinformatics workflow followed by Sterbini et al. [48],
to obtain the matrix of absolute bacterial abundance. The
resulting dataset comprises 24 samples, 187 features, and
three groups: untreated dyspeptic patients without H. pylori
infection (HPneg), untreated dyspeptic patients withH. pylori
infection (HPpos), and patients treated with Proton Pump
Inhibitors (PPI). The difficulty in analyzing this dataset lies
in the small sample size compared to the number of features.
Under this condition, the data becomes highly sparse, and
consequently, it is difficult to discern the actual grouping
of samples because the algorithms for dimension reduction
encounter issues in appropriately approximating and map-
ping the hidden geometry of the data.

5) RADAR SIGNAL
A second real dataset was recovered from the UC Irvine
Machine Learning Repository (available at http://archive.ics.
uci.edu/ml/datasets/Ionosphere). This dataset has been
widely described and analyzed in [49]. It contains
351 radar signals targeting free electrons in the ionosphere.
Shieh et al. [50] studied this dataset using two labeled groups
(good and bad radar signals). However, they highlighted that
good radar signals are highly similar and bad radar signals are
highly dissimilar. Later, Cannistraci et al. [51] confirmed that
the bad radar signals can be interpreted as two diverse sub-
categories (two different groups) that are difficult to identify
because of their high nonlinearity (elongated and irregular
high-dimensional structure). In [51], it was reported that the
primary difficulty of this dataset is the crowding problem.
This means that after DR, the different groups of samples
tend to collapse on top of each other (highly overlapping) in
the reduced dimensional space. Thus, evaluating the correct
group separability is challenging. Based on these results,
we used three labeled groups: good radar signal, bad radar
signal 1, and bad radar signal 2.

In the first stage of the analysis, we detected two sam-
ples (radar signals) with the same values across all fea-
tures/variables, so we removed one of them to avoid problems

with the calculation of the dissimilarity matrix employed
by NMDS. Therefore, the resulting dataset is composed of
350 samples, 34 features, and three groups.

6) IMAGE PROTEOMICS
We used a proteomic dataset obtained from [2]. It was gener-
ated by combining a dataset from 2D Electrophoresis (2DE)
gel images derived from proteomic Cerebrospinal fluid (CSF)
samples of peripheral neuropathic patients [52] and another
dataset derived from a neurological study of amyotrophic
lateral sclerosis (ALS) patients not affected by neuropathic
pain [53]. The resulting dataset contains four main groups
divided into healthy control patients (C) with eight sam-
ples, patients not affected by neuropathic pain (M) with
19 samples, patients without pain (NP) with eight samples,
and patients with a pathological variant of pain (P) with
seven samples. In [2], the authors discovered that four patients
without pain developed pain after a clinical follow-up at
6-12 months (or > 1 year). Hence, we considered these
four patients in the pathological variant with pain (P) group,
resulting in 11 samples. The remaining four patients in the
NP group were included in the healthy control patient class
(C group), ending with 12 samples. Therefore, this dataset is
composed of 42 samples, 1947 features/variables, and three
groups. Note that this dataset represents a real example of
a frequent problem in biomedical datasets, where the num-
ber of samples is considerably smaller than the number of
features/variables [54] (also known as ‘‘the curse of dimen-
sionality’’ [55]). This can affect the performance of the DR
methods; thus, it challenges the evaluation given by different
separability indices.

7) MNIST
We also included a well-known dataset in the machine learn-
ing field calledMNIST [56]. This is a large dataset consisting
of 28 × 28 pixel images of handwritten digits. Every image
can be thought of as a 784-dimensional array, where each
value represents the intensity of each pixel in greyscale.
The different sample groups are numbers between 0 and 9
(i.e., 10 different groups). The number of samples for
each group is 980 samples for digit 0, 1135 samples
for digit 1, 1032 samples for digit 2, 1010 samples for
digit 3, 982 samples for digit 4, 892 samples for digit 5,
958 samples for digit 6, 1028 samples for digit 7, 974 samples
for digit 8, and 1009 samples for digit 9; therefore, the total
amount of samples in the dataset is 10000.

This dataset has the peculiarity that it does not present a
hierarchical organization of the samples. This is explained
by the uniqueness of different handwriting styles, where the
same digits can be highly dissimilar and different digits can
be highly similar. Thus, this dataset can be particularly chal-
lenging for dimension reduction methods.

This is an exceptionally large dataset. We want to explore
a high number of hyperparameters combinations for Isomap
and t-SNE, along with an evaluation of the separability sig-
nificance (trustworthiness) of the indices for each of these
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hyperparameters combinations (this is further explained in
Section II.D). Hence, performing these computations con-
sidering the entire number of samples in the dataset is not
feasible within an acceptable time frame. To reduce the com-
putational time and preserve the validity of the tests applied
to this dataset, we randomly selected 30 samples of each
digit, resulting in a subdataset with a total of 300 samples,
784 features, and 10 groups.

B. CLUSTER VALIDITY INDICES (CVIs)
This section describes the six representative cluster validity
indices (which are a specific subtype of group separabil-
ity measures based on compactness estimation, see Fig. 1c)
used in this study to assess the group separability of DR
results. To facilitate their understanding, we have reported
and described their mathematical formulations.

1) SILHOUETTE INDEX
The Silhouette index (SIL) [31] is a measure used for fuzzy
clustering validation based on the concept of silhouette width,
which is defined as follows:

SIL =
1
N

∑N

k=1
SW (Ck) (1)

whereN is the number of clusters and SW (Ck) represents the
silhouette width for the kth cluster, calculated as:

SW (Ck) =
1
nk

∑
x∈Ck

S(x) (2)

where nk is the number of data points in the kth cluster Ck ,
and S(x) is the silhouette width of sample x, which can be
expressed as:

S (x) =
b (x)− a(x)

max(a (x) , b (x))
(3)

Here, a(x) represents the within-cluster mean distance,
defined as the average distance between x and the remaining
samples belonging to the same cluster. In contrast, b(x) is the
smallest of the mean distances of x to the samples belonging
to each of the other clusters.

This index takes values between −1 and 1, where 1 indi-
cates the best partitioning of the data (i.e., the best group
separability).

2) CALINSKI-HARABASZ INDEX
The Calinski-Harabasz index (CH) [30] is based on the ratio
between the overall between-cluster distance and the overall
within-cluster distance, and is defined as:

CH =
SSB
SSW

×
T − N
N − 1

(4)

where N is the number of clusters and T is the total number
of data points. SSB is the overall between-cluster variance
involving the elements of different clusters and is denoted by:

SSB =
∑N

k=1
nk ‖zk − q‖2 (5)

where nk is the number of data points in cluster k , zk is the
centroid of the kth cluster (centroid, which is obtained by
taking the mean value of all points within the cluster), q is the
overall centroid of the data (i.e., the dataset’s grand centroid),
and ‖·‖ denotes the Euclidean distance between zk and q.
In (4), SSw is the overall within-cluster variance calculated
as follows:

SSW =
∑N

k=1

∑
x∈Ck
‖x − zk‖2 (6)

where x is a data point belonging to the kth cluster Ck ,
zk represents the centroid of cluster k , and ‖·‖ denotes the
Euclidean distance between x and zk .
For clarity, good clustering has a large overall between-

cluster distance (SSB) and a small overall within-cluster dis-
tance (SSW ) [57]. Thus, the best partitioning of the data is
achieved by a high ratio of SSB/SSW , that is, a higher value
of the CH index represents a better grouping of the samples.

3) DUNN INDEX
The Dunn index (DI) [28] relies on the distances between
clusters and cluster diameters. It uses the minimum pairwise
distance between samples in different clusters as the inter-
cluster separation and the maximum diameter among all clus-
ters as the intra-cluster compactness. This index is calculated
as follows:

DI = min
k=1,...,N

 min
l=1,...,N
l 6=k

 δ(Ck ,Cl)
max

m=1,...,N
1(Cm)

 (7)

In (7), N represents the number of clusters, δ (Ck ,Cl)
represents the minimum distance between clusters Ck and Cl
(i.e., the dissimilarity between clusters), which is described
as follows:

δ (Ck ,Cl) = min
x∈Ck ,y∈Cl

d(x, y) (8)

where d(x, y) denotes the distance (here Euclidean) between
points x and y. 1(Cm) is the diameter of the mth cluster,
represented as:

1(Cm) = max
x,y∈Cm

d(x, y) (9)

If DI is large, it means that compact and well-separated
clusters exist. Thus, the highest value of this index represents
the best grouping of samples.

4) GENERALIZED DUNN INDEX
In [32], Bezdek and Pal recognized that DI is very noise
sensitive, and proposed several generalizations of this index
for clustering validation. Specifically, they proposed five
variations in distances and three additional definitions of
cluster diameters. Here, we focused on the third distance
and diameter variations, which, as concluded by the authors,
were the most reliable among the proposed variants [32]. For
clarity, we designated the index created out of these variants
as the Generalized Dunn Index (GDI).
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In particular, the mentioned distance variation con-
cerns (8), which is now defined as:

δ (Ck ,Cl) =
1

|Ck | |Cl |

∑
x∈Ck ,y∈Cl

d(x, y) (10)

where |Ck | and |Cl | denote the number of points in the
respective clusters and d(x, y) is the distance between the
points.

The diameter variation concerns (9), which is now denoted
as:

1(Cm) = 2
(∑

x∈Cm d(x, zm)

|Cm|

)
(11)

where |Cm| denotes the number of points of cluster m, zm
represents the centroid of the mth cluster, and d(x, zm) is the
distance between point x and centroid zm. Then, δ (Ck ,Cl)
and 1(Cm) are applied, as in (7). Thus, the highest value
of this index represents the best-estimated grouping of the
samples.

5) DAVIES-BOULDIN INDEX
The Davies-Bouldin index (DB) [29] identifies clusters that
are far from each other and compact. This index is calculated
as follows:

DB =
1
N

∑N

k=1
max
k 6=l

{
1(Ck)+1(Cl)
δ(Ck ,Cl)

}
(12)

In (12), N denotes the number of clusters, δ(Ck ,Cl) is
the inter-cluster distance, and1(Ck ) and1(Cl) represent the
diameters of the clusters k and l, respectively. In particular,
the diameter 1(Ck ) (and 1(Cl) in the same way, but in
relation to the lth cluster) can be calculated as:

1(Ck ) =
1
nk

∑
x∈Ck

d(x, zk ) (13)

where nk is the number of data points of the kth cluster, and
d(x − zk ) is the distance between point x and the centroid
zk of the cluster (i.e., being their sum, the intra-cluster dis-
tance). Moreover, in (12), the inter-cluster distance δ(Ck ,Cl)
is defined as follows:

δ (Ck ,Cl) = d(zk , zl) (14)

where d(zk , zl) is the distance (here Euclidean) between the
centroids of clusters k and l.

In this case, the smallest value of this index indicates the
best partitioning of the data (i.e., the clusters are considered
to be optimally separated from each other). To facilitate
the comparison between the different indices in this study,
because DB is the only index where the minimum value
represents the best grouping of the samples, we inverted its
output using the following formula:

DB∗ =
1

1+ DB
(15)

where DB is the original index value returned in (12). Thus,
a higher value of DB∗ represents a better grouping of the
samples.

6) CLUSTER VALIDITY INDEX BASED ON DENSITY-INVOLVED
DISTANCE
The Cluster Validity index based on Density-involved
Distance (CVDD) [33] takes into account two key con-
cepts for addressing separability: core objects and den-
sity connectivity. The first concept helps this index deal
with outliers, whereas the second allows it to differentiate
density-separated clusters. This index is defined as:

CVDD =

∑N
k=1 sep(Ck )∑N
k=1 com(Ck )

(16)

where N is the number of clusters, sep(Ck ) is the separation
between cluster Ck and other clusters, and com(Ck ) is the
compactness of cluster Ck . In particular, sep(Ck ) is defined
for a π set of clusters as:

sep (Ck) = min
xl∈π,xl∈Ck

sep(Ck ,Cl) (17)

Thus, the separation between clusters Ck and Cl is given
by the minimum pairwise distance between them, as follows:

sep (Ck ,Cl) = min
xk∈Ck ,xl∈Cl

DD(xk , xl) (18)

where DD(xk , xl) is the density-involved distance between
points xk and xl (see [33], Definition 9). On the other hand,
the compactness of the cluster Ck is defined as:

com (Ck) =
1
|Ck |
× STD(Ck )×Mean(Ck ) (19)

where Mean(Ck ) and STD(Ck ) are the mean and standard
deviation (respectively) of a cluster with respect to the path-
based distance, and 1/ |Ck | is a penalty factor (see [33],
Definition 12).

The higher the value of this index indicates a better group
separability.

C. GROUP SEPARABILITY INDICES
In this section, we describe two different measuring method-
ologies based on group separability (Fig. 1b). The first
methodology was previously reported in the literature, and
it is founded on the notion of geometrical separability, and on
its basis, a new measure termed the geometrical separability
index is defined [34]. The second methodology is the new
approach proposed in this study, and it is based on the novel
notion of projection separability and, which defines a new set
of four measures termed projection separability indices.

1) GEOMETRICAL SEPARABILITY INDEX
The geometrical separability index (GSI) [34] (also known
as the Thornton index or TH) is a geometrically-driven sep-
arability approach defined as the proportion of a set of data
points whose classification labels are the same as those of
their first-nearest neighbor. This index is represented as:

GSI =
1
T

∑T

k=1
f
(
xk , x ′k

)
(20)

where x ′k is the first nearest neighbor of data point xk , T is
the total number of data points, and f is a binary function
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that returns either 0 or 1, depending on which class label is
associated with xk and x ′k , defined as:

f
(
xk , x ′k

)
=

{
1, if label xk = label x ′k
0, if label xk 6= label x ′k

(21)

The value of the GSI is closer to 1 for a set of points
in which those with opposite labels exist in well-separated
groups. When groups move closer and points from opposite
classes begin to overlap geometrically, the value of the index
decreases. Finally, if the centroids coincide or the points are
uniformly distributed in the geometrical space, this index will
be close to 0.5. Thus, for this index, 1 represents the best-
estimated grouping of samples.

2) PROJECTION SEPARABILITY INDICES
The projection separability (PS) rationale is specifically pro-
posed here to assess the group separability of data samples
in a geometrical space, such as in the case of dimension
reduction analyses.

The first step is to define a projection separability line for
each pair of groups in the dataset. The projection separability
line is a line that, given two groups of samples in a multi-
dimensional geometrical space, provides a one-dimensional
geometrical representation of the data (which can be inter-
preted as the geometrical ordering of the samples on a line)
that separates the two groups (Fig. 2). This projection sepa-
rability line can be defined according to various principles,
methods, or criteria. For instance, a separability line can be
obtained by machine learning techniques such as Fisher’s
linear discriminant analysis (commonly known as LDA) [58]
or linear binary soft margin Support VectorMachine (lbSVM)
[59], [60]. In the case of LDA, its first discriminant can be
used as a projection line, and the criterion of separability
is to maximize the ratio of the variance between groups to
the variance within groups. In the case of lbSVM, the line
orthogonal to the maximum-margin hyperplane (the decision
boundary) can be used as a projection line, and the crite-
rion for separability is to maximize the geometrical margin
between the two groups. However, both methods have a high
time complexity. LDA scales cubically with the number of
samples or features [61], and lbSVM scales cubically with the
number of samples [60], [62]. Therefore, the application of
these approaches is impractical for large datasets. To address
this time complexity issue, in this study, we introduce a new
methodology called the centroid projection separability line
(or centroid line, for simplicity). This new approach scales
linearly with the number of samples. It computes the geomet-
rical centroids of each of the two groups, and then considers
the line that connects them as a projection line. However,
if the theoretical basis for defining the projection separability
line by LDA and lbSVM is the optimization of the variance
ratio ormaximummargin, respectively, what is the theoretical
basis for defining the centroid projection line as an appropri-
ate line on which to measure group separability?

We propose the centroid projection separability line as a
heuristic technique, whose conceptual roots are in the par-
simony principle (a.k.a., Occam’s razor) that is a problem-
solving principle according to which ‘‘entities should be not
multiplied behind necessity’’ [63], sometimes oversimplified
and wrongly interpreted as ‘‘the simplest explanation is usu-
ally the best one.’’ This philosophical principle advocates that
when presented with competing hypotheses about the same
prediction, one should also investigate the solution with the
fewest assumptions.

In contrast to the assumptions of LDA based on the
maximization of the variance ratio and lbSVM based on
the maximization of the margin between the two groups,
the assumption adopted by the centroid projection separa-
bility line is extremely simple, and it is not based on the
maximization of any measure. When the goal of assessing
group separability is to evaluate the extent to which a method
for nonlinear dimension reduction is effective, then the cen-
troid projection separability line criteria state that, given two
groups, if the projection of the points on the line that connects
the two groups’ centroids is not representative of the group
separability, it means that the applied nonlinear dimension
reduction technique failed to provide a linear representation
of the data (in the low-dimensional space) that addresses
the data nonlinearity in the original feature space. In other
words, this suggests that nonlinear dimension reduction did
not performwell. The rationale for selecting the two centroids
and the projection line that connects them is as follows. The
centroid is the center of mass, which is representative of a
group of particles in a geometrical space, and according to
physic interpretation, it is the center of gravity on which the
group of particles relies to represent the mechanics of the
complex particle system in a reductionist modeling.

In Fig. 2, we provide a visual example that can help to
clarify the essence of our proposed method by considering
two main groups with irregular shapes: an apple (red) and its
stem (green). First, the centroid of each group is identified
(Fig. 2a) by calculating the median. A line segment, the
centroid projection separability line, is then drawn between
the centroids of the two groups (Fig. 2a). The points are then
projected (Fig. 2b) and finally collapsed on the centroid line
(Fig. 2c). The comparison between the centroid line and LDA
line in Fig. 2d shows that they are very close to each other, and
the projection of the points on the respective separability line
is comparable (Fig. 2g). For time complexity reasons, in this
study, we will only compare the centroid projection line with
the LDAprojection line, whereas the lbSVMprojection line is
discussed above, but we leave its investigation to future stud-
ies. The computational complexity of computing the centroid
line depends on the centrality estimator selected to compute
the centroid of each group. For instance, the mean, median,
or mode can be considered centroid estimators. In this study,
the median was applied for all the presented analyses because
it is an estimator robust to noise and outliers, and its time
complexity can be O(N ) (i.e., scales linearly) [64] in rela-
tion to the number of samples (N ). Given that the median
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should be computed for all dimensions of embedding, the
final complexity of the median-based centroid projection line
is O(ND), where D represents the dimensions of embedding.
However, in this study, we considered dimension reduction
for data visualization and representation; thus, D is a con-
stant that can take a value of two or three. Hence, the final
complexity for computing the centroid projection line in these
low-dimensional spaces is O(N ).
The second step is to project all the data points onto the

projection separability line using the dot product as follows:

proj (P, line (A,B)) = A+
(AP · AB)
(AB · AB)

× AB (22)

where P is the point to be projected on the projection line
that connects centroids A and B, and AP and AB are vectors
formed by the points in question. The projection of the points
on the projection line (Fig. 2c and Fig. 2f) scales the points
from a D-dimensional space (for instance, in Fig. 2, D=2)
to a 1-dimensional (1D) space. Subsequently, the mapping
of these points begins by setting a reference point p0, which
is one of the two extreme points on the projection line.
We clarify that, given a projection line, the two extreme points
are always unique, and the choice of one of them as the
reference point p0 is irrelevant for computing the ordering of
all the other points on the line. By convention, we decided
to implement the following procedure to select point p0: the
algorithm iteratively checks each dimension of embedding
(starting from dimension one) and stops by selecting the first
dimension in which at least two points assume two different
projected values (i.e., dimensions where all projected points
take the same value are neglected). Hence, p0 is defined as the
extreme point on the projection line with the lowest distance
from the origin (minimum value) in this selected dimension.
Finally, the distance from any other point to p0 is calculated
as follows:

DPi = d(p0, pi) (23)

where d(p0, pi) is the Euclidean distance between the ref-
erence point p0 and another point pi. Hence, we define
DPscores = [DP1,DP2, . . . ,DPn] as the array that collects
all of these distances.

The third and final step is to design different statistical-
based validity measures, referred to as projection separabil-
ity indices (PSIs). The two main formalisms for defining a
new PSI are illustrated in Fig. 2h and depend on the fact
that a selected statistical measure f is either maximized or
minimized for separability evaluation over the projection line.
Indeed, the separability value is computed by means of any
bounded statistical separability measure f , such as the Area
Under the ROC-Curve [40], Area Under the Precision-Recall
Curve [41], Matthews correlation coefficient [42], Mann-
Whitney U-test p-value [39], and many others, such as the
F-score [65], which can be investigated in future studies. This
procedure is repeated for all pairs of groups for which a sepa-
rability evaluation is desired, and then, an overall estimation

is computed. Thus, we can define any PSI as (Fig. 2e):

PSI =


µf

1+ σf
, if fmaximizes

µf + σf

1+ σf
, if fminimizes

(24)

where µf is the mean of the results provided by the imple-
mented statistical measure f over the separability line for
all pairs of groups and σf is the standard deviation of the
mentioned results (here, used as a penalty factor). Assum-
ing that f is a bounded measure, if the upper bound of f
indicates the best group separability, it means that f maxi-
mizes; thus, the first definition in (24) should be applied to
compute the respective PSI. However, if the lower bound of
f indicates the best group separability, it means that f mini-
mizes; thus, the second definition in (24) should be applied to
compute the respective PSI. In any of these cases, µf and σf
should be between 0 and 1, and can be calculated as follows:

µf =
1
G

∑G

k=1
f (DPscores)k (25)

σf =

√
1

G− 1

∑G

k=1

∣∣f (DPscores)k − µf ∣∣2 (26)

where G is the total number of pairwise group combina-
tions and f (DPscores)k is the applied statistical measure for
addressing group separability over the array of distances of
the kth pair of groups.

Regarding the time complexity of a particular PSI. If we
define N as the number of points and G as the number of
all pairwise combinations of groups. Then, the projection
of the points in (22) and the calculation of the distances
in (23) are both O(GN ). However, in (25) and (26), the time
complexity of f (DPscores)k depends entirely on the applied
statistical measure, which is represented as f (N ); thus, the
time complexity of µf and σf will be O(Gf (N ). Therefore,
the overall time complexity of computing a single PSI is
O (GN )+ O(Gf (N )) ∼ O (Gf (N )) because f (N ) ≥ O(N ).
In this study, we designed four different PSIs to prove the
effectiveness of the proposed projection separability rationale
in determining the best group separability of the DR results.

The first index, called PSI-P, is defined as:

PSI-P =
µMWp-value + σMWp-value

1+ σMWp-value
(27)

This index evaluates group separability by implementing
theMann-Whitney U-test p-value [39], (sometimes called the
Mann Whitney Wilcoxon Test or the Wilcoxon Rank-Sum
Test). In (27), it is represented by the subscriptMWp-value.
This measure is a nonparametric method used to test whether
two independent samples of observations are drawn from
the same or identical distributions. The U-test is based on
the idea that the pattern exhibited when nk number of K
random variables and nl number of L random variables are
arranged together in an increasing order of magnitude pro-
vides information about the relationship between their parent
populations [66] (here, a particular pairwise combination of
groups). The Mann-Whitney test criterion is based on the
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magnitude of the L ′s in relation to the K ′s (e.g., the position
of L ′s in the combined ordered sequence). A sample pat-
tern of arrangement where most of the L ′s are greater than
most of the K ′s or vice versa would be evidence against ran-
dom mixing [39], [66] (i.e., a significant group separability).
This measure is defined as follows:

U = min(Uk ,Ul) (28)

where Uk and Ul are determined by:

Uk = nknl +
nk (nk + 1)

2
− Rk (29)

Ul = nknl +
nl(nl + 1)

2
− Rl (30)

where nk is the size of K random variables, nl is the size of
L random variables, Rk is the sum of the ranks for K , and
Rl is the sum of the ranks for L. If the observed value of
U is < Ucrit , then the test is significant at the α level (the
values of Ucrit for different α levels are given in the Mann-
Whitney Tables [39], [67]); that is, this tends to reject the null
hypothesis of identical distribution [66].

Theoretically, MWp-value is bounded between 0 and 1.
Thus, because MWp-value is a measure that minimizes,
PSI-P reports small values, where the closest value to 0 indi-
cates the best group separability. In [68], it was reported that
the time complexity of algorithms based on Mann-Whitney’s
original recursion formula isO(M2N 2); thus, if an implemen-
tation based on this original recursion is adopted, then the
time complexity of PSI-P would be O(GM2N 2).
The second index, named PSI-ROC, is represented by:

PSI-ROC =
µAUC-ROC

1+ σAUC-ROC
(31)

This index adopts as a separability measure the Area Under
the ROC-Curve [40]. In (31), it is represented by the subscript
AUC-ROC . It provides a measure of the trade-off between
the true positive rate (TPR) and false positive rate (FPR) as
follows:

AUC-ROC =
∫ 1

x=0
TPR

(
FPR−1 (x)

)
dx (32)

By definition, AUC-ROC is a measure that maximizes and,
is bounded in a range between 0 and 1. Thus, the closest PSI-
ROC value to 1 indicates the best group separability. Because
AUC-ROC is based on the sum of pairwise losses between
examples from different groups, the time complexity of its
objective function is quadratic [69]; that is,O(N 2) in theworst
scenario. However, optimizing the complexity of computing
AUC is a current challenge, and multiple approaches have
been proposed [69]–[71]. Thus, in theory, the time complex-
ity of the PSI-ROC based on an unoptimized implementation
of AUC-ROC would be O(GN 2), but it can be improved with
adequate optimization.

The third index, called PSI-PR, is defined as:

PSI-PR =
µAUC-PR

1+ σAUC-PR
(33)

This index implements as a separability measure the Area
Under the Precision-Recall Curve [41]. In (33), represented
by the subscript AUC-PR. It provides a measure of the trade-
off between precision (PREC) and sensitivity (also known as
recall, REC) as follows:

AUC-PR =
∫ 1

x=0
PREC

(
REC−1 (x)

)
dx (34)

In this case, AUC-PR is also a measure that maximizes,
reporting values between 0 and 1. Hence, the closest PSI-PR
value to 1 indicates the best group separability. More-
over, similar to the previous index, the time complexity of
PSI-PR based on an unoptimized version of AUC-PR would
be O(GN 2) (however, please note that optimizations for
AUC-ROC are not guaranteed to optimize AUC-PR [72]).

Finally, the fourth index, named PSI-MCC, is defined as:

PSI-MCC =
µMCC

1+ σMCC
(35)

This index uses the Matthews Correlation Coefficient [42]
as a separability measure. In (35), represented by the sub-
script MCC . It provides a coefficient between the observed
and predicted binary classifications as follows:

MCC =
TP× TN− FP× FN

√
(TP+ FP) (TP+ FN) (TN+ FP) (TN+ FN)

(36)

where TP states for True Positives, TN for True Negatives,
FP for False Positives, and FN for False Negatives.

In general, this index reports values (coefficients) between
-1 and 1, where a coefficient of 1 represents a perfect pair-
wise group separability, and -1 represents an inverted pair-
wise group separability. However, because we do not know
the groups’ position on the separability line, we compute
MCC in both directions, first assuming that the kth group
is on the left side and the lth group is on the right side,
then assuming the opposite. Finally, we select the best MCC
result as the actual value to express the pairwise group sepa-
rability. Thus, in our case, this index returns values between
0 and 1 (not between -1 and 1, as in its formal definition),
where 0 means no separation and 1 means perfect separation.
Regarding its time complexity, this of MCC implementation
is O(NLogN ) because sorting is the only expensive function.
Thus, the time complexity of the PSI-MCC is O(GNLogN ).

As mentioned before, any other statistical-based separabil-
ity measure can be employed under the proposed PS rationale
for designing new projection separability indices that are
different from those proposed above. However, in this study,
we focus on the described measures because they are widely
used in data analysis, they are bounded, and they are also
sufficiently diverse between them to cover different types of
separability estimations.

D. DATA ANALYSIS
1) NORMALIZATION AND ALGORITHMS’ TUNING
First, to scale and adjust the raw values of the datasets before
the analyses, the following normalizations were applied:
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DRS, dividing each row by the row (samples) sum; DCS,
dividing each column by the column (features/variables) sum;
LOG, logarithmic function in base 10 of the matrix values
plus 1 (because of zero values); NON, the original data
without normalization, were analyzed as well.

For each normalization result, diverse DR methods were
applied to obtain different embeddings of data in a low-
dimensional space. Thus, the group separability of these
results was assessed using different separability indices. For
parameter-dependent methods such as Isomap and t-SNE, the
selection of the optimal hyperparameters plays a key role in
obtaining the correct embedding of the groups of samples.
In the case of Isomap, we must input the number of nearest
neighbors (hyperparameter k) that modifies the construct
of the proximity graph. In the case of t-SNE, we need to
provide perplexity (hyperparameter p), which can be inter-
preted as a smooth measure of the effective number of neigh-
bors [17] or the balance between local and global aspects of
the data. In addition, although not mandatory, we can input
the initial number of dimensions (hyperparameter d) used
to pre-process the data by PCA. To determine the optimal
hyperparameters settings for these algorithms, an automated
tuning process was implemented to test different configura-
tions and select the one whose embedding provided the best
group separability according to each index.

2) TRUSTWORTHINESS: A STATISTICAL EVALUATION OF
SEPARABILITY SIGNIFICANCE
This section introduces a methodological innovation pro-
posed to account for the uncertainty of the separability esti-
mation. Briefly, we propose a resampling methodology to
build a null model that allows the computation of an empirical
p-value to assess the trustworthiness of the separability mea-
sure provided by a selected index. Trustworthiness assesses
the extent to which a value produced by a certain index is
reliable under uncertainty. The procedure is as follows. For
a given DR method result (in a certain dataset), we freeze
the geometrical position of the samples and reshuffle their
group labels uniformly at random. This procedure is repeated
1000 times (we set the default 1000 times because it offers
an accurate estimation of the null model, but this value can
also be increased in relation to the needs of the users), and
the value of a certain index is measured at each round, gen-
erating a null model distribution composed of 1000 random
values. Subsequently, a p-value (that expresses the extent to
which the true index value can be generated at random) was
computed as the number of random values that surpassed the
initial (true) index value. Thus, for each index, the compar-
ison with the null model is characterized by the following:
a) the mean of the 1000 null model random values, b) the
standard error of the 1000 null model random values, and
c) the separability significance (p-value) to quantify whether
the evaluation provided by the index is significant in com-
parison to the null model. As previously reported, and
here expressed in a different form, the separability signif-
icance (trustworthiness) represents the fraction of random

reshuffling in which the index behaves better than in the
true label assignment case. In other words, it measures the
likelihood that the index value will be obtained by chance.
We considered as significant all the p-values lower than
0.01 with respect to the null model distribution.

In the case of t-SNE and Isomap, we corrected for mul-
tiple hypotheses testing all the p-values obtained for each
hyperparameters combination using the Benjamini-Hochberg
adjustment [73]. We suggest applying this adjustment any
time a dimension reduction method has one or more hyper-
parameters in relation to which their tuning provides multiple
embeddings and, therefore, multiple p-values for the same
dataset.

3) ASSESSMENT AND VISUALIZATION OF SIMILARITY
BETWEEN PERFORMANCES OF DIFFERENT INDICES
We investigated the similarity between the different indices
to discover those offering comparable results to our PSIs,
regardless of the dataset or embedding method. To do so,
we created an array that characterizes each index and its
obtained values for all the DR methods’ results across all
different data normalizations, centered versions, and, in the
case ofMCE,multiple types of distances (Euclidean distance,
Spearman rank correlation distance, and Pearson correlation
distance). Thus, we created a matrix that has the indices
placed as samples and their values as features/variables
(according to each DR technique). Subsequently, the z-score
normalization was applied to the rows to scale their values.
Finally, PCA was used to visualize and compare similarities
between the indices. This procedure was first applied sepa-
rately for each dataset; second, bymerging in a uniquematrix,
the indices’ results for all the datasets.

III. RESULTS
For time complexity reasons, in this study, we compared
the centroid projection line versus the LDA projection line
exclusively on the two initial artificial datasets.

Starting with the analysis of the Apple-Stem dataset, which
offers an example of clusters with irregular shapes, Fig. 2i
shows that the results of the LDA projection line and centroid
projection line (according to different evaluation measures)
are comparable. This indicates that both approaches for com-
puting the projection line can provide similar results for data
with irregular shapes. However, the analyses below of the
Half-Moons dataset indicate their underlying differences in
the case of data nonlinearity.

In Fig. 3, we report the results of the investigation of the
stability of the separability measures with different increasing
levels of isotropic noise over the Half-Moons dataset. This
offers an emblematic example of nonlinear group separa-
bility because the two half-moon groups cannot be linearly
separated by a line. Fig. 3a-f provides a visual example of
the variants used with isotropic noise. We can see that the
centroid line is quite stable, but the LDA line is not stable,
as shown by the change in the slope coefficient value in rela-
tion to increasing noise levels (blue dashed line in Fig. 3g).
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TABLE 3. Values of the different indices obtained for the Tripartite-Swiss-Roll dataset.

However, this instability to noise of the LDA line does not
importantly affect the evaluation of separability, which is
comparable for the centroid line and LDA line according
to the different measures (Fig. 3h-k). Fig. 3h-r reports the
results of this stability test for each separability measure. For
instance, PSI-PR (Fig. 3h) and PSI-ROC (Fig. 3i) can also
detect high group separability (their values are always> 0.90,
and therefore close to 1) in the presence of the nonlinear
separability (curvilinear) of this dataset, and they are robust
to noise; indeed, their trend is stable and minimally affected
by increasing levels of noise. The same can be concluded
for PSI-P (Fig. 3k), which provides a p-value that is close
to zero, regardless of the level of noise. PSI-MCC (Fig. 3j),
SIL (Fig. 3m), and DB∗ (Fig. 3n) are also stable to noise, but
they provide a separability estimation of approximately 0.5,
indicating that they are partially affected by the presence of
nonlinearity in the geometrical pattern of the clusters. GSI
(Fig. 3l) can detect group separability in the presence of
nonlinearity (its values are always > 0.80), but it seems to
suffer more than the other indices in the presence of noise. DI,
GDI, CH, and CVDD (Fig. 3o-r) cannot be assessed for their
ability to detect separability in the presence of nonlinearity
because they are not bounded measures; however, with the
exception of GDI, they all seem to suffer to a certain extent
from stability issues in the presence of noise. The results of
this investigation are summarized in the column Robustness
to nonlinear (curvilinear) pattern and Robustness to isotropic
noise in Table 1.
In addition, Fig. 4 reports the results of the investigation

of the stability of the separability measures applied to the
Half-Moons dataset with different increasing levels of out-
liers (up to 10% of the number of samples in the dataset).

Fig. 4a-f provides visual examples of the variants used and
increasing levels of anisotropic noise (outliers). Once more,
the centroid line is quite stable, but the LDA line is not
stable, as is evident from the change in the slope coefficient
in relation to the increasing outliers’ levels (blue dashed line
in Fig. 4g). However, this instability to anisotropic noise of
the LDA line does not importantly affect the evaluation of
separability, which is comparable for both the centroid line
and LDA line according to the different measures (Fig. 4h-k).
Fig. 4h-r reports the results of this stability test for each
separability measure. PSI-PR (Fig. 4h) and PSI-ROC (Fig. 4i)
can also detect relatively high group separability (their values
are always > 0.75) in the presence of outliers; indeed, their
trend is stable, but is minimally affected by increasing levels
of outliers. This makes sense because the presence of outliers
represents a form of anisotropic noise; therefore, it should
affect the separability of the clusters more than the isotropic
noise described previously. PSI-P (Fig. 4k) provides a p-value
close to zero, regardless of the level of outliers. PSI-MCC
(Fig. 4j), SIL (Fig. 4m), and DB∗ (Fig. 4n) were also partially
affected by outliers. GSI (Fig. 4l) was not affected by the
outliers. Regarding the other CVIs, DI and GDI (Fig. 4o and
Fig. 4p) were partially affected by outliers. However, CH and
CVDD (Fig. 4q and Fig. 4r) seem to suffer to a certain extent
from stability issues in the presence of outliers. The results of
this investigation are summarized in the column Robustness
to anisotropic noise (outliers) in Table 1.
In the following results, we will consider how the sam-

ple group separability in the low-dimensional embeddings
returned (for each dataset) by the DR methods was eval-
uated using the previously described indices. Thus, the
effectiveness of these indices is determined by the correct
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FIGURE 5. PSI-PR of the DR methods applied to the Tripartite-Swiss-Roll dataset. In (a) it is displayed the Tripartite-Swiss-Roll dataset in the original
3D-space. The three different colors (red, blue, and green) represent the three partitions of the Swiss-roll manifold, while the color gradient serves as a
reference to see how good the DR methods are in preserving the original nonlinear structure. The DR methods were sorted from the best (top left) to
the worst (bottom right) in (b)-(g) according to the PSI-PR validation value. In (b) and (c), the optimal hyperparameters are specified in parentheses
next to the title of each DR method; moreover, the digit in brackets represents the number of possible solutions with the same validation value.
Furthermore, next to the value returned by this index, it is reported in parentheses the random baseline, which is the mean and the standard error of
the PSI-PRs computed by randomly re-shuffling the class labels 1000 times. Finally, we added a p-value which indicates the separability significance of
each index in comparison to a respective null model computed by random re-shuffling.

identification of the DR method that produces the best low-
dimensional representation of the data, i.e., the method that
provides the best group separability of the samples. Because
of time complexity and considering the large number of
tests we performed, only the centroid line PSIs are con-
sidered. The results validated by PSI-PR are presented for
each dataset in Fig. 5 (Tripartite-Swiss-Roll), Fig. 6 (Gastric
mucosa microbiome), Fig. 7 (Radar signal), Fig. 8 (Image
proteomics), Fig. 9 (MINST 2D), and Fig. 10 (MNIST 3D).
In these figures, we report the PSI-PR value to allow the
comparison between the visual perception of separability
and its quantification provided by one of the PSIs. For this
measure, the value closest to 1 indicates the best group sep-
arability. Similar figures obtained by all other indices are
shown in the supplementary information (Suppl. Fig. 1-94).
Moreover, in all figures, for each index, we report the trust-
worthiness calculated according to the procedure described
in Section II.D.2. In particular, the mean and standard error
of the null model and the separability significance (expressed
as a p-value) are reported. In the figures, both the mean and
standard error are placed in brackets next to the actual value
of the indices, and they represent a reference to determine
how far the real estimated separation is from a null model
average. On the other hand, the p-value used for expressing

separability significance is placed under the value of each
index, which indicates the significance of the reported index
value in comparison to a null model. In other words, the
p-value represents the likelihood that the reported value of
a certain index can be generated by chance.

The indices values obtained for each DR method on each
dataset are shown in Table 3 (Tripartite-Swiss-Roll), Table 4
(Gastric mucosamicrobiome), Table 5 (Radar signal), Table 6
(Image proteomics), Table 7 (MNIST 2D), and Table 8
(MNIST 3D). In the tables, the order of the DR methods is
obtained by averaging the ranks (named AVG rank) of the
values provided by the indices. The indices were also applied
to the data in the original high-dimensional space (HD) to
determine the effectiveness of the DR methods in preserving
the group separability present in the original multidimen-
sional space.

A. TRIPARTITE-SWISS-ROLL
Tripartite-Swiss-Roll is a synthetic dataset that contains three
groups, each characterized by a nonlinear structure (Fig. 5a).
For this dataset, all indices evaluated Isomap, MCE, and
t-SNE as those that provided the best group separability
(Table 3). In addition, in Table 3, we can see how these DR
methods outdid the HD results, providing a clear hint that
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TABLE 4. Values of the different indices obtained for the Gastric mucosa microbiome dataset.

these algorithms preserved the original group separability
present in HD well. All indices yielded Isomap as the DR
method that provided the best group separability of the data
over the other techniques. In Table 3, we can see that in the
case of Isomap, the values obtained by DI, GDI, CH, and
CVDD are incredibly high in comparison with the values of
the other DR methods for the same indices. Thus, we might
believe that these indices are perfectly accurate for assessing
the best group separability of this DRmethod. However, care-
ful analysis of the visual representation of the Isomap results
evaluated using these indices (Suppl. Fig. 4, 6, 7, and 10,
respectively) reveals that they evaluated, with a good group
separability, a 2D-embedding which does not correctly pre-
serve the original intrinsic structure of the Tripartite-Swiss-
Roll (Fig. 5a), a situation that was replicated by DB∗ and
SIL (Suppl. Fig. 5 and 8). Indeed, in the figures, we can
see that all sample points of each respective synthetic group
collapse in the same position. This explains why these indices
obtained such high values because they maximize inter-group
separation and neglect intra-group variability, which is an
important property to retain. Moreover, the aforementioned
indices found only one optimal value of the hyperparameter
for Isomap (k = 4). In contrast, all PSIs (PSI-P, PSI-ROC,
PSI-PR, and PSI-MCC) and GSI detected multiple optimal
values for this hyperparameter (14 different configurations of
k , Suppl. Fig. 11-15), where six of these options presented
perfect group separability and also preserved the intrinsic
original data structure in the first two dimensions of embed-
ding. Hence, these solutions conserved intra-group variabil-
ity, which is visible because of the preservation of the color
gradient present in the original high-dimensional shape of
Tripartite-Swiss-Roll (Fig. 5a). Thus, this is the first evi-
dence that the PSIs perform better than most of the other

indices, not only while evaluating group separability but also
while automatically identifying the optimal hyperparameters
of parameter-dependent algorithms, such as Isomap.

Another result related to the analysis of this dataset is that
none of the indices evaluated PCA as the dimension reduction
method with the best group separability. As already proven
in [18], PCA is a linear transformation that cannot address
the type of data nonlinearity present in this dataset. Therefore,
this result was expected, and it indicates that all indices were
able to detect PCA’s inability to deal with nonlinear high-
dimensional data.

B. GASTRIC MUCOSA MICROBIOME
This dataset provided a scenario with a small number of
samples. This might represent a problem for evaluating group
separability because, in the case of a low number of data
points, they become highly sparse in the high-dimensional
space. Thus, after dimension reduction, the geometrical local-
ization of these points can be close to their random distri-
bution. Hence, we evaluated whether the DR methods could
correctly separate the three main groups: untreated dyspep-
tic patients without H. pylori infection (HPneg), untreated
dyspeptic patients with H. pylori infection (HPpos), and
patients treatedwith Proton Pump Inhibitors (PPI). In Table 4,
we can see that the indices evaluated different DR methods
with the best group separability, namely t-SNE by PSI-P,
PSI-MCC, DI, and GDI; MCE by PSI-PR, PSI-ROC, CH,
DB∗, CVDD, and SIL; and Isomap by GSI. In particular,
the DI’s evaluations (Suppl. Fig 24) erroneously indicated
that all embeddings provide a separability that is not statisti-
cally significant according to trustworthiness (i.e., this index
reported a separability significance with a p-value larger than
0.01 for these embeddings), meaning that the evaluations
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FIGURE 6. PSI-PR of the DR methods applied to the Gastric mucosa microbiome dataset. The DR methods were sorted from the best (top left)
to the worst (bottom right) in (a)-(f) according to the PSI-PR value. In (b) and (c), the optimal hyperparameters are specified in parentheses
next to the title of each DR method; moreover, the digit in brackets represents the number of possible solutions with the same validation
value. Furthermore, next to the value returned by this index, it is reported in parentheses the random baseline, which is the mean and the
standard error of the PSI-PRs computed by randomly re-shuffling the class labels 1000 times. Finally, we added a p-value which indicates the
separability significance of each index in comparison to a respective null model computed by random re-shuffling.

given by DI on the applied DR methods are not reliable.
This result is erroneous because, while most of the other
indices can detect separability that is statistically significant,
DI cannot select any embedding that is meaningful from a
statistical perspective. CVDD also evaluates all embeddings
as not significant, except for MCE, which was evaluated by
CVDDas the onlymethod to provide a statistically significant
embedding (Suppl. Fig 30). This result indicates that CVDD
is more robust than DI on this dataset because it agrees with
PSI-PR, PSI-ROC, CH, DB∗, and SIL in that MCE provides
the first and meaningful embedding. GDI detected significant
separability for most of the DR methods, except for Isomap,
PCA, and NMDS (Suppl. Fig 26). In the case of GSI, all the
methods provided significant embeddings, except for t-SNE
and MDSbc (Suppl. Fig. 29).

Arguably, in Fig. 6, some of the embeddings evaluated as
significant by PSI-PR contain outliers (for instance, Fig. 6c
for Isomap and Fig. 6e for NMDS). These results are sig-
nificant because, in general, PSI-PR is not perturbed by
outliers if they are ordered on the projection line in a posi-
tion that agrees with the separability of the group to which
they belong. This is valid for all PSIs based on statistics
that consider only the ordering of the points and not their
relative distance on the projection line, such as the Area

Under the Precision-Recall Curve (AUC-PR) or the Area
Under the ROC-Curve (AUC-ROC). On the one hand, this
avoids overestimating the positive contribution to separability
of outliers that are geometrically far and located in the same
separability region of their group. On the other, this reduces
the negative impact of outliers that are geometrically far and
opposite to the separability region of their group. Most CVIs
(for instance, DI) are instead mathematically designed to
aim compactness by strongly penalizing for outliers ‘‘regard-
less’’ (or minorly accounting) on the fact that they contribute
positively or negatively to the separability estimation of the
groups to which they belong.

In general, t-SNE, Isomap, and MCE outdid HD on this
dataset (Table 4), confirming their capability to detect the
original group separability. However, according to PSI-PR
(Fig. 6),MCEwas the best method for identifying clear visual
separation of the groups. Moreover, the aforementioned DR
methods did not show any internal separation of PPI-treated
patients according to their H. pylori infection. It is known
in the literature that PPIs cause a significant perturbation
in the gastric tissue microbiota of dyspeptic patients regard-
less of the initial pathological infection due to H. pylori
[48]. To confirm our results, we repeated this analysis by
restricting the dataset samples to only two PPI subgroups
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FIGURE 7. PSI-PR of the DR methods applied to the Radar signal dataset. The DR methods were sorted from the best (top left) to the worst
(bottom right) in (a)-(f) according to the PSI-PR validation value. In (b) and (c), the optimal hyperparameters are specified in parentheses next to
the title of each DR method; moreover, the digit in brackets represents the number of possible solutions with the same validation value.
Furthermore, next to the value returned by this index, it is reported in parentheses the random baseline, which is the mean and the standard error
of the PSI-PRs computed by randomly re-shuffling the class labels 1000 times. Finally, we added a p-value which indicates the separability
significance of each index in comparison to a respective null model computed by random re-shuffling.

(PPIneg and PPIpos). However, none of the indices provided a
significant group separability, meaning that the DR methods
were not able to significantly separate these two subgroups
(Suppl. Fig. 36-47).

C. RADAR SIGNAL
As proposed in [51], we analyzed the Radar signal dataset
using threemain groups: good radar signal, bad radar signal 1,
and bad radar signal 2. The aim of analyzing this dataset is to
verify whether the indices can evaluate the results of the DR
methods in the presence of the crowding problem (i.e., highly
overlapped groups of samples in the reduced dimensional
space). Table 5 shows that GSI, SIL, CH, DB∗, PSI-PR,
PSI-ROC, PSI-MCC, and PSI-P evaluated MCE as the DR
method with the best group separability. In terms of visual-
ization, the evaluations provided byGSI (Suppl. Fig. 56), SIL
(Suppl. Fig. 55), CH (Suppl. Fig. 54), DB∗ (Suppl. Fig. 52),
PSI-PR (Fig. 7), PSI-MCC (Suppl. Fig. 50), PSI-ROC (Suppl.
Fig. 49), and PSI-P (Suppl. Fig. 48) in relation to MCE,
sorted out the crowding problem. The fact thatMCE can solve
the crowding problem was proposed in [51], and we con-
firmed this hypothesis based on these indices. Instead, other
DR methods such as PCA, Isomap, NMDS, MDSbc, and
t-SNE tend to mix the different groups (crowded embedding
results); thus, the mentioned indices successfully detected

this situation and evaluated MCE as the DR method with the
best group separability.

In particular, DI and GDI did not provide reliable results
for this dataset. In the case of GDI, this index reported values
under the random baseline for Isomap, PCA, NMDS, and
MDSbc. In the case of MCE, the value obtained by this
index is equal to the random baseline, and its separability is
not significant (p-value = 0.5), indicating that the evaluation
performed by this index did not assess a trustworthy group
separability. Only t-SNE had a GDI value above the random
baseline (Suppl. Fig. 53a); however, in the figure, we can
clearly visualize an erroneous group separability that is not
significant (p-value = 0.80) and presents a predominance of
the good radar signal group, which is mixed across all other
groups. A similar situation was faced by DI, which reported
values under (or equal to) the random baseline for the eval-
uation of NMDS, PCA, MDSbc, and MCE (Suppl. Fig. 51).
Moreover, in Suppl. Fig. 51a shows that DI evaluated t-SNE
as the DR method with the best group separability; however,
its visual representation shows a clear overlap of the groups.
In the case of CVDD, this index was able to detect MCE with
a significant group separability (Suppl. Fig. 57b), but it evalu-
ated t-SNE as the DRmethod with the best group separability
(Suppl. Fig. 57a). However, in the figure, we can see that
t-SNE presents a clear overlap between the different groups.
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TABLE 5. Values of the different indices obtained for the radar signal dataset.

D. IMAGE PROTEOMICS
In the case of the Image proteomic dataset, we tested whether
the DR methods can sort out the ‘‘curse of dimensionality’’
by separating the three main groups: control patients (C),
patients without neuropathic pain (M), and patients with pain
(P) in the low-dimensional space.

In general, the indices evaluated the group separability of
the embeddings provided by t-SNE, MDSbc, Isomap, and
MCE close to HD (Table 6), corroborating their ability to
conserve the original high-dimensional group separability in
the reduced dimensional space. Most indices placed t-SNE
as the DR method with the best group separability. However,
GDI and DI provided unreliable results. GDI (Suppl. Fig. 64)
reported values under the random baseline for MCE,MDSbc,
NMDS, and PCA. DI (Suppl. Fig. 62) presented the same
problem regarding the evaluation of PCA, NMDS, and
MDSbc. Moreover, we noticed that in the evaluations pro-
vided by CH (Suppl. Fig. 65), all DRmethods display a fuzzy
structure of the groups involving the classes C and P (both
groups are mixed). This situation was shared by PCA and
NMDS in all different indices’ evaluations (Fig. 8, Suppl.
Fig. 59-68). Interestingly, t-SNE showed a perfect group
separability according to all PSIs (Fig. 8, Suppl. Fig. 59-61),
DB∗ (Suppl. Fig. 63), and GSI (Suppl. Fig. 67). In the case
of the t-SNE embedding evaluated by SIL (Suppl. Fig. 66) as
the one with the best group separability, it presents outliers
for the classes M and P. On the other hand, and in contrast to
all other indices, CVDD evaluated t-SNE as the DR method
with the worst group separability; however, its visual repre-
sentation seems to be correct (Suppl. Fig. 68f). Instead, this
index selected PCA as the DR method with the best group
separability; however, its embedding provides a poor visual

group separability (Suppl. Fig. 68a). Thus, the reliability of
this index within this dataset is not plausible.

Regarding the automatic selection of hyperparameters,
GSI and the PSIs identified multiple optimal settings for
t-SNE, whereas the other indices could not identify more
than one. GSI found eight different possible configurations
of hyperparameters for t-SNE (Suppl. Fig. 73) with the same
best group separability value for this index, whereas the PSIs
only detected three possible solutions (Suppl. Fig. 69-72).
If we compare these results, we can notice that in some of
the configurations evaluated by GSI, either group P or M is
highly split into multiple subgroups. In contrast, in all solu-
tions identified by the PSIs, the three groups (C, M, and P)
are mostly perfectly segregated; thus, the hyperparameters
settings evaluated by the PSIs are more accurate than those
evaluated by GSI. This, one more time, demonstrates the
utility of our PSIs to automatically determine the optimal
hyperparameters for a parameter-dependent algorithm such
as t-SNE.

E. MNIST
One of the limitations of the previous analyses is that we
considered datasets composed of no more than four groups;
therefore, the embedding in 2D space was sufficient to rep-
resent the variability between this limited number of groups.
To overcome this limitation, we investigated the performance
of the separability indices in a more diversified scenario that
involved a dataset composed of 10 groups. Moreover, this
time, we did not evaluate the embeddings of the DR methods
only in 2D but also in a 3D space. To this end, we analyzed
a subset of the MNIST dataset with 300 samples randomly
selected from the original 60000 training images. This means
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TABLE 6. Values of the different indices obtained for the image proteomics dataset.

FIGURE 8. PSI-PR of the DR methods applied to the Image proteomics dataset. The DR methods were sorted from the best (top left) to the worst
(bottom right) in (a)-(f) according to the PSI-PR validation value. In (a) and (c), the optimal hyperparameters are specified in parentheses next to
the title of each DR method; moreover, the digit in brackets represents the number of possible solutions with the same validation value.
Furthermore, next to the value returned by this index, it is reported in parentheses the random baseline, which is the mean and the standard error
of the PSI-PRs computed by randomly re-shuffling the class labels 1000 times. Finally, we added a p-value which indicates the separability
significance of each index in comparison to a respective null model computed by random re-shuffling.

30 samples for each number from zero to nine to create
10 different groups. In other words, each group contained

30 samples of images representing the same number from a
random handwrite variation. Then, two different embeddings,
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one in a two-dimensional space (2D) and another in a three-
dimensional space (3D), were performed to compare the
group separability given by the DR methods in a different
number of dimensions.

Interestingly, all indices evaluated t-SNE as the DRmethod
with the best group separability in both 2D and 3D spaces
(Table 7 and Table 8). In fact, in the tables, we can notice
that this technique is the only one that outdid HD, confirming
that it retains the separability of the original high-dimensional
space. These results are in concordancewith those of previous
studies [74], [75], where it has been confirmed that t-SNE
performs exceptionally well in analyzing this dataset. Indeed,
t-SNE is able to separate the digit groups better; however,
as for the other DR methods, in some cases, certain numbers
that are difficult to identify (distorted digits) were embedded
in the wrong groups (Fig. 9, Fig. 10, and Suppl. Fig. 74-93).

Again, GDI and DI presented unreliable evaluations under
the random baseline, but this time together with CVDD. GDI
presented this problem in the evaluation of MDSbc, NMDS,
PCA, MCE, and Isomap in both 2D and 3D low-dimensional
spaces (Suppl. Fig. 79 and Suppl. Fig. 89, respectively).
DI also presented the same problem in the evaluation of PCA,
MCE, MDSbc, and NMDS (in both dimensional spaces,
Suppl. Fig. 77 and Suppl. Fig. 87). CVDD also presented this
issue in the evaluation of MDSbc, MCE, PCA, Isomap, and
NMDS (Suppl. Fig. 83 and Suppl. Fig. 93).

As mentioned earlier in the text, theMNIST dataset has the
peculiarity that it does not present a hierarchical organization
of the samples. Indeed, the graphical shape of the numbers
is not organized in a hierarchy. Therefore, MCE should be
evaluated with low performance (i.e., a nonsignificant group
separability) for this dataset because it is not a manifold
embedding but a hierarchical embedding method (for more
details, see [51]). Interestingly, PSI-PR (Fig. 9 and Fig. 10)
detected this situation and evaluated MCE as the DR tech-
nique with the worst group separability in both dimensional
spaces (2D and 3D).

In addition, by inspecting the values returned by the PSIs
(Table 7 and Table 8), we noticed that in the presence of
hundreds of samples and a wider number of groups, the
embeddings in 3D were evaluated, as expected, with a higher
group separability than the embeddings in 2D. Indeed, the
representation of group separability is slightly more evident
in a three-dimensional space, in which the different groups
of digits appear more separated and less overlapped than
in a two-dimensional space. As anticipated in the Introduc-
tion, this comparison between separability performances in
different dimensions is less straightforward if we employ
methods such as the CVIs that do not have a bounded range
of evaluation. Therefore, the same value in two different
dimensional spaces of different sizes does not necessarily
indicate a similar level of separation.

F. SIMILARITIES ACROSS DIFFERENT INDICES
A final comparison was performed to analyze the sim-
ilarities between the different indices in each dataset

(Suppl. Fig. 101), using PCA. It might seem outlandish; we
indeed adopted dimension reduction to evaluate the similarity
between techniques designed to quantify the group separa-
bility obtained by dimension reduction methods. In Suppl.
Fig. 101 and Fig. 11, we have created a quadrilateral
whose vertices are the PSIs (PSI-P, PSI-ROC, PSI-PR, and
PSI-MCC), named PSI-quadrilateral, with the aim of visu-
ally identifying the indices that are comparable to our PSIs
(e.g., the ones inside the PSI-quadrilateral).

In the case of the Tripartite-Swiss-Roll dataset, GSI is
close to the PSI-quadrilateral, meaning that this index gave
similar evaluations to the PSIs. These indices are separability-
driven; thus, differently from CVIs, they do not maximize
the geometrical compactness of the data samples within
a particular group, as confirmed for this dataset. More-
over, in the case of the MNIST (3D) dataset, GDI is
also close to the PSI-quadrilateral. In fact, if we compare
Fig. 11 and Suppl. Fig. 101, we notice that there are sim-
ilar low-dimensional embeddings evaluated by these two
indices as those with the best group separability. However,
our PSIs provided, in contrast to GDI, a significant separa-
bility in comparison to a random permutation of the labels;
thus, their results are more reliable than those provided
by GDI.

Finally, to observe the overall trend across all datasets, the
analysis was repeated by merging all indices results obtained
for all DR methods in all datasets (Fig. 11). In the figure,
PSIs are (once more) grouped. This again confirms the coher-
ence of the different statistical measures implemented as
PSIs, which, by following the PS rationale, were specifically
designed for the validation of group separability returned by
the DR techniques.

In Fig. 11, if we project all indices onto the first dimension
(the one with the highest data variability), we can observe
that GSI, SIL, and DB∗ are the closest indices in relation to
the PSIs. SIL and DB have been reported to be the best cluster
validity indices in several studies [22], [76]–[78]. Given the
above, their proximity to our PSIs confirms that our indices
are contenders, even for the best CVIs, and might solve some
of their limitations. For instance, DB is not designed to deal
with overlapping clusters [79], and SIL is easily skewed by
outliers [37]. On the other hand, the proximity between GSI
and our PSIs is not surprising because both approaches focus
on determining group separability instead of cluster validity
(Fig. 1). This explains why they do not neglect the intra-group
diversity of the samples, in contrast to the CVIs. A situation
that was evidenced in the analysis of the Tripartite-Swiss-Roll
dataset, where the PSIs and GSI were the only indices that did
not force the samples of each group to collapse at a unique
point.

IV. DISCUSSION
There is no universal way to map a given dataset from a high-
dimensional space into a reduced number of dimensions by
perfectly preserving all properties of the original structure.
Thus, the embedding performance of different DR methods
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TABLE 7. Values of the different indices obtained for the MNIST dataset in a two-dimensional (2D) space.

TABLE 8. Values of the different indices obtained for the MNIST dataset in a three-dimensional (3D) space.

is often the result of a ‘‘computational trade-off,’’ which
sacrifices some properties to preserve others. For example,
PCA tries to maintain linear structures, classical MDS tries
to maintain global geometry, t-SNE tries to preserve local
properties and local density of the data, MCE tries to preserve
hierarchy, and so on [80]. In this context, we propose PS as a
novel rationale for designing separability measures tailored
to evaluate and compare the performance of different DR
methods or the performance of a single DR method across
different dimensions of embedding in relation to their group

separability. Based on this rationale, we also propose a new
class of indices called projection separability indices (PSIs) to
evaluate the group separability performance. Currently, this
class includes four indices named PSI-P, PSI-ROC, PSI-PR,
and PSI-MCC, which are based on four accepted statisti-
cal measures widely adopted in machine learning. However,
in the future, other indices could be proposed by simply
implementing any other statistical measure (e.g., the Pearson
correlation coefficient [81]) according to the PS rationale and
its methodology.
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FIGURE 9. PSI-PR of the DR methods applied to the MNIST dataset in a two-dimensional (2D) space. The DR methods were sorted from the best (top
left) to the worst (bottom right) in (a)-(f) according to the PSI-PR validation value. In (a) and (c), the optimal hyperparameters are specified in
parentheses next to the title of each DR method; moreover, the digit in brackets represents the number of possible solutions with the same validation
value. Furthermore, next to the value returned by this index, it is reported in parentheses the random baseline, which is the mean and the standard
error of the PSI-PRs computed by randomly re-shuffling the class labels 1000 times. Finally, we added a p-value which indicates the separability
significance of each index in comparison to a respective null model computed by random re-shuffling.

We compared the effectiveness of the four proposed PSIs
with several representative cluster validity indices (CVIs)
and a geometrically-driven separability index in: (i) assessing
group separability on a synthetic 2D dataset composed of
two half-moon clusters in the presence of a nonlinear (and
more specifically, curvilinear) pattern with increasing lev-
els of isotropic noise and anisotropic noise (outliers); and
(ii) evaluating different DRmethods across multiple datasets.

On the synthetic 2D dataset, PSI-ROC, PSI-PR, and PSI-P
can detect high group separability, even in the presence of
the half-moons’ nonlinear (curvilinear) pattern, and they are
robust to noise and outliers. PSI-MCC, SIL, and DB∗ are also
stable to noise, but they are partially affected by the presence
of nonlinearity. GSI can also detect group separability in the
presence of nonlinearity and outliers, but it seems to suffer
more than the other indices in the presence of noise. DI, GDI,
CH, and CVDD cannot be assessed for their ability to detect
separability in the presence of nonlinearity because they are
not bounded measures; however, except for GDI, they all
seem to suffer, to a certain extent, from increasing levels of
noise. Moreover, CH and CVDD seem to suffer significantly
from the presence of outliers.

In the evaluation of DR methods, some CVIs (for instance,
DI and GDI) reported unreliable group separability results
whose values were equal to or even lower than their random

baseline (and in most of these cases, the trustworthiness was
not significant, i.e., p-value> 0.01) in the analysis of the Gas-
tric mucosa microbiome, Radar signal, Image proteomics,
and MNIST datasets. In contrast to these indices, our PSIs
obtained higher evaluation values than a random permutation
of the sample labels for all analyzed cases. This is evidence
that the PSIs can better detect and evaluate group separa-
bility in comparison to DI and GDI. However, based on the
analyses of the Gastric mucosa microbiome dataset, we must
mention that PSI-MCC, PSI-ROC, and PSI-P should be used
cautiously in a reduced number of samples. For instance,
it has been documented that AUC-ROC could be wrongly
estimated for a small number of samples, particularly so for
sample sizes ≤ 100 [82]. Also, it has been shown that for
small sample sizes, other methods (e.g., Confusion Entropy
or CEN) have a higher discriminant power than MCC [83].
In contrast, AUC-PR performs better when dealing with
class-imbalanced data and small sample sizes [84], [85].
Thus, for datasets with a reduced number of samples, we sug-
gest the use of PSI-PR to validate the group separability.

A clear issue with the CVIs emerged during the analy-
sis of the Tripartite-Swiss-Roll dataset, in which all indices
except for GSI and our PSIs returned high values in the
presence of collapsed groups. In fact, GSI and the PSIs do
not maximize the geometrical compactness of the groups
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FIGURE 10. PSI-PR of the DR methods applied to the MNIST dataset in a three-dimensional (3D) space. The DR methods were sorted from the
best (top left) to the worst (bottom right) in (a)-(f) according to the PSI-PR validation value. In (a) and (b), the optimal hyperparameters are
specified in parentheses next to the title of each DR method; moreover, the digit in brackets represents the number of possible solutions with
the same validation value. Furthermore, next to the value returned by this index, it is reported in parentheses the random baseline, which is
the mean and the standard error of the PSI-PRs computed by randomly re-shuffling the class labels 1000 times. Finally, we added a p-value
which indicates the separability significance of each index in comparison to a respective null model computed by random re-shuffling.

because they do not reward dimension reduction results in
which the samples of each class tend to collapse at one
point (each group having a different collapsing point). Thus,
evaluating group separability with these indices reduces the
potential risk of canceling the visual evidence of intra-group
diversity after dimension reduction. Moreover, DI, GDI, SIL,
CH, CVDD, and DB∗ were unable to detect multiple set-
tings of hyperparameters for parameter-dependent algorithms
such as Isomap and t-SNE. Instead, GSI and the PSIs were
capable of identifying multiple settings of hyperparameters
for Isomap, which offered a comparable group separability
(Suppl. Fig 11-15), in agreement with the visual perception
of the results. In addition, these indices could detect multiple
settings of hyperparameters for t-SNE (Suppl. Fig 16-20).
Notably, some of the hyperparameters settings for Isomap
and t-SNE selected by GSI and the PSIs exhibited more
accurate representations of the original nonlinear structure
by conserving the initial color gradient and a clear visualiza-
tion of the groups. However, some of the hyperparameters
configurations evaluated by GSI in relation to t-SNE had
a questionable group separability (Suppl. Fig. 20a-h). This
situation was also encountered in the analysis of the Image
proteomic dataset, where GSI selected more hyperparame-
ters configurations than the PSIs for t-SNE. As mentioned
early in the text, t-SNE is a parameter-dependent algorithm,

with perplexity being one of the hyperparameters to tune.
Regarding this parameter, it has been frequently observed
that when the perplexity is set to a small value, ‘‘artificial
microclusters’’ begin forming in t-SNE plots [86]. Indeed,
most of the extra hyperparameters solutions provided by GSI
while evaluating t-SNE are in the presence of a low perplexity
(e.g., Suppl. Fig. 20a-h), meaning that this index is prone to
capture these artificial clusters and evaluate them as part of
a ‘‘correct’’ group separability, which obviously, should not
be the case and it might represent a point of failure for this
index. Instead, the PSIs validated hyperparameters settings
with a more precise group separability, avoiding the inclusion
of these artificial microclusters in the evaluation. Therefore,
the PSIs are more accurate than GSI for the assessment and
validation of optimal hyperparameters settings. Hence, our
novel class of indices can also be employed to enhance and
automate the tuning process of hyperparameters in dimension
reduction algorithms. However, we should also consider that
in some cases, there might be more information associated
with subgroups in the data that can be lost by forcing the
group separability with different hyperparameters. Therefore,
parameter-free methods for nonlinear DR, such as MCE, can
help to identify hidden patterns from the original data, reduc-
ing the risk of neglecting unknown subgroup separations
because of hyperparameter bias. In this case, the PSIs can still
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FIGURE 11. Similarities of the indices across all the datasets. We create a matrix by merging row vectors, each of which reports the result of a
different separability index in all the datasets for all the DR methods. Then, centered PCA is applied to this matrix (after z-scoring the indices’ values
for each row because each index has a different scale). The first two principal components are plotted to visualize the similarities between the
indices. PSIs indices are red marks, CVIs indices are black marks. The PSI-quadrilateral (quadrilateral whose vertices are the PSI indices; PSI-P,
PSI-ROC, PSI-PR, and PSI-MCC) is drawn with the aim to show which indices gave comparable results to PSI because they are projected inside the
quadrilateral. It is evident that all indices are far from the quadrilateral area; therefore, the proposed PSI indices represent a novel separated class of
indices for the evaluation of group separability in a geometrical space.

play a key role in the evaluation of parameter-free algorithms
because they can help to detect the dimensions in which the
separability of groups emerges, where traditional CVIs are
not tailored and are less reliable for comparing results across
different dimensions, as explained in the Results section
above.

One of the most critical issues in evaluating group sep-
arability is to deal with outliers (because they can heav-
ily affect the performance of any index), as shown in

Suppl. Fig. 95-100, we can see how the PSIs’ values were
corrected in each dataset by applying the mathematical for-
mulations proposed in (24). These corrections allow our PSIs
to address outliers and provide evidence that we can use sta-
tistical measures, indistinctly if they maximize or minimize,
to evaluate group separability.

Moreover, we analyzed the similarities between the
indices, initially separately for each dataset (Suppl. Fig. 101)
and then collectively for all datasets together (Fig. 11). These
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analyses revealed that DB∗, SIL, and GSI were closer to our
PSIs than were the other indices. However, the PSIs were able
to overcome the limitations of these indices, such as overlap-
ping, outliers, and incorrect evaluation of microclusters.

In addition, it is enlightening to clarify the reason why the
PSIs might offer advantages over the other indices, also con-
sidering the theoretical standpoint rather than commenting
on computational results only. One of the main theoretical
advantages of the PSIs is that they can inherit the boundaries
(either upper or lower bounds) from the statistical measures
on which they are based, whereas other indices are either
boundless or their boundaries do not necessarily address
linear separability. In the case of boundless indices (as most
of CVIs), they are sensitive to changes in scale, and therefore
are not tailored for comparison of results across different
dimensions (for instance, the values of these indices applied
in two dimensions are not directly comparable with the values
of the same indices applied in three dimensions because there
is no limit that fixes the comparison). However, indices with
boundaries such as GSI and SIL (being a [0,1] range for GSI
and a [−1,1] range for SIL) are not exempt from problems.
In the case of GSI, as defined in (20), this index looks, for
each point, to the first closest neighbor and checks whether
their class memberships match. This skews the index to
incorrectly consider and evaluate artificial microclusters with
optimal separability (as perfectly segregated). In the case of
SIL, as noted in (1), for a set of clusters, the value of this index
is simply the mean of the silhouette width of each cluster
(i.e., how tightly grouped are all the points in the cluster).
This definition can cause problems, as the mean is easily
skewed by outliers, leading this index to misrepresent how
appropriately the data have been clustered, i.e., the effect of a
small number of outliers can cause a significant change [37],
and thus, an incorrect assessment of the group separability.

Finally, we need to comment on the detection of linear
separability, which is a very important concept because the
data could be nonlinearly related (see, for instance, the iconic
example of the Tripartite-Swiss-Roll dataset) in the original
feature space. In this case, linear transformations, such as
PCA, fail to provide a low-dimensional reduction represen-
tation in which different groups are geometrically separated.
However, the same data may be linearized after the appli-
cation of a nonlinear dimension reduction algorithm, which
means that the algorithm for nonlinear dimension reduc-
tion can address the problem of data nonlinearity, revealing
the presence of linearly separated groups in a 2D or 3D
data representation. PSIs are effective tools for addressing
whether, after dimension reduction, the data representation
reveals a linear separation between the sample groups. This
is a direct consequence of the introduction in this study of
the innovative theoretical concept of projection separability.
More precisely, the fact that a PSI achieves a value close
to the significant bound of the statistical measure on which
it is based (this is 0 for PSI-P and 1 for all the other PSIs
discussed in this study) is a sufficient (but not necessarily)
condition to claim linear separability. This means that there

might be some solutions of linear separability that a PSI
does not detect. However, if a PSI takes a value equal to
the significant bound of the statistical measure on which it
is based, this is undoubtedly an indication of linear separa-
bility. In the case of GSI, the upper bound value of 1 might
indicate linear but also nonlinear separability; hence, this
index is not reliable for detecting linear separability. In the
case of SIL, the upper bound value of 1 indicates only a
degenerate case of linear separability that occurs when all
the points in a group collapse on its centroid; therefore, this
index is not useful for detecting linear separability. None of
the other indices has an upper (or lower) bound, and they
cannot detect linear separability as the best performance.
Table 1, which we introduced at the beginning of the study,
also summarizes the new findings discussed in this section,
offering an overview of all group separability indices and
their properties investigated in this study. Unlikely, none of
the reported methods in literature can achieve (in Table 1, the
symbol means: Yes, it can achieve) all main properties while
evaluating data partitioning: bounded, effective for overlap-
ping groups, arbitrary (e.g., nonspherical) shapes, linearity
detection, robustness to nonlinear (curvilinear) pattern, and
isotropic/anisotropic noise. In contrast, the proposed projec-
tion separability indices (PSIs), which are designed according
to the described projection separability (PS) rationale, can
address these limitations, and provide a novel and more reli-
able class of statistical estimators for group separability.

V. CONCLUSION
There is no universal method to map a given dataset from
a high-dimensional space into a reduced number of dimen-
sions by preserving all its original properties. Despite the
attempts of different dimension reduction (DR) techniques to
preserve all original properties, many of these algorithmsmay
partially fail this task. Thus, the accurate evaluation of such
methods remains a challenge. To overcome this, we propose
a novel rationale called projection separability (PS), which
is specifically tailored to evaluate the performance of DR
methods. Based on this rationale, we implemented a new
class of statistical-based indices named projection separabil-
ity indices (PSIs).

The experimental results indicate that the PSIs are bet-
ter evaluators of the group separability returned by the DR
results than other approaches, such as cluster validity indices
(CVIs). Furthermore, these results also provide evidence that
PSIs are not heavily affected by the limitations of other
indices such as overlapping groups, arbitrary shapes, detec-
tion of linear separability, nonlinear (curvilinear) pattern, and
isotropic/anisotropic noise (Table 1). Thus, we propose the
exploitation of the PS rationale (either through the described
statistical measures or based on others such as the Pearson
correlation coefficient or F-score) as a valid framework for:
I) automatic evaluation and identification of the best dimen-
sion reduction methods for a certain problem or dataset,
II) automatic detection of the best hyperparameters of
parameter-dependent DR algorithms, and III) automatic
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detection of the best normalization associated with a particu-
lar dataset in relation to a given DR method.
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