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ABSTRACT The LiDAR and photogrammetric point clouds fusion procedure for building extraction
according to U-Net deep learning model segmentation is provided and tested. Firstly, an initial geo-
localization process is performed for photogrammetric point clouds generated using structure-from-motion
and dense-matching methods. Then, point cloud segmentation is carried out based on U-Net deep learning
model. The precision of the U-Net model for buildings extraction reachs 87%, with F-score of 0.89 and IoU
of 0.80. It is shown that the U-Net method is effective for high-resolution image extraction. The detailed
information can accurately be identified and extracted, such as vegetation located between buildings and
roads. After segmentation, each chunk of the LiDAR and photogrammetric point clouds are finely registered
and merged based on the iterative closest point algorithm. Finally, the fused point clouds are obtained.
It shows that the structure and shape of the buildings could be delineated from the fused point clouds when
both enough ground points and a higher point density are available. Furthermore, color information improves
both visualization effect and properties identification. The experiments are conducted to extract individual
buildings from three types of point clouds in three plots. A DoN (Difference of Normals) approach is used
to isolate 3D buildings from other objects in densely built-up areas. It shows that most building extraction
results have a Precision > 0.9 and favorable Recall and F-score values. Although the LiDAR extraction
results have some advantages over the photogrammetric and fused ones in terms of Precision, the Recall
and F-score results appear best for the fused point clouds. It shows that the fused data contains a high point
density and RGB color information and could improve the building extraction.

INDEX TERMS Building extraction, point clouds, U-Net, deep learning, segmentation, difference of
normals.

I. INTRODUCTION
The extraction and identification of 3D urban buildings have
become a crucial issue in many applications, such as urban
building database updating, citymanagement, disaster assess-
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ment, digital mapping, transportation planning, cadastral, and
telecommunication network management [1], [2]. However,
extracting 3D building information through field surveys is
labor-intensive and time-consuming, yet usually unavoidable.
Consequently, relatively little information is obtained on the
3D building information updates compared to the rapid rate
of urbanization, especially in developing countries.
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Recently, the technologies such as remote sensing, com-
puter vision, and machine learning have provided oppor-
tunities and prospects for building automation extraction.
Building extraction from remote sensing data has become a
valuable alternative to field surveys because of its extensive
coverage and regular data updates at a low cost [3]–[5].
However, for a long time, automatic approaches of building
detection from remote sensing data have been complex if
not impossible due to scene complexity, incomplete extrac-
tion, and sensor dependencies, especially in big cities with
dense buildings [6]–[8]. Methodologically, building extrac-
tion refers to dividing a given dataset into non-overlapping
homogeneous regions and recognizing the buildings from
those regions. Various image-recognition algorithms have
been proposed based on pixel, geometric structure, and
object-based identification [9]–[11]. Nowadays, deep learn-
ing techniques are widely used because they can use the
number of layers of the network to represent a multi-layered
characteristic [12], [13]. Through multi-layered learning, the
original input was mapped to multi-variable labels, thereby
achieving accurate classification. Krizhevsky et al. [14] pro-
posed the convolutional neural network Alexnet. The accu-
racy of the network on the ImageNet dataset reached 84.6%.
The success of Alexnet enlarged the application of convolu-
tional neural networks in the field of computer vision [14].
Long et al. [15] proposed a fully convolutional neural net-
work FCN containing convolutional layers and an end-to-
end learning method. And the accuracy rate of the FCN
model on the PASCALVOC data set has reached 90.3% [15].
Ronneberger et al. [16] proposed a new network structure,
U-Net, which adds a pooling layer after each convolution
operation. Themodel was obtained on themedical image data
set. It has been verified that the speed of network convergence
was better than FCN, and the accuracy of segmentation has
reached 92.03% [16]. He et al. [17] proposed Resnet, which
could control the ratio of the output of the previous layer
through the loss function, rather than training all the results
of the previous layer. And, the accuracy on the ImageNet
dataset reached 96.43% [17]. Research shows that the deep
learning algorithm effectively solves the problems of com-
plex high-resolution image building extraction. It is of great
significance for high-precision urban ecological environment
monitor. However, it is still challenging to reach a satisfactory
effect in the dense building extraction because there are usu-
ally obstructions from surrounding buildings and high trees.
Nevertheless, it is virtually unavoidable, especially in very
high-spatial resolution remote sensing images.Moreover, it is
almost impossible to extract 3D building information from
images.

With the development of 3D scanners and other point
clouds generation techniques, 3D measurements are gener-
ally performed for building extraction. Light detection and
ranging (LiDAR) is a common method of obtaining point
cloud datasets due to its accuracy, speed, and ability to
capture millions of points in a very short time. Now, it is
possible to calculate digital terrain models (DTM), digital

surface models (DSM), and three-dimensional (3D) models
of buildings from a georeferenced point cloud. Other building
modeling metrics, such as building shape and voxelization,
can also be effectively analyzed. However, airborne LiDAR
acquisitions remain very costly, especially in big cities with
complex surroundings[18]. So it is a significant barrier to
its widespread application, especially for local city man-
agement and building modeling studies based on annual or
more frequent observations with numerous points at small
sites or sampling plots [19]. Moreover, various building
types in urban areas make it difficult to detect buildings in
complex scenes automatically. Many existing algorithms are
intricate and often fail in complex inner-city environments
without enough points [20]. Aerial photogrammetry is used
to decrease the cost and 3D point clouds can be produced
by applying the SfM (Structure-From-Motion) method over
large areas [21]–[24]. The techniques have also been regard as
a viable alternative to LiDAR for 3D forestry applications and
already proven successful in extracting tree height, individual
plant structure, and other 3D modeling metrics in forest sur-
veys [25], [26].

Nevertheless, the advantages for 3D measurements and
modeling exists in metrological and reliability. For example,
the reliability of photogrammetric point clouds for building
extraction needs to be evaluated because of noisy points [27].
To this end, clear accuracy statements and evaluations must
be carried out before it is applied. Several recent pub-
lications have compared LiDAR and imaging techniques
regarding accuracy, resolution, and dense 3D reconstructions
of small scenes [19], [28]. Combining LiDAR and pho-
togrammetric point clouds may improve building metrics
extraction accuracy [29]. However, few experiments were
conducted when LiDAR and photogrammetric fused point
clouds were applied to extract accurate dense urban 3D
buildings.

Here, we demonstrate and evaluate a practical urban 3D
building extraction method by fusing two different point
clouds according to U-Net deep learning model segmenta-
tion. The study focuses on the practical procedure to extract
3D buildings with reliable accuracy. So the UNETmodel was
used to extract building polygons from images. And the point
clouds fusion strategy was applied in each polygon to add the
point cloud density for future extraction. Firstly, the study
area and remote sensing dataset, including high resolution
image and 3D point cloud datasets from both LiDAR scan-
ning and image-based matching techniques are introduced in
Section 2 (STUDY AREA AND DATA). Then, the U-Net
convolutional neural network is used for image segmentation.
After that, the point cloud fusion method is demonstrated in
Section 3 (METHOD). In Section 4 (RESULT), the image
classification and point clouds fusion results are presented,
and the performance of buildings extraction is evaluated.
Finally, the procedure is discussed in section 5 (DISCUS-
SION), and some initial conclusions are made regarding
applying fused point clouds to urban 3D building extraction
in section 6 (CONCLUSION).
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FIGURE 1. Aerial photograph of the three study areas around Zhujiang
Park.

II. STUDY AREA AND DATA
The study area, Zhujiang New Town (ZNT), covering an area
of 6.44 km2, is located in a central business district in the
city of Guangzhou, southern China (23◦ 06’ N, 113◦ 45’
E) (Figure 1). Guangzhou presented a high urban density
and complex buildings, especially in ZNT, where many high-
end residential complexes and Zhujiang Park exist. It also
contains a continuous open plaza that extends approximately
1.5 km from Huangpu Avenue to the Pearl River. The plaza
incorporates underground shopping malls, vehicular tunnels,
and a people mover system. Other city landmarks, like
Opera House, Children’s Palace, Library, Museum, supertall
Twin Towers, and Canton Tower (the tallest structure in
Guangzhou), also lie in this area.

In ZNT, LiDAR and aerial oblique photogrammetric image
datasets were obtained. Due to the cost of LiDAR and oblique
photogrammetry data acquisition, only a few data with the
same coverage were tested in the experiments. Three plots
labeled A, B, and C were selected in this area for 3D
building-extraction purposes. Aerial images and a LiDAR
dataset both covering the ZNT area were available. The
specifications of the camera and LiDAR settings could be
found in [5].

III. METHOD
In this paper, a practical procedure was proposed to fuse the
LiDAR data and the photogrammetric point clouds generated
from the aerial images to improve the extraction of dense
urban 3D buildings. Firstly, the orthophoto was generated by
the photos from five aerial cameras. The orthophoto dataset

FIGURE 2. Workflow of the study.

is divided into the training set, validation set, and test set.
The training set and the validation set are used to train the
U-Net deep learning model, and the test set is used to test the
image segmentation ability of the trained model. To increase
the number of the training dataset, the training set and the
validation set are processed for data enhancement. The train-
ing data and corresponding labels are put into the U-Net
model during the training step, and the network parameters
are constantly updated to reduce the network loss value to
the convergence value. The test image is input to the trained
U-Net convolutional neural network model for pixel-by-pixel
prediction during the prediction process. The remote sensing
image classification and extraction result map are obtained,
and its accuracy is analyzed. Then, the fused point clouds are
generated from the LiDAR and photogrammetric point cloud
in each segmentation polygon. In this step, the camera pose
for each picture (indicating motion) and 3D photogrammetric
point cloud (indicating structure) were generated from aerial
images using the SfM algorithm [30], [31]. The depth of each
pixel in the picture was computed to densify the point clouds
using the patch-match dense matching method [27]. After
that, an initial geo-localization of the dense point cloud was
performed by aligning the SfM camera positions to the imag-
ing metadata from GPS to reduce significant differences in
rotation, scale, and translation between the two kinds of point
clouds. Using segmentation results from the U-net prediction
in this area, both LiDAR and photogrammetry point clouds
were segmented. The entire area was separated into several
chunks by segmentation polygons. For each piece, accurate
registration of two 3D point clouds was carried out based on
the ICP (Iterative Closest Point) algorithm. Finally, the fused
point clouds were carried out to extract the building using the
difference of normals (DoN) approach, and the results were
quantitatively and qualitatively compared. An overview of the
proposed method is illustrated in Figure 2.
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FIGURE 3. U-Net model structure diagram [16].

FIGURE 4. Data set images and their labels.

A. U-NET TRAINING AND SEGMENTATION
The U-Net convolutional neural network is U-shaped,
as shown in Figure 3, including left and right parts. The
left part is down-sampling to extract shallow features of the
input image, obtain context information and reduce the image
size. The right part is symmetrical up-sampling to get the
deep feature information of the picture and achieve precise
positioning. The middle part is the jump connection. The
feature map generated during the downsampling process is
saved and spliced with the feature map of the corresponding
upsampling layer in a jump connection mode to reduce the
resolution reduction caused by the maximum pooling layer.
The design can improve the accuracy of segmentation.

The visual interpretation method is applied for the dataset
tiles to establish a labeled dataset using the labelme (Image
Polygonal Annotation with Python). The image is divided
into five categories: buildings, vegetation, road, water, and
others (Figure 4), which is the ground truth label dataset.
Due to the accuracy and generalization requirements of the
deep learning model, the training dataset and corresponding
labels are processed for data enhancement, including image
translation, flipping, color transformation, and adding noise.

The network model of this research is implemented using
the Pytorch1.6 deep learning framework and the computa-
tional platform used in the experiment with a Ubuntu 18.04

(x86_64) operating system, Intel(R) Xeon(R) CPU E5-2603
v3 @ 1.60GHz (12 cores), 125G RAM and NVIDIA TITAN
X (Pascal). After many experiments, the model batch size is
finally set to 8, the number of iterations is 400. Adam is used
as the algorithm optimizer, and ReLu is used as the non-linear
activation function with an initial learning rate is 0.0001.

To quantitatively analyze the accuracy of model segmen-
tation, IoU (Intersection over Union), Precision, Recall, and
F-score are taken as evaluation indicators. IoU is the most
commonly used in the quantitative evaluation of image seg-
mentation, which indicates the difference between the predic-
tion result and the true value. The higher the value, the more
accurate the prediction. The formula is as below:

IoU = |A ∪ B| /|A ∩ B| (1)

where A represents the prediction result, and B represents the
true value. Precision refers to the proportion of correctly clas-
sified pixels to the total number of pixels that are predicted
to be true. Recall refers to the ratio of the number of cor-
rectly classified pixels to the total number of actually correct
pixels. F-score is an important indicator used to measure the
accuracy, which considers Precision and Recall. Its maximum
value is one, and its minimum value is 0. The higher the F-
score, the better the accuracy of the obtained prediction map.
The formula is as below:

Precision =
TP

TP+ FP
(2)

Recall =
TP

TP+ FN
(3)

FScore = 2×
Precision× Recall
Precision+ Recall

(4)

where TP is the number of true positives, FP is the number of
false positives, and FN is the number of false negatives.

B. POINT CLOUDS FUSION AND 3D BUILDING
EXTRACTION
After segmentation, the classification raster was converted to
vector polygons based on GDAL (Geospatial Data Abstrac-
tion Library). In each polygon, registration is performed to
find the relative positions and orientations between LiDAR
and photogrammetric point clouds and merge them to extract
subsequent buildings. The ICP algorithm was carried out to
finely align the photogrammetric point cloud to LiDAR data
in each chunk. The ICP algorithm iteratively assigns cor-
respondence based on a closest-distance criterion and finds
the rigid transformation using a least-squares approach. After
registration, the photogrammetric point cloud was merged
into the LiDAR dataset in each chunk. The ground points
and non-ground points were distinguished by using cloth
simulation filter (CSF) algorithm[32].

To compare the building extraction among LiDAR, pho-
togrammetric and fused point clouds, a point cloud segmenta-
tion strategy called the DoN was tested [33]. In the extraction
of building roofs and facades, the response of the normal
across two different radii: r1 < r2 are compared. Firstly, the
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FIGURE 5. U-Net model segmentation result (Legend as figure 4).

TABLE 1. U-Net model accuracy.

DoN is first calculated for each point within its multi-scale
neighbors to separate the points based on the surface nor-
mal difference. Then, the DoNs of all points are classified
with a simple Euclidean distance threshold-based clustering
algorithm [34]. Finally, the planar and nonplanar segments
are segmented based on their distances and connectivity.
Theoretically, it is challenging to extract geometrical complex
building architecture with complex normals. However, the
difficulty was significantly reduced by image segmentation.
The calculation of the DoN operator 1n̂ for any point, p in a
point cloud P is defined as:

1n̂ (p,r1, r2) =
n̂ (p, r1)− n̂ (p, r2)

2
(5)

where r1, r2∈R,r1 < r2, and n̂ (p, r) is the surface normal
estimation at point p, given the support radius r . In our
building extraction, the DoN vectors were selected based on
their magnitudes ‖1n̂ (p)‖.

IV. RESULTS
A. U-NET SEGMENTATION RESULTS
After iterative training, the model finally converged and
achieved 96% classification accuracy on the training set. The
segmentation result of the U-Net model is shown in Figure 5.

It is shown that the U-Net method is effective for high-
resolution image extraction. The detailed information can
accurately be identified and extracted, such as vegetation
located between buildings and roads. The model can also
effectively distinguish the differences between the build-
ings and roads accurately. The relatively accurate outline
boundaries and internal details of the target object could be
identified, and there is no apparent confusion between the
categories.

FIGURE 6. The sparse point clouds (A) and dense point clouds (B).

The overall classification accuracy of the U-Net model is
87% (Table 1). Among them, vegetation is the highest, with
an F-score of 0.92, IoU of 0.84, and buildings with an F-score
of 0.89 and IoU of 0.80.

B. LiDAR AND PHOTOGRAMMETRIC POINT CLOUD
FUSION
The whole SfM process took 34 mins, including 6 mins for
feature extraction, 4 mins for matching, and 24 mins for
bundle adjustment to solve the re-projection formulas. All
images were calibrated in the process, and 310, 050 sparse
point clouds were generated. The dense matching used to
calculate the depth of each pixel took 1 hour 9 mins and
generated 28, 357, 085 points for the entire area (Figure 6).

Points generated using photogrammetric techniques typi-
cally contain noise and errors [35]. Here, a statistical analysis
method was used to trim the outliers [36]. Assuming that the
resulting distribution is Gaussian with a mean value of 50 and
a standard deviation of 1, all points with mean distances
outside of an interval defined by the global mean and standard
deviation distance can be considered outliers and are trimmed
from the dataset. The point density decreased by about 10%
after the noise-removal process. After noise removal, there
were about 8 points/m2 for LiDAR and 21 points/m2 for pho-
togrammetric point clouds. For point cloud segmentation, the
segmentation polygons from U-Net predictions were firstly
selected. Thus, according to the polygons, the point cloud
data could be clipped into several chunks.

Before fine registration, there were about 2 meters of
positional drift in the photogrammetric geo-localization com-
pared to LiDAR. In our study, most of the main streets
selected had widths greater than 5 meters so that the buildings
could be entirely selected in the LiDAR and photogrammet-
ric point clouds. This provided good initial correspondence
between the two point clouds for their further accurate align-
ment. Due to the overlaps between the LiDAR and pho-
togrammetric point clouds in 3D space, the ICP algorithm
was applied to register them in each segmentation chunk.
In this process, the LiDAR point cloud data was used as a
reference for its high geometric accuracy. For the urban build-
ing area, the transformation matrix between the LiDAR and
photogrammetric point clouds was calculated. After accurate
alignment by applying the transformation matrix, the pho-
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FIGURE 7. Photogrammetric point clouds (A) and fused point clouds (B)
of Plots B.

TABLE 2. Densities and spaces for the LIDAR and photogrammetric point
clouds (pts/m2).

togrammetric point clouds and LiDAR data were aligned well
(Figure 7). Due to the relatively good density of points in
the photogrammetric point clouds, ICP is considered to have
achieved a fairly good result in our experiments.

Although there was a high point density (Table 2) in the
photogrammetric point clouds, it shows that most of the
points existed on the building surface, and the point clouds
were clustered. It can be seen from the photogrammetric point
clouds that there are some holes in the area (Figure 7A).
In this kind of point distribution, it is difficult to distinguish
the ground from the photogrammetric point clouds compared
to LiDAR data which contains a more even distribution.
However, with fused data, the holes are filled with LiDAR
points (Figure 7B), so the ground points can be easily clas-
sified. In our study, the ground points were classified after
being distinguished by the CSF algorithm. In Plot A, there
are 2,046,970 points, comprised of 398,249 LiDAR points
and 1,648,721 photogrammetric point cloud points. There are
201,507 ground points, including 10% of the total points.
In Plot B, there are 4,398,137 points, comprised of 1,505,114
LiDAR points and 2,893,023 photogrammetric point cloud
points. There are 371,879 ground points, comprising 9%
of the total points. Plot C has a total of 4,326,956 points,
comprised of 1,450,378 LiDAR points and 2,876,578 pho-
togrammetric point cloud points. There are 566,744 ground
points, comprising 14% of the total points.

FIGURE 8. The LiDAR (A, D, G), photogrammetry (B, E, H), and fused point
clouds (C, F, I) for individual buildings.

For comparison, several individual buildings were selected
in each plot (Figure 8). For LiDAR data, the points were
evenly distributed in the horizontal and vertical directions.
For photogrammetric data, most of the point cloud lies on
the building surface, for which there was a high point den-
sity. And some building facades were missing in the vertical
direction. LiDAR provided enough reliable ground points
for the fused data, essential for calculating the DTM and
subsequent point heights. The missing facades were also
supplemented in the fused data. So, the structure and shape of
the buildings could be delineated from the fused point clouds
with a higher point density. Furthermore, color information is
another advantage, which improves the visualization and aids
the identification of building types and other properties.

C. BUILDING EXTRACTION BASED ON POINT CLOUDS
In the DoN implementation for building extraction, the
small radius (r1) and large radius (r2) were set to 1 m and
10 m, respectively. Such DoN parameters settings have been
found to provide sound isolation of points in urban building
areas [9]. The roofs and facades were clustered with the scene
based on the Euclidean cluster. For segmentation, a threshold
value of 0.1 was applied for building roofs and facades and
0.4 for trees. It shows that most buildings could be success-
fully extracted from fused point clouds (Figure 9).

20894 VOLUME 10, 2022



P. Zhang et al.: 3D Urban Buildings Extraction Based on Airborne LiDAR and Photogrammetric Point Cloud Fusion

FIGURE 9. Building extraction based on fused point clouds for sections A,
B, and C.

TABLE 3. Classification results and performance metrics.

To evaluate the results of the DoN segmentation with the
three types of data, the building truth was labeled manually
using the GIS processing software QGIS (v3.4). The Preci-
sion, Recall, and F-score performance metrics were calcu-
lated for each of the three selected sections.

Table 3 illustrates the results of our evaluation in the form
of a Precision/Recall/F-score over ground truth objects. For
each cluster, the point classification was compared with each
of the ground truth labels. It was found that the majority of
the results had a good performance for the three types of data.
The LiDAR extraction results have some advantages over
the photogrammetric and fused ones in terms of Precision.
However, the Recall and F-score results appear best for the
fused point clouds. It shows that the fused data combines the
advantages of both LiDAR and photogrammetric point clouds
and could improve the building extraction.

V. DISCUSSION
This study proposed a practical way to fuse LiDAR data with
photogrammetric point clouds to improve building extrac-
tion. A laser can penetrate the vegetation canopy to provide
accurate ground geometric measurements [37]. The LiDAR
data also contain a lot of laser signal parameters, such as
pulse number and scan angle, which are very important for
the extraction of specific parameters. In contrast, photogram-
metric point clouds are indirectly obtained from photographs
and primarily lie on the object’s surface, making it difficult
to judge height in the absence of sufficient ground point

data. However, its high point density and color attributes
are essential for shape delineation and object recognition.
So, theoretically, the fusion of the two types of datasets can
potentially facilitate building extraction.

In our study, photogrammetric point clouds are gen-
erated using SfM and a dense matching method. First,
an initial geo-localization process is performed accord-
ing to the GPS metadata in the camera images to reduce
significant differences in rotation, scale, and translation.
It was found that there were about 2 meters of positional
drift in photogrammetric geo-localization compared to the
LiDAR data.

Then, the study area was segmented into several polygons
based on U-Net deep learning model. The overall classifica-
tion accuracy of the U-Net model is 87%. This model has
a high classification accuracy for buildings with an F-score
of 0.89 and IoU of 0.80. In fact, the object-oriented seg-
mentation method, FCN, and Resnet deep-learning models
were also tested in our study. The overall classification accu-
racy of object-oriented segmentation is 75%, and FCN is
82%. Although Resnet model could reach 90% accuracy in
the commercial cluster, it is not a cost-performance way
to be implemented in our server. So the U-Net model was
selected for image segmentation in our study, especially it
can completely and accurately extract house information.
Through quantitative analysis, it is verified that the deep
learning U-Net method has advantages in the extraction of
high-resolution remote sensing images with complex back-
grounds, and the classification results are accurate and reli-
able. Therefore, the urban building areas could be chosen
entirely without loss using either LiDAR or photogrammetric
point clouds.

Moreover, the segmentation provided sufficient initial cor-
respondences in each chunk. So, the ICP algorithm was per-
formed to register the two sets of point clouds in each chunk.
In this process, correspondences were iteratively assigned
based on a closest-distance criterion, and the matrix was
solved through a least-squares approach until a local mini-
mum was reached. Due to its high geometric accuracy, the
LiDAR point cloud data was used as a reference during the
assignments. For the building area, a transformation matrix
between LiDAR and photogrammetric point clouds was cal-
culated. Although the density of the photogrammetric point
clouds was high, they always included many outliers and
noisy points. Many factors, such as feature selection, corre-
spondence matching, and patch-matching, affect the quality
of the clouds. Most of the points represented the building
surface for the photogrammetric point clouds, and the point
clouds were clustered according to the building distribution.
For this kind of point distribution, it isn’t easy to distinguish
ground points from point clouds. Due to its penetration abil-
ity, LiDAR data exists a more even distribution with enough
ground points. So, ground and lower-canopy points supple-
mented each other to create a more even distribution for fused
data, making it easier to classify ground points to calculate the
DTM and subsequent point heights.
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In this study, the DoN segmentation strategy was carried
out to extract buildings. Selecting the parameters r1 and r2
for DoN may cause a significant difference and affect the
normal calculation, even the segmentation results. In the
extraction of building roofs and facades, the responses of
the normals across two different radii r1 < r2 were detailed
compared. Our experiments with different buildings found
that using r1 = 1 m and r2 = 10 m gives satisfactory results
in this area [33]. These small radii with enough neighboring
points can provide a reasonable estimation of the surface
normal. The metrics FP and FN could be better balanced in
this situation. Such DoN parameter settings provided sound
isolation of points in urban LiDAR scenes [5]. After DoN
calculation, the Euclidean cluster extraction method was per-
formed to classify the scenes. For each point clouds cluster,
a threshold value of 0.1 m was applied for building roof and
facades planar fitting. A low measure threshold (0.1) yielded
horizontal and planar surfaces that were mainly classified as
buildings. On the other hand, a high value (0.4) produced
rough surfaces, which indicates that the points represent trees
in our study area.

The segmentation quality was quantitatively evaluated on
the LiDAR, photogrammetric and fused point cloud datasets.
Building roofs and facades were automatically segmented
from these datasets. It was shown that the majority of the
results had a precision > 0.9, and the Recall and F-score
results appear favorable. Overall, the LiDAR extraction
results have some advantages over the photogrammetric and
fused ones for the precision. However, for the comprehensive
F-score metric, fused point cloud appears best extraction
result. The comprehensive analysis showed that the fused
point clouds maintain reliable geometric accuracy and pro-
vide detailed shape information. So, theoretically, it combines
the advantages of both LiDAR and photogrammetric point
clouds and could improve the individual building extraction
in urban areas. It is better to obtain high spatial resolu-
tion/point density data to carry out the image segmentation
and 3D building extraction. However, it is always a tradeoff
between high-performance data acquisition and cost. The
accuracy of UNET could translate further into the accuracy
of 3D building extraction because the point cloud fusion
was conducted in each polygon obtained from UNET. If the
polygon accuracy is bad or there is no polygon available,
the two point clouds dataset couldn’t be fused very well
because the initial geo-localization of the dense point cloud
from SfM couldn’t match the lidar point cloud with high
position accuracy. However, it is difficult to evaluate the
translation accuracy between the polygon extraction accuracy
using UNET and 3D extraction from point clouds. So only the
separate accuracy was evaluated in each step.

VI. CONCLUSION
This study provides a practical procedure for aligning and fus-
ing LiDAR and photogrammetric data to create a single point
cloud for extracting urban buildings. Since the photogram-
metric point cloud uses a local coordinate system and LiDAR

data uses a georeferenced coordinate system, there are large
translation, rotation, and scale differences. Therefore, geo-
localization is performed to approximately transform the
photogrammetric point cloud data into georeferenced coordi-
nates, which reduces these differences and allows alignment
of the point clouds. Then, an urban building map from U-Net
segmentation was utilized for point cloud segmentation. The
two types of point cloud data and polygons all use the
same coordinate system. The U-Net convolutional neural net-
work model was applied for image segmentation. The model
extracts image context information through continuous dual
convolutional and pooling layers, and uses deconvolution and
jump connections to achieve precise positioning. To prevent
the model from overfitting and enhance the robustness and
generalization of the model, a BN layer and data enhance-
ment operations are added to the network. The experimen-
tal results prove that the deep learning algorithm based on
U-Net has a higher classification accuracy for high-resolution
remote sensing images, especially for buildings and vegeta-
tion. The overall accuracy is 87%. In addition, U-Net can
automatically acquire deep semantic features through the
multi-dimensional feature learning of convolutional neural
networks, effectively reducing the classification process’s
noise. So, in recent years, U-Net model was successfully
used for image segmentation [38], [39]. The LiDAR and
photogrammetric point clouds were also segmented based on
the polygons from U-Net model segmentation results. Each
chunk of the LiDAR and photogrammetric point clouds were
finely registered and merged based on the ICP algorithm.
Hence, the two types of data were accurately co-registered,
and the photogrammetric point cloud was incorporated into
the LiDAR dataset for a given street polygon.

Applying the DoN methods to LiDAR, photogrammetric,
and fused data of dense urban areas qualitatively demon-
strated the effectiveness of fused point clouds in classify-
ing buildings. It shows that photogrammetric point clouds
provide lower geometric accuracy than LiDAR ones. How-
ever, the point density of photogrammetric point clouds is
much higher and may include much more redundant data.
In our study, the fused point clouds combine the advantages
together. So, it reached higher accuracy when using DoN
for detecting these nonplanar points with the appropriate
size of the neighborhood. At the same time, color informa-
tion could be used in the future to improve the accuracy of
extracting the related metrics. Future work should exploit
the DoN scale operator with color information for building
extraction and integrate it with cluster-recognition methods.
The comprehensive analysis shows that the fused point clouds
maintain reliable geometric accuracy and provide detailed
shape and color information. Therefore, the proposed proce-
dure provides a practical way to conduct individual building
extraction in urban areas.
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