
Received February 8, 2022, accepted February 15, 2022, date of publication February 18, 2022, date of current version March 3, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3152906

A Hybrid Fuzzy and K-Nearest Neighbor Approach
for Debris Flow Disaster Prevention
TE-JEN SU1,2, (Senior Member, IEEE), TZUNG-SHIARN PAN1, YUNG-LU CHANG1,
SHOU-SHEU LIN3, (Member, IEEE), AND MIIN-JONG HAO 3, (Member, IEEE)
1Department of Electronic Engineering, National Kaohsiung University of Science and Technology, Kaoshiung 807618, Taiwan
2School of Dentistry, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
3Department of Computer and Communication Engineering, National Kaohsiung University of Science and Technology, Kaoshiung 811213, Taiwan

Corresponding author: Miin-Jong Hao (miinhao@nkust.edu.tw)

ABSTRACT Taiwan is located in a high-risk area for natural disasters. In recent years, violent natural
disasters have occurred in Taiwan. Numerous disasters—such as flooding, surges of river water level, and
earth and rock disasters—are caused by instant heavy rainfall. These disasters cause considerable loss of
lives and property. Current disaster warning systems can only provide warnings to large areas and not to
specific small areas. Therefore, the current study developed a disaster warning system based on machine
learning for evaluating the likelihood of earth and rock disasters so that an early warning can be provided to
people who may be affected by these disasters. In contrast to previous relevant studies, which have mostly
used regional assessment methods, no large-scale regional simulation was conducted in the present study.
Instead, a comprehensive debris flow evaluation model based on information related to soil flow, rock flow,
typhoons, and rainfall history was established to provide warnings regarding debris flow disasters. The
geological condition, rainfall, soil moisture and river water level in 1-h intervals were evaluated using the
K-nearest neighbor algorithm, providing people earth and rock flow information for the area around their
homes. Data related to Typhoon Kameiji, Typhoon Xinleke, TyphoonMorak, Typhoon Sura, TyphoonMegi,
and the 0823 Tropical depression were used as training data for the developed model, and data related to
Typhoon Megi and Typhoon Kangrui were used as testing data. The proposed model can provide earlier
warnings than can the Taiwanese government’s soil and stone flow warning system. The developed model
was used to create a mobile phone application that presents comprehensive and easy-to-understand data on
the debris flow warning level, hourly rainfall, total rainfall, and geological conditions in real time.

INDEX TERMS K-nearest neighbor algorithm, fuzzy algorithm, debris flow, rainfall.

I. INTRODUCTION
The Taiwanese government has legislated a land planning law
based on development zones and conservation methods to
ensure the safety of the lives and properties of residents living
on hillsides in Taiwan. The Soil and Water Conservation
Bureau, Council of Agriculture, Executive Yuan, conducted
a survey of potential streams across Taiwan. According to
statistics, 1,726 [1] streams existed in Taiwan at the end
of 2019. Thus, debris flow disasters have major impacts in
Taiwan. In recent years, with the improvement of computing
capability and the advance in data analysis and simulation
technologies, many early disaster warning models have been
developed by industry, the government, and academics.
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Many scholars have proposed simulations of debris flow
disasters over a single stream or small area rather than
over a large area. In reference [2], a research analysis of
debris flow for the river basin in Hualien area located in
eastern Taiwan was performed from 1983 to 1993. Data
that mainly affects the occurrence of soil-rock flow such
as effective accumulated rainfall, rainfall intensity, stream
length, average stream slope, etc., were collected and the
neural network prediction models were used to investigate
the possibility of early warning of debris flow. However, the
accuracy rate of this research is only 75% due to uneven
distribution of the data. The variance of data for estimation in
this model is too large such that the validity in forecasting the
occurrence of debris flow is not high enough. In reference [3],
15 factors like ring ratio, length ratio, length of mainstream,
catchment area, 29 curvature of mainstream, relative height
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of mainstream, and average gradient of mainstream were
measured for analysis and as training data in the algorithm
of the back propagation neural to forecast the dangerous
zone of debris flow. The accuracy rate for the occurrence of
debris flow is approximate 88%. However, there were still
unreliable results after the training phase was completed in
the back propagation neural network due to lack of taking
into consideration some other important factors. Hence this
research only verified the importance of the considering
factors in the training model. The effectiveness of the model
in [3] is unclear.

The Soil and Water Conservation Bureau delineates a
single potential stream for evaluation and calculates the
scope of influence. However, this approach has low accuracy.
A comprehensive evaluation scheme based on the collection
of relevant data hence is necessary for effectively improving
the accuracy of early warning for debris flows. This paper
developed a machine-learning model to achieve this purpose.
Geographical conditions are important factors in predicting
debris flow. Hillside slope, conglomerate depth and soil
liquefaction index play a role for evaluating geographic
conditions. However, the data of these factors do not
change rapidly over time. Fuzzy theory has features of
fuzziness, subjectivity uncertainty and without complicated
mathematics mode. Therefore, hillside slope, conglomerate
depth and soil liquefaction index are employed by fuzzy
algorithm to produce geographical condition. This procedure
avoids the KNN shortcomings: small data sample and less
sample variability which cause misclassification. Moreover,
the K-nearest neighbor (KNN) algorithm was used to
assess the rainfall, soil moisture, and river water level
under major debris flow disasters caused by typhoons.
The comprehensive information provided by the developed
system can help the public take appropriate measures to
protect themselves and their property against earth flow
disasters.

A. CHARACTERISTICS OF DEBRIS FLOW
Debris flow is a natural phenomenon that occurs when
water flows along slopes and carries slope particles with
it. A debris flow disaster occurs when debris flow causes
casualties; injuries; and damage to buildings, bridges, and
public constructions [4]. Debris flow contains water and
slope particles, such as soil, sand, gravel, or boulders, and
flows down slopes because of gravity [5]. When the runoff
caused by rainfall or groundwater increases, loosematerial on
slopes, such as avalanche sand or weathered gravel, loses its
stability and mixes well with the water. The mixture of water
and material then flows down the slope due to gravity [6].
Debris flow can usually be divided into three parts: the
occurrence section, transportation section, and accumula-
tion area, as shown in Figure 1. The gradients of these
three parts are approximately 15◦-30◦, 6◦-15◦, and 3◦-6◦,
respectively.

Debris flow can contain different ratios of water, mud,
sand, and gravel, which result in different types of debris

FIGURE 1. Schematic of the occurrence of debris flow. [6].

flow disaster. Flow can be divided into three types:
(1) mud-flow-type, (2) gravel-type, and (3) general-type
debris flow [7]. Figure 1 presents the material composition
of debris flow. Most of mud-flow-type debris flows comprise
mud and sand; gravel-type debris flow contains more gravel
than mud and sand; and general-type debris flow has an even
distribution of water, mud, sand, and gravel. Figure 1 also
shows the material composition of the three types of debris
flows that frequently occur in Taiwan. The occurrence of
earth-rock flow requires to fulfill certain basic conditions and
inducing conditions [6], [8]–[11].

B. BASIC CONDITIONS FOR THE OCCURRENCE OF
DEBRIS FLOW
Debris flow occurs when the following conditions are met:
(1) abundance of loose sand, (2) abundance of water, and (3)
presence of a steep slope or river bed. Such flow usually
moves forward in a straight line; however, it damages
obstacles (trees and houses) when it encounters them.
In addition, heavy soil, rock, and conglomerate are present
in the front section of the soil-rock flow and result in the flow
having a violent impact on obstacles. Debris flow can wash
away or bury bridges, piers, and various artificial structures
located on slopes or under mountains. It can also cause
large-scale erosion of the river bed and disappearance of the
foundations of buildings constructed along rivers. Because of
the steep slopes and short currents in Taiwan, debris flows
quickly along slopes (with a speed of 5-10 m/s). Debris flows
in Taiwan usually last for approximately 15min. The required
basic conditions for the occurrence of earth-rock flow are
given as follows [9]–[14]:

1) LOOSE SOIL AND SAND
Soil sand is a crucial component of soil-rock flow. The
occurrence of soil sand mostly depends on the geological
conditions of the watershed or slope, such as overexploitation
of thewatershed ormountain slope, frequent earthquakes, and
rock fragmentation [14]. A rich source of soil and sand is
required for the occurrence of debris flow. Human activities
may result in the generation of sufficient soil and sand for
generation of debris flow. Most of the debris flows that occur
in valleys are large-scale upstream collapse-entrained debris
flows. Debris flow produces soil and rock that erode river
banks and stream beds in valleys [10], [13].
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2) ABUNDANT RAINFALL
Rainfall is a crucial factor affecting the composition of earth-
rock flow, and abundant rainfall triggers debris flow. After
soil sand and water are mixed, the mixture flows down the
slope under the influence of gravity [8]. The presence of
abundant rainfall reduces the friction acting onmoving bodies
such that debris flows are built [10], [11].

3) GEOGRAPHICAL CONDITIONS
Geographical conditions influence the formation of debris
flows. These flows exert strong erosive forces when they
move over steep slopes. An increase in the velocity of debris
flow results in an increase in its erosive force, which causes
the production of additional soil and sand on slopes, in turn
enhancing the scale of the debris flow [11].

C. CONDITIONS INDUCING DEBRIS FLOW
Five factors induce debris flows and these conditions are
described as follows:

Terrain changes: An earthquake or human-caused damage
results in terrain changes, which can cause rapid changes in
landforms. Unstable landforms cause slope changes and the
production of loose soil and rock, which result in insufficient
natural protection against debris flow [14].

Rapid increases in rainfall: Ikedani Hiroshi proposed three
types of heavy rainfall conditions: (1) 30–40 mm/h for 8 h,
(2) 40–60 mm/h for 4 h, and (3) 80 mm/h for 3 h. Rapid
increases in rainfall result in soil saturation, which may cause
the entrainment of soil, sand, and gravel in the flowing water
and thus lead to debris flow formation.

Severe soil liquefaction: The combination of a high
quantity of sand in soil, a high groundwater level, and a strong
earthquake can result in severe soil liquefaction, which causes
the floating of sandy particles in water and thus a reduction
in the cohesiveness of sandy soil. Severe soil liquefaction can
result in debris flow.

Excessive soil moisture content: Excessive rainfall results
in excessive soil moisture content, which can reduce the
ability of trees to protect the ground against soil erosion. The
occurrence of soil erosion increases the probability of debris
flow.

Considerable increase in the river water level: When soil is
saturated, it cannot absorb water; thus, the water flows into
a river, which causes a considerable increase in the upstream
water level. Moreover, downstream flooding with the erosion
of soil and rock results in damage of the downstream river
bed.

II. MATERIALS AND METHODS
A. K-NEAREST NEIGHBOR ALGORITHM
K Nearest Neighbor algorithm falls under the Supervised
Learning category and is used for classification (most
commonly) and regression. It is a versatile algorithm also
used for imputing missing values and resampling datasets.
As the name (K Nearest Neighbor) suggests it considers

K Nearest Neighbors (Data points) to predict the class or
continuous value for the new Datapoint.

In KNN, a query is labelled by a majority vote of its k-
nearest neighbors in the training set. Let T = (xi; yi) N

i=1
denote the training set, where xi ∈Rm is the training vector in
the m-dimensional feature space, and yi is the corresponding
class label. Let x

′

be a query vector. Then its corresponding
class y

′

can be obtained by following two steps [15]: Firstly,
a set of k similar labelled target neighbors for the query x

′

is
identified. Denote the set T

′

=
(
xNNi ; y

NN
i

) k
i=1 , where x

NN
i

are arranged in an increasing order in terms of the Euclidean
distance d

(
x
′

; xNNi
)
between x

′

and xNNi , as follows:

d
(
x
′

; xNNi
)
=

√(
x′ − xNNi

)T (
x′ − xNNi

)
(1)

Secondly, the class label of the query is predicted by the
majority voting of its nearest neighbors:

y
′

= argmax
y

∑(
xNNi ;y

NN
i

)
∈T ′

δ
(
y = yNNi

)
(2)

where y is a class label and yNNi is the class label for the i-
th nearest neighbor among its k nearest neighbors. The Dirac
function δ

(
y = yNNi

)
takes a value of one if y = yNNi and zero

otherwise.

B. FUZZY ALGORITHM
Given a universe U of objects, a conventional crisp subset
A of U is commonly defined by specifying the objects of
the universe that are members of A. An equivalent way of
defining A is to specify the characteristic function of A,UA,
U → {0, 1} where for all x ∈ U

UA (x) =

{
1, x ∈ A
0, xA

(3)

Fuzzy sets are derived by generalizing the concept
of a characteristic function to a membership function
U : U → {0, 1}.

Most crisp set operations (such as union and intersection)
and set properties have analogs in fuzzy set theory. For a more
detailed presentation is given in [16].

How to do Fuzzy logic is an interesting question. The
answer to it is a three-step process: (1) Classification; (2)
Fuzzy decision blocks, and (3) Defuzzification.

The knowledge base consist of a rule base defined in
terms of fuzzy rules, and a data base that contains the
definitions of the linguistic terms for each input and output
linguistic variable. The fuzzification interface transforms
the (crisp) input values into fuzzy values, by computing
their membership to all linguistic terms defined in the
corresponding input domain. The inference engine performs
the fuzzy inference process, by computing the activation
degree and the output of each rule. The defuzzification
interface computes the (crisp) output values by combining the
output of the rules and performing a specific transformation.

VOLUME 10, 2022 21789



T.-J. Su et al.: Hybrid Fuzzy and K-Nearest Neighbor Approach for Debris Flow Disaster Prevention

C. PROPOSED METHOD
The procedure for comprehensive assessment of the debris
flow alert level is shown in Figure 2. The assessment is
involved the following five steps:

FIGURE 2. Flow-chart of the proposed scheme and procedure.

1). Collect data on aspects such as slope, soil liquefaction
index, conglomerate depth, river water volume, and soil
moisture from the Central Meteorological Bureau, Geolog-
ical Survey of the Ministry of Economic Affairs, Water and
Soil Conservation Bureau of the Council of Agriculture, and
Water Resources Department of the Ministry of Economic
Affairs (all in Taiwan).

2). Retain the required information; delete redundant data;
and note the hourly debris flow alert level, time of debris flow
occurrence, and rainfall change.

3). Use a fuzzy algorithm to evaluate geological conditions,
such as hillside slope, soil liquefaction index, and conglom-
erate depth.

4). Input the geological conditions, hourly rainfall, 24-h
accumulated rainfall, river water volume, and soil moisture
into a KNN algorithm to evaluate the debris flow alert level.

5). Finally, present the debris flow warning level, hourly
rainfall, accumulated rainfall, and geological conditions on a
mobile app.

D. DATA PREPROCESSING
Time-series data are collected in databases. However, these
databases contained considerable meaningless and erroneous
data from each measurement station due to aging and lack of
calibration and correction of apparatus, environment noise,
and interference. Such data increase the inaccuracy of the
developed model and need to be deleted.

Only the data values reaching or over the red and
yellow warning thresholds defined by the Water and Soil
Conservation Bureau were downloaded from the database as
shown in Figure 3. The proposed model has four alert levels,
with level 4 being the highest alert level. The debris flow

FIGURE 3. Effects of rainfall intensity versus accumulated rainfall on the
possibility of occurrence of soil-rock flow.

TABLE 1. Alert level for debris flow.

alert levels are defined revised in accordance with the time
of debris flow occurrence as shown in Table 1. Debris flow
alert levels from 1 to 4 correspond to periods of 1–3, 3–5,
5–6, and over 6 h, respectively, before the occurrence of
debris flow.

E. DESIGN OF THE PROPOSED FUZZY SYSTEM
The existence of loose soil and rock is a basic condition
for the occurrence of debris flow. No absolute causality
exists between the various influencing geological conditions.
A set of fuzzy rules can be developed by considering the
aforementioned fact and descriptions of previous disasters.
Fuzzy rules are designed by establishing input language
variables, output language variables, and related terms and
defining their attribution functions. This study used fuzzy
rules, fuzzy inferences, and defuzzification to design a
fuzzy system for the comprehensive assessment of geological
conditions.

F. ASSOCIATING EACH TERM WITH ITS ATTRIBUTION
FUNCTION
The model developed in this study uses three input
parameters, namely conglomerate depth, hill slope, and
soil liquefaction index, and provides one output result.
Conglomerate depth and soil liquefaction index are divided
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into low, medium, and high categories; hill slope is divided
into the low, medium, slightly high, and high categories; and
the output is ‘‘Normal,’’ ‘‘Warning,’’ ‘‘Alert,’’ or ‘‘Severe.’’
After establishing the relevant terminology, the attribution
function of each term must be defined. The attribution
function graphs of this study are based on that in [17]
and indicate that superior results can be obtained using the
Trimf and trapezoid (Trapmf) attribution functions. Figure 4
demonstrates various attribution functions proposed in this
study.

FIGURE 4. Proposed attribution functions and their associated
parameters for the geological conditions: (a) Slope state; (b) Soil
Liquefaction Index; (c) Conglomerate depth; (d) Geological condition.

The design of the membership function (MF) is a curve
that defines how each point in the input space is mapped to a
membership value (or degree of membership) between 0 and
1. The input space is sometimes referred to as the universe of
discourse, a fancy name for a simple concept.

1. Fuzzy sets describe vague concepts (For example, Low
slope, Medium slope, Medium-high slope, High slope).

2. A fuzzy set admits the possibility of partial membership
in it. (For example, Low potential, Medium potential, High
potential).

3. The degree an object belongs to a fuzzy set is denoted
by a membership value between 0 and 1 (For example,
17.5 meter is a medium of Conglomerate depth to the degree
1).

4. A membership function associated with a given fuzzy
set maps an input value to its appropriate membership value.

G. PLANNING LIBRARY OF FUZZY RULES
A fuzzy rule library was planned by considering the influence
of certain parameters on debris flow disasters and the relevant
data of the Soil and Water Conservation Bureau. Rules for
evaluation of the geological conditions are shown in Table 2,

TABLE 2. Rules for evaluation of geological condition: SH: slightly hi.

where each of the input parameters Conglomerate depth and
Liquefaction Index has three different fuzzy levels, and the
input parameter Slope has four fuzzy levels. Hence there are
total of 36 rules in the library for the geological condition.
A comparison of various fuzzy rules is shown in Table 3.

TABLE 3. Comparison of different fuzzy rules.
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H. THE KNN BASED PREDICTION MODEL
In this study the proposed fuzzy system is used for
comprehensively evaluating geological conditions, namely
conglomerate depth, soil liquefaction index, and slope gra-
dient. Then the aforementioned parameters: hourly rainfall,
total rainfall, soil moisture level, and river water level then are
input into the KNN algorithm for forecasting the occurrence
of debris flows. In the prediction model, data were divided
into a training set and testing set in accordance with the
research needs, and the KNN algorithm is used to perform
the prediction as shown in Figure 5. The distance between
each training sample was calculated based on the proposed
model. The set of calculated distances were sorted and the
K training samples with the closest distance were selected.
Each sample was classified and assigned into one of the four
preset categories. Then the testing data were used to verify
the accuracy of the developed prediction model by assessing
the debris flowwarning value. With the proposed scheme, the
geological conditions, rainfall, and debris flowwarning levels
can be quickly obtained around these observation spots.

FIGURE 5. Developed classification model.

I. REMOTE DISPLAY THROUGH MOBILE APP
After assessing the basic and inducing conditions of debris
flow to obtain the corresponding warning levels, a mobile
phone app is developed by using Android Studio for remote
display of the obtained results. As an example shown in
Figure 6, the left column displays the parameters: the
hourly rainfall, accumulated rainfall, river water level, and
geological conditions, and the right column shows warning
levels for the debris flow.

III. RESULTS AND DISCUSSIONS
This research used data related to seven typhoons and
one tropical depression that caused severe debris flow
disasters. Information related to Typhoon Kameiji, Typhoon
Sinlaku, Typhoon Morakot, Typhoon Sura, Typhoon Megi,
and the 0823 Tropical depression was used as training data,
whereas information related to Typhoon Megi and Typhoon
Kangrui was used as testing data. The testing and training
data were obtained from the Soil and Rock Flow Prevention
Information Network of the Council of Agriculture of the
Executive Yuan, Taiwan. For convenience, only the data of

FIGURE 6. Display of the designed mobile app.

Typhoon Morakot, Typhoon Kameiji, and Typhoon Megi are
presented in this paper.

A. COMPREHENSIVE ASSESSMENT OF THE DEBRIS FLOW
ALERT LEVEL
The main purpose of this study was to establish a debris flow
warningmodel based on the data of typhoons that have caused
debris flow disasters in Taiwan. This section presents the data
for Typhoons Morakot, Kameiji, and Megi.

1) COMPREHENSIVE DEBRIS FLOW ALERT ANALYSIS FOR
TYPHOON MORAKOT
Typhoon Morakot brought abundant rainfall to and caused
many debris flow disasters in Taiwan. The most severe
effects of this typhoon were observed in Xiaolin Village
in Kaohsiung County. The amount of rainfall brought by
Typhoon Morakot to Xiaolin Village is presented in Figure 7.

FIGURE 7. Rainfall data for Typhoon Morakot, obtained by the Jiaxian
rainfall station.

Table 4 lists the geological conditions, hourly rainfall,
24-h rainfall, soil moisture, river water level, and alert level
evaluations for Typhoon Morakot. The aforementioned table
indicates that Typhoon Morakot caused a high quantity of
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rainfall. The rainfall was not intense but continued for a long
time. The timing of the debris flow in Xiaolin Village was
approximately 05:00 on August 9, 2009. The observation
results indicate that the de-bris flow disaster occurred in a
gradual manner, whereas other disasters occurred quickly.
The rainfall increased suddenly on August 8, 2009, between
15:00 and 17:00, and the soil could not absorb the river
water. The alert level was increased from 1 to 2 and then 3.
At 18:00 on the aforementioned day, the soil moisture reached
saturation and the water level of the river increased. At this
time, the alert level was increased to 4. Figure 8 illustrates
an analysis of the alert levels for Typhoon Morakot. The
rainfall on August 8, 2009, increased rapidly at 10:00 to a
value corresponding to a level 2 alert; however, a level 2 alert
was only raised at 12:00 on this day. The rainfall did not
slow until 17:00 on the aforementioned day, which resulted
in the soil moisture and river water level increasing to values
corresponding to a level 4 alert; however, a level 4 alert was
only raised at 18:00.

FIGURE 8. Analysis of the alert levels for Typhoon Morakot [1].

FIGURE 9. Rainfall data for Typhoon Kameiji, obtained by the Otsu
rainfall station.

2) COMPREHENSIVE DEBRIS FLOW ALERT ANALYSIS FOR
TYPHOON KAMEIJI
As displayed in Figure 9, Typhoon Kameiji was a typical
short-term, heavy-rainfall typhoon. From 13:00 on July 17,
2008, the rainfall increased to 50 mm and remained at this
level for 8–9 h. Liugui Township, where Dajin rainfall station
is located, lies along the Laonong River. This township has a
relatively unstable alluvial fan terrain that is formed by the
accumulation of soil and rock entrained by river water and
rainwater. The terrain is relatively steep, and its surface is

TABLE 4. Data for the debris flow caused by Typhoon Morakot.

easily affected by external forces. A short period of heavy
rainfall causes landslides to occur along the steep terrain.
Table 5 presents the geological conditions, hourly rainfall,
24-h rainfall, soil moisture level, river water level, and alert
level evaluation for Typhoon Kameiji. The rainfall caused
by Typhoon Kameiji increased rapidly, and the geological
conditions were classified as severe after a fuzzy system
assessment. Unlike in the case of Typhoon Morakot, the
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TABLE 5. Data for the debris flow caused by Typhoon Kameiji.

debris flow alert increased from 1 to 2 on July 17, 2008,
at 18:00 for Typhoon Kameiji because of excessive rainfall.
On July 17, 2008, at 21:00, the rainfall did not decrease,
the soil became saturated, and the river water level increased
rapidly. The alert level was increased to 4 on July 18,
2008, at 01:00–04:00. After 04:00, the rainfall decreased
significantly and the river water level stabilized; there-fore,
the alert level was decreased to level 3. After 05:00–06:00
on July 18, 2008, the rainfall and river water level increased;
therefore, the alert level was increased to 4.

FIGURE 10. Rainfall data for Meiji Typhoon, obtained by the Suao rainfall
station.

3) DEBRIS FLOW ALERT LEVEL ANALYSIS FOR
TYPHOON MEIJI
Although Typhoon Meiji did not directly hit Taiwan, the
influence of its outer circulation caused severe damage in
northern Taiwan. As displayed in Figure 10, the rainfall
during Typhoon Meiji increased slowly in the early period
and then rose rapidly in the mid-term. Suao is located in
the Lanyang Plain near the estuary of the Xincheng River.
Because Suao is also in the early stage of coastal devel-
opment, Typhoon Meiji caused con-siderable environmental
damage at this location. Suao has high conglomerate depth,
high soil liquefaction index, gentle slopes, and low surface
stability. The rainfall caused by the aforementioned typhoon
gradually increased, and the soil became unstable and was

TABLE 6. Data for the debris flow caused by Typhoon Meiji.

easily washed downstream by the rainfall. The Xicheng
River is located in the downstream section. Large quantities
of soil and rock were entrained by the river water, which
moved quickly. Consequently, the runoff became destructive.
Table 6 presents the geological conditions, hourly rainfall,
24-h rainfall, soil moisture, river water level, and alert level
evaluations for Typhoon Meiji. On October 21, 2012, the
alert level was 3 or 4 at 10:00–11:00 because of the intense
rainfall. When the rainfall intensity decreased between 19:00
and 21:00 on the aforementioned day, the alert level was
decreased to 2.

FIGURE 11. Rainfall data for the Lichma Typhoon, obtained by the
Caoling rainfall station.

4) DEBRIS FLOW ALERT LEVEL ANALYSIS FOR
TYPHOON LICHMA
As displayed in Figure 11, although Typhoon Lichma did
not make landfall in Taiwan, its outer circulation had a
considerable impact in Taiwan. The residents of the northern
mountainous areas of Taiwan were evacuated in advance to
protect them from its impact. Moreover, because of Typhoon
Lichma, the Taiwanese stock exchange was closed and the
operation of the Taiwanese high-speed railway was halted
for 1 day. This section mainly describes the impact of the
peripheral circulation of Typhoon Lichma and the associated
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debris flow disasters. Caoling Village is located in Yunlin
County in the Central Mountain Range. This village has a
moderate slope of 20◦–30◦, a moderate conglomerate depth,
and a low soil liquefaction index. The geological conditions
in the aforementioned village correspond to thewarning level.

Coaling village is subjected to large-scale human-caused
damage, and the slope of its conglomerate accumulation area
is steep. The soil and rock in the aforementioned area slide
fast, and the slope can collapse easily under strong heavy
rain. Table 7 presents the geological conditions, hourly rain-
fall, 24-h rainfall, soil moisture, river water level, and alert
level evacuations for Typhoon Lichma. The rainfall caused by
this typhoon increased slowly at 12:00 on August 10, 2019;
however, the 4-h cumulative rainfall exceeded 60 mm. The
debris flow alert level was in-creased to 2 between 23:00 on
August 10 and 03:00 on August 11, 2019. The rainfall in-
creased slowly after 03:00 on August 11, and the alert level
was increased to 3 between 04:00 and 08:00 on this date.

5) DIFFERENCES BETWEEN THE DEBRIS FLOW WARNING
LEVELS GIVEN BY THE TAIWANESE GOVERNMENT AND
THOSE OBTAINED IN THIS STUDY
The layout should be neat, and related terms should
not be repeated. In this paper, the debris flow warning
levels obtained in this study are indicated by (A) and the
government’s debris flowwarning levels are indicated by (B).
Four levels of debris flow alert were considered in this study,
and these alerts are different from the corresponding alerts of
the government. Alert levels 1 and 2 in this study are the same
as alert level 1 of the government; alert level 3 in this study is
the same as alert level 2 of the government; and alert level 4 in
this study is the same as alert level 3 of the government. Three
problems exist with the (B) alert levels. First, the ranges of the
alerts are too flexible, and the ranges of their reference values
are too narrow. Second, if a red alert is issued and people
are asked to evacuate but no disaster occurs, they begin to
lose their trust in the alerts. Third, in many cases, a red alert
is issued too late and only after the disaster has occurred.
The aim of this research was to establish a comprehensive
debris flow alert model based on geological conditions and
historical hourly rainfall, 24-h rainfall, soil moisture, and
river water level data to develop more rigid ranges of alert
reference values. The developed model provides relevant
warnings earlier than the government’s method does; thus,
people can respond earlier to potential disasters when using
the developed model. Figures 12–14 illustrate the differences
in the alerts issued by the government and developed model.

Figure 12 illustrates the differences in alerts of the
government and developed model for Typhoon Morakot. The
developed model returned an alert level of 2 when the rainfall
increased rapidly at 10:00 on August 8, 2009, whereas the
government issued this alert level only at 12:00 on the same
day. Moreover, the (A) alert level was 4 at 17:00 on the
aforementioned day because the rainfall did not slow and
the river water level continuously increased. By comparison,

FIGURE 12. Analysis of the alert values obtained with the developed
model and Taiwanese government’s warning system for Typhoon
Morakot.

the (B) alert level was 4 at 18:00, when the rainfall reached
the alert value.

FIGURE 13. Analysis of the alert values obtained with the developed
model and Taiwanese government’s warning system for Typhoon
Kameiji.

Figure 13 displays the differences in the government’s
and developed model’s alert levels for Typhoon Kameiji. For
July 17, 2008, the (A) alert level was 3 at 20:00 and the
(B) alert level was 3 at 23:00, when the rainfall reached the
alert value; however, the debris flow disaster had already
occurred by 23:00 on the aforementioned date, which made
the (B) disaster notification useless.

FIGURE 14. Analysis of the alert values obtained with the developed
model and Taiwanese government’s warning system for Typhoon Meiji.

Figure 14 depicts the differences in the alert levels
of the government and developed model for Typhoon
Meiji. For October 21, 2012, the (A) alert level was 4 at
11:00 because of the geological conditions, rapid rainfall
increase, and excessive soil moisture in the relevant area;
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TABLE 7. Data for the debris flow caused by Typhoon Lichma.

however, the (B) alert level became 4 only at 12:00 on the
aforementioned day.

The aforementioned results indicate that the proposed
model can provide faster warnings than can the Taiwanese
government’s current early warning system for debris flow
disasters. The developed model considers the basic and

TABLE 8. Disaster prevention guidelines of this study.
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TABLE 8. (Continued.) Disaster prevention guidelines of this study.

inducing conditions for debris flow to delineate the data
sampling range and the warning conditions for landslides
with relatively high accuracy. The aforementioned model
considers rainfall increases to provide early warnings of
debris flow disasters so that people have more time to
escape.

B. COMPREHENSIVE ASSESSSMENT OF DISASTER
PREVENTION GUIDELINES
After conducting a comprehensive evaluation by using the
designed fuzzy system and KNN algorithm, four levels of
debris flow alert (Table 8) were distinguished in accordance
with the Disaster Prevention Guidelines of the Soil andWater
Conservation Bureau to help people respond early to potential
disasters.

IV. CONCLUSION
This study developed a debris flow disaster prediction
model that uses a fuzzy system to evaluate three geological
conditions—namely conglomerate depth, soil liquefaction
index, and slope gradient—and employs the KNN algorithm
for classifying and comprehensively evaluating rainfall, 24-h
rainfall, soil moisture, and river water level. The pro-posed
model is implemented on amobile phone app that displays the
alert level for debris flow, real-time rainfall, total rainfall, and
geological conditions so that people can respond to disasters
early as per the disaster prevention guidelines of this study
for reducing the loss of life and property.

According to the experimental results of this study, the
developed model provides warnings earlier and adopts data
more rigorously and objectively than does the Taiwan-ese
government’s current early warning system for debris flow
disasters. Thus, the developed model enables people to
respond early to debris flow disasters.

The contributions of this research are as follows:
1. The developed model provides earlier warnings than

does the Taiwanese government’s current early warning
system for debris flow disasters. The developed model can
quickly alert people regarding disasters so that they have
sufficient time to respond appropriately. The correct and

immediate warnings provided by the developed model can
save people’s lives and protect their property.

2. The developedmodel performsmore comprehensive and
rigorous assessments than does the aforementioned system of
the Taiwanese government. Moreover, the afore-mentioned
model has a wider range of warning levels than does the
government’s system so that people can react appropriately
according to the scale of the debris flow disaster.

3. The comprehensive evaluation indices employed in
this study for geological conditions provide the public an
additional reference in housing purchase and investment.
These indices can also be used in disaster prevention as well
as soil and water conservation and maintenance.

Artificial Neural Network algorithm may be a option for
our research work. In future, we will employ KNN-ANN
algorithm to investigate debris flow disaster issues in Taiwan.
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[3] Z. Y. Xiāo, ‘‘The hazard analysis of debris-flow zones by using neural
network and digital terrain model: Case study from the watershed area of
Chen-Yu-Lan River, Nantou,’’ M.S. thesis, Inst. Earth Sci., Nat. Taiwan
Ocean Univ., 2003.

[4] Executive Yuan, Taipei, Taiwan. (Apr. 2020). The Soil and Rock
Flow Prevention Information Network of the Soil and Water Con-
servation Bureau of the Council of Agriculture. [Online]. Available:
https://246.swcb.gov.tw/Info/DebrisDefinition

[5] Water and Soil Conservation Handbook, Bur. Soil Water Conservation,
Agricult. Committee Executive Yuan, Taipei, Taiwan, 2005.

[6] Z. Qiandeng, Introduction to Earth-Rock Flow. Taipei, Taiwan: Science
and Technology Press, 2000.

[7] P. Jiade, ‘‘Investigation of the potential impact of earth-rock flow in
Liugui,’’ M.S. thesis, Dept. Civil Eng., Nat. Kaohsiung Univ. Appl. Sci.,
Kaohsiung, Taiwan, 2018.

[8] T. Takahashi, ‘‘Debris flow on prismatic open channel,’’ J. Hydraul.
Division, vol. 106, no. 3, pp. 381–396, Mar. 1980.

[9] H. Zhang, G. Zhang, and Q. Jia, ‘‘Integration of analytical hierarchy
process and landslide susceptibility index based landslide susceptibility
assessment of the Pearl River delta area, China,’’ IEEE J. Sel. Topics Appl.
Earth Observ. Remote Sens., vol. 12, no. 11, pp. 4239–4251, Nov. 2019.

[10] D.-H. Lee, E. Cheon, H.-H. Lim, S.-K. Choi, Y.-T. Kim, and S.-R. Lee,
‘‘An artificial neural network model to predict debris-flow volumes caused
by extreme rainfall in the central region of South Korea,’’ Eng. Geol.,
vol. 281, Feb. 2021, Art. no. 105979.

[11] C. Cao, W. Zhang, J. Chen, B. Shan, S. Song, and J. Zhan, ‘‘Quantitative
estimation of debris flow source materials by integratingmulti-source data:
A case study,’’ Eng. Geol., vol. 291, Sep. 2021, Art. no. 106222.

[12] Z. Bifan,Debris Flow Control Guide. Beijing, China: Science Press, 1991.
[13] S. Chen, Z. Miao, L. Wu, and Y. He, ‘‘Application of an incomplete

landslide inventory and one class classifier to earthquake-induced landslide
susceptibility mapping,’’ IEEE J. Sel. Topics Appl. Earth Observ. Remote
Sens., vol. 13, pp. 1649–1660, 2020.

[14] T. Takahashi, ‘‘Debris flow,’’ Annu. Rev. Fluid Mech., vol. 13, no. 1,
pp. 57–77, 1981.

[15] I. Saini, D. Singh, and A. Khosla, ‘‘QRS detection using K -nearest
neighbor algorithm (KNN) and evaluation on standard ECG databases,’’
J. Adv. Res., vol. 4, no. 4, pp. 331–344, Jul. 2013.

[16] L. A. Zadeh, ‘‘Fuzzy sets,’’ Inf. Control, vol. 8, no. 3, pp. 338–353, 1965.
[17] A. Basofi, A. Fariza, and Nailussaaada, ‘‘Landslide susceptibility mapping

using ensemble fuzzy clustering: A case study in Ponorogo, east Java,
Indonesia,’’ in Proc. 2nd Int. Conf. Inf. Technol., Inf. Syst. Electr. Eng.
(ICITISEE), Nov. 2017, pp. 413–416.

VOLUME 10, 2022 21797


