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ABSTRACT Nowadays, electrical power grids are facing increased penetration of renewable energy
sources (RES), which result in increasing level of randomness and uncertainties for its operational quality.
In addition, emerging need for efficient solutions to stochastic optimal power flow (OPF) problem has
attracted considerable attention to ensure optimal and reliable grid operations in the presence of generation
uncertainty and increasing demand. Therefore, this paper proposes an efficient Slime Mould-inspired
Algorithm (SMA) that aims to minimize overall operating cost of main grid by managing the power flow
among different generating resources. The problem is formulated as large-scale constrained optimization
problemwith non-linear characteristics. Its degree of complexity increases with incorporation of intermittent
energy sources, making it harder to be solved using conventional optimization techniques. However, could be
efficiently resolved by nature-inspired optimization techniques without any modification or approximation
into the original-formulation. The objective function is the overall cost of system, including reserve cost
for over-estimation and penalty cost for under-estimation of both PV-solar and wind energy. The SMA
performance is evaluated on the IEEE 30-bus test system and Algerian power system, DZA 114-bus. The
SMA is compared with four optimization algorithms: i) The well-studied meta-heuristics, i.e., Gorilla troops
optimizer (GTO), andOrca predation algorithm (OPA), ii) Recently developedmeta-heuristics, i.e., Artificial
ecosystem optimizer (AEO), Hunger games search (HGS), and Jellyfish search (JS) optimizer, iii) ad high-
performance meta-heuristics, Success-History based parameter adaptation for differential evolution method.
The overall simulation results reveal that the SMA ranked first among the compared algorithms, and so, over
and so, over different function landscapes.

INDEX TERMS Optimal power flow (OPF), emission, renewable energy sources, uncertainty, gorilla troop
optimizer, orca predation algorithm, slime mould algorithm.

LIST OF ABBREVIATIONS
Ploss The Total Power Losses.
TVD Total Voltage Deviation.
δij The voltage angle difference between i and

bus j.

The associate editor coordinating the review of this manuscript and

approving it for publication was Hazlie Mokhlis .

qji The phase angle of term Fji.
VGi Voltage Magnitude for Generator at

Bus i.
NPV The number of PV.
NPQ The number of PQ buses (Load buses).
gk Conductance of kth branch connected

between i & j.

22646 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0001-7812-8184
https://orcid.org/0000-0001-8122-7415
https://orcid.org/0000-0002-9387-1950
https://orcid.org/0000-0002-1166-1934


S. Mouassa et al.: Novel Design of Slim Mould Optimizer for Solution of OPF Problems Incorporating Intermittent Sources

Vi,Vj Voltage magnitude for load bus i & j.
VL,NPQ Voltage Magnitude for Load Bus i.∣∣Yij

∣∣ The Elements of Bus Admittance
Matrix.

Si Apparent Power Flow of Branch i.
PD,i Active Power Load Consumption at

Bus i.
QD,i Reactive Power Load Consumption at

Bus i.
PGi/QGi Active/Reactive Power Generation at

Bus i.
Vmax
i Maximum Bus Voltage Magnitude at

Bus i.
Vmin
i Minimum Bus Voltage Magnitude at

Bus i.
PGi/QGi Active/Reactive Power Generation at

Bus i.
PDi/QDi Active/Reactive, Load Consumption at

Bus i.
PL,NPQ ,QL,NPQ Active and reactive power at each load

bus.
Qmin
Gi ,Q

max
Gi Limits Value of Reactive Power

Generation.
NLB Number of Load Buses.
NG Number of Generators Buses.
λV , λQ, λl The penalty factors.
SMA Slime Mould Algorithm.
OPA Orca Predator Algorithm.
AEO Artificial Ecosystem Algorithm.
GTO Gorilla Troops Optimizer.
HGS Hunger Games Search.
RES Renewable Energy Sources.
TG Thermal Generator.
WG Wind Generator.
SG Solar Generator.

I. INTRODUCTION
Optimal power Flow (OPF) is one of primordial tools of elec-
tric power systems, offering electric power at minimum-cost
and high quality. In short, is therefore the backbone tool
of electric grids due to the important role which plays
to maintain reliable and economical system operation.
OPF Master Objective is to specify the optimal adjust-
ment of control variables so that a selected objective func-
tion is optimized while satisfying different physical and
operational-constraints inflicted by electric power grids
(equality and inequality constraints). The most commonly
objective-function is minimization of overall generation cost.
However, other functions are minimization of gas emis-
sion, real power loss, voltage stability-index (VSI), and
bus voltage-deviation [1]. While used control-variables are:
active power of generators outputs, generator voltages mag-
nitudes, positions of the transformer taps, and contributions of
the compensators in terms of reactive power. These variables
are mixture between discrete and continuous ones; parallel

compensators and taps changer transformer are discrete vari-
ables, while remaining ones are continuous.

In traditional electric grids, the study of OPF considers
conventional power generators run on fossil-fuels. However,
under electricity market liberalisation, and integration of
renewable energy sources (RES), study of OPF is becoming
more complicated leading in increase the complexity of its
objectives significantly. This is due to the diverse functions
based on the variability and uncertain used in its problem
formulation. The prime objective behind incorporation of
renewable generators (WT+PV) in the grids is to reduce
the transmission line losses and improving the reliability
and quality of electric grids. Also they reduce environmental
pollution. [1] In addition, with increasing of injected power
from RES, specifying optimal contribution of each gener-
ator in the system is necessity. Thus, energy management
and optimal scheduling of different resources could facilitate
diversemissions of electric power system operator, ultimately
reducing total generation electricity cost.

In the few past decades, numerous conventional opti-
mization techniques have been applied to solve different
versions of OPF problem. The conventional solvers are the
Newton method [2] [3], non-linear programming (NLP) [4]
and interior point methods [5]. Despite the fact that some of
abovementioned methods have excellent convergence char-
acteristics and some of them are usually suitable for industry
applications. However, they have some weaknesses, which
are summarized as follows:

1) Sensitivity to the initial search point, i.e., they might
converge easily to local solutions as may converge to
global ones.

2) Lack of flexibility with respect to practical systems,
i.e., each method is suit for a specific problem formu-
lation in its proper objectives and/or constraints.

3) Besides the inflexibility aspect, they also encounter
a huge difficult to set of uncertain and stochastic
problems, such as OPF with application of renewable
generation.

Therefore, developing new and effective optimization meth-
ods is necessity in effort to overcome the shortcomings of
the traditional optimization techniques’. [6] Thanks to the
computational intelligence schemes and open access to opti-
mization techniques have liberated considerable researches
in the field of meta-heuristic algorithms to solve complex
optimization problems during first decade. These opti-
mizers have ability to provide near-global solutions and
capability to escape local ones, avoiding in premature
convergence. Many meta-heuristic optimization algorithms
have been implemented to cope with classical OPF prob-
lem like improved version of PSO [7], moth swarm
algorithm (MSA) [8], improved bacterial forging method
(IBF) [9], teaching-learning-based optimization (TLBO)
technique [10], backtracking-search algorithm (BSA) [11],
improved colliding-bodies optimizer (ICBO) [12], adaptive
multiple teams perturbation-guiding Jaya (AMTPG-Jaya)
algorithm [13], and Differential Evolution [14] While
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aforementioned references are limited on the thermal power
generators only. In the few past years, a system with mixed
resources involving thermal, wind and solar generators have
been studied in quest of provide electrical energy at minimum
generation-cost with high-quality. As mentioned earlier, elec-
tricity market allows the incorporation of renewable energy
sources into the electricity grids in order to minimize the
environmental problems and enhancement of load relief on
a transmission lines as well system voltage profile control
by transmission line active power losses reduction. In that
context, a few works have been published in literatures. For
instance in [15] modified Jaya algorithm is applied to solve
OPF incorporating RES considering four different objective
functions to improve recorded results against other optimiz-
ers while the RES is modeled as a negative load, but any
forecasting technique was not employed to forecast wind and
solar photovoltaic power output. The results show outper-
forms of MJAYA on the basic Jaya as well on other existing
algorithms.Partha Biswas et al. [16] proposed an adaptive
version of differential evolution-based technique (SHADE)
to solve OPF problem in a system involving renewable power
generators. To forecast wind power and solar-photovoltaic
production, authors used Weibull and lognormal probability-
distribution-functions (PDF). In addition, the feasibility of
results was discussed and checked that all control variables
fell inside the allowed limits. Thus, findings clearly show
the efficacy of the proposed model, but, unfortunately, it was
applied only on medium-sized test system, IEEE 30-bus.
In another publication [17], Ehab E.Elattar proposed mod-
ified version of the moth swarm algorithm to solve OPF
problem of combined heat and power system with pres-
ence stochastic wind farm. The model is well presented and
results were discussion but only for IEEE 30-bus system
in which feasibility of solution of large-scale test system
IEEE 118-bus were not discussed. As well, application of
suggestedmodel on a practical power grid was not conducted.
Zia Ullah et al [18] provide a new hybrid optimization algo-
rithm PPSOGSA for OPF solution considering renewable
energy generators. The model of stochastic behavior is based
of PDF scheme. The results amply show the superiority
of proposed hybrid method against basic PPSO and GSA.
Again, however, the algorithm was not examined by applying
it to real/ large-sized power system. In Yu-Cheng Chang et al.
[19], evolutionary particle swarm optimization (EPSO) algo-
rithm was used for solving OPF problem in a wind-thermal
power system. The suggested wind model is based on the
up-spinning and down-spinning reserves of the production
units. But, the approach was also evaluated only on modified
IEEE 30-bus system and large-scale power systems were not
taken into consideration when validating the proposed model.
A modified cuckoo search optimization technique employed
for OPF solution incorporating wind power was proposed
in Chetan Mishra el al in [20]. Authors in [21] proposes a
new strategy for the optimal scheduling problem taking into
account the impact of uncertainties in RES and load demand
forecasts. GA is used to test the effectiveness of the suggested

optimal scheduling strategy by applied on the medium and
large-scale test system IEEE 30-bus and 300-bus. In overall
obtained results were good and promising too.

In view of aforementioned works, published results are
promising and encouraging. But bear in mind that in spite
of all efforts carried out in this area since half-a-century ago,
topic is remains open for research and also worthy of further
attention. On the other hand, despite the success of many
optimizationmethods in realizing satisfactory results, but still
suffer from some limitations and shortcomings as far as their
susceptibility of falling into local optima and the difficulty of
tuning the main intrinsic parameters. More precisely, none
of them can guarantee finding the optimal solution for all
optimization problems.

Moreover, application of these algorithms on larger scale
or real-sized electric grids is uncommon. Consequently, these
gaps give an opportunity to suggest or develop effective meta-
heuristic techniques able deal different OPF formulations.

In this paper, a SM algorithm is proposed to deal with
OPF problem in the presence RES and different objective
functions. The proposed SMA is examined on the medium-
test system IEEE 30-bus, and a real-sized DZA114-bus power
system. In addition, superiority of feasible solutions (SF)
method is used herein to handle constraints of stochastic
OPF problem. Slime Mould Algorithm (SMA) is a novel
stochastic optimization algorithm nature-inspired proposed
by Shimin Li et al. in 2020 [22], which simulates the behavior
of Physarum polycephalum and morphological changes of
slimemouldwhile searching food. Its structure is very simple,
which makes it easier to implement for various optimization
problems [22]. Also, it has excellent randomness proper-
ties, makes it search for all optimal solutions in the search-
space, hence effectively avoiding local-optimum. In addition,
the following points summarize precisely master benefits of
proposed SMA and also serving as motivational factors for
selecting this optimizer.

1) Adaptive variation of weight allows the SMA to keep
a certain perturbation-rate while warranting fast con-
vergence, thus preventing search-process in confined
regions (local optima).

2) It has an important parameter of vibration Vb allows
the individual position of SM to contract in a specific
method, which guaranteeing early exploration and the
accuracy of the exploitation process.

3) The position updating decision parameter DS and three
different position updating schemes guarantee better
capability of the SMA in different search-phases.

4) The numerical results of engineering optimization
problems in real life showed that SMA is more effi-
ciency than the compared optimization techniques.

Remainder of this paper is organized as follows. Section 2
introduces the problem definition, objectives and mathe-
matical formulation of OPF problem including applicable
constraints. The description of proposed algorithm is pre-
sented in Section-3. Section 4 presents various numerical
results on a test system IEEE 30-bus and Algerian DZA
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114-bus in order to show the capabilities of the developed
algorithm. Finally, this paper is concluded with Section 5.

II. PROBLEM FORMULATION
The primary objective of OPF is to find the optimal settings
of control-variables so that the specified objective-function is
minimized while satisfying all constraints imposed (equality
and inequality). Mathematically is formulated as follows:

Minimize Fobj (x, u) (1)

S.t. g (x, u)

{
g (x, u) = 0
h (x, u) ≤ 0

(2)

where Fobj (x, u) is the objective function, g (x, u) defines
equality constraints, h (x, u) inequality constraints. x and u
are the vector of dependent variables and the vector of control
variables, respectively. For obtaining the optimality and guar-
antee the feasibility of solutions, dependent variables also
should be within the allowable limits, which play an essential
role in the security of electric power system

A. OBJECTIVE FUNCTIONS
In this work, three objectives will be minimized, cost, power
loss, and gas emissions of thermal units.
• Thermal power only units:

Fuel cost of thermal power units can be described as [17]:

CT0 (PTG) =
NTG∑
i=1

ai + biPTGi + ciP2TGi (3)

For more realistic pattern and precise modelling valve-point
effect scheme is considered. Equation (3) is modified by
adding an additional sine term to account for the valve effects
in this manner:

CT (PTG) =
NTG∑
i=1

ai + biPTGi + ciP2TGi

+

∣∣∣di × sin
(
ei
(
Pmin
TG − PTG

))∣∣∣ (4)

where ai, bi, ci, di, and ei are the cost coefficients of the
i−th thermal generators producing power output PTGi, NTG is
the number of thermal generating and Pmin

TG is the minimum
of power of conventional thermal generator. The cost and
emission gas coefficients for the conventional units used here
are provided in [16].

Since wind and solar generators does not require any fuel
like conventional thermal generators, cost-function evalua-
tion of the wind and solar obey of some norms. The first norm
is direct-cost for wind generator CostW ,j and solar generator
CostS,k . Mathematically expressed as follows:

CostW ,j
(
PWS,j

)
= gjPWS,j (5)

CostS,k
(
PSS,k

)
= hkPSS,k (6)

where gj and hk respectively, are the coefficient of direct-
cost attached with jth wind power plant and kth solar power

unit. PWG,j and PSG,k are the scheduled power from the same
power plants (wind, solar).

Under the uncertainties, there are two possible scenarios:
(1) if actual power-delivered by the wind farm or solar gen-
erator is less than the estimated-values, this scenario called
as overestimation of power, herein the system operator needs
to the spinning reserve to ensure uninterrupted supply to the
consumers. The cost of committing the reserve production
units to meet overestimated quantity is named as reserve-
cost [1]. The reserve cost for wind and solar power units is
written with following equations:

CostRW ,j
(
PWS,j − PAv,j

)
= KRW ,j

(
PWS,j − PWAv,j

)
= KRW ,j

∫ PWG,j

0

(
pWS,j − PW ,j

)
fW
(
PW ,j

)
dpW ,j (7)

CostRS,k
(
PSS,k − PSAv,k

)
= KRS,k

(
PSS,k − PSAv,k

)
= KRS,k ∗ fS

(
PSAv,k<PSS,k

)
∗
[
PSS,k−E

(
PSAv,k<PSS,k

)]
(8)

where KRW ,j denotes coefficient of reserve-cost pertain-
ing to wind power plant, PWA,j is the actual available-
power from the same plant. fW

(
PW ,j

)
is the Wind power

PDF for jth power plant where and more detail is given
in [1]. KRS,k is the coefficient of reserve-cost for k th Solar-
Generator. PSAv,k is the actual available power from the
same power-plant. fS

(
PSAv,k < PSS,k

)
is the probability of

solar power-shortage occurrence than the scheduled power
(PSS,k ), fs

(
PSAv,k > PSS,k

)
is the expectation of solar-power

above PSS,k .
Contrary of overestimation, the second scenario called the

under estimation of wind/solar power plant. In this scenario
the actual power produced is higher than the estimated one,
yielding the surplus power. This situation requests introduce
the penalty cost against each surplus amount of power, where
expressed by the following equations.

CPW ,j
(
PWAv,j − PWS,j

)
= KPW ,j

(
PWAv,j − PWS,j

)
= KPW ,j

∫ PWr,j

PWS,j

(
PW ,j − pWS,j

)
fW
(
PW ,j

)
dpW ,j (9)

CPS,k
(
PSA,k − PSS,k

)
= KPS,k

(
PSAv,k − PSS,k

)
= KPS,k ∗ fS

(
PSAv,k>PSS,k

)
∗
[
E
(
PSAv,k>PSS,k

)
−PSS,k

]
(10)

where KPW ,j is the penalty cost coefficient for the j−th wind
power plant, PWr,j is the rated output-power from the same
wind-farm. KPS,k is the coefficient of penalty-cost for k th

solar PV plant. fS
(
PSAv,k > PSS,k

)
is the probability of solar

power surplus i.e, actual power above the scheduled power
(PSS,k ), fS

(
PSAv,k > PSS,k

)
is the expectation of solar power

above Pss,k . E
(
PSAv,k > PSS,k

)
.
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It is important to indicate that the cost evaluation for wind
generator and solar PV unit are depends on the wind Weibull
probability-distribution-functions (PDF) and solar radiation
by lognormal PDF respectively [23].
Case 1: In the first objective function, OPF is formulated

with presence of RES, whereby all the cost-functions afore-
mentioned are included. This objective minimizes the gener-
ation cost without including emission cost. Mathematically
can be expressed as:

F1
Obj = CT (PTG)

+

NWG∑
j=1

[
CW ,j

(
PWSs,j

)
+ CRW ,j

(
PWG,j − PWAv,j

)
+CPW ,j

(
PWAv,j − PWS,j

) ]

+

NSG∑
k=1

[
CS,k

(
PSS,k

)
+ CRS,k

(
PSS,k − PSAv,k

)
+CPS,k

(
PSAv,k − PSS,k

) ]
(11)

where NWG and NSG denote the number of wind generators
and PV solar in the grid.
Case 2: Emission gases and Carbon tax: Conventional

thermal power generators emit harmful gases into the envi-
ronment such as SOX, NOX, and CO2, which pollute the
atmosphere. To reduce emission of greenhouse gases, the
carbon tax was imposed as penalty. This end can be achieved
through minimization of generation and emission cost which
can be expressed as follows:

Second objective function Minimize-

F2
Obj = F1

Obj + Ctax × E (12)

E =
NTG∑
i=1

[(
αi + βiPTGi + γiP2TGi

)
×0.01+ ωi exp (µiPTGi)

]
(13)

where αi, βi, γiωi, µi are the emission-coefficients corre-
sponding to the i−th generator and Ctax is the carbon tax,
which is equal to 20 ($/h).

B. SYSTEM CONSTRAINTS
• Equality-constraints: are the power flow equations
which are given below:

PGi − Pdi −
NB∑
j=1

|Vi| ×
∣∣Vj∣∣× ∣∣Yij∣∣

× cos×
(
θij − δi + δj

)
= 0

QGi − Qdi −
NB∑
j=1

|Vi| ×
∣∣Vj∣∣× ∣∣Yij∣∣

× sin×
(
θij − δi + δj

)
= 0

(14)

• Inequality constraints: represent the limits applied on
the following variables

Pmin
TGi ≤ PTGi ≤ P

max
TGi , i = 1, 2. . . . .NTG (15)

Pmin
Wsj ≤ PWsj ≤ Pmax

Wsj , j = 1, 2. . . . .NWG (16)

Pmin
SG,k ≤ PSG,k ≤ P

max
SG,k k = 1, 2. . . . .NSG (17)

Qmin
TGi ≤ QTGi ≤ Q

max
TGi , (18)

Qmin
Wsj ≤ QWsj ≤ Q

max
Wsj , i = 1, 2 . . . ..N (19)

Qmin
SG,k ≤ QSG,k ≤ Q

max
SG,k k ∈ NSG (20)

Qmin
Ci ≤ QCi ≤ Q

max
Ci i ∈ NC (21)

Vmin
Gi ≤ VGi ≤ V

max
Gi , (22)

Vmin
Li ≤ VLi ≤ V

max
Li i ∈ NL (23)

• Security constraints

Tmin
k ≤ Tk ≤ Tmax

k k ∈ NT (24)

Si ≤ Smax
i i ∈ NTL (25)

Eqs, (15) − (17) are the active power limits of conven-
tional power-plants, wind and solar power generators,
respectively. Eqs, (18) − (21) are the reactive power
capabilities of conventional power-plants, wind-/ solar
generators and shunt reactive power sources. Eq, (22)
shows the constraints applied at the generators busbar,
whereas Eq, (23) represents the voltage limits constrain-
ing load-buses, NL being the number of load-buses.
Security-Constraints of: tap changing transformer and
line capacity are given by Eqs, (24) (25), respectively.
NTL is the number of lines in the electric grid.
In handling constraints, one of the first widely adopted
approaches employed is static-penalty function method
which is commonly based on trial and error. However,
improper selection of penalty-coefficients may some-
times lead to violation of system constraints. To this
purpose, constraint handling technique, superiority of
feasible solutions (SF) is employed for guaranteeing the
feasibility of solutions.

• Superiority of feasible solutions (SF)
This approach was first proposed byPowell and Sklonick
in 1993 to deal infeasible solutions, afterwards Deb
in [24] propose similar technique which transform the
equality constraints to inequality constraints with aid of
a tolerance factor epsilon ε by using Eq. (26). Mathe-
matically described as follows:

fitness (x) =


f
(
−→x
)
if hi

(
−→x
)
≥ 0

∀i = 1, 2, . . . . . . ,N

fworst +
N∑
i=1

hi (x)

otherwise,

(26)

|gi (x)| − ε ≤ 0 (27)

where fworst is the objective function value of the worst
feasible solution in the population and if there are no fea-
sible solutions in the population, then fworst is set to zero.
ε is a tolerance parameter for the equality-constraints.
Other mathematical expression of SF method is pre-
sented as follows:

Ti (x) =
{
max {hi (x) , 0} i = 1, . . . . ,N
max {|gi (x)| − ε, 0} i = N + 1, . . . . ,M

(28)
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Therefore, the aim is to minimize a desired objective
function Fi (X) so that the optimal solution subjected to
all inequality constraints Ti (X). The overall constraint
violation for an infeasible individual is a weighted mean
for all the constraints, which is presented as:

vi (x) =

N∑
i=1

wi [Ti (x)]

N∑
i=1

wi

(29)

when we compare two solutions Xi and Xj, Xi is said
superior to Xj under the following conditions:

1) A feasible point is preferred over an infeasible one
2) Between two feasible solutions, solution having

a smaller objective-value in a minimization case
(greater objective value in case of maximization)
is preferred.

3) Between two infeasible solutions, the one that has
a smaller constraint violation is chosen.

More detail on different constraint-handling techniques for
meta-heuristic optimization can be found in [25], [26].

C. STOCHASTIC WIND/SOLAR AND
UNCERTAINTY MODELS
Since wind speed is a random variable, its distribution is
obtained byWeibull Probability Density Function (PDF) with
shape factor (k) and scale factor (c). Mathematically given
by:

fυ (S)=
(
k
c

)(
S
c

)(k−1)
× exp−

(
S
c

)k
for 0 < S <∞

(30)

• Wind power model
The output wind power from a wind turbine is a function
of wind speed, expressed by the following equation: [16]

Pw (υ) =


0, for ν〈νin and ν〉νout

Pwr

(
ν − νin

νr − νin

)
for νin ≤ ν ≤ νr

Pwr for νr ≤ ν ≤ νout

(31)

where νin, νr and νout are respectively the turbine cut-
in, rated and cut-out wind speeds. Pwr defines the rated
output power of the wind turbine.

• Wind power probability for different wind speeds
From eq. 32, we can note that if ν is less than νin and
above νout , the power output is zero. Also, the wind
turbine produces Pwr for the condition νr ≤ ν ≤ νout .
For these discrete zones, the probabilities can be written
by the following equations:[27]

fw (Pw) {Pw = 0} = 1− exp
[
−

(νin
α

)β]

+ exp
[
−

(νout
α

)β]
(32)

fw (pw) {pw = pwr } = 1− exp
[
−

(νr
α

)β]
+ exp

[
−

(νout
α

)β]
(33)

Unlike to the discrete zones, the output wind power is
continuous for the condition νin ≤ ν ≤ νr , Hence the
probability for this region is described as follows: [27]

fw (pw) =
β (νr − νin)

αβ ∗ Pwr

[
νin +

Pw
Pwr

(νr − νin)

]β−1
× exp

−(νin+ Pw
Pwr

(νr − νin)

α

)β (34)

Also, the solar irradiance to energy conversion for the
PV plant also can be given by

Ps (G) =

Psr
(

G2

GstdRc

)
for 0 ≤ G ≤ Rc

Psr
(
G2

Gstd

)
for G ≥ Rc

(35)

where Gstd , is the solar irradiance in standard environ-
ment, Rc is a certain irradiance point, Psr is the rated
output of the PV power plant. Further details about
uncertainty model of RES can be found in Ref [1].

III. SMA-BASED PROPOSED METHOD
Slime Mold Algorithm is a novel stochastic optimization
technique proposed by Li et al. in 2020 [22], that has tried
to mimics the behavior of Physarum polycephalum and the
bio-oscillation mode of the slime in nature. SMA used the
weights to simulate the negative and positive feedback pro-
duced by slime mold during foraging-process, forming three
kinds of morphotype. The latter is regarded as a new idea
involves creating a differentiation in search-space for obtain-
ing new possible solutions. One of the most interesting char-
acteristics of slimmould is the unique pattern, allowing to SM
custom several foodstuff sources simultaneously, forming a
venous network joining them. This pattern allows exploring
different regions of search-space and avoids falling into local
optima. Based on the quality food-stuff, slim mould can
well-being dynamically adapt or adjust their search schemes
efficiently.When the quality of food sources is positive (high-
quality), the slim mould utilizes the region-limited search-
technique, herein slim mould focuses only on the achieved
food sources. Otherwise, in case of quality of food sources
that have been found is negative (low- quality), they abandon
the food source in order to explore new ones in the area.
According of the negative, positive feedback responses, slime
mould can develop the optimum food-path to tie food in a
relatively more best way. The mathematical model of some
mechanisms and characteristics of the slime mould will be
illustrated in the subsequent sections.
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FIGURE 1. Foraging morphology of SM.

A. MATHEMATICAL MODELING OF THE SLIME
MOULD ALGORITHM
1) APPROACH-FOOD
SM can easily reach food through the odour in the air. This
behavior of contraction is modeled mathematically Eq.(30)

−−−−−→
X (t + 1) =

{−−−→
Xb (t)+

−→
υb.

(
−→
W .
−−−→
XA (t)−

−−−→
XB (t)

)
, r < p

−→υc.
−−→
X (t), r ≥ p

(36)

where
−→
υb is a parameter within range [−a, a], −→υc decreases

linearly from 1 to 0. t represents the current iteration.
−→
Xb indi-

cates the individual position associated with highest odour-
concentration currently found.

−→
X represents the position of

SM,
−→
XA and

−→
XB are two randomly generated individuals from

the population.W is theweight of slimemould. The p formula
expressed by Eq. 38

p = tngh |S (i)− DF | (37)

where S (i) is the fitness value of
−→
X , whereas DF is the best

fitness obtained in all iterations.
−→
υb is defined as follows:

υb = [−a, a]

a = arctanh
(
−

(
iter

max − iter

)
+ 1

)
(38)

The formula of W in Eq. (1) can be given by
−−−−−−−−−−→
W (SmellIndex)

=


1+ r .log

(
bF − S (i)
bF − wF

+ 1
)
, Condition

1− r .log
(
bF − S (i)
bF − wF

+ 1
)
, others

(39)

Eq. 34 simulates the negative and positive feedback created
between the concentration foods explored with the vein width
of the SM.

SmellIndex = sort (S) (40)

where r is a randomly generated number with a range of
[0, 1] and bF represents the optimum fitness-value obtained
in the current-iteration. The worst fitness-value realized in

the iterative process currently is wF . SmellIndex defines the
sequence of fitness-values sorted. log is introduced to ease
the change-rate of numerical value, in which the contraction
frequency value does not change significantly

2) WRAP-FOOD
A slime mould will update its location with the following
formula:

X∗ =


rand . (ub− lb)+ lb, rand < z
−−−→
Xb (t)+

−→
υb.

(
W .
−−−→
XA (t)−

−−−→
XB (t)

)
−→υc.
−−→
X (t), r ≥ p,

r < p (41)

where ub and lb are the upper and lower bounds of search-
space, respectively

3) GRABBLE-FOOD
The success of SM mainly depends on their oscillation
parameters υb and υb, were used to introduce stochastic
nature in the model, helping to guide individuals towards
food position having high concentration. Detailed character-
istics about slime mould algorithm is given in [22]. SMA
is like other meta-heuristic techniques start the process of
optimization by distributing individuals in the search-space
as first solutions. Each individual in a population repre-
sents a possible solution of the optimization problem, and
then all generated solutions have been evaluated by selected
objective-function and select the minimal value with mini-
mization and maximum value in case of maximization.

Afterwards, at each iteration the individuals update their
coordinates according to some equations movement of slime
mould in nature along with some parameters.

In the next step, the updating process is repeated till a
terminal criterion is satisfied. Last step, the optimal-solution
that corresponds to the best-individual achieved so far is
memorized. Table 1 describes the steps of the proposed SMA
in solving OPF problem considering WT and PV generation.
with SF constrain approach. The flowchart of proposed algo-
rithm is presented in Fig 2.

IV. NUMERICAL RESULTS AND DISCUSSION
To validate the potential and feasibility of the proposed
SMA in solving stochastic OPF problems incorporating
wind power generators and solar photovoltaic, SM algorithm
was examined on the modified IEEE 30-bus test system
and Algerian electricity grid DZA 114-bus under differ-
ent objective functions. The modification is to insert two
wind generators at buses #5 and #11along with one solar
generator at bus #13. All data ca be retrieved in [23] and
Zimmerman et al. [28]. All algorithms have been coded and
solved under MATLAB R2014a platform and run on an
Intel R©CoreTMi5-4300U 2.50 GHz 4.00 GB RAM personal
computer. The population size is selected using empirical
tests by running the SMA several times with different pop-
ulation sizes like 20, 40, 60 and 80. The test results are
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TABLE 1. SMA for stochastic optimal power flow (OPF) prpblem.

FIGURE 2. Flowchart of SMA.

not reported herein, we therefore, indicate only the popula-
tion size which resulted in achieving best outcomes. To this
end, in all simulation cases, number of population size is
specified as 30 individuals for IEEE 30-bus, 60 for DZA
114-bus and maximum number of iterations is fixed 300 for
IEEE 30-bus and 400 for practical power system. For the
purpose of a fair comparison, all control variables of test
systemswere considered as continuous. Table 2 provides PDF
parameters of wind power and solar PV plants.Table 3 reports

description of all test-systems characteristics used in this
article.

A. RESULTS OF MODIFIED IEEE 30-BUS TEST SYSTEM
To show the efficiency of the SMA, the deterministic OPF
cases for the modified system configuration, i.e., without
WT generators and PV units are considered. Four cases
are studied herein, with the objective functions mentioned
in section above, namely: Case 1– minimization of basic
fuel cost; Case 2 – optimized cost against reserve-cost;
Case 3 – minimization of total generation-cost with carbon-
emission tax; Case 4 – optimized cost against penalty-cost.
The optimal results obtained for each examined case are
presented in Table 4.

1) CASE 1— MINIMIZATION OF TOTAL GENERATION-COST
In this case, the objective-function is minimization of the
total cost of generation. Obtained findings by using proposed
algorithm SMA are based on the Weibull PDF parameters.
Figures 3-5 represent Weibull fitting and wind distribution
obtained from the simulation of 8000 Monte Carlo scenarios,
while the stochastic power-output of solar photovoltaic unit
is illustrated by Fig 6.

Optimal locations of the wind farm and PV power genera-
tion depend on several factors such as wind speed and solar
radiation, respectively [29].

In this paper, the locations of wind and PV units are
selected as in [30] for IEEE 30-bus test systemwith the aim of
comparing the obtained results with those mentioned in [30]

VOLUME 10, 2022 22653



S. Mouassa et al.: Novel Design of Slim Mould Optimizer for Solution of OPF Problems Incorporating Intermittent Sources

TABLE 2. PDF parameters of WG and SG system IEEE 30-Bus.

TABLE 3. Test-systems characteristics description utilized.

and from company of electricity SONELGAZ for Algerian
power system.

As shown, from obtained findings the SMA, given in
Table 4 is achieved the minimum value of generation cost
compared with other optimizers. The optimal generation cost
achieved by SMA is 781.078 MW, while for other optimiza-
tion techniques, PSO (784.3400 $/h), TLBO (782.6767 $/h),
SHADE-SF (782.50$/h), jellyfish (781.6387 $/h), artificial
ecosystem optimizer (781.5219 $/h), and hunger games
search (781.86 $/h) as well as vs. a recently optimization tech-
nique which introduced October 1, 2021 entitled, orca pre-
dation algorithm (782.0760 $/h) and gorilla troops optimizer
GTO (781.26 $/h). It is worth to note that PWG1 and PWG2
indicate the scheduled powers from wind generators #WG1
and #WG2, respectively. The emission rate is calculated by
using the optimal scheduled power of thermal generators,
where reserve is assumed an alternate source that does not
add to the emission.

Based on the results obtained in the literature regarding
solution of classical OPF problem and the results given in

Table 4, it can state that with insertion of renewable energy
sources, the total generation-cost decreased from 800.00 $/h
as a reference cost to 781.07 ($/h), i.e., around 18.9 $/h.
More precisely, if every hour can save the cost of 18.9 $,
and the operating time per-year is supposed as 7500 h,
then operating time from the propose optimizer SMA can
save 141975 Dollars in total every year. Consequently, the

FIGURE 3. Wind speed distribution for wind-power Generator#1 at
bus 5 (c = 9, k = 2).

FIGURE 4. Wind speed distribution for wind-power Generator#1 at
bus 11 (c = 10, k = 2).

FIGURE 5. Distribution of solar irradiance or solar PV generator at bus
#13 (µ = 6, σ = 0.6).

insertion of wind generators and solar power plant signifi-
cantly contributes on the reduction on total generation cost
compared with the original system configuration (i.e., with-
out RES). The comparison and statistical- results of SMA
with other algorithms are listed in Table 5. Fig. 7, illustrates
a comparison between the convergence of SMA and other
applied algorithms.

2) CASE 2— MINIMIZATION OF TOTAL GENERATION-COST
WITH CARBON-EMISSION TAX
In this case, the quadratic total cost of generation and
emission functions in (13) were minimized considering the
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TABLE 4. Optimal results comparison for different algorithms for IEEE 30-bus, Case 1.

FIGURE 6. Real power distribution (MW) of solar PV at bus 13.

carbon tax (Ct) imposed on the thermal power plants. Herein,
the carbon-tax value is equal to 20 $/ton [1]. It is obvious that
with existence of the Carbon-Tax the penetration level from
RES is raised, and this can be visualised within simulation
results. The ratio of penetration of RES in the scheduled of
optimum generation is based on the volume of emission rate
with the imposed carbon-tax value. Main objective here is to
schedule more power among the renewable energy so that the
volume of emission is kept at minimum level.

3) CASE 3 — OPTIMIZED COST AGAINST RESERVE-COST
In third case, all parameters are retained the same as in
first case except reserve-cost-coefficients. The coefficients of

TABLE 5. Statistical results of different optimizers for Case 1.

wind generators and solar photovoltaic unit are varied by a
discrete-step of 1 starting from 4 to 6, i.e., = 4, (case3-a), =
5, (case3-b) = 6, (case3-c). The penalty-cost-coefficients for
all intermittent sources are remain the same as the first case.
The optimal power scheduled of generators is presented by
bar graph in Fig.8 and compared with those found for the base
case (case 1). For clarification purpose, Case 3-a describes
case when reserve coefficient Kr = 4, case 3-b represents
for Kr = 5, and case 3-c represents Kr = 6. In this case
study, when the coefficient of reserve cost increases, the
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TABLE 6. Optimal results of case 2 for modified IEEE 30-bus test system.

FIGURE 7. Convergence curves of different optimization techniques for
case1.

contribution of wind and solar generators reduced gradually,
resulting in a shortage of scheduled power. So, an amount
of spinning reserve is urgently needed in order to fill this
shortage. This shortage in power automatically compensated
by thermal generators which result in increasing the cost of
thermal power generators due to the increase of the output
power illustrated in Figure 7. In summary, total generation
cost raises with the increase in the reserve-cost coefficient.

B. CASE 4 — OPTIMIZED COST AGAINST PENALTY-COST
Unlike to the past case, in the fourth case, all parameters of
reserve cost are keeping as in first case excluding penalty
cost-coefficients. Then coefficients of penalty-cost for all
wind generators and photovoltaic power plant are raised
from 4 to 6 by the following order, i.e., = 4 (case 4-a), = 5

FIGURE 8. Variation of optimal scheduled real-power against reserve cost
coefficient.

(case 4-b), = 6 (case 4-a). The optimal power scheduled of
six-generators is represented by bar-graph in Figure 9 and
compared with those found for the case 1 at the same figure.

When penalty cost coefficient raises, scheduled amount
of renewable energy generators increases too, leading to
decrease the output of thermal generating units with a not
uniform manner, Figure 9. This is judged on the basis of the
economic dispatch between three thermal generators, and it
is observed that considerable part of power is dispatched on
the generator which having the lower production cost. On the
other hand, the scheduled output for all renewable energy
sources also seems not to uniform, which can be interpreted
by the highly nonlinear relation between PDF and reserve /
penalty cost of both solar and wind generators. It is also seen
that the thermal generators cost ThGx is constant and a steady
rise in total cost is observed
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TABLE 7. Solution of optimal power flow case 1 for DZA 114-bus system.

V. TEST SYSTEM 2: MODIFIED ALGERIAN POWER
SYSTEM DZA 114-BUS
A. RESULTS OF MODIFIED DZA 114-BUS POWER SYSTEM
To evaluate applicability of the proposed techniques on
the large-scale and practical power system, the modified
Algerian electricity grid DZA 114-bus[31] has been consid-
ered as test system. Algerian network topology is illustrated
in Figure 13 (Annex). System consists of 175 transmission-
lines, which sixteen branches are equipped with tap-changing
transformers, and fifteen generators. The total-load demand is
(3727+ j 2070) p.u at 100 MVA base.

The slack-bus is Bus no 4. The modification is to insert two
wind generators at buses #52 and #83 along with one solar

generator at bus #109. All data of test system ‘‘MATPOWER
format’’ are free only for referees. Therefore, there are a
total of 46 variables to be optimized, including 15 active
power of generators, 15 voltage magnitudes of generators,
and sixteen tap-changer adjustment. Also, this power system
exhibits undesirable voltage drops at some buses, making it
harder to ensure the feasibility of solutions, especially reac-
tive power generators. Minimum and maximum operating
limits of the control variables are given in the table of
results

In this part, the adopted objective-function is the total gen-
eration cost minimization by means of the SMA, GTO, HGS,
AEO and OPA algorithms. Fig. 10 shows the convergence
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TABLE 8. Solution of optimal power flow of case 3 for DZA 114-bus system.

FIGURE 9. Variation of optimal scheduled real-power against reserve cost
coefficients.

curves of the considered optimizers and, as noticeably, the
SMA converges to high quality solutions in the first quarter
of iterations.

Based on the convergence plot presented in Fig. 10, it can
be seen that SMA achieves the minimum value of generation
cost compared with other optimization techniques.

FIGURE 10. Convergence curves of different optimization techniques for
DZA114-bus-case1.

Base case denotes the simulation without considering
renewable energy sources, i.e., all power plants are the
conventional power generators, and minimum values of
active powers at buses #52, #83, and #109 are 34.5 MW,
30 MW, and 10 MW, respectively. In this case study, min-
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FIGURE 11. Solution of Voltage profile for both cases of DZA 114-bus Test system.

FIGURE 12. Schedule of generator reactive power for case 5 of DZA 114-bus.

FIGURE 13. Algerian electricity grid DZA 114-bus.

imization of total generation cost is performed and the
obtained results were listed in the first column of Table 7

below. Moreover, by observing the reactive power limits
(Q) provided in Table 7, generators TG5, TG19, TG22, TG98,
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TG98, WG52, and WG83 operate at their maximum limits of
Q capacity for both cases. So, it is more necessary to regard
the constraints on generators reactive power during imple-
mentation of any optimization method. Thus, from all results
obtained so far, it is sufficient to highlight effectiveness of
the proposed constraint handling-technique, that guarantee
the feasibility of solutions, even with the real power system.

1) CASE 5 — OPTIMIZED COST AGAINST RESERVE-COST TO
ALGERIAN POWER SYSTEM DZA114-BUS
In this case, scenario of case 3 is performed for DZA
114- power system. The coefficients of wind generators and
solar photovoltaic unit are varied by a discrete-step of 1
starting from 6 to 8, i.e., = 6, (case 5-a), = 7, (case 5-b) = 8,
(case 5-c). The penalty-cost-coefficients for all intermittent
sources are remain the same as the first case. The optimal
power scheduled of generators is provided in Table 8.

In this case study, increasing the coefficient of reserve cost
results in a decreased contribution of wind and solar genera-
tors gradually, making in a shortage of scheduled power. So,
an amount of spinning reserve is urgently needed to fill this
shortage.

This shortage in power (MW) automatically compensated
by thermal-generators which result in increasing the cost of
thermal power generators due to the increase of the output
power as observed in Table 8. Moreover, from Table 8,
It can observe that active power output at slack bus for each
three case 5-a, case 5-b and case 5-c increases to cover that
shortage, meanwhile, output of renewable generators WG1
decrease from 350 mw to 200.86 MW and WG2 decrease
from 300 MW to 174.66 MW for case 5-c. What equal to
270 MW should be compensate from thermal generators in
an effort to maintaining power system stability. On the other
hand, the output of solar generator is remains fix at 100 MW
for three subcases, this is can be justify by technical aspect,
i.e., for keeping each bus voltage magnitudes located near to
the SG bus (#109) within the admissible limits [0.9-1.1] p.u.
Fig. 12 presents generator reactive power scheduled for case 5
of DZA 114-bus

VI. CONCLUSION
In this article, an efficient and robust Slime Mould-inspired
algorithm has been suggested for provide an optimal-solution
of the stochastic OPF problem in the modified IEEE 30-bus
test system and Algerian electrical network DZA 114-bus.
Uncertainty nature of both solar and wind energy sources has
been modelled based on the Weibull and lognormal PDFs
distribution, respectively. To investigate the performance of
SM algorithm, four optimization techniques: HGS, AEO,
GTO, and orca predation algorithm- (OPA) are applied on dif-
ferent test systems. Numerical results of SMA are compared
with the results found by aforementioned algorithms and
other ones provided in literature. The results revealed that the
SMA significantly gives a superior solution, while insuring
the feasibility of solutions, where outperformed AEO, JS,
HGS, MFO, GTO and BMO methods in the base case and

other sub-cases whatever the constraints of test system. The
results suggest that the proposed SMA can be successfully
applied to solve highly nonlinear problems. The findings
of this document are likely to be beneficial to researchers.
Therefore, the proposed algorithm based SM technique with
the superiority of feasible solutions method it is an excellent
and highly recommended technique for the stochastic OPF
problem, since it more efficient even in the case of practical
electrical network.
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