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ABSTRACT Nowadays, electrical power grids are facing increased penetration of renewable energy
sources (RES), which result in increasing level of randomness and uncertainties for its operational quality.
In addition, emerging need for efficient solutions to stochastic optimal power flow (OPF) problem has
attracted considerable attention to ensure optimal and reliable grid operations in the presence of generation
uncertainty and increasing demand. Therefore, this paper proposes an efficient Slime Mould-inspired
Algorithm (SMA) that aims to minimize overall operating cost of main grid by managing the power flow
among different generating resources. The problem is formulated as large-scale constrained optimization
problem with non-linear characteristics. Its degree of complexity increases with incorporation of intermittent
energy sources, making it harder to be solved using conventional optimization techniques. However, could be
efficiently resolved by nature-inspired optimization techniques without any modification or approximation
into the original-formulation. The objective function is the overall cost of system, including reserve cost
for over-estimation and penalty cost for under-estimation of both PV-solar and wind energy. The SMA
performance is evaluated on the IEEE 30-bus test system and Algerian power system, DZA 114-bus. The
SMA is compared with four optimization algorithms: i) The well-studied meta-heuristics, i.e., Gorilla troops
optimizer (GTO), and Orca predation algorithm (OPA), ii) Recently developed meta-heuristics, i.e., Artificial
ecosystem optimizer (AEO), Hunger games search (HGS), and Jellyfish search (JS) optimizer, iii) ad high-
performance meta-heuristics, Success-History based parameter adaptation for differential evolution method.
The overall simulation results reveal that the SMA ranked first among the compared algorithms, and so, over
and so, over different function landscapes.

INDEX TERMS Optimal power flow (OPF), emission, renewable energy sources, uncertainty, gorilla troop
optimizer, orca predation algorithm, slime mould algorithm.

LIST OF ABBREVIATIONS q; The phase angle of term Fj;.
Ploss  The Total Power Losses. ]

TVD Total Voltage Deviation.

Vgi  Voltage Magnitude for Generator at

Bus i.
i The voltage angle difference between i and
v bus j £e ang Npv  The number of PV.
Npg  The number of PQ buses (Load buses).
The associate editor coordinating the review of this manuscript and 8k Conductance of k™ branch connected
approving it for publication was Hazlie Mokhlis . between i & j.
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Vi, Vj Voltage magnitude for load bus i & j.

VL, Npo Voltage Magnitude for Load Bus i.

|Yii| The Elements of Bus Admittance
Matrix.

Si Apparent Power Flow of Branch i.

Pp; Active Power Load Consumption at
Bus i.

Qp.i Reactive Power Load Consumption at
Bus i.

P:i/Qai Active/Reactive Power Generation at
Bus i.

v Maximum Bus Voltage Magnitude at
Bus i.

V{ni“ Minimum Bus Voltage Magnitude at
Bus i.

P:i/Qg; Active/Reactive Power Generation at
Bus i.

Ppi/Qp; Active/Reactive, Load Consumption at
Bus i.

PL Npo>» QL)NPQ Active and reactive power at each load
bus.

‘(I}lii“, Qg‘f‘x Limits Value of Reactive Power

Generation.

NLB Number of Load Buses.

NG Number of Generators Buses.

Av, Ao, A The penalty factors.

SMA Slime Mould Algorithm.

OPA Orca Predator Algorithm.

AEO Artificial Ecosystem Algorithm.

GTO Gorilla Troops Optimizer.

HGS Hunger Games Search.

RES Renewable Energy Sources.

TG Thermal Generator.

WG Wind Generator.

SG Solar Generator.

I. INTRODUCTION

Optimal power Flow (OPF) is one of primordial tools of elec-
tric power systems, offering electric power at minimum-cost
and high quality. In short, is therefore the backbone tool
of electric grids due to the important role which plays
to maintain reliable and economical system operation.
OPF Master Objective is to specify the optimal adjust-
ment of control variables so that a selected objective func-
tion is optimized while satisfying different physical and
operational-constraints inflicted by electric power grids
(equality and inequality constraints). The most commonly
objective-function is minimization of overall generation cost.
However, other functions are minimization of gas emis-
sion, real power loss, voltage stability-index (VSI), and
bus voltage-deviation [1]. While used control-variables are:
active power of generators outputs, generator voltages mag-
nitudes, positions of the transformer taps, and contributions of
the compensators in terms of reactive power. These variables
are mixture between discrete and continuous ones; parallel
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compensators and taps changer transformer are discrete vari-
ables, while remaining ones are continuous.

In traditional electric grids, the study of OPF considers
conventional power generators run on fossil-fuels. However,
under electricity market liberalisation, and integration of
renewable energy sources (RES), study of OPF is becoming
more complicated leading in increase the complexity of its
objectives significantly. This is due to the diverse functions
based on the variability and uncertain used in its problem
formulation. The prime objective behind incorporation of
renewable generators (WT+PV) in the grids is to reduce
the transmission line losses and improving the reliability
and quality of electric grids. Also they reduce environmental
pollution. [1] In addition, with increasing of injected power
from RES, specifying optimal contribution of each gener-
ator in the system is necessity. Thus, energy management
and optimal scheduling of different resources could facilitate
diverse missions of electric power system operator, ultimately
reducing total generation electricity cost.

In the few past decades, numerous conventional opti-
mization techniques have been applied to solve different
versions of OPF problem. The conventional solvers are the
Newton method [2] [3], non-linear programming (NLP) [4]
and interior point methods [5]. Despite the fact that some of
abovementioned methods have excellent convergence char-
acteristics and some of them are usually suitable for industry
applications. However, they have some weaknesses, which
are summarized as follows:

1) Sensitivity to the initial search point, i.e., they might
converge easily to local solutions as may converge to
global ones.

2) Lack of flexibility with respect to practical systems,
i.e., each method is suit for a specific problem formu-
lation in its proper objectives and/or constraints.

3) Besides the inflexibility aspect, they also encounter
a huge difficult to set of uncertain and stochastic
problems, such as OPF with application of renewable
generation.

Therefore, developing new and effective optimization meth-
ods is necessity in effort to overcome the shortcomings of
the traditional optimization techniques’. [6] Thanks to the
computational intelligence schemes and open access to opti-
mization techniques have liberated considerable researches
in the field of meta-heuristic algorithms to solve complex
optimization problems during first decade. These opti-
mizers have ability to provide near-global solutions and
capability to escape local ones, avoiding in premature
convergence. Many meta-heuristic optimization algorithms
have been implemented to cope with classical OPF prob-
lem like improved version of PSO [7], moth swarm
algorithm (MSA) [8], improved bacterial forging method
(IBF) [9], teaching-learning-based optimization (TLBO)
technique [10], backtracking-search algorithm (BSA) [11],
improved colliding-bodies optimizer (ICBO) [12], adaptive
multiple teams perturbation-guiding Jaya (AMTPG-Jaya)
algorithm [13], and Differential Evolution [14] While

22647



IEEE Access

S. Mouassa et al.: Novel Design of Slim Mould Optimizer for Solution of OPF Problems Incorporating Intermittent Sources

aforementioned references are limited on the thermal power
generators only. In the few past years, a system with mixed
resources involving thermal, wind and solar generators have
been studied in quest of provide electrical energy at minimum
generation-cost with high-quality. As mentioned earlier, elec-
tricity market allows the incorporation of renewable energy
sources into the electricity grids in order to minimize the
environmental problems and enhancement of load relief on
a transmission lines as well system voltage profile control
by transmission line active power losses reduction. In that
context, a few works have been published in literatures. For
instance in [15] modified Jaya algorithm is applied to solve
OPF incorporating RES considering four different objective
functions to improve recorded results against other optimiz-
ers while the RES is modeled as a negative load, but any
forecasting technique was not employed to forecast wind and
solar photovoltaic power output. The results show outper-
forms of MJAYA on the basic Jaya as well on other existing
algorithms.Partha Biswas et al. [16] proposed an adaptive
version of differential evolution-based technique (SHADE)
to solve OPF problem in a system involving renewable power
generators. To forecast wind power and solar-photovoltaic
production, authors used Weibull and lognormal probability-
distribution-functions (PDF). In addition, the feasibility of
results was discussed and checked that all control variables
fell inside the allowed limits. Thus, findings clearly show
the efficacy of the proposed model, but, unfortunately, it was
applied only on medium-sized test system, IEEE 30-bus.
In another publication [17], Ehab E.Elattar proposed mod-
ified version of the moth swarm algorithm to solve OPF
problem of combined heat and power system with pres-
ence stochastic wind farm. The model is well presented and
results were discussion but only for IEEE 30-bus system
in which feasibility of solution of large-scale test system
IEEE 118-bus were not discussed. As well, application of
suggested model on a practical power grid was not conducted.
Zia Ullah et al [18] provide a new hybrid optimization algo-
rithm PPSOGSA for OPF solution considering renewable
energy generators. The model of stochastic behavior is based
of PDF scheme. The results amply show the superiority
of proposed hybrid method against basic PPSO and GSA.
Again, however, the algorithm was not examined by applying
it to real/ large-sized power system. In Yu-Cheng Chang et al.
[19], evolutionary particle swarm optimization (EPSO) algo-
rithm was used for solving OPF problem in a wind-thermal
power system. The suggested wind model is based on the
up-spinning and down-spinning reserves of the production
units. But, the approach was also evaluated only on modified
IEEE 30-bus system and large-scale power systems were not
taken into consideration when validating the proposed model.
A modified cuckoo search optimization technique employed
for OPF solution incorporating wind power was proposed
in Chetan Mishra el al in [20]. Authors in [21] proposes a
new strategy for the optimal scheduling problem taking into
account the impact of uncertainties in RES and load demand
forecasts. GA is used to test the effectiveness of the suggested
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optimal scheduling strategy by applied on the medium and
large-scale test system IEEE 30-bus and 300-bus. In overall
obtained results were good and promising too.

In view of aforementioned works, published results are
promising and encouraging. But bear in mind that in spite
of all efforts carried out in this area since half-a-century ago,
topic is remains open for research and also worthy of further
attention. On the other hand, despite the success of many
optimization methods in realizing satisfactory results, but still
suffer from some limitations and shortcomings as far as their
susceptibility of falling into local optima and the difficulty of
tuning the main intrinsic parameters. More precisely, none
of them can guarantee finding the optimal solution for all
optimization problems.

Moreover, application of these algorithms on larger scale
or real-sized electric grids is uncommon. Consequently, these
gaps give an opportunity to suggest or develop effective meta-
heuristic techniques able deal different OPF formulations.

In this paper, a SM algorithm is proposed to deal with
OPF problem in the presence RES and different objective
functions. The proposed SMA is examined on the medium-
test system IEEE 30-bus, and a real-sized DZA114-bus power
system. In addition, superiority of feasible solutions (SF)
method is used herein to handle constraints of stochastic
OPF problem. Slime Mould Algorithm (SMA) is a novel
stochastic optimization algorithm nature-inspired proposed
by Shimin Li et al. in 2020 [22], which simulates the behavior
of Physarum polycephalum and morphological changes of
slime mould while searching food. Its structure is very simple,
which makes it easier to implement for various optimization
problems [22]. Also, it has excellent randomness proper-
ties, makes it search for all optimal solutions in the search-
space, hence effectively avoiding local-optimum. In addition,
the following points summarize precisely master benefits of
proposed SMA and also serving as motivational factors for
selecting this optimizer.

1) Adaptive variation of weight allows the SMA to keep

a certain perturbation-rate while warranting fast con-
vergence, thus preventing search-process in confined
regions (local optima).

2) It has an important parameter of vibration V; allows
the individual position of SM to contract in a specific
method, which guaranteeing early exploration and the
accuracy of the exploitation process.

3) The position updating decision parameter DS and three
different position updating schemes guarantee better
capability of the SMA in different search-phases.

4) The numerical results of engineering optimization
problems in real life showed that SMA is more effi-
ciency than the compared optimization techniques.

Remainder of this paper is organized as follows. Section 2
introduces the problem definition, objectives and mathe-
matical formulation of OPF problem including applicable
constraints. The description of proposed algorithm is pre-
sented in Section-3. Section 4 presents various numerical
results on a test system IEEE 30-bus and Algerian DZA
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114-bus in order to show the capabilities of the developed
algorithm. Finally, this paper is concluded with Section 5.

Il. PROBLEM FORMULATION

The primary objective of OPF is to find the optimal settings
of control-variables so that the specified objective-function is
minimized while satisfying all constraints imposed (equality
and inequality). Mathematically is formulated as follows:

Minimize Fop; (x, u) (1)
gx,u)y=0
S.t.g(x,u) B <0 2

where Fop; (x, u) is the objective function, g (x, u) defines
equality constraints, & (x, ) inequality constraints. x and u
are the vector of dependent variables and the vector of control
variables, respectively. For obtaining the optimality and guar-
antee the feasibility of solutions, dependent variables also
should be within the allowable limits, which play an essential
role in the security of electric power system

A. OBJECTIVE FUNCTIONS

In this work, three objectives will be minimized, cost, power
loss, and gas emissions of thermal units.

o Thermal power only units:
Fuel cost of thermal power units can be described as [17]:

Nrg

Cro (Pr6) = Z ai + biP16i + ciPg; 3
i=1
For more realistic pattern and precise modelling valve-point
effect scheme is considered. Equation (3) is modified by
adding an additional sine term to account for the valve effects
in this manner:

N1
Cr (P16) = ) _ ai + biPri + ¢iPfg;
i=1

+

d; x sin (e,- (Pr}lén - PTG))’ 4)

where q;, b;, c;, d;, and e; are the cost coefficients of the
i~™ thermal generators producing power output Prg;, N7g is
the number of thermal generating and P‘}“(i;“ is the minimum
of power of conventional thermal generator. The cost and
emission gas coefficients for the conventional units used here
are provided in [16].

Since wind and solar generators does not require any fuel
like conventional thermal generators, cost-function evalua-
tion of the wind and solar obey of some norms. The first norm
is direct-cost for wind generator Costw ; and solar generator
Costs . Mathematically expressed as follows:

Costw j (Pws.j) = &iPws. (5
Costs i (Pss.k) = hkPss.k (6)

where g; and hy respectively, are the coefficient of direct-
cost attached with j wind power plant and k™ solar power
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unit. Pyg, ;j and Psg, i are the scheduled power from the same
power plants (wind, solar).

Under the uncertainties, there are two possible scenarios:
(1) if actual power-delivered by the wind farm or solar gen-
erator is less than the estimated-values, this scenario called
as overestimation of power, herein the system operator needs
to the spinning reserve to ensure uninterrupted supply to the
consumers. The cost of committing the reserve production
units to meet overestimated quantity is named as reserve-
cost [1]. The reserve cost for wind and solar power units is
written with following equations:

Costrw j (Pws.,j — Pav.))

= Kgw.j (Pws.j — Pwav,)
Pwa.j
= KRW,j/O (pws,j — Pw.j)fw (Pw.) dpw N

Costgs k (Pss.k — Psav.k)

= KRS,k (PSS’]( - PSAV,k)

= Krs.k *fs (Psavk <Pss.k) * [Pssc—E (Psavk <Pss k)]
(3)

where Kgrw ; denotes coefficient of reserve-cost pertain-
ing to wind power plant, Pyu; is the actual available-
power from the same plant. fi (Pw,j) is the Wind power
PDF for j power plant where and more detail is given
in [1]. Kgs « is the coefficient of reserve-cost for k™ Solar-
Generator. Psa, ; is the actual available power from the
same power-plant. fs (Psayx < Pss,x) is the probability of
solar power-shortage occurrence than the scheduled power
(Pss.k)s fs (Psavk > Pss,k) is the expectation of solar-power
above Pgg .

Contrary of overestimation, the second scenario called the
under estimation of wind/solar power plant. In this scenario
the actual power produced is higher than the estimated one,
yielding the surplus power. This situation requests introduce
the penalty cost against each surplus amount of power, where
expressed by the following equations.

Crw j (Pwavj — Pws.j)
= Kpw j (Pwav,j — Pws.))

Py j
= KPW,j/P (Pw.j — pws.j)fw (Pw.) dpw 9

Ws.j

Cps.k (Psak — Pss.k)

= Kps,k (Psavk — Pss.k)

= Kps.i *fs (Psavk > Pss.k) * [E (Psavk > Pss.x) —Pss k]
(10)

where Kpy j is the penalty cost coefficient for the 7~ wind
power plant, Py, ; is the rated output-power from the same
wind-farm. Kpg ; is the coefficient of penalty-cost for k™
solar PV plant. fs (PSAV,k > Pss,k) is the probability of solar
power surplus i.e, actual power above the scheduled power
(Pss.k)s fs (Psavk > Pss.k) is the expectation of solar power
above Py ;. E (PSAv,k > Pgsgk).
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It is important to indicate that the cost evaluation for wind
generator and solar PV unit are depends on the wind Weibull
probability-distribution-functions (PDF) and solar radiation
by lognormal PDF respectively [23].

Case 1: In the first objective function, OPF is formulated
with presence of RES, whereby all the cost-functions afore-
mentioned are included. This objective minimizes the gener-
ation cost without including emission cost. Mathematically
can be expressed as:

Foj = Cr (P16)

N
n f Cw.j Pwsu) + Crw j (PwG.j — Pwav,))
+CPW] PWAV]_PWS]

N,
+§ Cs.k PSSk + Crs.k (Pss,k — Psav.k)
+Cps.k (Psav.k — Pss.k

(11

where Nwyg and Nsg denote the number of wind generators
and PV solar in the grid.

Case 2: Emission gases and Carbon tax: Conventional
thermal power generators emit harmful gases into the envi-
ronment such as SOX, NOX, and CO;, which pollute the
atmosphere. To reduce emission of greenhouse gases, the
carbon tax was imposed as penalty. This end can be achieved
through minimization of generation and emission cost which
can be expressed as follows:

Second objective function Minimize-

Fop = Fhp+ Ciax X E (12)

NrG

E = Z [(051' + BiPrGi + J/iPZTGi)

i=1
x0.01 + w;exp (WiPrci) | (13)
where «o;, B;, yiwi, 1; are the emission-coefficients corre-

sponding to the i~ generator and C,, is the carbon tax,
which is equal to 20 ($/h).

B. SYSTEM CONSTRAINTS
o Equality-constraints: are the power flow equations
which are given below:

NB
—Pgi = Y Vil x |Vj| x |vy]
X cos X (0;; —8; +8;) =0
gvél ! ./) (14)
- Qdi_Z|Vi| x V| x | Y|

xsinx(@ij—(Si+8j)=0

o Inequality constraints: represent the limits applied on
the following variables

PRN < Prgi < PR, i=1,2.....Nrg  (15)
PR < Pwg < PRes, j=1,2.... Ny (16)
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P?g}k < PsGx < Pgngf(k k=1,2..... Nsg (17)

ORI < Orgi < 76y (18)
Qr‘}/“; < Ows < WE;JX i=12....N (19)
QSG © < Osc.k < OsGx  k €Nsg (20)
Q’é““ =<0c = Qmax i €Nc (21)
Vmln < Vi < V&™, (22)
me <V <VE*¥ ieNL (23)
o Security constraints
TR < T} < TPk € NT (24)
S; < S"™i e NTL (25)

Egs, (15) — (17) are the active power limits of conven-
tional power-plants, wind and solar power generators,
respectively. Eqgs, (18) — (21) are the reactive power
capabilities of conventional power-plants, wind-/ solar
generators and shunt reactive power sources. Eq, (22)
shows the constraints applied at the generators busbar,
whereas Eq, (23) represents the voltage limits constrain-
ing load-buses, NL being the number of load-buses.
Security-Constraints of: tap changing transformer and
line capacity are given by Eqs, (24) (25), respectively.
NTL is the number of lines in the electric grid.

In handling constraints, one of the first widely adopted
approaches employed is static-penalty function method
which is commonly based on trial and error. However,
improper selection of penalty-coefficients may some-
times lead to violation of system constraints. To this
purpose, constraint handling technique, superiority of
feasible solutions (SF) is employed for guaranteeing the
feasibility of solutions.

Superiority of feasible solutions (SF)

This approach was first proposed by Powell and Sklonick
in 1993 to deal infeasible solutions, afterwards Deb
in [24] propose similar technique which transform the
equality constraints to inequality constraints with aid of
a tolerance factor epsilon ¢ by using Eq. (26). Mathe-
matically described as follows:

f () ifhy (?) > ()
Vi=1,2,...... N
fitness () =1 ¢ @ (26)
i=1
otherwise,
lgi(x)|—e =<0 27

where fi,0r 15 the objective function value of the worst
feasible solution in the population and if there are no fea-
sible solutions in the population, then f,,rs: 1S set to zero.
¢ is a tolerance parameter for the equality-constraints.
Other mathematical expression of SF method is pre-
sented as follows:

Ti(x):{max{hi(x),O} i=1....N
max {|g; (x)| —¢, 0} i=N+1,.....M
(28)
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Therefore, the aim is to minimize a desired objective
function F; (X) so that the optimal solution subjected to
all inequality constraints 7; (X). The overall constraint
violation for an infeasible individual is a weighted mean
for all the constraints, which is presented as:

N
> owi[T; (x)]
=1

vi (x) = (29)

N

2 Wi
=1

when we compare two solutions X; and Xj, X; is said
superior to X; under the following conditions:

1) A feasible point is preferred over an infeasible one

2) Between two feasible solutions, solution having
a smaller objective-value in a minimization case
(greater objective value in case of maximization)
is preferred.

3) Between two infeasible solutions, the one that has
a smaller constraint violation is chosen.

More detail on different constraint-handling techniques for
meta-heuristic optimization can be found in [25], [26].

C. STOCHASTIC WIND/SOLAR AND

UNCERTAINTY MODELS

Since wind speed is a random variable, its distribution is
obtained by Weibull Probability Density Function (PDF) with
shape factor (k) and scale factor (c). Mathematically given
by:

k S (k=1) S k
fo(S)= (—) (—) X exp — <—> for 0 < S < o0
c c c

(30)

o Wind power model
The output wind power from a wind turbine is a function
of wind speed, expressed by the following equation: [16]

0, for v(vi, and v)vyyu:
VvV —V;
Py (v) = Pwr(v vm) forvy, <v <, 3D
r — Vin
Py forv, < v < oy

where v;,, v and v,,; are respectively the turbine cut-
in, rated and cut-out wind speeds. Py, defines the rated
output power of the wind turbine.
o Wind power probability for different wind speeds

From eq. 32, we can note that if v is less than v;, and
above v,,;, the power output is zero. Also, the wind
turbine produces P,,, for the condition v, < v < vy.
For these discrete zones, the probabilities can be written
by the following equations:[27]

fo (Pu) (P =0} = 1 —exp [— (";)q
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Fexp [— (”;”’)ﬂ} (32)
v,

Sw @w) {pw = pwr} = 1 —exp |:_ (_)ﬁ]

o
B
Fexp [— (@) } (33)
o
Unlike to the discrete zones, the output wind power is

continuous for the condition v;;, < v < v,, Hence the
probability for this region is described as follows: [27]

B (Vy — Vin) P A1
Sw (ow) = aﬁr*—PW:n Vin + F:vr (Vr — Vin)
Vin‘i‘% vr — vin)
X exp _ wr (34)
o

Also, the solar irradiance to energy conversion for the
PV plant also can be given by

2
Py (GGT) for0 < G <R,

2
Py (&)

where G4, is the solar irradiance in standard environ-
ment, R, is a certain irradiance point, Py, is the rated
output of the PV power plant. Further details about
uncertainty model of RES can be found in Ref [1].

Py (G) = (35)

for G > R,

lll. SMA-BASED PROPOSED METHOD

Slime Mold Algorithm is a novel stochastic optimization
technique proposed by Li er al. in 2020 [22], that has tried
to mimics the behavior of Physarum polycephalum and the
bio-oscillation mode of the slime in nature. SMA used the
weights to simulate the negative and positive feedback pro-
duced by slime mold during foraging-process, forming three
kinds of morphotype. The latter is regarded as a new idea
involves creating a differentiation in search-space for obtain-
ing new possible solutions. One of the most interesting char-
acteristics of slim mould is the unique pattern, allowing to SM
custom several foodstuff sources simultaneously, forming a
venous network joining them. This pattern allows exploring
different regions of search-space and avoids falling into local
optima. Based on the quality food-stuff, slim mould can
well-being dynamically adapt or adjust their search schemes
efficiently. When the quality of food sources is positive (high-
quality), the slim mould utilizes the region-limited search-
technique, herein slim mould focuses only on the achieved
food sources. Otherwise, in case of quality of food sources
that have been found is negative (low- quality), they abandon
the food source in order to explore new ones in the area.
According of the negative, positive feedback responses, slime
mould can develop the optimum food-path to tie food in a
relatively more best way. The mathematical model of some
mechanisms and characteristics of the slime mould will be
illustrated in the subsequent sections.
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FIGURE 1. Foraging morphology of SM.

A. MATHEMATICAL MODELING OF THE SLIME

MOULD ALGORITHM

1) APPROACH-FOOD

SM can easily reach food through the odour in the air. This
behavior of contraction is modeled mathematically Eq.(30)

Xt+1)= .
veX (1), r>p

(36)

— > > = —>
— {Xb(t)+vb.(W.XA(t)—XB(I)), r<p

where JI)) is a parameter within range [—a, a], v¢ decreases
linearly from 1 to 0. 7 represents the current iteration. X} indi-
cates the individual position associated with highest odour-
concegtration currently found. X represents the position of
SM, X4 and Xp are two randomly generated individuals from
the population. W is the weight of slime mould. The p formula
expressed by Eq. 38

p = tngh|S (i) — DF| (37)

where S (i) is the fitness value of 7(:) whereas DF' is the best
fitness obtained in all iterations. vb is defined as follows:
vb =[—a, a]

iter
a = arctanh (— <—) + 1) (38)
max — iter

The formula of W in Eq. (1) can be given by

_ >
W (Smelllndex)
bF — S (i
1+ r.log —(l) + 1), Condition
_ bF —wF (39)
e (SO th
—rlog| —— , others
S\ bF —wF

Eq. 34 simulates the negative and positive feedback created
between the concentration foods explored with the vein width
of the SM.

Smelllndex = sort (S) (40)

where r is a randomly generated number with a range of
[0, 1] and bF represents the optimum fitness-value obtained
in the current-iteration. The worst fitness-value realized in
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the iterative process currently is wF. Smelllndex defines the
sequence of fitness-values sorted. log is introduced to ease
the change-rate of numerical value, in which the contraction
frequency value does not change significantly

2) WRAP-FOOD
A slime mould will update its location with the following
formula:

rand. (ub — Ib) + Ib,
ﬁ

X5 (1) + vb. (W.XA @) — Xz (z))

N =

ve. X (1), r=p,

r<p 41

rand < 7

X* =

where ub and [b are the upper and lower bounds of search-
space, respectively

3) GRABBLE-FOOD

The success of SM mainly depends on their oscillation
parameters vb and vb, were used to introduce stochastic
nature in the model, helping to guide individuals towards
food position having high concentration. Detailed character-
istics about slime mould algorithm is given in [22]. SMA
is like other meta-heuristic techniques start the process of
optimization by distributing individuals in the search-space
as first solutions. Each individual in a population repre-
sents a possible solution of the optimization problem, and
then all generated solutions have been evaluated by selected
objective-function and select the minimal value with mini-
mization and maximum value in case of maximization.

Afterwards, at each iteration the individuals update their
coordinates according to some equations movement of slime
mould in nature along with some parameters.

In the next step, the updating process is repeated till a
terminal criterion is satisfied. Last step, the optimal-solution
that corresponds to the best-individual achieved so far is
memorized. Table 1 describes the steps of the proposed SMA
in solving OPF problem considering WT and PV generation.
with SF constrain approach. The flowchart of proposed algo-
rithm is presented in Fig 2.

IV. NUMERICAL RESULTS AND DISCUSSION

To validate the potential and feasibility of the proposed
SMA in solving stochastic OPF problems incorporating
wind power generators and solar photovoltaic, SM algorithm
was examined on the modified IEEE 30-bus test system
and Algerian electricity grid DZA 114-bus under differ-
ent objective functions. The modification is to insert two
wind generators at buses #5 and #11lalong with one solar
generator at bus #13. All data ca be retrieved in [23] and
Zimmerman et al. [28]. All algorithms have been coded and
solved under MATLAB R2014a platform and run on an
Intel ®Core™i5-4300U 2.50 GHz 4.00 GB RAM personal
computer. The population size is selected using empirical
tests by running the SMA several times with different pop-
ulation sizes like 20, 40, 60 and 80. The test results are
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TABLE 1. SMA for stochastic optimal power flow (OPF) prpblem.

Read data of test system and SMA-SF input

Read input data of test system configuration: Bus-data, Line-data, transformers data, and generation units-data.

Step 1 Dimension of the problem, dim (dim =12 for IEEE 30-bus, 30 for DZA114-bus)
Number of population, &, (~, =30 for IEEE 30-bus and 60 for DZA 114-bus, Selected)
Stopping criteria is the Max-number of iterations
Minimum and Maximum value of control (decision) variables, in vector like x , and X X, = [X (TR0, G, ¢ j]
and X, =[X ) X2 X 00 ]
Step 2 Specify the desired objective function to be optimized (Folb/. , Fozh, ,or E;h,- )
Step 3 Calculate the forecasted-output power of wind turbine and PV units.
Step 4 Generate initial population of size ~, individuals uniform spreading in the range [ ¥, X ]
S Run power-flow for each updated individual in the population and calculate the fitness of all individual. Then, evaluate
tep 5 . . NV . .
constraint function and constraint violation using Equations. (27) — (30).
Step 6 Apply the SMA operators and equations of update to create a new population of individuals’ (i.e., obtaining Improved
P solutions of the problem).
In selection phase, individuals for next population are replaced with new individuals if give better value of objective func
Step 7 according to rules of SF method. After each updating process, the new individual is considered better if it yields negligit
P constraint violation or zero constraint violation than the respective old population individual. Otherwise, previous indivi
is retained.
Step 8 e Repeat steps 5-7 until the stopping criteria is reached, i.e., until max-iteration achieved
Step 9 e Report the optimal results that corresponds with the best pathfinder and its fitness value (objective-function value)

Input-data, Pop-size, number of

Evaluation For each individual, calculate the
fitness function of all slime mould

control variables, and Max-iter 15
¥ Sort and Update best-Fitness X»
Generate initial position a”
of Slime mould Xi
i' Calculate the fitness weight W
of each individual by Eq.39
Check if any individual's out of T
the search-space and amend it
1 Update parametersp ,u,,u, of
x each slime mould by Egs.37- 38
Set current iter = 1, and

2=0.03 1!

Update its positions by Eq. 36

iter < Max-lter

FIGURE 2. Flowchart of SMA.

not reported herein, we therefore, indicate only the popula-
tion size which resulted in achieving best outcomes. To this
end, in all simulation cases, number of population size is
specified as 30 individuals for IEEE 30-bus, 60 for DZA
114-bus and maximum number of iterations is fixed 300 for
IEEE 30-bus and 400 for practical power system. For the
purpose of a fair comparison, all control variables of test
systems were considered as continuous. Table 2 provides PDF
parameters of wind power and solar PV plants.Table 3 reports
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description of all test-systems characteristics used in this
article.

A. RESULTS OF MODIFIED IEEE 30-BUS TEST SYSTEM

To show the efficiency of the SMA, the deterministic OPF
cases for the modified system configuration, i.e., without
WT generators and PV units are considered. Four cases
are studied herein, with the objective functions mentioned
in section above, namely: Case 1— minimization of basic
fuel cost; Case 2 — optimized cost against reserve-cost;
Case 3 — minimization of total generation-cost with carbon-
emission tax; Case 4 — optimized cost against penalty-cost.
The optimal results obtained for each examined case are
presented in Table 4.

1) CASE 1— MINIMIZATION OF TOTAL GENERATION-COST
In this case, the objective-function is minimization of the
total cost of generation. Obtained findings by using proposed
algorithm SMA are based on the Weibull PDF parameters.
Figures 3-5 represent Weibull fitting and wind distribution
obtained from the simulation of 8000 Monte Carlo scenarios,
while the stochastic power-output of solar photovoltaic unit
is illustrated by Fig 6.

Optimal locations of the wind farm and PV power genera-
tion depend on several factors such as wind speed and solar
radiation, respectively [29].

In this paper, the locations of wind and PV units are
selected as in [30] for IEEE 30-bus test system with the aim of
comparing the obtained results with those mentioned in [30]
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TABLE 2. PDF parameters of WG and SG system IEEE 30-Bus.

Wind-power generating units
Position of | No of }532(3 Weibull PDF Weibull mean,
Windfarm [turbines P, (MW) parameters My
Bus#5 25 75 c=9k=2 v ="17.976 m/s
Bus #11 20 60 c=10k=2 v =28.862 m/s
Photovoltaic power plant
Position of Rated power, B, Lognormal PDF Lognormal
Solar system (MW) parameters mean
Bus #13 50 p=6, r=0.6 G =483 W/m?

TABLE 3. Test-systems characteristics description utilized.

Parameter IEEE 30-bus | DZA 114-bus
Buses, N3 30 114
Generators, Ng 6 15
Transformers, Ny 4 16
Shunts, Np 9 7
Branches, Ng 41 175
Control variables 12 46
Base case for P, p.u. 5.880 67.447
Base case for VD, p.u. 1.4942 3.82
Algorithms parameter setting

Dllmenswn of optimization problem 12 30
(dim)

Population size 30 60
Max Iteration 300 400

and from company of electricity SONELGAZ for Algerian
power system.

As shown, from obtained findings the SMA, given in
Table 4 is achieved the minimum value of generation cost
compared with other optimizers. The optimal generation cost
achieved by SMA is 781.078 MW, while for other optimiza-
tion techniques, PSO (784.3400 $/h), TLBO (782.6767 $/h),
SHADE-SF (782.50$/h), jellyfish (781.6387 $/h), artificial
ecosystem optimizer (781.5219 $/h), and hunger games
search (781.86 $/h) as well as vs. arecently optimization tech-
nique which introduced October 1, 2021 entitled, orca pre-
dation algorithm (782.0760 $/h) and gorilla troops optimizer
GTO (781.26 $/h). It is worth to note that PWG1 and PWG2
indicate the scheduled powers from wind generators #WGl1
and #WG@G2, respectively. The emission rate is calculated by
using the optimal scheduled power of thermal generators,
where reserve is assumed an alternate source that does not
add to the emission.

Based on the results obtained in the literature regarding
solution of classical OPF problem and the results given in

Table 4, it can state that with insertion of renewable energy
sources, the total generation-cost decreased from 800.00 $/h
as a reference cost to 781.07 ($/h), i.e., around 18.9 $/h.
More precisely, if every hour can save the cost of 18.9 $,
and the operating time per-year is supposed as 7500 h,
then operating time from the propose optimizer SMA can
save 141975 Dollars in total every year. Consequently, the
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FIGURE 3. Wind speed distribution for wind-power Generator#1 at
bus5(c=9 k=2).
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FIGURE 4. Wind speed distribution for wind-power Generator#1 at
bus 11 (c =10, k = 2).
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FIGURE 5. Distribution of solar irradiance or solar PV generator at bus
#13 (L = 6, 0 = 0.6).

insertion of wind generators and solar power plant signifi-
cantly contributes on the reduction on total generation cost
compared with the original system configuration (i.e., with-
out RES). The comparison and statistical- results of SMA
with other algorithms are listed in Table 5. Fig. 7, illustrates
a comparison between the convergence of SMA and other
applied algorithms.

2) CASE 2— MINIMIZATION OF TOTAL GENERATION-COST
WITH CARBON-EMISSION TAX

In this case, the quadratic total cost of generation and
emission functions in (13) were minimized considering the
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TABLE 4. Optimal results comparison for different algorithms for IEEE 30-bus, Case 1.

l\égnab Min Max 1;;3(]) T[L;;]O S_I;E\EJE 15 [30] OPA AEO HGS GTO SMA
Prai 50 140 134.907 134.843 134.908 134.905 13491 134. 908 134.907 134.907 13491
Prc 20 80 28.037 29.0639 28.564 29.0226 27.0785 27.7985 28.8317 28.1779 29.4961
Pwal 0 75 43.744 44.045 43.774 43.9696 43.0040 42.9166 42.8527 43.2909 42.2527
Prg; 10 35 10.000 10.0606 10 10.0006 10.0003 10.0037 10.0000 10.0000 10.0034
Pwaz 0 60 37.193 36.6258 36.949 37.0193 36.4374 35.9806 35.3547 36.5917 37.1432
Psai 0 50 35.303 34,5823 34.976 34,2532 37.7603 37.9418 37.2989 36.1438 35.3402
\ 0.95 1.1 1.0815 1.0756 1.072 1.07725 1.0724 1.075 1.0757 1.0725 1.0726
V, 0.95 1.1 0.9500 1.0587 1.057 1.05698 1.0568 1.058 1.0606 1.0578 1.0590
Vs 0.95 1.1 1.1000 1.0411 1.035 1.03507 1.0346 1.035 1.0385 1.0374 1.0349
Vs 0.95 1.1 1.1000 1.0353 1.04 1.03705 1.0392 1.038 1.0422 1.0395 1.0396
Vi 0.95 1.1 1.1 1.0874 1.1 1.0983 1.0981 1.100 1.1000 1.1000 1.1000
Vi3 0.95 1.1 1.0626 1.0359 1.055 1.04571 1.0566 1.074 1.0582 1.0548 1.0511
Qrai -20 150 15.6792 451 -1.903 -0.68357 -0.89148 5.97209 1.97011 -2.64234 -4.56703
Qra2 -20 60 -20 12.0447 13.261 11.00115 12.33114 159173 19.89941 12.51218 | 17.69608
Qwas -30 35 35.00 29.9474 23.181 22.6673 23.18025 33.7725 26.51019 4.65643 1.98405
Qras -15 40 40.00 30.7341 35.101 40.0 13491 25.7527 39.23979 | 32.04730 | 32.68252
Qwas -25 30 27.85 27.9642 30 30 29.98468 29.8473 30.000 29.70313 | 29.90060
Qsas -20 25 17.73 11.8604 17.346 14.0246 18.13988 24.4921 17.94308 16.09073 14.70039
(I;(/:; 782.242 782.359 781.90 782.6767 782.503 781.6387 | 782.0760 | 781.3979 781.86 781.2626 | 781.0786
VD NR NR NR NR NR 0.4421 0.46629 0.5279 0.48809 0.4838 0.47015
PL NR NR NR NR NR 5.7738 5.7882 5.7950 5.8460 57117 5.7502
T (s) NR NR NR NR NR NR 1221 429.7 287.8 357.9 286.7
0.25 — TABLE 5. Statistical results of different optimizers for Case 1.
1
1
020 || Scheduled solar 1 Algorithms | Min ($/h)] Max ($/h) | Mean ($/h) Std
) B power plant, Pss GOA [23] |785.7109 | 8234731 |804.016837 | 9.52¢ + 00
§ 0.15¢ 1 BWOA[23] |784.8148 795.4683 788.247149 5.83¢ + 00
Q GWO [23] |[781.6645 783.3359 783.041218 2.75¢ - 01
% 0.1 1 ALO [23] |781.6562 791.9234 784.325274 2.49¢ + 00
~ PSO [23] |781.9047 794.4220 784.904776 2.52e + 00
0.05 1 GSA [23] |782.2237 794.8995 785.860254 2.43e + 00
H HHHH MFO [23] |781.6928 783.9304 782.49197 4.77¢ - 01
0 P 50 200 250 BMO [23] |781.6519 | 783.5283 | 781.81867 | 3.44e- 01
Available real power (MW) from solar PV at bus 13 AEO 781.3979 | 782.8744 781.8199 3.095e - 01
FIGURE 6. Real power distribution (MW) of solar PV at bus 13. HGS 781.86 782.9445 782.4106 3.649e-01
GTO 781.2626 782.7022 782.082 3.77e-01
SMA 781.07 782.990 781.9726 4.53e-01

carbon tax (Ct) imposed on the thermal power plants. Herein,
the carbon-tax value is equal to 20 $/ton [1]. It is obvious that
with existence of the Carbon-Tax the penetration level from
RES is raised, and this can be visualised within simulation
results. The ratio of penetration of RES in the scheduled of
optimum generation is based on the volume of emission rate
with the imposed carbon-tax value. Main objective here is to
schedule more power among the renewable energy so that the
volume of emission is kept at minimum level.

3) CASE 3 — OPTIMIZED COST AGAINST RESERVE-COST
In third case, all parameters are retained the same as in
first case except reserve-cost-coefficients. The coefficients of
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wind generators and solar photovoltaic unit are varied by a
discrete-step of 1 starting from 4 to 6, i.e., = 4, (case3-a), =
5, (case3-b) = 6, (case3-c). The penalty-cost-coefficients for
all intermittent sources are remain the same as the first case.
The optimal power scheduled of generators is presented by
bar graph in Fig.8 and compared with those found for the base
case (case 1). For clarification purpose, Case 3-a describes
case when reserve coefficient K, = 4, case 3-b represents
for K, = 5, and case 3-c represents K, = 6. In this case
study, when the coefficient of reserve cost increases, the
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TABLE 6. Optimal results of case 2 for modified IEEE 30-bus test system.

Variables |qpapg-sr[23] | MFO[23] | BMO[23] | IS[30] OPA HGS GTO AEO SMA
Prei 123.020 123.637 123.127 123.572 123.914 123.3155 123.3721 123.394 123.6670
Prc2 33.047 33.2996 31.947 33.1626 345124 32.6554 32.7853 32.6311 33.5199
Pwai 46.021 46.1099 45.402 46.0806 46.6065 45.7569 45.8351 45.8296 46.2945
Prgs 10.00 10.0000 10.000 10.00 10.00 10.00 10.00 10.000 10.000
Pwa2 38.748 38.8443 38.270 38.8011 39.1231 38.5231 38.5999 38.5619 39.2413
Psqi 37.336 36.7199 39.865 37.0628 34.5273 38.4482 38.0833 38.2888 35.9774
A 1.071 1.0782 1.0777 1.07066 1.0715 1.0723 1.0702 1.0732 1.0731
V, 1.057 1.0645 1.0640 1.05715 1.0583 1.0591 1.0569 1.0588 1.0589
Vs 1.036 1.0432 1.0426 1.03604 1.0364 1.0384 1.0357 1.0371 1.0378
Vs 1.04 1.0473 1.0471 1.04038 1.0399 1.0427 1.0403 1.0415 1.0414
Vi 1.099 1.1000 1.1000 1.0983 1.0975 1.1000 1.0985 1.0983 1.0980
Vi; 1.056 1.0591 1.0602 1.05575 1.0521 1.0627 1.0580 1.0573 1.0581
Qrai -2.678 -1.738 - 1.8489 -2.6666 -2.75418 -0.0912 -3.24025 2.9900 2.4424
Qra2 12.319 12.565 12.4064 12.3540 14.63630 18.527 12.55509 17.7547 17.9378
Qwas 35.27 22.889 229177 35.2538 22.6387 26.0632 | 22.83972 25.5261 25.9879
Qras 22.964 35.847 35.6862 22.9990 34.70553 | 39.9714 34.9987 39.8429 39.5619
Qwas 30 28.500 28.5058 30.00 29.98716 30.00 30.00 29.9998 | 29.8480
Qsas 17.779 16.659 17.0942 17.7114 16.44832 19.737 18.50504 18.1606 18.5039
Feost ($/h) 810.346 811.422 810.7982 810.120 811.121 811.0344 | 810.4412 | 810.7258 | 810.3875
Emission 0.891 NA NA 0.8937 0.9114 0.8807 0.88361 0.8847 0.8986
VD (p.u.) 0.469 NA NA 0.4688 0.4592 0.5042 0.47525 0.4731 0.4760
— ‘ ‘ ‘ ‘ PA <1501 ‘ ‘ ‘ ‘ ThG1
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FIGURE 7. Convergence curves of different optimization techniques for
casel.

contribution of wind and solar generators reduced gradually,
resulting in a shortage of scheduled power. So, an amount
of spinning reserve is urgently needed in order to fill this
shortage. This shortage in power automatically compensated
by thermal generators which result in increasing the cost of
thermal power generators due to the increase of the output
power illustrated in Figure 7. In summary, total generation
cost raises with the increase in the reserve-cost coefficient.

B. CASE 4 — OPTIMIZED COST AGAINST PENALTY-COST

Unlike to the past case, in the fourth case, all parameters of
reserve cost are keeping as in first case excluding penalty
cost-coefficients. Then coefficients of penalty-cost for all
wind generators and photovoltaic power plant are raised
from 4 to 6 by the following order, i.e., = 4 (case 4-a), = 5
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FIGURE 8. Variation of optimal scheduled real-power against reserve cost
coefficient.

(case 4-b), = 6 (case 4-a). The optimal power scheduled of
six-generators is represented by bar-graph in Figure 9 and
compared with those found for the case 1 at the same figure.

When penalty cost coefficient raises, scheduled amount
of renewable energy generators increases too, leading to
decrease the output of thermal generating units with a not
uniform manner, Figure 9. This is judged on the basis of the
economic dispatch between three thermal generators, and it
is observed that considerable part of power is dispatched on
the generator which having the lower production cost. On the
other hand, the scheduled output for all renewable energy
sources also seems not to uniform, which can be interpreted
by the highly nonlinear relation between PDF and reserve /
penalty cost of both solar and wind generators. It is also seen
that the thermal generators cost Thg, is constant and a steady
rise in total cost is observed
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TABLE 7. Solution of optimal power flow case 1 for DZA 114-bus system.

Control variables MIN MAX Base case OPA HGS GTO AEO SMA
Prga 135 1350 450.8996 413.2818 404.4582 400.3014 416.6021 413.2914
Prgs 135 1350 451.3313 428.551 446.8119 416.6813 420.5881 411.7038
Prii 10 100 99.9974 99.2632 100 100 99.9744 100
Prgis 30 300 193.0450 168.5094 170.2331 175.3476 176.8195 177.3124
Prc17 135 1350 444.4532 390.1661 387.1318 402.5487 396.6578 392.3503
Prcig 34.5 345 196.1699 171.5505 164.9564 190.5869 165.1977 169.5086
Prgn 34.5 345 190.8192 160.7105 164.1984 148.5535 163.3672 165.9908
Pwasz 0 345 193.1113 344.9866 345 345 344.9751 344.9997
Praso 34.5 345 193.9922 172.6886 157.7876 158.4923 160.3047 158.0744
Pwass 0 300 186.6383 299.9742 300 300 299.9913 299.9990
Proos 30 300 187.5137 153.098 157.9963 161.5886 160.0757 162.2803
Prcioo 60 600 600 598.5746 600 600 599.4559 600
Prcio1 20 200 200 199.9995 200 200 199.9034 200
Prcioo 0 100 99.9996 99.7473 100 100 99.7655 100
Prgin 10 100 100 99.9309 100 100 99.8781 99.9982
Vg 0.9 1.1 1.0804 1.0968 1.0116 1.0858 1.0212 1.0979
Vgs 0.9 1.1 1.0737 1.0876 1.0043 1.0785 1.0136 1.0909
Vau 0.9 1.1 1.0722 1.0947 1.0152 1.0810 1.0029 1.100
Vais 0.9 1.1 1.0825 1.0986 1.0150 1.0882 1.0243 1.0989
Vair 0.9 1.1 1.0770 1.0904 1.0260 1.0847 1.0500 1.0879
Vaio 0.9 1.1 1.0779 1.0585 1.0290 0.9895 0.9674 1.0629
Van 0.9 1.1 1.0839 1.0601 1.0693 1.0117 0.9724 1.0783
Vas2 0.9 1.1 1.0566 1.0434 1.100 1.0679 1.0239 1.1000
Vaso 0.9 1.1 1.0589 1.0518 1.0565 1.0518 1.0258 1.0448
Vass 0.9 1.1 1.0991 1.0975 1.100 1.0956 1.0663 1.0813
Vaos 0.9 1.1 1.0868 1.0909 1.0754 1.0868 1.0626 1.0897
Vaioo 0.9 1.1 1.0994 1.0999 1.100 1.0958 1.0851 1.1000
Vaiol 0.9 1.1 1.0834 1.0973 1.0749 1.100 1.0726 1.0989
Vaioo 0.9 1.1 0.9898 1.0898 1.0683 1.100 1.0571 1.0991
Vain 0.9 1.1 1.1000 1.0597 1.0461 1.0259 1.0308 1.0585
Qrca -20 400 298.3307 349.0682 286.1607 327.1684 314.5466 313.9243
Qras -20 200 199.3643 168.2862 199.6320 194.7538 198.9920 199.0592
Qa1 -50 100 81.10112 86.33829 98.69637 79.75229 62.2977 91.3217
Qrais 0 100 53.32891 60.94236 64.01384 58.76674 62.9398 53.1718
Qa7 0 400 342.62931 384.7696 304.7518 350.3737 390.6332 359.4238
Qra1o 0 60 59.61001 58.40164 57.88848 48.95479 41.5081 52.4364
Qe 0 50 49.33451 45.2415 48.42180 49.06288 49.3054 42.9558
Qwacs2 0 50 49.70127 23.09849 46.71148 44.14135 49.1808 40.0930
Qrcso 0 60 59.98839 59.7900 59.78096 54.25570 56.6036 59.3190
Qwass -50 200 191.14717 170.939 182.0681 174.2384 1353155 120.3458
Qrcos 0 50 47.66524 48.7959 47.91710 49.59778 29.5177 49.7116
Q16100 0 270 130.8002 118.6411 197.2178 116.5047 221.6016 160.7439
Qraiot -50 200 138.11934 151.9662 155.4020 175.5691 172.4061 155.0638
Qsc109 -50 100 -2.22395 27.20327 34.71469 30.70667 29.1999 28.7393
Qi -50 155 90.0308 74.29622 75.90868 64.92301 75.6699 74.7460
Feost ($/h) 18942.2799 16811.17 16794.44 16795.02 16767.82 16693.11
VD (p.w) 4.3034 3.428 3.7598 3.8629 3.01914 5.3316
Ploss (MW) 60.9708 74.0320 71.5737 72.1003 76.5565 68.5089
z PG MW) 3787.9707 3801.0322 3798.5737 3799.1003 3803.5565 3795.5089
CPU time (s) 1565 2849 1844 2156 2583 1987

V. TEST SYSTEM 2: MODIFIED ALGERIAN POWER

SYSTEM DZA 114-BUS
A. RESULTS OF MODIFIED DZA 114-BUS POWER SYSTEM

To evaluate applicability of the proposed techniques on
the large-scale and practical power system, the modified
Algerian electricity grid DZA 114-bus[31] has been consid-
ered as test system. Algerian network topology is illustrated
in Figure 13 (Annex). System consists of 175 transmission-
lines, which sixteen branches are equipped with tap-changing
transformers, and fifteen generators. The total-load demand is
(37274 j 2070) p.u at 100 MVA base.

The slack-bus is Bus no 4. The modification is to insert two
wind generators at buses #52 and #83 along with one solar
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generator at bus #109. All data of test system “MATPOWER
format” are free only for referees. Therefore, there are a
total of 46 variables to be optimized, including 15 active
power of generators, 15 voltage magnitudes of generators,
and sixteen tap-changer adjustment. Also, this power system
exhibits undesirable voltage drops at some buses, making it
harder to ensure the feasibility of solutions, especially reac-
tive power generators. Minimum and maximum operating
limits of the control variables are given in the table of
results

In this part, the adopted objective-function is the total gen-
eration cost minimization by means of the SMA, GTO, HGS,
AEOQO and OPA algorithms. Fig. 10 shows the convergence
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TABLE 8. Solution of optimal power flow of case 3 for DZA 114-bus system.

Control Limits SMA SMA
variables MIN MAX Case 1 Case5S-a Case5-b Case5-c
Prca 135 1350 413.2914 417.7622 436.3025 453.7025
Pras 135 1350 411.7038 420.1827 437.6323 450.1358
Proni 10 100 100 99.8734 99.9996 100
Prais 30 300 177.3124 152.9599 182.8524 191.7323
Prgi7 135 1350 392.3503 488.7547 422.3965 446.5422
Prcio 345 345 169.5086 191.8366 186.2374 195.4546
Prox 345 345 165.9908 219.5912 183.4647 191.4279
Pwes2 0 345 344.9997 249.8669 282.9889 200.8625
Praso 34.5 345 158.0744 175.8306 191.2124 197.5297
Pwass 0 300 299.9990 242.7596 192.6908 174.6617
Prgos 30 300 162.2803 133.7876 175.6840 189.2058
Prcioo 60 600 600 599.8956 600 600
Prcior 20 200 200 199.9249 200.0000 199.9784
Prcioe 0 100 100 99.9934 99.9969 100
Prcin 10 100 99.9982 99.8807 99.9968 100
Vs 0.9 1.1 1.0979 1.0370 1.0219 1.0235
Vs 0.9 1.1 1.0909 1.0189 1.0127 1.0152
Van 0.9 1.1 1.100 1.0458 1.0114 1.0106
Vais 0.9 1.1 1.0989 1.0244 1.0122 1.0301
Vair 0.9 1.1 1.0879 1.0947 1.0617 1.0411
Vaio 0.9 1.1 1.0629 1.0991 1.0345 0.9792
Ve 0.9 1.1 1.0783 1.0803 1.0393 0.9938
Vas2 0.9 1.1 1.1000 1.0641 1.0943 1.0091
Vaso 0.9 1.1 1.0448 1.0486 1.0497 1.0361
Vass 0.9 1.1 1.0813 1.0833 1.0900 1.0733
Vs 0.9 1.1 1.0897 1.0879 1.0832 1.0692
Vaioo 0.9 1.1 1.1000 1.1000 1.0997 1.0921
Vaiot 0.9 1.1 1.0989 1.1000 1.0860 1.0662
VaGioo 0.9 1.1 1.0991 1.1000 1.0902 1.0610
Vain 0.9 1.1 1.0585 1.0893 1.0694 1.0602
Fcost ($/h) 16693.11 19914.282 20101.03 20417.605
Z PG (MW) 3795.5089 3792.9 3791.455 3791.2334
VD (p.u) 5.3316 4.4643 3.7698 2.7259
Ploss (MW) 68.5089 65.90 64.4553 64.2333
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FIGURE 9. Variation of optimal scheduled real-power against reserve cost .
Number of Iterations

coefficients.

curves of the considered optimizers and, as noticeably, the
SMA converges to high quality solutions in the first quarter
of iterations.

Based on the convergence plot presented in Fig. 10, it can
be seen that SMA achieves the minimum value of generation
cost compared with other optimization techniques.
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FIGURE 10. Convergence curves of different optimization techniques for
DZA114-bus-casel.

Base case denotes the simulation without considering
renewable energy sources, i.e., all power plants are the
conventional power generators, and minimum values of
active powers at buses #52, #83, and #109 are 34.5 MW,
30 MW, and 10 MW, respectively. In this case study, min-
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FIGURE 13. Algerian electricity grid DZA 114-bus.

imization of total generation cost is performed and the below. Moreover, by observing the reactive power limits
obtained results were listed in the first column of Table 7 (Q) provided in Table 7, generators TGS, TG19, TG22, TGI8,
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TGI8, WGS52, and WG83 operate at their maximum limits of
Q capacity for both cases. So, it is more necessary to regard
the constraints on generators reactive power during imple-
mentation of any optimization method. Thus, from all results
obtained so far, it is sufficient to highlight effectiveness of
the proposed constraint handling-technique, that guarantee
the feasibility of solutions, even with the real power system.

1) CASE 5 — OPTIMIZED COST AGAINST RESERVE-COST TO
ALGERIAN POWER SYSTEM DZA114-BUS

In this case, scenario of case 3 is performed for DZA
114- power system. The coefficients of wind generators and
solar photovoltaic unit are varied by a discrete-step of 1
starting from 6 to 8, i.e., = 6, (case 5-a), = 7, (case 5-b) = §,
(case 5-c). The penalty-cost-coefficients for all intermittent
sources are remain the same as the first case. The optimal
power scheduled of generators is provided in Table 8.

In this case study, increasing the coefficient of reserve cost
results in a decreased contribution of wind and solar genera-
tors gradually, making in a shortage of scheduled power. So,
an amount of spinning reserve is urgently needed to fill this
shortage.

This shortage in power (MW) automatically compensated
by thermal-generators which result in increasing the cost of
thermal power generators due to the increase of the output
power as observed in Table 8. Moreover, from Table 8,
It can observe that active power output at slack bus for each
three case 5-a, case 5-b and case 5-c increases to cover that
shortage, meanwhile, output of renewable generators WG1
decrease from 350 mw to 200.86 MW and WG2 decrease
from 300 MW to 174.66 MW for case 5-c. What equal to
270 MW should be compensate from thermal generators in
an effort to maintaining power system stability. On the other
hand, the output of solar generator is remains fix at 100 MW
for three subcases, this is can be justify by technical aspect,
i.e., for keeping each bus voltage magnitudes located near to
the SG bus (#109) within the admissible limits [0.9-1.1] p.u.
Fig. 12 presents generator reactive power scheduled for case 5
of DZA 114-bus

VI. CONCLUSION

In this article, an efficient and robust Slime Mould-inspired
algorithm has been suggested for provide an optimal-solution
of the stochastic OPF problem in the modified IEEE 30-bus
test system and Algerian electrical network DZA 114-bus.
Uncertainty nature of both solar and wind energy sources has
been modelled based on the Weibull and lognormal PDFs
distribution, respectively. To investigate the performance of
SM algorithm, four optimization techniques: HGS, AEO,
GTO, and orca predation algorithm- (OPA) are applied on dif-
ferent test systems. Numerical results of SMA are compared
with the results found by aforementioned algorithms and
other ones provided in literature. The results revealed that the
SMA significantly gives a superior solution, while insuring
the feasibility of solutions, where outperformed AEO, JS,
HGS, MFO, GTO and BMO methods in the base case and
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other sub-cases whatever the constraints of test system. The
results suggest that the proposed SMA can be successfully
applied to solve highly nonlinear problems. The findings
of this document are likely to be beneficial to researchers.
Therefore, the proposed algorithm based SM technique with
the superiority of feasible solutions method it is an excellent
and highly recommended technique for the stochastic OPF
problem, since it more efficient even in the case of practical
electrical network.
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