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ABSTRACT Bamboo surface defect detection provides quality assurance for bamboo product manufacture
in industrial scenarios, an integral part of the overall manufacturing process. Currently, bamboo defect
inspection predominantly relies on manual operation, but manual inspection is very time-consuming as
well as labor-intensive, and the quality of inspection is not guaranteed. A few visual inspection systems
based on traditional image processing have been deployed in some factories in recent years. However,
traditional machine vision algorithms extract features in tedious steps and have poor performance along
with poor adaptability in the face of complex defects. Accordingly, many scholars are committed to seeking
deep learning methods to accomplish surface defect detection. However, existing deep learning object
detectors struggle with specific industrial defects when directly applied to industrial defect detection,
such as sliver defects, especially for ones with extreme aspect ratios. To this end, this paper proposes an
improved algorithm based on the advanced object detector YOLOV4-CSP, which introduces asymmetric
convolution and attention mechanism. The introduction of asymmetric convolution enhances the feature
extraction in the horizontal direction of the bamboo strip surface, improving the performance in detecting
sliver defects. In addition, convolutional block attention module(CBAM), a hybrid attention module, which
combines channel attention with spatial attention, is utilized to promote the representation ability of the
model by increasing the weights of crucial channels and regions. The proposed model achieves outstanding
performance in the general categories and excels in the hard-to-detect categories. Some enterprise’s bamboo
strip dataset experiments verify that the model can reach 96.74% mAP for the typical six surface defects.
Meanwhile, we also observe significant improvements when extending our model to aluminum datasets with
similar characteristics.

INDEX TERMS Bamboo defect, defect inspection, object detection, asymmetric convolution, attention
mechanism.

I. INTRODUCTION
China has the wealthiest bamboo resources globally, and
its bamboo forest area, stock volume, and bamboo timber
production all ranks first in the world [1]. In the produc-
tion process of traditional bamboo products such as bamboo
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chopsticks, bamboo furniture, bamboo flooring, bamboo stor-
age boxes, bamboo shoots [2], bamboo acts as an essential
raw material. Emerging applications such as bamboo char-
coal, bamboo vinegar, and bamboo fiber [3] have promoted
the further development and utilization of bamboo resources.
As the contradiction between wood supply and demand has
become more intense, the mitigation plan of replacing wood
with bamboo has made bamboo strip vital raw material in
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industrial production. It can be seen that the bamboo indus-
try has broad prospects for development and economic effi-
ciency. However, defects are inevitable during the storage and
production of bamboo products due to human operation, envi-
ronment, or other factors. The surface defects of bamboo strip
refer to the external defects of the product, which are different
from the typical product surface. Putting the defective prod-
ucts into subsequent production will cause product stagnation
or functional impairment and even cause safety accidents.
Consequently, surface defect detection is a significant step
to achieve quality control and improve production efficiency.
The surface defect detection of bamboo strip belongs to the
field of industrial surface defect detection. Industrial defect
inspection refers to object detection in industrial application
scenarios where the object categories are pre-specified defect
types. The defect categories mainly include the typical six
types of bamboo surface defects in this article.

The human eyes can usually distinguish surface defects
under suitable light conditions. In most bamboo produc-
tion workshops, the detection of bamboo strips’ surface
defects is implemented by manual visual inspection. Manual
inspection requires experienced engineers, and the inspection
standards are not the same, which is prone to subjective inter-
examiner variations. Besides, workers are prone to fatigue
and cannot work as long as machines. In general, manual
inspection consumes a mass of workforce, time and cost.
The examination can’t promise quality. Many scholars are
aware of this problem and propose some machine vision
algorithms based on traditional image processing to com-
plete defect detection, improving detection efficiency. Yet,
the feature extraction steps of these methods are cumbersome
and cannot sufficiently identify the complex and variable
defects. In recent years, domestic and foreign enterprises
have developed machine vision products for defect detection,
such as Omron, DALSA, Cognex and HALCON, etc. The
cost of this visual equipment is always too expensive to bear
for some small and medium-sized enterprises. The advent of
Industry 4.0 promotes intelligent industrial manufacturing
and intelligent defect detection. Latterly, deep learning-based
object detection algorithms have brought new blood into
industrial defect inspection and made remarkable break-
throughs in defect inspection [4] of steel, aluminium, textiles,
etc. However, the object detection algorithms based on deep
learning have not been widely used in the surface inspec-
tion of the bamboo strip. Moreover, the existing algorithms
based on deep learning have not explicitly designed modules
for hard-to-detect categories, such as bamboo sliver defects,
which implies that the detection performance of sliver bam-
boo defects needs to be improved.

Traditional surface defect detection methods based on
image processing cannot adapt well to industrial inspection’s
complex and volatile environment. To raise the automation
level of bamboo strips’ surface defect detection and pro-
mote the development of related industries, it is of great
significance to explore bamboo strips’ surface defect detec-
tion algorithms based on deep learning. This article chooses

YOLOV4-CSP, a one-stage detector with excellent speed and
accuracy as the baseline. After analyzing the characteristics
of the surface defects of the bamboo strip, we find that most
of the defects which are difficult to be accurately identified
are strip-shaped The characteristic inspires us to design an
asymmetric convolution module and introduce an attention
mechanism. Based on this, we propose an improved version
of YOLOV4-CSP.

The improved YOLOV4-CSP not only follows the advan-
tages of automatic learning characteristics of YOLOV4-CSP
but also has better adaptability, especially for sliver defects.
The addition of two targeted techniques (i.e., asymmetric
convolution and attention mechanism) strengthens the feature
extraction of the horizontal direction of the bamboo surface
and diverts the attention to the salient features, contributing
the model to coping with hard-to-detect samples. The added
modules belong to the plug-and-play module, which does
not significantly change the network structure and introduces
no additional hyperparameter. Thus, the improved network
training process is the same as the original one, enabling the
deep learning object detector to detect bamboo strips’ surface
defects in industrial scenarios with the slightest modifica-
tions. The main contributions of our work are summarized
as follows:

(i) We design an asymmetric convolution module, which
is suitable for sliver defect detection. The module boosts the
model’s performance via enhancing feature extraction on the
horizontal direction of the bamboo strip surface.

(ii)We combine the attention mechanism(CBAM) contain-
ing spatial attention and channel attention with YOLOV4-
CSP to select discriminative features via adaptivelyweighting
feature maps, which further benefits sliver defect detection.

(iii) Targeted experiments verify the effectiveness of the
proposed method, and our method achieves 96.74% mAP
on six types of typical bamboo strip defects. Moreover, our
model performs favorably when transferring to the aluminum
profiles dataset with similar characteristics, implying that our
method may solve other sliver defect detection.

The rest of the paper is organized as follows. Section 2
(RelatedWork) introduces the current research status of bam-
boo surface defect inspection and object detection based on
deep learning. The network structure is shown in detail in
Section 3 (Methodology), including the design of asymmetric
convolution and the introduction of the attention mechanism.
Section 4 (Experiments) is devoted to show ablation experi-
ments and analyze module design-related issues. Summary
of this paper and future work are presented in Section 5
(Conclusions).

II. RELATED WORK
With the massive applications of bamboo in the indus-
try, bamboo surface defect detection has witnessed many
developments in recent years to guarantee the quality
of bamboo products. The research on bamboo surface
defect detection is mainly based on traditional image pro-
cessing, adopting artificial design features combined with
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classifiers to achieve detection [5]. The feature extraction step
is divided into the structural method, statistical method, fil-
tering method, and modeling method. The structural method
usually extracts features via edge detection [6], [7] and mor-
phological operations [8]. The statistical method broadly
analyzes the histogram, LBP [9], and grayscale covari-
ance matrix GLCM [10] features of bamboo strip sur-
faces. While the filtering method is composed of spatial
domain filtering [11] and frequency domain filtering, such
as Fourier transform [12], Gabor transforms and Wavelet
transforms [13]. The modeling method establishes a random
field model, inversed scatter model or fractal body for feature
extraction. Based on feature extraction, these defect detec-
tion algorithms then classify defects by threshold judgment
method, SVM classifier, or BP network [8], [14], etc. Further-
more, some methods have been proposed for specific types
of defects in bamboo strips. The defective edge detection
system designed by Sun et al. focuses on the detection of
edge defects in bamboo [15]. The system uses an optical
fiber amplifier to detect the intensity of light leaking from
the gap between the contact plate and the edge of the bamboo
strip. It is determined whether there is a bamboo strip edge
defect according to the preset amplifier threshold. The feature
extraction of these above methods requires elaborate design.
Thesemethods aremerely effective for certain classes but suf-
fer from poor adaptability, insufficient generalization ability,
and harsh imaging conditions. The object detectors based on
Deep learning can provide a solution to these issues. To this
end, the article proposes a bamboo surface’s defect inspection
algorithm, which exploits the advantages of the automatic
learning of the object detectors based on deep learning.

Over the years, object detection algorithms based on deep
learning have received extensive attention from researchers.
Existing object detectors are mainly divided into one-stage
detectors and two-stage detectors. The former first gener-
ates region proposals, then extracts features according to the
region candidate proposals, and finally returns classification
and positioning results, a coarse-to-fine process. Common
two-stage detectors are RCNN [16], Fast RCNN [17], Faster
RCNN [18], etc. While the latter achieves end-to-end detec-
tion, obtaining classification and locations only after a single
CNN operation. Common one-stage detectors are: YOLO
series [19]–[22], SSD [23], CenterNet [24], Retinanet [25],
etc. Generally speaking, two-stage detectors have advan-
tages in detection accuracy while inferior in speed to one-
stage detectors; One-stage detectors have better detection
speed than two-stage detectors but suffer from a decrease in
accuracy. In April 2020, Alexey et al. proposed YOLOV4
to achieve the optimal balance of accuracy and speed in
the COCO dataset. In November of the year, Wang et al.
researched CSP-ized [26] YOLOV4 and model scaling and
proposed Scaled-YOLOv4 [27], which can be applied to
different computing devices to achieve optimal performance.

Object detectors based on deep learning have been suc-
cessfully applied to several fields, such as video monitor-
ing, autonomous driving, and industrial defect inspection.

In recent times, deep learning-based object detectors have
been widely studied to provide solutions for industrial defect
detection, such as fabric defect detection [28], steel defect
detection [29], and wood defect detection. To the best
of our knowledge, there are few studies on deep learn-
ing to achieve end-to-end detection for the bamboo defect.
Gao et al. [30] propose improved CenterNet for bamboo
surface defect detection. They design an auxiliary detection
module based on training from scratch and fuse the main
part of the pre-training model with a connection mode of
attention mechanism to improve the detection performance
of CenterNet in a small amount of bamboo surface defect
data. However, this model does not study the difficulties in
the surface defects of bamboo, such as sliver defects. Existing
object detectors either use k-means or its improved method
k-means++ [31] to re-cluster to calculate anchors that are
more suitable for the dataset or optimize the convolution
operation to expand the sampling range to cope with the
diversity of scale transformations [32], [33] for sliver defects.
However, few targeted modules have been proposed for sliver
defects, which regularly stretch in the horizontal direction.
On the other hand, the current state-of-art detectors do not
work well when directly ported to industrial scenarios with
bamboo defects. Most general object detectors are developed
based on general object recognition and are not applicable
for specific application scenarios such as industrial defect
detection. As a result, we propose the improved YOLOv4-
CSP model based on the advanced detector YOLOv4-CSP
and design pertinent modules that facilitate the detection of
sliver defects to achieve optimal accuracy.

III. METHODOLOGY
In this section, the structure of the defect detection network
will be described in detail. Firstly, we will introduce the
overall structure of the improved YOLOV4-CSP, followed by
the part of the network with asymmetric convolution. Finally,
the attention mechanism in the network will be presented.

A. NETWORK ARCHITECTURE
The network structure of our model generally follows the
design of YOLOV4-CSP. Wang et al. do CSP-ization in
the neck based on YOLOV4, who build the CSPSPP and
CSPPAN structures and develop YOLOV4-CSP [27], reduc-
ing the computational cost by about 40%. As shown in
Figure 1, the network is divided into three parts, includ-
ing feature extraction(backbone), feature enhancement(neck)
and detection. CSPDarknet53 is selected as the backbone of
YOLOv4, YOLOv4-CSP and our model due to its excel-
lent computations, inference speed and accuracy. CSPDark-
net53 is obtained by the fusion of Darknet53 and CSPNet,
whose core idea is partitioning the feature map of the base
layer into two parts and then merging them through the
cross-stage hierarchy to reduce duplicate gradient informa-
tion while promoting inference speed. In Darknet53, the out-
put of the residual layer (named bottleneck in this paper) is
obtained by adding the initial input and the results of the
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FIGURE 1. The network structure of improved YOLOV4-CSP.

residual block as shown in Figure 2(a). At each stage of
CSPDarknet53(called BottleneckCSP in this paper), feature
maps at the base layer are separated into two parts as shown
in Figure 2(b). One part sequentially passes through a con-
volutional block, several residual blocks, and a convolution
operation. While the other part firstly undergoes a convo-
lution operation, then combines with the last part. Finally,
the part goes through a transition layer(a convolution block)
to get the ultimate output. The number of residual layers of
each stage is 1,2,8,8,4 in Darknet53. Of note that in order
to achieve the best trade-off between accuracy and speed,
the first CSP stage (BottleneckCSP) is replaced with the
original residual structure (Bottleneck) in our model. On the
basis of the CSP-ization, our model introduces an asymmetric
convolution to the 3 × 3 convolution of the residual block
of each stage and constructs a new Bottleneck and Bot-
tleneckCSP, named ACBottleneck and ACBottleneckCSP,
which are shown in Figure 2(c). The new residual layer is
designed for promoting the influence of bamboo strip salient
features in the horizontal direction. It is in line with the issue
that bamboo surface defects are mostly sliver and the weights
in the horizontal direction of feature maps are more vital than
vertical ones.

The feature enhancement network adopts the idea of multi-
scale fusion, applying CSPPAN to realize the effective fusion
of bamboo strip spatial information and semantic informa-
tion. Compared with FPN, PAN adds a bottom-up aggrega-
tion path, which can obtain richer locations information. The
CSP-ization on the neck mainly reflects the design of the
residual layer(BottleneckCSP2). The features from different
feature pyramids are integrated as the input of this module.
It is also divided into two parts. One passes through the
residual block without shortcut connection, the other through

a convolution operation, and then combined with the former.
Ultimately, the outcome is acquired through the transition
layer(a convolution block). We introduce a hybrid attention
mechanism and construct CBAMBottleneckCSP2 to replace
the original module BottleneckCSP2 to calibrate the chan-
nel and space weights better. The attention mechanism and
SPP duplicate functionally in increasing the receptive field,
and we remove CSPSPP for a more straightforward network
design.

Chien-Yao Wang et al. also investigate model scaling and
propose Scaled-YOLOv4 [27], which can be easily deployed
on GPUs with different computing power. Researchers usu-
ally increase the depth or width of the network to enhance the
feature representation capability (via controlling the number
of BottleneckCSP in backbone and the number of Bottle-
neckCSP2 in neck). Theoretically, deeper andwider networks
tend to yield higher detection accuracy. However, this is not
always the case, as there are also issues to consider, such as
small datasets being prone to overfitting in large networks.
In this paper, taking the small scale of the bamboo strip
defect dataset, the solid color background of the images, and
the high requirement of defect detection speed into account,
we scale down the YOLOV4-CSP. The model depth scale
factor is 0.33, so the number of residual blocks of each
CSP stage changes from 1,2,8,8,4 to 1,1,3,3,1. The number
of sub-modules (i.e., ACBottleneck, ACBottleneckCSP, and
CBAMBottleneckCSP2) of the improved YOLOV4-CSP can
be seen in Figure 1, where ‘‘×3’’ means that there are three
such modules stacked.

B. ASYMMETRIC CONVOLUTION BLOCK
Feature extraction is the first part of the whole model,
and high-quality features are significant for the subsequent
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FIGURE 2. The structure of the residual layer in Darknet53, CSPDarknet53 and our model.

modules. The backbone network of the model, CSPDark-
net53, is used to extract preliminary features of bamboo
strips as this structure matches almost all optimal architec-
ture features through analysis of network architecture search
techniques [27]. In order to improve the learning ability of
the network, we design an asymmetric convolution block and
add the module to the residual block of the CSP stage. Asym-
metric convolution was applied to reduce the sum of network
parameters at the outset. The standard square convolution
kernel (d × d) is split into one-dimensional convolutions
(1× d and d× 1), which can lessen the computational load of
the network and raise the network training speed [34], [35].
In contrast, Ding et al. proposed ACBlock by integrating
asymmetric convolution into square convolution from the
perspective of convolution design and developed ACNet. The
ACBlock [36] can enhance the characterization ability of the
square convolution kernel by adding one-dimensional con-
volution in vertical and horizontal directions, thus enhancing
robustness to rotational distortions and generalization ability
to unseen data. Inspired by the concept of ACNet, we propose
an asymmetric convolutional module more suitable for bam-
boo strip defect detection and combine it with the backbone.

The asymmetric convolution module in ACNet comprises
three parallel layers with d×d, 1×d and d×1 kernels, respec-
tively, of which the outputs are summed up to enrich the
feature space. This module enhances representability by rein-
forcing the magnitude of the skeleton of the convolution ker-
nel (the positions of the crisscross of the convolution kernels),
which plays a vital role in the model performance. Firstly, the
feature map is padding to a suitable size. Then three feature
maps of the same size are obtained via a square convolution
kernel, a one-dimensional convolution kernel in the horizon-
tal direction, and a one-dimensional convolution kernel in the
vertical direction. After that, the operation results of these
three branches are summed element by element. The final

FIGURE 3. The structure of ACBLOCK.

fused results are regarded as the output of the asymmetric
convolution module.

Instead of simply replacing the square convolution with
the asymmetric convolution module of ACNet, we construct
a new asymmetric convolution module for sliver defects
in bamboo strip detection. We firstly analyze the effect
of the asymmetric convolution block with either horizon-
tal submodule or vertical submodule on the learning abil-
ity(verified in Section 4.2). Then, based on the extreme
aspect ratio of sliver defects, the aspect ratio of half of the
bamboo strip defects is more extensive than eight. There-
fore, we remove the asymmetric convolution in the vertical
dimension to reduce the interference of redundant informa-
tion and heighten the influences of local power feature points
in the horizontal dimension. The new asymmetric convo-
lutional module contains square convolution and only one-
dimensional convolutional branches added in the horizontal
direction. We replace the 3×3 convolution block of the resid-
ual layer with an asymmetric convolution block and develop
ACBottleneck as well as ACBottleneckCSP. The structure of
ACBlock is presented in Figure 3. The feature maps are fed
to the square convolution kernel and the horizontal direction
1D convolution kernel. Finally, the results of these two
branches’ operations after normalization are merged as the
output of the asymmetric convolution module.
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FIGURE 4. The network structure of CBAMBottleneckCSP2 and its sub-modules, CBAMBottleneckCSP2 is drawn on the left and CBAMBottleneck is on the
right.

C. ATTENTION MECHANISM
The feature enhancement network further refines the fea-
tures and raises representation power based on the backbone.
We utilize CSPPAN, an excellent parameter aggregation path
method, as the infrastructure of the neck. Besides, we apply
the attention mechanism in the neck rather than the back-
bone, as richer semantic information of high-level features
can induce the network to learn distinctive features properly.
Attention plays a critical role in human perception [37].
Humans construct their cognition through a sequence of
partial glimpses, naturally converting their focus on salient
regions in complicated scenes. Motivated by human visual
mechanisms, attention mechanisms have been extensively
studied and broadly applied to computer vision tasks, such
as image classification, object detection, semantic segmenta-
tion, object tracking.

Squeeze-and-excitation networks (SENet) [38] is the pio-
neer of channel attention, which generates attention mask
across the channel domain and use it to select essential
channels [39]. This module adaptively adjusts the weights
of each channel by constructing the channel-wise relation-
ships, thereby extracting key features. However, the attention
captures spatial information via global average pooling,
ignoring the local informationwithin each channel.Woo et al.
proposed convolutional block attentionmodule(CBAM) [40],
which introduced spatial attention complementary to the
original channel attention. This module is a classic hybrid
attention mechanism(channel attention & spatial attention)
telling the network ‘‘what and where to focus on’’. The intu-
ition behind the mechanism is predicting channel and spatial
attention masks separately and using it to select important
features. The weights of channel attention and spatial atten-
tion in CBAM are calculated independently. Based on this,
Misra et al. proposed convolutional triplet attention [41] to
capture cross-dimension interaction. The mechanism models
attention for the channel dimension C and the spatial dimen-
sionW, the channel dimension C and the spatial dimension H,
and spatial dimensions H and W through three branches,

respectively. The refined feature maps are obtained by aggre-
gating the three branches by simple averaging. The mech-
anism is an efficient and lightweight module that achieves
improvements on large-scale datasets ImageNet, MS COCO
datasets. We compare the above three attention mechanisms
and select CBAMas the attentionmodule in ourmodel, which
can boost the performance to the greatest extent(see detail in
section 4.3).

In CBAM, given an input feature map, it generates the
channel attention mask(1D tensor, SC ∈ RC) and the spatial
attention mask(2D tensor, SS ∈ RH×W) in turn. The channel
sub-module adopts two pooling types, average pooling and
max pooling, to gather global object features and distinct
ones. Both feature descriptors are then sent to the multi-layer
perceptron, and the results of the two branches are merged by
element-wise addition. The sigmoid function normalizes the
final output. The spatial sub-module likewise uses max pool-
ing and average pooling and then concatenates them along
the channel axis. Sequentially, the intermediate feature maps
pass through a 7×7 convolution operation and are excited by
the sigmoid function. This paper argues that the high-level
rich semantic information is more conducive to construct-
ing attention modules (verified in section 4.3). Therefore,
we insert CBAM into the feature-enhanced network and build
CBAMBottleneckCSP2 to replace the corresponding module
BottleneckCSP2 in YOLOV4-CSP. The structure of CBAM-
BottleneckCSP2 and its sub-modules (CBAMBottleneck and
CBAM) are shown in Figure 4. The feature maps are also
separated into two branches. One branch is subjected to con-
volution block, then channel attention and spatial attention
are performed in turn at the CBAMBottleneck. The other one
passes through a convolutional operation. The concatenated
feature maps of the two branches after convolution operation
are regarded as the output of CBAMBottleneckCSP2.

IV. EXPERIMENTS AND DISCUSSIONS
The main application scenarios of our research focus on
defect inspection of the bamboo strip when it has already been
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FIGURE 5. Six defects of bamboo strip: (a) black node; (b) concave
bamboo yellow; (c) crack edge; (d) mildew; (e) scar; (f) tile.

FIGURE 6. Comparision of aspect ratio between bamboo defects and
aluminum defects.

formed and located in manufacturing workshops. We evalu-
ate the improved YOLOV4-CSP in an enterprise’s bamboo
surface defect dataset. The dataset contains 1069 images,
including six types of defects, namely black node, concave
bamboo yellow, crack edge, mildew, scar and tile. The black
node defect appears as a dark rectangular area, which gen-
erally covers the width of the bamboo strip. In most cases,
the concave bamboo yellow defect is located in the middle
of the bamboo strip, which is an oval and non-striped area of
bamboo yellow. The crack edge defect is a small-area crack
that is approximately straight and located at the edge of the
bamboo strip. The mildew defect has a smaller gray value
than the average area, with various shades. The scar defect
usually consists of multiple thin, short, and dark stripes. The
tile defect looks sliver in shape and lighter color(white or
yellowish) than common areas. The sample of each type of
defect is shown in Figure 5. Six defects are evenly distributed:
about 178 pieces of each type are collected. The image size is
floating up and down on the scale of 1024× 450. Each image
is composed of the front and side of the bamboo strip and
may contain multiple defects. The statistics on aspect ratios
of bamboo defects are shown in Figure 6. We observe that
more than 60 % of the bamboo defect aspect ratio exceeds 3,
and nearly 50 % of the bamboo defect aspect ratio exceeds 8.
This extreme aspect ratio issue differs from general objects,
presenting challenges for strip workpiece detection.

In this paper, we propose the improved YOLOv4-CSP
to deal with the above issue. To thoroughly evaluate the
effectiveness of our final model, we conduct targeted ablation

experiments. Considering the relatively small scale of the
dataset and the significant differences in brightness and con-
trast among samples, We first perform data augmentation via
linear enhancement. Sequentially, we describe the ablation
experiments of the asymmetric convolutional module design
in detail. Then the investigations concerning the attention
mechanism are shown. Next, we verify that the final design of
improvedYOLOv4-CSP outperforms other baselines without
bells and whistles. Also, we extend the model to the alu-
minum dataset with sliver defects and examine the effect of
sub-modules on the model.

The experiments are conducted on a computer with a single
NVIDIAGeForce GTX 2080 GPU having 8GBmemory. The
calculation software environment is set with python 3.8.5,
CUDA 10.1 and cuDNN 7.6.3. We implement all evaluated
models in the PyTorch framework. The origin bamboo dataset
is split into train set, validation set, and test set with 684,
171 and 214 images. The initial setting of the learning rate
is 0.01, and the adjustment strategy of the cosine annealing
learning rate is adopted. The momentum is set to 0.937,
and weight decay is set to 5e-4. We firstly train the net-
work for 150 epochs with the above parameters. Then we
set the learning rate to 0.001, momentum to 0.9, and fine-
tune the network for 30 epochs. In the experiments, mean
average precision (mAP@0.5) is calculated to evaluate the
models.

A. IMAGE LINEAR ENHANCEMENT AND AUGMENTATION
The brightness of some images in the original dataset is far
below the ideal level, so improving the image quality via
image enhancement techniques [42] is imperative. This paper
exploits the image grayscale linear transformation to optimize
the dataset, a simple but efficient method. The grayscale
transform function is shown in Equation 1. G(x,y) represents
the pixel value after the image grayscale transformation and
f(x,y) represents the pixel value before the transformation.
The parameter α affects the image’s contrast, and the param-
eter β affects the image’s brightness. In this experiment,
α takes 1.5 and β takes 10 to enhance image contrast and
brightness.

G(x, y) = α ∗ f (x, y)+ β(x, y)+ β (1)

Table 1 shows image enhancement and data augmentation
experimental results. It brings improvements formost classes,
showing the efficacy of image enhancement. Note that scar
achieved a considerable improvement, lifting up by 13.33%.
We attribute this phenomenon to the fact that scar is due to
the traces left on the surface of bamboo by human factors,
which are very similar to the bamboo strip texture. The results
imply that enhancing the contrast and brightness of the image
promotes the model to identify such background-like defects.
Wemerge the original and enhanced images as the augmented
dataset for sufficient training and validation in the following
experiments. The augmented dataset has 1367 images for
train, 343 images for validation, and 428 images for test.
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TABLE 1. Accuracies of before and after image linear enhancement and augmentation.

TABLE 2. Ablation study of different dimensions in asymmetric convolution.

TABLE 3. Comparison of different placement of asymmetric convolution block.

B. ACBLOCK DESIGN
In this subsection, we further explore the practical method of
integrating ACBlock. Table 2 summarizes the experimental
results of different ACBlock morphologies for bamboo strip
defect detection. Of note is that ACBlock in Table 2 is inserted
into the residual structure of the backbone(Bottleneck and
BottleneckCSP). We observe that models with different types
of ACBlock achieve improvements simultaneously. However,
adding asymmetric convolution in the horizontal direction
yields the best results with considerably low computational
cost. We believe this is closely related to the object instance
characteristics: extreme aspect ratio, indicating that enhanc-
ing the features in the horizontal directionmatters for improv-
ing strip workpiece detection. As mentioned in ACNet [36],
adding one-dimensional asymmetric convolution may result
in a stronger or weaker kernel skeleton owning to randomly
initialized horizontal and vertical kernels. The authors of
ACNet have empirically observed that adding horizontal as
well as vertical asymmetric convolution is effective in Ima-
geNet. In bamboo strip detection, we find that adding only
asymmetric convolution in the horizontal axis is more helpful
than adding both axes. We assume that adding asymmetric
convolution in the vertical direction after adding asymmet-
ric convolution in the horizontal direction may weaken the
weights of features in the horizontal axis, which leads to the
loss of some helpful information.

We continue to study how the model will behave if we
add the asymmetric convolution onto other positions rather
than the residual structure of the backbone. These experi-
ments introduce asymmetric convolution into the standard
3 × 3 convolution in the residual block. We compare the

effects of the three placements: the asymmetric convolution
in backbone, neck, or both backbone and neck. As shown
in Table 3, the residual module with asymmetric convolution
block placed at backbone has comparable accuracy but fewer
parameters than that with both backbone and neck. Moreover,
the asymmetric convolution residual structure at the back-
bone performs better than when placed at the neck, implying
that the low-level semantic information and more accurate
location information are more beneficial for the asymmetric
convolution block. As a brief conclusion, we add asymmetric
convolution in the horizontal direction based on the square
convolution and deploy it on the backbone of the model in
the following experiments.

C. ATTENTION MECHANISM DESIGN
To delve into the design of the attention mechanism mod-
ule based on YOLOV4-CSP after adding asymmetric con-
volution block, we conduct a series of ablation experi-
ments, the corresponding results presented in Table 4 and
Table 5. We first reserve CSPSPP and compare the per-
formance of models with different attention mechanisms,
namely SE, CBAM and triplet attention. From Table 4,
we observe that integrating either SE or CBAM or triplet
attention into YOLOv4-CSP can all achieve performance
gains, demonstrating the effectiveness of dynamically adjust-
ing the weights in the attention mechanism on the learn-
ing ability of the model. When introducing CBAM, the
model performs slightly better than the other two attention
mechanisms.

Given that CSPSPP and the attention mechanism may
have some functional duplication in increasing the recep-
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TABLE 4. Comparison of different attention mechanisms when reserving
CSPSPP(baseline means YOLOV4-CSP adding asymmetric block after data
augmentation).

TABLE 5. Comparison of models with attention methods when removing
CSPSPP (baseline means YOLOV4-CSP adding asymmetric block after data
augmentation).

tive field in terms of the spatial dimension, we attempt to
remove CSPSPP and see the performance change. As shown
in Table 5, the model with CBAM performs favorably against
the other two attention modules. The intuition behind the
phenomenon is that CSPSPP raises representational capa-
bility in the spatial dimension via convolution operations
with different kernel sizes, which can compensate for the
spatial attention for SE. Therefore, removing CSPSPP may
lead to the loss of some crucial location information for the
model with SE. We argue that the model with CBAM is
superior to the one with triplet attention is two-fold. First,
triplet attention builds cross-dimension interaction compared
with CBAM yet may cause the loss of some informative
features. We go back to the construction of cross-dimension
interaction in the module, which includes rotation operation,
while some bamboo features do not have rotation invariance.
Second, the final output is obtained by averaging the three
branches, which does not seem to work for defect detection
of strip workpieces. As mentioned above, we believe that
horizontal direction(w dimension) weights are more impor-
tant in the scenario. The averaging operation may result
in the loss of discriminative features along the w axis.
The model combined with CBAM achieves better perfor-
mance after removing CSPSPP, which we attribute to reduc-
ing redundant information and enhancing salient features.
In short, we adopt CBAM as the attention module for our
model.

D. COMPARISON WITH OTHER BASELINES IN BAMBOO
DEFECT DATASET
Throughout the ablation studies, we add the horizontal asym-
metric convolution to the residual structure of the backbone
and introduce CBAM to the neck meanwhile removing CSP-
SPP as the final design. To thoroughly verify the effectiveness
of our model, we compared the improved YOLOV4-CSP
with some advanced one-stage detectors, which meet the
requirements of real-time detection in industrial scenarios.
As can be observed in Table 6, our model achieves optimal

TABLE 6. Comparison with state-of-the-art one-stage detectors in
bamboo dataset.

FIGURE 7. The comparison results of six defects between our model and
the original YOLOv4-CSP.

TABLE 7. Ablation study of the improved yolov4-CSP in aluminum
dataset (we introduce CBAM while removing based
on analysis above).

accuracy, which is 13.03%, 8.34%, 5.91%, 6.42% higher
than SSD, CenterNet, YOLOV4, and YOLOv4-CSP, respec-
tively. Our model retains the lightweight characteristics of
YOLOv4-CSP and achieves performance improvements at a
low additional computational cost. The comparison results
of six defects between our model and the original YOLOv4-
CSP are shown in detail in Figure 7. Our model achieves sub-
stantial improvements on hard-to-recognize classes(mildew,
crack edge, scar) and maintains comparable performance
on easy-to-recognize classes(tile, black node). These results
demonstrate that our model is adequate for bamboo strip
defect detection.

E. EXTENSION TO THE ALUMINUM PROFILE DATASET
We also extend the improved model to the aluminum
dataset. The dataset comes from the Tianchi Aluminum Pro-
file Competition organized by the People’s Government of
Guangdong Province, China and Alibaba Group. The alu-
minum dataset contains five kinds of defects, namely non-
conductivity, bottom leakage, scratches, pits, and variegated
colors. From Figure 6, we observe that the aspect ratio of
more than half of the defects in the dataset is greater than 8,
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TABLE 8. Comparison with state-of-the-art one-stage detectors in
aluminum dataset.

similar to the bamboo strip defect dataset. We divide the
dataset with 867 images for training and 154 for validation
and follow the same experimental protocol as specified at
the beginning of Section 4. Table 7 and Table 8 show corre-
sponding results on the aluminum dataset. The results show
that our model also yields better accuracy than YOLOv4-CSP
and outperforms other baselines with fewer parameters and
smaller model size. The results show that our model infers
more advanced features for sliver defect detection, implying
that our model may provide a reference for other similar
scenes.

V. CONCLUSION
Bamboo surface defect detection is of great significance to
the ordinary operation of bamboo products in manufactur-
ing workshops. The timely discovery of these defects can
provide an early warning to workers. For intelligent defect
detection, we propose improved YOLOV4-CSP, an object
detector based on deep learning.We design a new asymmetric
convolution block to enhance the ability to extract features
in the horizontal direction owning to the sliver defect with
an extreme aspect ratio. The attention mechanism, CBAM,
is further introduced to learn salient features of the bam-
boo strip. Extensive experiments are conducted to verify
the efficacy and efficiency of the improved YOLOV4-CSP
algorithm. Of note, our model may provide a solution for
sliver defect detection with similar extreme aspect ratios.
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