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ABSTRACT An efficient single-layer printed feed is used with a low-cost 3D printed polarizer. The feed
is made on a single substrate layer. The proposed antenna gain is 15 dBi, and the overlapped impedance-
axial ratio bandwidth is 20%. The proposed structure is a low-cost structure that can be fabricated in any
modest fabrication facility. The feed does not require any plated vias, which tremendously simplifies the
fabrication process and lowers the cost. The feed is very well suited for integration with integrated circuit
transceiver systems. The proposed structure does not require any feeding network design. Hence, it relaxes
the design process and avoids the losses associated with such feeding network. The proposed element can
be employed in an array configuration with adequately suppressed side lobes. The element cost, simplicity,
and gain performance are superior to other proposed solutions in the literature.

INDEX TERMS Additive manufacturing, circular polarization, high gain antennas, low-cost antennas.

I. INTRODUCTION
In many long-range wireless communication applications,
signals are communicated through a wireless line of sight
propagating electromagnetic wave. The transmitting and
receiving antennas are designed to have adequate directivity
to focus and capture the electromagnetic energy within the
line of sight. Since these antennas communicate mainly
through the line of sight as contrary to fading wide coverage
channels, the transmitting and receiving antennas alignment
is critical to prevent any polarization mismatch. Circularly
polarized antennas are superior to linearly polarized anten-
nas for these scenarios. Incident Right-Handed Circularly
Polarized (RHCP) waves are scattered from surfaces in the
form of Left-Handed Circularly Polarized (LHCP) waves,
and vice versa. Such a feature of circular polarization is
advantageous in long-range wireless microwave links, where
the non-line of sight signals (usually the strongest component
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is reflected from the ground) are seen as cross-polarization
waves by the receiving antenna. Thus, it eliminates any
possibility of fading and destructive interference with the
line of sight waves. In satellite communication systems,
due to the considerable distance between the low orbit
satellite and the earth antennas, it is tough to have a perfect
alignment between the communicating antennas. In addition,
the different atmospheric layers and the weather conditions
can have a significant effect on the propagating wave
polarization. Therefore, using circularly polarized antennas
has a tremendous advantage in eliminating the need for
polarization alignment, hence preventing any polarization
mismatch losses [1], [2]. Many exciting ideas were pro-
posed in various structures to realize circular polarization.
In [3]–[5], Substrate IntegratedWaveguide (SIW) and Printed
Ridge Gap Waveguide (PRGW) were used as feeds. Such
feeds are suitable for mm-wave applications due to their
packaged nature. However, they require a relatively large
number of vias and are considered multi-layer structures,
therefore increasing their fabrication complexity. In [6]–[8],
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a polarizer was used with an open-ended waveguide feed.
Open-ended waveguide feeds have a superior impedance
bandwidth performance. However, they are very bulky and
unsuitable for integration with an Integrated Circuit (IC)
transceiver solution. An open-ended waveguide feed requires
a special transition to connect it to a transmitter or receiver
circuitry, usually through a coaxial feed. In [9], a printed
solution was proposed. Such a solution uses multi-layer
PCB technology and requires plated vias, increasing the cost
and complexity of fabrication. In [5], a differentially fed
antenna solution was proposed. It used multiple PCB layers,
the array gain achieved was 13.5 dBi, and the axial ratio
bandwidth was 10%, not to mention the complexity of the
design due to incorporating a differential feed layer. In [10],
a polarizer was used with a linear array of patch antennas,
and multiple-layers were used to have a stacked 8 element
antenna array configuration of stacked patches to widen the
impedance bandwidth. However, the antenna array had an
axial ratio bandwidth of 11.7% and a gain of 13 dBi. The
Microstrip Line slot feeding the patch antenna generates
high back lobe radiation at millimeter-wave frequencies,
not to mention the associated loss in the feeding network.
In [11], an end-fire log-periodic antenna pointed to the
boresight was fed using an SIW feeding network. Such
structure has a considerable fabrication complexity. Here,
we focus on designing a low-cost structure that can be
fabricated in any modest fabrication facility. The structure
uses a single-layer feed using printed technology. The
feed doesn’t require any plated vias, which tremendously
simplifies the fabrication process and lowers the cost. The
feed is a linearly polarized antenna that utilizes radiation from
open stubs to boost the boresight directivity. The antenna
polarization is converted to a circular polarization using
a 3D printed polarizer. The polarizer material is RGD840
thermoplastics with dielectric constant 3 and loss tangent
0.01. The polarizer adequately transforms the polarization
of the antenna to a circular polarization while at the same
time it further boosts the gain. 3D Additive Manufacturing
is an emerging technology that has a promising potential
in providing high flexibility and reduced fabrication cost.
The technique allows the construction of 3D objects from a
digital 3D model, giving flexibility and freedom in defining
the model geometry using CAD software and maintaining
a low fabrication cost. The proposed structure uses a
simplified, low-cost feed with a single substrate (Rogers
5880), which is advantageous. The feed is very well suited
for integration with integrated circuit transceiver systems.
The proposed structure does not require any feeding network
design. Hence, it relaxes the design process and avoids any
losses associated with such feeding network. The proposed
structure has a wideband impedance bandwidth of 20%.
The proposed antenna gain is 15-dBi, and the Axial Ratio
bandwidth is 30%. The overlapped Axial Ratio-Impedance
bandwidth is 20%. The proposed element can be employed
in an array configuration with adequately suppressed side
lobes.

FIGURE 1. Proposed printed feed antenna.

TABLE 1. Dimensions (millimeters) of the proposed antenna in Fig. 1.

FIGURE 2. Electric field heat map of the proposed antenna in Fig. 1.

II. PROPOSED PRINTED FEED
Fig. 1 shows the proposed antenna printed feed. The substrate
used is Rogers 5880, with a dielectric constant of 2.2, loss
tangent of 0.0009, and 0.787 mm thickness. The proposed
antenna utilizes the fringing fields from the open-ended
microstrip line stubs. These fringing fields can be represented
equivalently as magnetic currents. By increasing the number
of stubs, a significant electrical aperture area can be obtained
and can produce significant directivity in the boresight.
Further details about the radiation mechanism can be found
in [12]–[15].

In this work, two elements are combined with a single
feed point, the number of stubs can be increased to add
more resonances within the operating bandwidth, which
can increase the impedance matching bandwidth to 20 %.
Table 1 lists the dimensions of the proposed structure.
Fig. 2 shows the electric field heat map. As can be seen,
the fringing fields can have a significant aperture area and
equivalently can be represented as magnetic currents. It is
also important to note that since the upper and lower stubs are
laid in opposite directions, they have to maintain 180◦ phase
shift feed to keep boresight radiation. The antenna loop can be
designed with such property along the dimension a. Loading
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FIGURE 3. Input impedance of the proposed antenna.

FIGURE 4. Gain and S11 of the proposed antenna.

the loop with the stubs enhances the phase shift balance
between the upper and lower stubs over a wide bandwidth.
This can be observed from the electric field heat map in
Fig. 2 by noting that there are almost two guided wavelengths
for themicrostrip line loop. The first is in the region loaded by
stubs, where the guided wavelength is larger than the second
region, which is not connected to any stubs. Fig. 3 shows the
input impedance with multiple resonances within the desired
operating bandwidth. Fig. 4 shows the gain and reflection
coefficient of the proposed antenna, a 20% 10-dB return
loss matching bandwidth is achieved with a peak directivity
of 12 dBi.

III. DIELECTRIC POLARIZER
Electromagnetic polarizers are well covered in the literature,
specifically in optics [16], [17]. The operation mechanism
of these polarizers depends on the 45◦-plane wave incident
on the dielectric slab. Fig. 5 shows the Floquet-port unit cell
analysis configuration. Master and slave boundary conditions
are applied along the x and y directions. An incident plane
wave with an angle of 45◦ is generated at the port underneath
the dielectric slab. This plane wave can be decomposed
into two orthogonal modes (Transverse Electric, TE, and
Transverse Magnetic, TM). In this case, the propagating TE
and TM waves experience a different effective dielectric
constant due to the filling ratio difference. By changing the
filling ratio and height a 90◦ phase shift between the TE

FIGURE 5. Proposed dielectric polarizer unit cell analysis.

and TM wave can be obtained. Hence, the total propagating
wave beyond the dielectric slab becomes circularly polarized.
In [18], an asymptotic relation for the effective dielectric
constant for each polarization was presented. This relation
is valid for thin substrates with a low filling ratio. Here,
the filling ratio is 0.57. Therefore, a numerical solver is
used to set the dielectric slab dimensions. The asymptotic
approximations for the effective dielectric constants for the
TE (i.e. along the x-axis), and the TM (i.e. along the y-axis)
modes are given in (1-2), the phase shift between the TM
and TE waves can be calculated according to (3). Despite
the fact that these equations are valid for low filling ratio,
they are still very handy in giving an excellent initial set
of dimensions for the numerical solver. It is also worth
noting that the periodic boundary conditions represent an
infinite structure and study only the case of normal plane
wave incidence. These conditions are different from the
finite polarizer conditions excited by the proposed antenna.
Nonetheless, this analysis is crucial in getting an initial set of
parameters to design the finite polarizer structure.

εeff _x ≈ 1 (1)

εeff _y ≈ 1+ (εr − 1)
T
W

(2)

1θ =
2π f
c

(√
εeff _y − 1

)
H (3)

Dielectric polarizers are very attractive at higher frequen-
cies, as their sizes become smaller, especially if a higher
dielectric constant is used. They do not require any printed
metallic geometries, making them easy to realize. Using 3D
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TABLE 2. Dimensions (millimeters) of the dielectric polarizer unit cell in
Fig. 5, ‘‘H’’ represents the dielectric polarizer height.

FIGURE 6. Transmission and reflection coefficients of the dielectric
polarizer.

printing technology would make it easier and less expensive
to manufacture. In [17], it was shown that printing a metallic
patch at one side of the polarizer slab can increase the axial
ratio bandwidth to 60%. However, in this work, we only
use a dielectric slab to ease the fabrication. The polarizer
achieved axial ratio bandwidth is 46%, which is broader than
the antenna matching impedance bandwidth. Table 2 lists
the dimensions of the dielectric slab. RGD840 thermoplastics
material with dielectric constant value of 3, and loss tangent,
0.01 is used. Fig. 6 shows the transmission and reflection
coefficients of each mode. As can be seen, there are minimal
reflection and almost unity transmission coefficients for each
mode, indicating almost magnitude equality of TE and TM
electric field components. Hence, the axial ratio can be
calculated from the angle difference between these modes,
as given in (4). Fig. 7 shows the phase difference between
the TE and TM modes, which is set to be 90◦ at the center
frequency (i.e., 30GHz). Fig. 8 shows the corresponding axial
ratio covering a 46% bandwidth.

AR =

∣∣∣∣20 log10 ∣∣∣∣tan(
1θ

2

)∣∣∣∣∣∣∣∣ (4)

IV. PROPOSED CIRCULARLY POLARIZED ANTENNA
STRUCTURE
Fig. 9 shows the proposed circularly polarized antenna
structure. The dielectric polarizer is co-designed with the
antenna feed. As can be seen, the antenna feed is fully
printed and requires no vias, and hence it is very simple
and easy to fabricate. Copper fully backs the feed; therefore,
it reduces back lobe radiation and improves the front-
to-back ratio. The dielectric polarizer dimensions were
optimized to boost the gain further and maintain a wide
axial ratio bandwidth. Fig. 4 shows the S11 and gain of the
proposed structure with the polarizer. As can be seen, the

FIGURE 7. Phase difference between transmitted TE and TM components.

FIGURE 8. Dielectric polarizer axial ratio.

TABLE 3. Dimensions (millimeters) of the proposed antenna in Fig. 9.

reflection coefficient is minimally perturbed with the use of a
polarizer, as the polarizer is designed to be fully transparent
(i.e., the transmission coefficient of the polarizer is almost
0 dB). Hence, it appears transparent to the antenna and has
minimal effect on its input impedance. This is a considerable
relaxation for the design process. As shown in Fig. 4, the
gain goes up to 15 dBi with good stability over the operating
bandwidth (Note: dBiC unit can be used instead of dBi to
indicate CP gain as well). As observed, the polarizer improves
the gain of the feed by 3 dB. Table 3 lists the dimensions
of the proposed structure in Fig. 9. Fig. 10 shows the axial
ratio without a polarizer indicating a linear polarization.
Fig. 11 shows the axial ratio when the polarizer is used.
A 30% axial ratio bandwidth is achieved.

V. ANTENNA ARRAY CONFIGURATION
The proposed element in the previous section is electrically
large (2.2λo), which raises the question of whether the
element can be further expanded in a larger linear array
without generating grating lobes? The answer is yes, where
the high directivity of the element factor suppresses the
grating lobes in the array factor. Hence, by performing pattern
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FIGURE 9. Proposed circularly polarized antenna, (a) isometric view, and
(b) top view.

FIGURE 10. Axial ratio of the proposed antenna without using a polarizer.

multiplication, the resultant pattern grating lobes would be
adequately suppressed. Fig. 12 shows a linear array made
of two elements, the center to center distance between the
elements is 34.3 mm (3.43λo). Fig. 11 shows the axial ratio
of the array configuration. As can be seen the array axial ratio
is minimally perturbed once it is compared with the single
element. Fig. 13 shows that the gain of the two elements
proposed array goes up to 18 dBi. Also as can be seen from
Fig. 13, the mutual coupling between the elements is less
than -30 dB. This would significantly relax the array design
process. As shown in Fig. 14, the side-lobes of the array are
well suppressed.

FIGURE 11. Axial ratio of the proposed antenna using a polarizer.

FIGURE 12. Two-element antenna array configuration.

FIGURE 13. Gain and S-parameters of the two-element antenna array.

FIGURE 14. Radiation patterns of the proposed circularly polarized
antenna, left (yz-plane), right (xz-plane), solid (RHCP/co-polar), and
dotted (LHCP/cross-polar), at 30 GHz.

VI. PROTOTYPING RESULTS
Fig. 15 shows the fabricated prototype. Fig. 16 shows
the measured radiation patterns of the proposed antenna
in xz and yz planes. As can be seen, the side-lobes are
well-suppressed. It is important to note that the long feed line
exists only for characterization purposes to keep it far enough
from the end-launch connector. In an integrated circuit board,
the transceiver IC can be connected directly to the antenna
microstrip line edge through a bonding wire. In such case the
extra loss and any distortion by the elongated line and the
bulky end launch connector are eliminated. Also the height
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FIGURE 15. Fabricated prototype.

FIGURE 16. Radiation patterns of the proposed (RHCP) circularly
polarized antenna, xz-plane (left), and yz-plane (right), at 28, 30,
and 31 GHz from top to bottom, measured (dotted), and simulated (solid).

FIGURE 17. Measured axial ratio and calculated radiation efficiency.

of the polarizer is 14 mm, a lower polarizer height can be
made with a higher dielectric constant material (A higher
dielectric constant material with mm-wave characterization
was not available for use in our fabrication facility). Thus a
dielectric constant of 3 was used. Fig. 17 shows the measured
axial ratio, as can be observed there is a slight deviation of
the axial ratio at 31 GHz (i.e. 4.1 dB), which could be due to
some possible miss-alignment of the antenna, and tolerances
in the material and the fabrication process. However, the axial
ratio is still within an acceptable range for such low-cost
prototyping. Fig. 18 shows that the measured gain goes up

FIGURE 18. Measured gain and S11.

TABLE 4. Comparison with other works.

to 15 dBi, and the 10 dB return loss bandwidth is 20 %. Thus
a reasonably acceptable agreement with simulated results is
achieved. The simulated efficiency is shown in Fig. 17, it goes
up to 93 % as expected due to the simplified feed design.
It is worth noting that the microstrip line width is 2.4 mm,
a tapered transition is needed to connect it to the end lunch
connector, such tapering along with the end lunch connector
transition can cause some perturbation for the S11 response,
nonetheless it is still within an acceptable range with a return
loss value less than 10 dB all over the operating bandwidth.
Table 4 compares the proposed antenna performance metrics
with other works in the literature. As can be noticed, the
proposed antenna has the merit of simplicity (via-less) with
high gain, and acceptable bandwidth performance.

VII. CONCLUSION AND FUTURE WORK
A novel single-layer printed feed has been used with a low-
cost 3D printed polarizer. The feed has been made on a single
substrate. The proposed antenna has achieved 15 dBi gain and
20%bandwidth. Future workwill investigate the employment
of the element in a more extensive array.
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