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ABSTRACT The network-assisted full-duplex (NAFD) system realizes flexible duplex in the spatial domain
within the same time-frequency resource. With the explosive growth of the number of users and remote
antenna units (RAUs) under 6G scenario, the resource utilization of the system is lower.When the resource of
users is selected by the RAUs to send or receive, collisions or congestion may occur due to mechanisms such
as grant-free. Aiming at making better use of system resources, a load-aware dynamicmode selection scheme
withNAFD scheme is proposed to improve the access efficiency and resource utility of the system. This paper
first propose a centralized Q-learning algorithm which determines a clever strategy to approach the ultimate
goal by itself and excels in environment dynamics. However, the size of the Q-table used in the centralized
Q-learning algorithm for storage is huge. Further, a distributed multi-agent Q-learning algorithm is proposed
which has a smaller size of Q-table and lower complexity to suit for actual scenarios. The simulation results
showed that the proposed load-aware dynamic mode selection scheme can significantly improve resource
utility and throughput performance than other traditional schemes.

INDEX TERMS Full duplex, load-aware, dynamic mode selection, Q-learning.

I. INTRODUCTION
Currently, ultra-reliable and low-latency communica-
tion (URLLC) related theories and technologies in 6G are in
urgent need of breakthrough. In order to reduce the traditional
half duplex (HD) system latency, a full duplex (FD), equipped
with transmit antennas and receive antennas, has been widely
studied in the literature to enable simultaneous transmission
and reception in the same frequency band, with theoretically
doubled throughput [1]. Self interference (SI) is the main
barrier in implementing FD. Active and passive SI suppres-
sion techniques have been studied in [2], [3], which makes
FD a realistic technology for modern wireless systems. [4]
studied a FD cell-free massive multiple-input multiple-output
(MIMO) network, where the APs employ a simple conjugate
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beamforming/matched filtering scheme with the channel
state information acquired through the uplink training with
orthogonal pilots transmitted from the users. It provided
a simple power control method to mitigate residual self-
interference. [5] derived closed-form spectral efficiency (SE)
lower bounds for FD cell-freeMIMO systemwith maximum-
ratio combining/maximum-ratio transmission processing and
optimal uniform quantization. Recently, the problem of
maximization of SE and energy efficiency (EE) of the
FD cell-free MIMO system is considered in [6]. However,
to achieve URLLC, SI cancellation processing latency in
FD system should be considered [7]. Network-assisted full-
duplex (NAFD) under cell-free massive MIMO network
was proposed in [8], which does not have SI at the remote
antenna unit (RAU) level and can solve the cross-link inter-
ference (CLI) problem by using joint processing [9] thus
reducing the latency of interference cancellation. It realizes
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flexible duplex transmission by selecting the uplink and
downlink working modes of the RAUs in the spatial domain
within the same time-frequency resource block at the network
level, reducing the delay of the time division duplex (TDD)
system and improving the spectral efficiency (SE) and energy
efficiency (EE) of the system. NAFD scheme is quite promis-
ing to achieve URLLC due to the reduction of latency in HD
and TDD system and SI cancellation latency in traditional
full-duplex scheme.

With the explosive growth of the number of mobile ter-
minals, it is necessary to study the reliable multi-access
and resource utilization mechanism of NAFD scheme.
To improve the utilization of UL/DL resources, the working
mode selection of RAUs as uplink reception or downlink
transmission based on the traffic loads and quality of ser-
vice (QoS) of the users is investigated in this paper. Proposed
load-aware dynamic mode selection scheme directly assigns
DL transmitting or UL receiving for each RAU according to
the traffic loads of the whole network. There is no need for the
users to establish a handshake mechanism with RAUs which
reduces signaling overhead, simplifies the access procedure,
reduces the access latency, and improves the access efficiency
of the massive access scenario.

On the other hand, most of the work usually fix the
working mode of the RAUs to further analyze the sys-
tem performance with NAFD scheme [10]–[12]. [10] esti-
mated the effective CSI (inner products of beamforming
and channel vectors) instead based on beamforming training
scheme. [11] investigated the problem of joint transceiver
design for NAFD systems under cell-free massive MIMO
network with simultaneous wireless information and power
transfer (SWIPT) considering the fronthaul capacity as a
constraint. [12] focused on the optimization of SE of the
systems taking SWIPT ratio design into consideration. [13]
only focused on the problem of maximization of SE through
mode selection scheme where the traffic loads and quality of
service (QoS) of the users has not been considered. To the
best our understanding, the working mode selection problem
of the RAUs considering the traffic loads and QoS of the
users has not yet been explored in the literature. As far as
we know, there are no researches focusing on the resource
utilization of the FD cell-free MIMO systems. This paper
focuses on the resource utilization problem and system per-
formance of NAFD cell-free large-scale distributed MIMO
systems. In this paper, a load-aware dynamic mode selec-
tion scheme with flexible duplexing based on reinforcement
learning is proposed. The load-aware technic has been studied
in [14] and [15], where the authors proposed the load-aware
system utility function based on their assumed scenarios to
reflect the proposed performance improvement according the
traffic loads. Specifically, in this paper, the reinforcement
learning method that maximizes the expected benefits in a
dynamic environment is used to optimize the working mode
of the RAUs for uplink reception or downlink transmission.
Q-learning is a classic method of reinforcement learning
which does not require a deep neural network for function

approximation [16]–[19]. The load-aware dynamic mode
selection scheme based on Q-learning approaches the ulti-
mate goal by taking clever strategies and excels in environ-
ment dynamics. The proposed algorithms can be utilized in
practical RAU-mode-selection scenario with limited compu-
tation power. We initially proposed a centralized Q-learning
algorithm which viewed all RAUs as an agent. However, this
algorithm has the problem of explosive growth of the size of
Q-table for storage. We further proposed a distributed multi-
agent Q-learning method. The distributed algorithm viewed
each RAU as an independent agent and thus had a smaller
size of storage unit with lower complexity.

The main contributions of this paper are highlighted as
follows:

• The dynamic mode selection scheme is hard to be mod-
eled in the actual scene. In order to determine the RAUs’
working mode, two binary assignment vectors xu, xd ∈
{0, 1}M×1 are used tomodel themode selection problem.
To improve the resource utility and access efficiency
of the system, a load-aware dynamic mode selection
scheme is further proposed.

• A utility function is defined to reflect both the proposed
performance improvement in resource allocation and the
associated overhead costs of any coalition formation.
The defined utility function leads the UEs preferentially
select RAUs with fewer RB resources under the premise
of satisfying its own QoS, thereby improving the utiliza-
tion of RBs.

• Q-learning is a classic method of reinforcement learning
which does not require a deep neural network for func-
tion approximation which can be utilized in practical
RAU-mode-selection scenario with limited computation
power. A load-aware dynamic mode selection scheme
based on centralized Q-learning is proposed to solve the
resource utilization problem.

• We further proposed a distributedmulti-agent Q-learning
method to avoid the problem of explosive growth of the
size of Q-table for storage in centralized Q-learning.
The distributed algorithm viewed each RAU as an inde-
pendent agent and thus had a smaller size of storage
unit with lower complexity. The effectiveness of the
proposed scheme was verified through simulations.

II. SYSTEM MODEL AND PROBLEM FORMULATION
A. SYSTEM MODEL
We consider a network-assisted full-duplex cell-free large-
scale distributed MIMO system with Mu RAUs performing
uplink reception and Md RAUs performing downlink trans-
mission at each time slot, where Mu + Md = M . Each
RAU is equippedwithN half-duplex(HD) antennas, while the
terminals are single-antenna and HD capable as illustrated in
Fig.1. RAUs serve arbitrarily distributed Ku uplink users and
Kd downlink users, abandoning the traditional cell structure.
Previous works focused on the performance analysis of

NAFD scheme in the fixed mode, which equally split the
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FIGURE 1. System model of the proposed Q-learning framework.

RAUs to uplink and downlink mode. Fixed-mode encounters
bottlenecks in the use of UL and DL resources. So dynamic
RAU mode selection plays a significant role in improving
the system performance. To improve the resource utility
and access efficiency of the system, a load-aware dynamic
mode selection scheme is further proposed. In order to deter-
mine the RAUs’ working mode, two binary assignment vec-
tors xu, xd ∈ {0, 1}M×1 are used to model the mode selection
problem. xu,i(xd,j) is equal to 1 if RAU i(j) is used for UL
reception (DL transmission), or equal to 0 otherwise. This
paper assumes all the antennas of the same RAU working
in the same mode and an RAU is either uplink or downlink
only, which means xu + xd = 1. We define Xu = diag(xu)
and Xd = diag(xd), and derive the effective received signal,
transmitted signal and the load-aware mode selection model.

B. DOWNLINK SIGNAL MODEL
For downlink transmission, the baseband signals are com-
pressed by the central processing unit (CPU) and conveyed
to each downlink RAUs through the downlink fronthaul
links. The downlink RAUs decompress the downlink signals
received from theCPU and then forward them to the downlink
users.

For downlink transmission, in each scheduled time slot,Md
downlink RAUs jointly send signals to Kd downlink users.
Specifically, the signal received by the DL user j can be
expressed as

r̃d,j = h̃
H
d,j

Kd∑
m=1

wd,msd,m +
Ku∑
i=1

gi,j
√
pu,ixi + ηd,j, (1)

where h̃d,j = Xdhd,j denote the effective DL channel vec-

tor, hd,j ∈ CMdN×1 denotes the channel vector between
the receiving DL user j and all the downlink RAUs, which
can be modeled as hd,j =

√
3d,jgd,j, where 3d,j =

diag(λd,j,1, λd,j,2 . . . λd,j,Md ) ⊗ IN , λd,j,m = d−αdj,m repre-
sents large-scale fading, dj,m denotes the corresponding dis-
tance between RAUs and UEs, αd and gd,j denote path-loss
and irrelevant small-scale fast fading respectively,wd,m is the

downlink precoding vector, sd,m denotes the transmitted data
signal with E[sd,msHd,m] = 1 in the DL, pu,i denotes the uplink
transmit power of the user i, xi denotes the transmitted data
signal with E[xixHi ] = 1 by UL user i, and gi,j denotes the
interfering channel vector between the UL transmitter user
equipment (UE) i and the DL receiver UE j, ηd,j ∼ CN (0, σ 2

d )
is additivewhite Gaussian noise at DL user j. Then, the signal-
to-interference-plus-noise ratios (SINR) of downlink user j
can be expressed as

γd,j =
|h̃

H
d,jwd,j|

2∑
j′ 6=j,j′∈Kd

|h̃
H
d,jwd,j′ |

2 +
∑
i∈Ku

pu,i|gi,j|2 + σ 2
d

, (2)

whereRD,j represents the downlink rate which can be denoted
as RD,j = log2(1+ γd,j).

C. UPLINK SIGNAL MODEL
For uplink transmission, each uplink RAU compresses the
received signals that are transmitted by uplink users and sends
them to the CPU. The CPU receives the compressed signals
that are transmitted by all uplink RAUs and then performs
joint decoding of all uplink users based on the received
compressed signals.

For uplink transmission, all uplink RAUs jointly receive
signals from UL users. The received signal can be expressed
as

r̃u =
Ku∑
i=1

h̃u,i
√
pu,ixi +

Kd∑
j=1

G̃Iwjsu,j + η̃u, (3)

where h̃u,i = Xuhu,i, G̃I = XuGIXd denote the effective UL
channel vector and the channel vector between uplink RAUs
and downlink RAUs, η̃u = Xuηu denotes the effective noise
with distributions η̃u ∼ CN (0Mu , σ

2Xu), h̃u,i ∈ CMuN×1

denotes the channel vector between the transmitting UL user
i and all the uplink RAUs, GI ∈ CMuN×MdN is the real
interference channel matrix between downlink RAUs and
uplink RAUs. In practice, we assume the channel state infor-
mation (CSI) between uplink-RAUs and downlink-RAUs is
imperfect due to the channel estimation errors. Specifically,
we model the inter-RAU channel as:GI = GIRI

′

+ GIRI
′ ′

,
whereGIRI

′

denotes the estimated channel andGIRI
′ ′

denotes
the channel estimation error. Then, the SINR for each uplink
user i can be expressed as

γu,i =
pu,i|vHu,ih̃u,i|

2∑
i′ 6=i,i′∈Ku

pu,i′ |vHu,ih̃u,i|
2 +

∑
m∈M

σ 2
m

∥∥vu,i,m∥∥2 + µi ,
(4)

where µi denotes the interference between DL users and UL
users, µi =

∑
j∈Kd

ψd,j
∥∥vu,i∥∥2, ψd,j and vu,i are the variance of

the total interference plus noise in the DL and the correspond-
ing receiver vector respectively.RU,i represents the uplink and
rate which can be denoted as RU,i=log2(1+γu,i).
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D. MODEL FOR THE PROPOSED LOAD-AWARE DYNAMIC
MODE SELECTION SCHEME
The load of the system is an important indicator as it greatly
affects the performance of multi-connectivity. In multi-
connectivity, the user equipments must avoid accessing to
RAUs with higher load to the extent possible to achieve
system load balancing. In order to improve the resource
utility of the system, a load-aware dynamic mode selec-
tion scheme is proposed. We assume that each UE has a
requirement of resource blocks (RBs) to meet the need of
QoS. RAU m has k RBs to allocate, which denotes as
λm = {λm,1, λm,2, . . . , λm,k}. The total transmit power is
Pm. Evenly allocated transmission power is assumed, then the
power of each RB is pm =

Pm
k . The number of RBs allocated

by RAU m to UE i is nm,i, then the power allocated by RAU
m to UE i is pm,i = nm,ipm. Considering the traffic load,
the achievable rate of UE i associated with RAU m can be
expressed as

Ti = nm,iblog2(1+ γi), (5)

where b represents the bandwidth of eachRB [20]- [21]. It can
be seen that the user rate is related to the number of RBs
that can be used. Each user has different service requests and
different QoS requirements. RAU guarantees users’ QoS by
allocating a certain number of RBs to different users. In order
to meet the QoS needs of different users, let t reqi denote the
bandwidth request of user i

nm,iblog2(1+ γi) ≥ t
req
i , (6)

It can be obtained that the number of RBs provided by RAU
m for user i is

nm,i =

⌈
t reqi

blog2(1+ γi)

⌉
, (7)

[14] and [15] considering load-aware methods both
proposed the load-aware utility function suitable for their
research scenarios. Utility function should reflect both the
proposed performance improvement in resource allocation
and the associated overhead costs of any coalition formation.
We propose the utility function for the UE i as Ui

Ui = ln

1+

k −
∑
a∈K

nm,a

nm,i

, (8)

The utility of the UE at each time slot depends on the load
of the associated RAUs and the number of RBs allocated to
it. If the RAU cannot guarantee the QoS of UE i, the RAU
does not provide RBs for UE i. In this case, the value of the
utility function for UE i Ui = 0. In Fig. 2, we present the
trend of the utility function provided that the number of RBs
of an RAU is k = 20, k = 25, k = 30, k = 40. We assume
that the number of RBs allocated to the users associated with
this designated RAU is 10. According to the nature of the
logarithmic function, when the load of the entire network is
too large, UEs will preferentially select RAUs with fewer

FIGURE 2. Load-aware utility function.

RB resources under the premise of satisfying its own QoS,
thereby improving the utilization of RBs. UEs’ utility value
will decrease as the overall network load increases. Also, with
the increase of the the number of RBs of an RAU acquired,
the value of the utility function goes up. Combined with
uplink and downlink model concerned with NAFD scheme,
the utility function for downlink user j and uplink user i can
be expressed as follows respectively

UD,j =
∑
m∈Md

ln

1+

kD,m −
∑
a∈Kd

na,m

nm,j

, (9)

UU,i =
∑
m∈Mu

ln

1+

kU,m −
∑
a∈Ku

na,m

nm,i

, (10)

Let βD,j =

kD,m−
∑
a∈Kd

na,m

nm,j
, then considering the mode selec-

tion scheme, β̃D,j = βD,jXd, the effective utility function
of downlink is expressed as UD,j = ln(1 + β̃D,j). Similarly,
the effective utility function of uplink is expressed as UU,i =

ln(1+β̃U,i), where βU,i =

kU,m−
∑
a∈Ku

na,m

nm,i
, and β̃U,i = βU,iXu.

E. PROBLEM FORMULATION
We aim at maximizing the users’ utility function considering
the traffic load as follows.

max
xu,xd

∑
i∈Ku

UU,i +
∑
j∈Kd

UD,j, (11)

s.t.
∑
j∈Kd

||Xd,jwd,j||
2
≤ PD,j, (12)

pu,i ≤ PU,i, (13)

xu+xd = 1, (14)

nm,iblog2(1+ γi) ≥ t
req
i , (15)

where PD,j and PU,i are the power consumption budget for
downlink RAU j and uplink user i. The binary assignment
variables should either be 0 or 1, that is for a certain RAU,
it should work at either downlink or uplink working mode.
(15) is the QoS needs of different users.

22304 VOLUME 10, 2022



Y. Zhu et al.: Load-Aware Dynamic Mode Selection for NAFD Cell-Free Large-Scale Distributed MIMO Systems

III. PROPOSED LOAD-AWARE DYNAMIC MODE
SELECTION ALGORITHM BASED ON
REINFORCEMENT LEARNING
Two load-aware dynamic mode selection algorithms based
on reinforcement learning for NAFD Cell-Free Large-scale
Distributed MIMO Systems is proposed in this part. One
is based on centralized Q-learning, the other is based on
distributed multi-agent Q-learning.

Reinforcement learning (RL) usually contains five ele-
ments, including environment, agent, state, action and
reward. The agent has the ability to learn by interacting
with the environment constantly and will act on the basis
of the observed values combined with its own experience,
which is also called a strategy. The state of the environ-
ment will be affected by specific action taken by the agent.
Two pieces of information from the changing environment
will be obtained by the agent: observations and the reward.
So the agent can perform new actions based on new obser-
vations. The usefulness of performing an action is repre-
sented by a numerical value known as the Q-value. The
expectation of the long-term return generated by certain
strategic actions under the premise of knowing the current
state st and action at is called the state-action value func-
tion Qπ (s, a)=E [Rt+1 + γQ (St+1,At+1) |St = s,At = a],
where γ denotes the discount factor. Then we map our
scenario to key elements mentioned above.

A. PROPOSED CENTRALIZED Q-LEARNING ALGORITHM
FOR LOAD-AWARE DYNAMIC MODE SELECTION
Q-learning is a classic method of reinforcement learning.
The purpose of Q-Learning is to establish a Q-Table with
‘‘state’’ as the row and ‘‘action’’ as the column, and to
continuously update the Q value in the Q-Table through the
rewards brought by each action, so as to obtain the Q value
under a specific action and a specific state. The strategy for
taking each action in Q-Learning is ε-greedy strategy, that is,
to maintain a delicate balance of exploration and utilization.
While the evaluation strategy used when learning to update
the Q-Table is the greedy strategy, that is, the best action
is always recorded in the Q-Table. Q-Learning is off-policy
because its action strategy and evaluation strategy are not
the same. In this paper, the proposed centralized Q-learning
algorithm treated all RAUs as a whole to assign the working
modes of each of them in the system.

1) AGENT
In the proposed centralized Q-learning algorithm, we take
the total RAUs as an agent of the proposed reinforcement
learning framework. Agent will make intelligent decisions
by observations of the environment, including the adaptive
selection of working mode of the RAUs. Particularly, the
agent can obtain experience and adjust its action strategy.

2) STATE
Define the infinite set for the state space as S, a 1 × M
one-dimensional array is used to demonstrate the state of

the environment st = [x1, x2, x3 . . . xM ]. The value of xM
can be either 0 or 1, where 0 means RAU M is working as
uplink reception and 1means RAUM is working as downlink
transmission. At each time slot, an RAU is working as UL
reception or DL transmission.

3) ACTION
Since each RAU only has two working mode, we can simply
take action to change the original UL RAU to DL RAU or
to change the original DL RAU to UL RAU by performing
the XOR operation between bits. The agent selects one of
the following actions in the current state st : ‘‘RAU 1 changes
its original working mode’’. . . ‘‘RAU M changes its original
working mode’’. Hence,M actions is used to model the mode
selection scheme. In this way, each RAU’s working mode can
be changed between uplink and downlink mode according to
the strategies taken by the agent.

To obtain the optimal reward, an appropriate adjustment
of exploitation and exploration is required because the agent
does not possess sufficient information regarding the envi-
ronment in general. So with the probability of ε(e), the agent
selects a random action.While with the probability of 1−ε(e),
the agent chooses the action with the highest Q-value. If the
greedy rate is too high, it is easy to enter the local optimal
solution. When we first train the Q function, we must have a
large epsilon. As the agent becomes more confident about the
estimatedQ value, wewill gradually decrease epsilon. Hence,
the decayed ε-greedy policy is used as follows

ε(e) = εfirst (1− εfirst )
e

ϕ×|action| , (16)

where e denotes the the current episode index, εfirst is the
initial value of ε, ϕ denotes an exploration parameter that
controls the attenuation rate of ε, and |action| is the size of
the action set.

4) REWARD
Our goal is to maximize the the users’ utility function con-
sidering the traffic load, so the reward can be assigned as the
sum value of the users’ utility function as expressed in (11).
The learning process is driven by the reward function in the
RL framework, and the system performance can be improved
when the design of the reward function for each step is related
to the desired objective. The Q-learning algorithm selects
the action that can achieve the maximum reward based on
the state-action value Q (st , at). Q-learning uses the current
return and the estimated value of the next moment obtained
by taking the action that maximizes the value to estimate the
value of the current moment. The Q value is updated by the
following formula

Q (st , at)=(1−α)Q (st , at)+α [Rt+1+γQ (st+1, at+1)],

(17)

where α denotes the learning rate. The specific procedures
are summarized in Algorithm 1.

An episode is one complete play of the agent interacting
with the environment in the general RL setting.
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B. PROPOSED DISTRIBUTED MULTI-AGENT Q-LEARNING
ALGORITHM FOR LOAD-AWARE DYNAMIC
MODE SELECTION
The concept of the distributed algorithm for multi-agent opti-
mization first appeared in [22] where the authors studied
the scenario that agents cooperatively minimize a common
additive cost with no constraint. Multi-agent reinforcement
learning has been used in mobile D2D networks [23] and
UAV networks [24]. A distributed Q-learning algorithm
for dynamic resource allocation problem with unknown
cost functions and unknown resource transition functions
was studied in [25]. As a matter of fact, the algorithms
based on Q-learning excels a lot in dynamic environments
where the users can move randomly in the coverage area
and the channel conditions between the RAUs and UEs
vary.

In centralized Q-learning, all possible cases explorable
by the agent should be considered. Hence, the size of the
Q-table of the centralized Q-learning increases exponentially
based on the sizes of the state and action sets which can be
calculated as Qtable-size = |state|size × |action|size. In our
scenario, the state of the environment is denoted as st =
[x1, x2, x3 . . . xM ] where the value of xM can be either 0 or
1. Therefore, the size of our state set comes to 2M . The
size of the Q-table for centralized Q-learning algorithm is
2M ×M . By contrast, in distributed multi-agent Q-learning,
each agent generates its Q-table considering only its own
state set and action set. Therefore, the size of the Q-table
of the distributed multi-agent Q-learning can be obtained as
Qdistable-size = Nagent×|state|own-size×|action|own-size. Nagent
is the number of agents.

In the proposed distributed multi-agent Q-learning algo-
rithm for load-aware dynamic mode selection, each RAU is
regarded as an agent. M RAUs corresponds to M agents.
The state set of each RAU is denoted as st = { s1, s2} ,
where s1 denotes the RAU working as uplink reception,
while s2 denotes the RAU working as downlink transmis-
sion. The action taken by each RAU is either ‘‘RAU M
changes its original working mode from uplink to downlink
or from downlink to uplink’’ or ‘‘RAU M stays in its orig-
inal working mode’’. The decayed ε-greedy policy in (16)
is used in action selection. Subsequently, the size of the
Q-table of the proposed distributed multi-agent Q-learning
algorithm is M × 2 × 2. Because distributed multi-agent
Q-learning does not require a deep neural network for func-
tion approximation, the proposed algorithm can be utilized
in practical scenarios for massive terminal access with lim-
ited computation power. Furthermore, distributed multi-agent
Q-learning method also alleviates the problem of Q-table’s
size explosion when a large number of terminals access
large-scale RAUs. It has high scalability in massive access
scenario.

When the state of the RAU indicates its working mode as
uplink reception, then the reward of the proposed distributed

TABLE 1. Simulation parameters.

multi-agent Q-learning framework is defined as

Rm,UL =

Ku∑
i=1

ln

1+

k −
∑
a∈Ku

nm,a

nm,i

, (18)

When the state of the RAU indicates its working mode as
downlink transmision, then the reward is defined as

Rm,DL =

Kd∑
i=1

ln

1+

k −
∑
a∈Kd

nm,a

nm,i

, (19)

The Q value in the Q-Table is updated according to (17). The
specific procedures are summarized in Algorithm 2.

C. COMPLEXITY ANALYSIS
Reinforcement learning provides a robust way to treat envi-
ronment dynamics and perform sequential decision mak-
ing by constantly interacting with the uncertainty of the
environment, reducing the computational complexity. The
time complexity of the proposed centralized Q-learning and
the distributed multi-agent Q-learning is O(EmaxKM ) and
O(EmaxK ) respectively. Emax is the number of episodes that
make the algorithm converge. K and M here refer to the
number of users and RAUs respectively. They are far better
than the exhaustion approach which owns the complexity of
O(2M ). The training phase of reinforcement learning is offline
so the time it takes for training is out of consideration when
implementing it in practice. We can simply get the optimal
assignment of RAUs through Q-table that has been trained
already. As for the storage unit, centralized Q-learning algo-
rithm requires a 2M×M Q-table while distributedmulti-agent
Q-learning only requiresM×2×2Q-tables. As demonstrated
above, the size of Q-table is greatly reduced in distributed
multi-agent Q-learning without the implementation of a com-
plicated trained deep neural network which works better
under the scenarios for massive terminal access in practice.

IV. NUMERICAL RESULTS AND DISCUSSION
In this section, NAFD cell-free large-scale distributed MIMO
system in a circular area is considered. This paper assumes
the M RAUs are distributed in a circular area. The system
contains K randomly distributed users, including Ku uplink
users and Kd downlink users. Each RAU is equipped with N
half-duplex antennas. The detailed simulation parameters are
listed in Table 1.
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Algorithm 1 Proposed Load-Aware Dynamic Mode Selec-
tion Algorithm Based on Centralized Q-Learning

Input:
• initialization: Generate the state set st (•) as a 1 × M
one-dimensional zero array, create a Q-table scaling
2M × M and initialize Q (•), ε, hu,i, hd,j, wd,m, gi,j,
GI, γ , α, and randomly place Ku uplink users and Kd
downlink users.

Repeat:
for Everyepisode do
ε(e) = εfirst (1− εfirst )

e
ϕ×|action| .

Determine an action:

ai =

{
random action, with probabilityε(e).

argmax
ai

(Q(si, ai)), with probability1-ε(e).

The state changes to the next state by taking the action.
Calculate the reward according to (11), max

xu,xd

∑
i∈Ku

UU,i+∑
j∈Kd

UD,j.

Update the Q-table according to (17).
end for
Return the optimal solutions of state and the opti-
mal reward which correspond to the best assignment of
UL/DL RAUs and the biggest value of the utility function
respectively.

In this study, we considered four conventional schemes as
benchmarks to compare the performances of the proposed
algorithms in terms of performance metrics.

• Average RAU scheme: This scheme is based on ran-
domly equal splitting of the RAUs as half uplink RAUs
and half downlink RAUs.

• TDD scheme: The TDD scheme is the time division
duplex mode.

• Random scheme: This scheme randomly chooses an
assignment of RAUs in each scenario.

• Exhaustion scheme: The exhaustive search provides
an optimal solution of the assignment of RAUs with
very high computational complexity. The convergence
of the proposed reinforcement learning algorithm to the
optimal solution can be proved through the comparison
between the exhaustive search and the proposed rein-
forcement learning algorithm.

• Centralized Q-learning scheme and Distributed
multi-agent scheme: The two schemes refer to the
proposed reinforcement learning algorithms mentioned
above.

Most of the previous works with respect to FD systems
usually fix the assignment of antennas or RAUs and then
perform system performance analysis on this basis. Themode
selection of RAUs can significantly improve the utilization of
UL/DL resources and the load-aware dynamicmode selection
scheme improves the access efficiency of massive terminal
communications and enhance the transmission reliability of
dynamic access links taking the traffic loads in consideration.

Algorithm 2 Proposed Load-Aware Dynamic Mode
Selection Algorithm Based on Distributed Multi-Agent
Q-Learning
Input:
• initialization: Generate the state set st (•) for each
RAU, create M Q-tables each scaling 2 × 2 and ini-
tialize Q (•), ε, hu,i, hd,j, wd,m, gi,j, GI, γ , α, and ran-
domly place Ku uplink users and Kd downlink users.

Repeat:
for Everyepisode do
ε(e) = εfirst (1− εfirst )

e
ϕ×|action| .

if State detected as uplink reception then
for i = 1 : Ku do
Determine an action for each RAU:

ai =

{
random action, with probabilityε(e).

argmax
ai

(Q(si, ai)), with probability1-ε(e).

The state changes to the next state by taking the
action.

end for
Calculate the reward according to (18).

end if
if State detected as downlink transmission then

for i = 1 : Kd do
Determine an action for each RAU according to the
decayed ε-greedy policy.
The state changes to the next state by taking the
action.

end for
Calculate the reward according to (19).

end if

Calculate the sum reward: rsum =
M∑
i=1

R.

Update the Q-table according to (17)
end for
Return the optimal solutions of state and the opti-
mal reward which correspond to the best assignment of
UL/DL RAUs and the biggest value of the utility function
respectively.

Fig. 3 and Fig. 4 illustrates the accumulated average reward
based on the progress of the episode. The results of optimal
rewards and were obtained through an exhaustive search in
the entire search space. Fig. 3 was performed under the ZF
precoding while Fig. 4 was performed under the MRT pre-
coding. The optimal values is plotted as a constant to present
the rate of convergence and optimality of the convergent
solutions. As shown in the figure, the proposed Q-learning
algorithm can converge quickly and has similar good conver-
gence performance for different precoding which proves the
robustness of the algorithm.

Fig. 5 is the CDF of the utility function of differ-
ent schemes under ZF precoding. Here, we generated
1000 scenarios of randomly distributed users with their
required resources requirements. The results indicate that
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FIGURE 3. Average reward vs. episode under ZF precoding.

FIGURE 4. Average reward vs. episode under MRT precoding.

the load-aware dynamic mode selection scheme using the
proposed centralized Q-learning and distributed multi-agent
Q-learning have similar performance. The gain provided by
load-aware dynamic mode selection scheme instead of the
simple and equally split of RAUs and random assignment
scheme is approximately 15% at the probability of 0.5, and it
is only 7% poorer than the optimal solution. It also provides
nearly 56% gain compared with the TDD scheme.

Fig. 6 is the CDF of the throughput of different schemes.
The throughput of the system is calculated under the premise
that the values of the above utility function have reached
their maximum values of each scheme respectively. The
red line which indicates the max throughput is to maxi-
mize SE through exhaustive research under the condition
of satisfying users’ QoS. As shown in Fig. 6, the proposed
load-aware mode selection scheme based on Q-learning
achieves nearly the same throughput performance as the
exhaustive research method, which gains 16% compared with
the random scheme, 22% compared with the average RAU
scheme and 45% compared with the TDD scheme at the
probability of 0.9. This proves the mode selection of RAUs
can significantly improve the throughput performance of the
system. According to the Nash Equilibrium in Game Theory,
a Nash Equilibrium in a game is a list of strategies, one for
each player, such that no player can get a better payoff by
switching to some other strategy that is available to himwhile
all other players adhere to the strategies specified for them

FIGURE 5. CDF of the utility function of different schemes.

FIGURE 6. CDF of the throughput of different schemes.

in the list. In our scenario, each RAU’s strategy is the best
response to other RAU’s strategies. Hence, the throughput by
maximizing the values of utility function is no larger than
the maximizing-throughput in global perspective. Instead,
each RAU has made a ‘‘no regrets’’ decision. Maximizing
the utility function guides users to prefer RAUs with fewer
RB resources on the premise of meeting their own QoS,
thus improving the utilization of RBs. With the traffic load
and the QoS of users considered, the load-aware dynamic
mode selection scheme helps to make better use of system
resources, thus improving the efficiency of user access.

Fig. 7 indicates the resource utility between load-aware
schemes and non load-aware scheme. Our proposed
load-aware dynamic mode selection scheme based on
Q-learning gains 13% of the resource utility compared with
non load-aware mode selection scheme at the probability
of 0.5. It has been proved that the load-aware schemes can
significantly improve the resource utility of the system.

Fig. 8 shows the value of the utility function versus the
number of RAUs.We assume the number of UL and DL users
is 10 respectively. The fixed mode refers to the equally split
the RAUs as uplink and downlink working mode. It has been
indicated that the proposed load-aware dynamic mode selec-
tion scheme based on centralized Q-learning and distributed
Q-learning achieves nearly the same performance regardless
of the advantages of distributed Q-learning in computing and
storage. The exhaustive method can get the theoretically opti-
mal solution with high complexity. As the number of RAUs
increases, the values of the utility function go higher under
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FIGURE 7. CDF of the utility function of load-aware schemes and non
load-aware scheme.

FIGURE 8. The utility function versus the number of RAUs.

FIGURE 9. The utility function versus the number of UL/DL UEs.

these three schemes. The proposed load-aware dynamicmode
selection scheme achieves better performance than the fixed
mode scheme and gets closer to the exhaustive method with
the growing number of RAUs.

Fig. 9 shows the value of the utility function versus the
number of UL/DL UEs. The numbers of uplink and downlink
users are equal and correspond to the numbers on the hori-
zontal axis. The values of the utility function don’t fluctuate
much as the numbers of UL/DL UEs vary which indicates
our proposed load-aware dynamic mode selection scheme is
robust even when the number of UEs increases.

With the access of a large number of terminals, it is essen-
tial to find an flexible mode selection scheme that can maxi-
mize the use of system resources. The load-aware dynamic
mode selection scheme based on centralized Q-learning
determines a clever strategy to approach the ultimate goal
by itself and excels in environment dynamics while the

distributed multi-agent Q-learning method reduces the com-
putational complexity using a distributed approach. The
distributed method has a higher scalability which is more
suitable in the actual scene. The proposed Q-learning algo-
rithm can be a reasonable approach for obtaining an optimal
solution rapidly and with low complexity.

V. CONCLUSION
In this paper, a load-aware dynamic mode selection scheme
of RAUs was studied under NAFD cell-free large-scale dis-
tributed MIMO systems. A utility function was proposed
to measure the utilization of the system traffic loads. The
centralizedQ-learning and distributedmulti-agent Q-learning
algorithms with different complexity were investigated.
Through intensive simulations, we demonstrated that the pro-
posed algorithms outperformed conventional schemes, i.e.,
equally splitting of the RAUs, random scheme, and TDD
scheme with far lower complexity compared with exhaustive
research method. The load-aware dynamic mode selection
can better exploit the system resources and enhance the per-
formance. The distributed multi-agent Q-learning algorithm
is proved to more suitable in the actual scene with smaller
storage unit and lower complexity. For the sake of real time,
CSI overhead and limited fronthaul capacity may be caused
by NAFD scheme in the scenario with a large number of
RAUs and users. Therefore, in future research, some cluster-
ing algorithms will be considered on Aps and UEs to further
investigate the scalable mechanism of our systems.
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