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ABSTRACT Tree-based systems rely on real-time dissemination trees to deliver information to nodes.
In order to offer good services, two fundamental aspects should guide the real-time growth process: low node
degree and short distances to the server. In this paper, we propose a growth process to construct trees and
make a detailed study on modeling and performance analysis of these tree-based systems. Our generative
mechanism is based on the preferential attachment principle, where preference is given in terms of node
quality. The proposed growth mechanism has a single parameter to weigh the relative importance of node
degree and node distance on assessing node quality. We aim at understanding this mechanism when consid-
ering the local aspect of the node’s degree and the global aspect of the distance to a source. With this goal,
we investigate our model through simulations and compare it to other growth processes. Our results indicate
that the proposed model is capable of self-organizing nodes into good trees under six metrics of interest.

INDEX TERMS Preferential attachment, real-time growth process, tree-based systems, node quality,
recursive tree, random tree, random recursive tree, power of two choices.

I. INTRODUCTION
Large-scale content distribution on the Internet has received
much attention over the last two decades. The number of
users of applications like Whatsapp, Facebook, Instagram,
YouTube and Twitter has increased enormously and so the
traffic at the network. Most of the difficulties arise from the
large number of resources required (e.g., network bandwidth,
memory) by the applications and by the traffic itself (for
example, video traffic) when serving thousands (sometimes
millions) of users. Moreover, most of these users are mobile,
using devices that, usually, have restricted resources. In the
near future, most the population in the world will have
mobile connectivity and a substantial amount of devices and
connections will be through 5G networks; this results in a

The associate editor coordinating the review of this manuscript and

approving it for publication was Mingjun Dai .

significant demand for high-scale real-time dissemination
schemes. Other examples of applications that require new
dissemination schemes or access to content appear in Industry
4.0, Sensor Networks, Internet of Things (IoT) and smart
cities, where cyber-physical systems, smart objects or smart
vehicles will be connected.

This huge demand for resources forces large-scale applica-
tions, such those involving content distribution, to scale more
efficiently with the increasing number of users. An approach
to achieve this goal, under delay and bandwidth constraints,
is to construct a real-time dissemination tree, where the server
corresponds to the root of the tree and the users to its inter-
nal nodes [1], [2]. As users arrive at the system, they can
receive some information either directly from the server or
from another node already in the tree. Thus, nodes receiving
information also forward content to arriving nodes (from now
on called newcomers).
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A major challenge within this approach relates to the
growth process of the real-time dissemination tree, as dif-
ferent trees will offer different qualities to users (or nodes).
The main difficulty is that neither the server nor any other
node has a global view of the quality of the tree, since the
tree is constructed online. Even if all nodes that would form
the tree were known in advance, arranging them in the best
tree (the tree with the best quality) is not a simple task,
e.g., as information about bandwidth and delay is usually
not readily available. Thus, most tree-based systems rely on
probing, side information and randomization in their growing
processes.

Two issues are central when considering the quality of a
tree:
• Node degree. The degree of a node in the tree (i.e., num-
ber of children) corresponds to the number of users being
served by this node. Since nodes have finite resources
(e.g., network bandwidth, memory and others) and each
user served consumes resources, node degree directly
affects the quality (e.g. throughput) of the information
passed by a node.

• Node distance. The node distance is the number of hops
between the node and the root of the tree (equivalently,
it is the level of the node on the tree). Since information
is forwarded from node to node down the tree, node
distance directly affects the quality of the information
received, as it is likely to experience larger delays and
losses.

Thus, mechanisms to construct efficient trees usually con-
sider these two characteristics. However, an important issue
to assess the quality of a tree is the relative impact of these two
characteristics. For example, if bandwidth is widely abun-
dant, then node distance can affect the quality (e.g. video
delay) relatively more than node degree.

In this paper, we are interested in understanding the quality
and topological properties of online constructed trees when a
simple mechanism is used. In particular, we model the grow-
ing process of the tree using a simple probabilistic process
that considers node degree, node distance and a single param-
eter that captures the relative importance of these properties
when assessing the node quality. Our generative model is
based on the idea of ‘‘preferential attachment’’ [3], where
preference is given to nodes with higher utility, which is a
measure for the quality of service offered by a given node
in the tree. To assess the quality of the proposed model, its
topological properties are compared with the properties of
the other five different models (two offline and three online
mechanisms).

For the purpose mentioned above, we evaluate the models
numerically through simulations and report the topological
properties and quality of the trees constructed. Our findings
indicate that our preferential attachment model generates
relatively good quality trees when compared to offline trees,
that are carefully organized (e.g., complete k-ary trees) and
with other online trees, e.g., power of two choices (P2C) trees.
Moreover, we find that the topological properties among the

online trees are not extremely different even when comparing
opposite ends of the balance between node degree and node
distance. Intuitively, the probabilistic approach captured by
the model avoids trees with extreme topological structures,
such as a star or a line tree.

Note that our goal is not to model any specific protocol,
but to understand and characterize trees constructed through a
simple, self-organizingmechanism based on the ‘‘preferential
attachment’’ principle. We abstract all system-level details,
such as bandwidth capacity and node location, and consider
just the fundamental aspects that determine quality.

In summary, our key contributions are:
• A configurable utility function. The proposed node
utility function balances the importance of the degree of
each node and its distance to the root of the tree (server)
through a single parameter (α). This allows the analy-
sis of the topological properties of the generated trees
(online and offline) for different networks through typ-
ical graph metrics, e.g., maximum and average node
degrees, root degree, maximum and average node dis-
tances to the root (Section III).

• New model for distributed tree design. We propose
a preferential attachment model which leverages the
proposed utility function to assess the quality of the
trees, given by the average quality of its nodes. For each
node arrival, probabilistic preferential utility attach-
ment (PPUA) relies on the quality of the nodes in the tree
at the time of the arrival to determine the parent of the
newcomer, in an online fashion (Sections III and IV).

• Comparison of offline and online tree growing algo-
rithms. We numerically investigate how the quality of
the proposed online algorithm compares against other
online and offline algorithms, indicating that PPUA is
competitive against counterparts (Section V). In addi-
tion, we show how previous models considered in
the literature [4]–[6] can be framed as special cases
of the tree growing algorithms studied in this work
(Appendices B and C).

The remainder of this paper is organized as follows.
In Section II we discuss related work. Section III describes
the proposed model in detail and introduces the metrics of
interest. Section IV describes the tree growing mechanisms
to be investigated. Section V presents a numerical evalua-
tion of different tree growing mechanisms, accounting for
the graph metrics of interest, under the offline and online
settings. Finally, Section VI concludes the paper with final
remarks. Appendix A provides expressions for the quality of
k-ary trees, Appendices B and C report specialized results
and directions for future work accounting for cases where
node quality is a function only of distance to the source
and degree, respectively, and Appendix D briefly discusses
optimal topologies.

II. RELATED WORK
Within the last years, several solutions have been adopted
to address large-scale information systems. Such solutions
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can be classified roughly into tree-based systems or mesh-
based systems [7], [8]. In tree-based systems, nodes are
organized into a tree structure and information flows down
one or more trees [7], [9], [10]. In mesh-based systems,
there is no particular structure and nodes exchange infor-
mation directly with one another, dynamically changing
their neighbors over time, similar to epidemic dissemina-
tion [8], [11]. Magharei et al. [12] and Goh et al. [8] present
a detailed comparative study between the tree and mesh-
based systems. Usually, tree-based systems use push proto-
cols, where nodes proactively send the information to other
nodes in order to disseminate it through the system. On the
other hand, mesh-based systems use pull protocols, where
nodes explicitly request the missing information to other
nodes. Cigno et al. [13] presents a hybrid push/pull protocol
to take advantage of each topology.

A. TREE-BASED SOLUTIONS
Small et al. [14] formulates a topology optimization problem
as aminimization of server bandwidth cost, which leads to the
scalability of the system concerning the number of nodes par-
ticipating in the session. Liu et al. [15] derive performance
bounds and present optimal tree-construction algorithms that
service providers can use to provide scalable, node-assisted
streaming services. Sayit et al. [16] propose a dynamic tree
construction and maintenance method for streaming appli-
cations. Qiu et al. [17] proposes a tree-based self-organizing
protocol for sensor networks, where nodes determine how to
join the network based on a self-organizing process, using
metrics such as the number of child nodes and communica-
tion distance.

Maccari et al. [18] propose a cross-layer optimization
scheme to minimize the impact of the streaming overlay on
the underlay wireless distributed network, exploiting infor-
mation on the topology and routing of the underlay network.
Telerius and Johansson [19] propose an algorithm that builds
an overlay topology using graphs in which each node prefers
to connect to nodes with a higher utility function value,
aiming to improve streaming performance. The expected con-
vergence time for the construction of the overlay topology is
evaluated.

B. TRAFFIC OFFLOADING AND HYBRID
TREE-MESH SOLUTIONS
Some hybrid solutions involving tree models were proposed
in the literature to deal with the scalability limitation of
mesh-based models [20], [21]. Hasimoto-Beltran et al. [20]
propose a hierarchical hybrid architecture that uses
time-proximity for grouping the nodes in clusters follow-
ing a hierarchical interconnected n-ary tree. The informa-
tion is disseminated between neighbor clusters and, inside
each cluster, in a top-bottom way. Budhkar and Tamara-
palli [21] propose an overlay strategy for content delivery
networks (CDN) using the serviceability of nodes to improve
QoS and to reduce the load of CDN servers. The topology is
arranged as tree-mesh based on serviceability. Peer-assisted

CDNs [22], [23] combine the benefits of traditional CDNs
with the scalability properties of P2P networks in order
to reduce the load on the CDN servers and provide lower
latency. In such systems, a P2P content distribution network
is constructed forming a tree topology, with the CDN server
as the root, and used as backup by the peers.

Zhang and Hassanein [24] and AlTuhafi [25] present
a survey of video streaming topologies. Huang et al. [26]
applies a top-down construction of spanning trees to a secure
message distribution in reliable communication networks.
They propose an algorithm for constructing spanning trees
using breadth-first search (BFS) to connect the nodes to the
network. Hameed et al. [27] proposed a decision tree-based
model that predicts the perceptual quality of the video trans-
mitted over wireless networks using FEC algorithms to
improve the QoE (Quality of Experience) of the transmitted
video.

In another research thread, authors have studied the costs
to maintain tree and mesh topologies. In [28], the authors
aim at modeling and controlling dynamic networks through
distributed consensual control. In [29] the authors propose a
spanning tree coverage algorithm for distributed path plan-
ning of flying robots, where each robot constructs its span-
ning tree that grows towards uncovered areas.

The search for an optimal content dissemination topology
may involve different sorts of heuristics. As an example, evo-
lutionary algorithms can be used for clustering the nodes [30].
Alternatively, multi-objective optimization [31] can serve to
account for delay and bandwidth minimization as conflicting
goals. In this work, in contrast, we focus on simple real-time
mechanisms, such as preferential attachment.

C. GRAPH BASED ANALYSIS OF VIDEO STREAMING
Pandey et al. [32] implements and compares different
approaches of content cache on the internet. The approaches
are evaluated using different network topologies, cache
size, content popularity, and a number of requests. For the
implemented algorithms, the number of hops between the
generating and consuming nodes is evaluated. This number
is proportional to the delay. As we will soon describe, our
proposed model can be adapted and applied to different sce-
narios of internet caching, despite the simplicity. We consider
both the number of hops and the out-degree of nodes in the
growing process of the tree.

A graph-based model to capture the dynamics of dissemi-
nation trees is discussed in [33]. The latter work considers a
scenario close to the one we investigate in this paper. How-
ever, there are fundamental differences. We are concerned
with understanding fundamental properties of a real-time
dissemination tree constructed through a very simple mecha-
nism based on preferential attachment, where all system-level
parameters are abstracted. For example, differently from prior
work, our model has no notion of bandwidth capacity or any
explicit limits on the maximum number of children a node
can have. These constraints are inherently captured by the
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self-organizing nature of the proposed model, as we will soon
discuss.

Since video transmission over wireless and wired networks
demands high bandwidth and low delay, the objective func-
tion used in our work is suited for this kind of systems.
In such scenarios, our model can be applied to reduce the
transmission delay and balance the traffic and energy expen-
diture between network nodes. P2P and sensor networks
can also be modeled as nodes arriving in a tree, like our
model.

D. MATHEMATICAL MODELS AND
PREFERENTIAL ATTACHMENT
Mathematical models have been used to understand the fun-
damental limits of information systems, as well as to under-
stand design tradeoffs. Small et al. [34] presents a tradeoff
study of system-level parameters in the scaling of peer-to-
peer systems. Kumar et al. [35] and Carra et al. [36] propose
a stochastic fluid-based modeling framework to evaluate the
performance of general streaming systems. Bonald et al. [37]
propose a model for epidemic-style dissemination to evaluate
different dissemination strategies.

As an additional illustration of the applicability of
epidemic models and its connection to growing trees,
Li et al. [38] proposed a model for the spread of epidemics,
in the framework of branching processes. Based on real
data, they simulated the spread of an epidemic, studying the
number of infected regions and the first arrival time of the
contagion in each region. The paper shows that the first arrival
time can be captured through a branching process [38], [39],
that corresponds to a growing tree.Whereas the growing trees
considered in branching processes account for multiple nodes
being added to the tree as a result of infections caused by
their corresponding parent node, in this work we account for
individual nodes entering the system based on preferential
attachment.

The principle of preferential attachment has been used
to model the growth process of several different networks.
In particular, preference by out-degree has been studied since
the early 1990s [40], andwas later on popularized byBarabasi
and Albert [3], [41]. Then, authors generalized the idea to
other preferences, including the notion of ‘‘fitness’’ of a
node [42], as well as preference by nodes with old [43] or
young ages [44].

Barabasi and Albert [3], [41] have applied the principle
of preferential attachment to model networks that exhibit
a power-law scaling behavior in their degree distribution.
In theirmodel, preference is proportional to node degree, such
that nodes with a higher degree are more likely to receive
edges from arriving nodes. They show that this simple growth
process leads to graphs with a power-law degree distribution.
Later, Karsai et al. [45] have discovered that this tree growth
may be slow depending on the burstiness of nodes. This
implies, for example, that infections by a computer virus can
be reported years after its emergence or introduction.

Motivated by biological networks, Sevim and Rikvold [6]
have also investigated a model where preference is inversely
proportional to node out-degree. In their work, arriving nodes
prefer to connect to nodes with lower out-degree. Sevim and
Rikvold [6] show that their preferential attachment model
entails a degree distribution which has tail probabilities that
decay faster than an exponential.
Remark 1: In trees where nodes connect to parents uni-

formly at random, degree distribution has exponentially
decreasing tail probabilities, i.e., the proportion of nodes
with out-degree d converges, as n → ∞, to 2−(d+1) almost
surely [4], [46]. In trees where nodes connect to parents with
preference towards nodes with larger degree, degree distri-
bution follows a power-law [41]. Finally, if nodes connect to
parents with preference towards nodes with smaller degree,
degree distribution decays faster than an exponential [6].

In [47] the authors extended [6] and proposed a more
general model, where preference is proportional to a posi-
tive power of the ratio of in-degree to out-degree. Although
similar, the model we investigate in this paper is inherently
different, as preference is inversely proportional to both node
degree and node distance. As can be seen in the next section,
our proposed model can degenerate to the model investi-
gated by Sevim and Rikvold [6], when α = 1 (see also
Appendix C).

The so called ‘‘power of choice’’ has also been considered
in the realm of tree growth. The power of two choices, for
instance, corresponds to sampling two nodes uniformly at
random from the tree after each arrival, and selecting one
among them as the parent of the newcomer. The degree and
height distribution of a certain class of networks where nodes
select their parents from a subset of nodes sampled uniformly
at random have been studied in [5] and [48], respectively.
In this work, we extend those studies to account for the joint
role of heights and degrees in the choice of parents.

III. TREE CONSTRUCTION MODEL
We consider a system composed of a single server and the
sequential arrival of homogeneous nodes. Once it arrives,
a node connects to a single node in the system to start receiv-
ing service. Nodes in the system offer service to a newcomer
by simply forwarding it content. Note that the topology of the
system is a tree, since every newcomer connects to a single
node in the system. We assume that nodes always forward
the content if they are chosen to be the parent of a newcomer
(i.e., all nodes are altruistic). Finally, we also assume that
nodes never leave the system nor move in the tree, thus, their
position in the tree is determined at the time of their arrival.
Figure 1 illustrates the construction of a tree.

A fundamental problem in this model is determining the
parent node for an arriving node, addressed by a tree growing
mechanism (algorithm). This mechanism is inherently an
online algorithm, as it has no knowledge of the number of
nodes that will join the tree. For example, this assumption
is rather realistic when considering distributed, large-scale
video streaming systems.
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FIGURE 1. The real-time dissemination tree.

A. OFFERED NODE QUALITY AND UTILITY FUNCTION
An important consideration is the quality of service that a
node on the tree can offer to a newcomer. Intuitively, the
offered node quality is inversely proportional to its degree,
as the finite resources must be shared among all its chil-
dren. Moreover, offered node quality is also inversely pro-
portional to the distance on the tree to the source (or server),
as network characteristics that negatively affect the quality
(e.g., delay and losses) are proportional to distances. Thus,
the offered node quality degrades as either out-degree or
distance increases. This motivates the use of the following
utility function u(d, l) to assess offered node quality:

u(d, l)=
1

α(d+1)+(1−α)(l + 1)
, for 0 ≤ α ≤ 0, (1)

where d and l correspond to the out-degree of the node and its
distance to the server (measured in hops), respectively.1 The
parameter α is used to weigh the relative importance of the
two properties d and l.
Note that when α = 0 offered node quality depends

only on distance. This represents a system where (server
or node) bandwidth is rather unlimited (i.e., nodes have
virtually infinite bandwidth). On the other extreme, when
α = 1 offered node quality depends only on degree. This
represents a system that has severe bandwidth limitations.
The extreme scenarios where α = 0 and α = 1 are studied in
details in Appendices B and C, respectively.

Intuitively, α is a parameter that determines the kind of sys-
tem being considered. Of course, α will have a fundamental
influence when assessing node and tree quality.

Equation (1) will be used to determine the parent node
of a newcomer, i.e., the node from which the arriving node
will receive service. In particular, we consider a probabilistic

1From now on every time we write ‘‘node degree’’ we will be referring to
‘‘node out-degree’’.

approach, using the idea of ‘‘preferential attachment’’. Thus,
a newcomer node randomly connects to the tree using a
probability that is proportional to the utility it will receive
from its parent node. Let pv denote the probability that a
newcomer chooses a parent node v already in the tree, where v
can also be the server. Under probabilistic preferential utility
attachment (PPUA), pv is given as follows:

pv =
u(dv, lv)∑
s∈S u(ds, ls)

, (2)

where dv and lv correspond to the degree of node v and the
distance between node v and the server, and S is the set of
nodes already in the tree, including the server, at the time
a new node arrives. Note that pv varies with the number of
nodes in the tree.

The above mechanism models distributed or centralized
algorithms that perform an informed guess when determining
the parent node for a newcomer. For example, in a centralized
approach the server could provide the newcomer with this
informed guess. In particular, the server can maintain and
update the tree information for every node arrival, providing
the newcomer with its randomly chosen parent node. Note
that this random choice is much more efficient (in terms of
computational cost) than determining the optimal parent in
the tree for every newcomer (i.e., a node that would yield
the highest utility). In what follows and for the purpose of
comparison, we also consider a mechanism that computes for
each newcomer its optimal parent in the tree, and refer to such
an algorithm as deterministic preferential utility attachment
(DPUA).

Last, the above model assumes there are no concurrent
arrivals and that the system can update itself between con-
secutive arrivals. While this is not unrealistic given the com-
putational requirements of processing an incoming node,
we conjecture that as the number of nodes in the tree grows
this assumption can be lifted with negligible consequences.
In particular, the results concerning tree structure and node
quality are likely to hold even if the system is updated only
after a (small) batch of arrivals. However, a detailed analysis
of this scenario is marginal to the current work and left for
future investigation.

B. TREE QUALITY AND OTHER METRICS OF INTEREST
In order to characterize the topological properties of the trees
constructed by our proposed model, from now on referred to
as probabilistic preferential utility attachment trees (PPUA
trees), we will use traditional graph-theoretical metrics, such
as maximum and average node degree, server degree, node
degree distribution, maximum and average node distance,
node distance distribution and tree quality. These metrics
will also be used to characterize the topological properties
of many comparison trees. Table 1 summarizes these metrics
and their acronyms.

To assess the quality of the tree constructed by the mech-
anism we consider a metric to capture the average quality of
a node in the tree. Let qv denote the quality received From
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TABLE 1. Metrics to analyze topological properties.

now on every time we write ‘‘quality of a node’’ we will be
referring to the ‘‘quality received by a node’’. by node v. Thus,
similarly to Equation (1), we have:

qv =
1

αdP(v) + (1− α)lv
, for 0 ≤ α ≤ 1. (3)

where P(v) denotes the parent of node v,

qv = u(dP(v) − 1, lv − 1). (4)

whereas the values of parameters of Equation (1) are assigned
before the newcomer joins the network, the parameters of
Equation (3) are assigned after the newcomer joins. In par-
ticular, note that the quality received by newcomer v depends
on the degree of its parent, dP(v), whose level equals the level
of v, lv, minus one. Moreover, α is identical in Equations (1)
and (3), as utility and quality must be assessed using the same
relative importance between node degree and node distance,
as indicated by Equation (4).

Using Equation (3), we define the tree quality q̄ as the
average node quality of a given tree as follows:

q̄ =

∑
s∈S\{r} qs
|S| − 1

, (5)

where S is the set of nodes in the tree, including the root node,
|S| the cardinality of this set, and r is the root node (server).
Table 2 contains a summary of the symbols used to define

variables and parameters used throughout the remainder of
this paper, along with their meanings.

TABLE 2. Table of notation.

IV. COMPARING TREE FORMATION ALGORITHMS
We compare the behavior and quality of the trees generated
by the PPUA model against other five tree-formation algo-
rithms: two offline algorithms and three online algorithms.
The offline algorithms receive as input the total number of
nodes joining the tree. They output a final tree indicating how
nodes should be organized. In particular, onemechanism con-
siders the ensemble of best complete k-ary trees (K-C tree),
while the other attempts to construct a uniform quality tree
(UNIFQ tree). The other three algorithms build trees online.
The trees are generated by simulating a growth process, as the
tree generated by the proposed model (PPUA tree): uniform
at random tree (URND tree), deterministic preferential utility
attachment tree (DPUA tree) and power of two choices tree
(P2C tree). Below we detail how these trees are constructed.

A. OFFLINE TREES
1) COMPLETE k-ARY TREES
Recall that a complete k-ary tree is a tree where all nodes,
except leaves and parents of leaves, have exactly k children.
Intuitively, complete k-ary trees should yield a good tree
quality, under the metric defined above, as they can tradeoff
distances and degree by varying k . In particular, note that if
k = 1 we have a line tree, and if k = |S| − 1 (where |S| = n
is the number of nodes in the tree) we have a star tree with
the root connected to |S| − 1 leaves.
Consider a complete k-ary tree with n nodes, for a given

value of k . The complete tree is said to be full if at level l
it has exactly k l nodes, for l = 0, . . . , h where h is the tree
height. The height h of the k-ary tree is given by:

h =
⌈
logk (−(1− k)n+ 1)− 1

⌉
. (6)

Let q(c)k,n denote the average node quality of a K-C tree,
as given by Equation (5). In what follows, we drop subscript
n whenever it is clear from context, and let q(c) denote the
best average node quality over all possible k-ary trees with n
nodes (best K-C tree). Thus, we have:

q(c) = max q(c)k , for 1 ≤ k ≤ |S| − 1, (7)

where an expression for q(c)k is derived in Appendix A.
Note that q(c)k depends on α, as α determines the relative

importance between node degree and node distance. Figure 2
shows the average tree quality of complete k-ary trees with
60,000 nodes as a function of k . Each curve corresponds to
an α value.
Figure 2 shows that when α = 0 an average tree quality

of q(c)k = 1 is achieved by the star tree with k = |S| −
1 = 59, 999 wherein all distances between the nodes and
the server are equal to one. When α = 1, an average quality
of q(c)k = 1 is achievable with k = 1, that leads to a line tree
where all node degrees are equal to one, except for a single
leaf With α = 0.5, we observe that the best tree is obtained
when k = 4, a relatively small value compared to |S|.

In what follows, we further discuss the role of α while
determining the best value of k . In general, we will be
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FIGURE 2. Average tree quality for complete k-ary trees with different α
values (n = 60,000).

interested in determining the optimal value of k for each α,
i.e., to find the best K-C tree for any given α, and to explain
the interplay between α and the optimal k .

2) OPTIMAL k IN COMPLETE k-ARY TREE
Next, we consider an approximation to determine the optimal
value of k in K-C trees as a function of α. Given α and n, our
goal is to determine how to set k to maximize average node
quality. The approximation consists in focusing on leaf nodes.
Indeed, we consider a tree where all nodes except leaves have
degree k . Then, leaf nodes are at distance logk (n − 1) from
the server, and their corresponding quality is given by:

q =
(
(1− α)

(
ln(n− 1)

ln k

)
+ αk

)−1
. (8)

Taking the derivative of the quality of leaves given by
Equation (8), with respect to k , and setting it to zero,
we obtain Equation (9),

dq
dk
= −

α +
(logk (n−1))(α−1)

k(ln k)(
(1− α)

(
ln(n−1)
ln k

)
+ αk

)2 = 0. (9)

Note that for α = 0 (resp., α = 1) we have dq
dk > 0

(resp., dq
dk < 0), which corresponds to the fact that the

utility monotonically increases (resp., decreases) with respect
to k in these two extreme cases. Indeed, the star and line
topologies are optimal in those two extremes, respectively
(see Section III-A). For α between 0 and 1, the value of k
which maximizes q satisfies:

logk (n− 1)
k(ln k)

=
α

1− α
. (10)

Therefore,

k = e2W (
√
κ/2) (11)

where

κ =

(
1
α
− 1

)
ln(n− 1) (12)

andW (x) is the principal branch of the Lambert function, i.e.,
W (x) is the solution of wew = x. For n = 60, 000 and α =
0.5, the above approximation implies that the optimal value
of k is between 4 and 5, which is in agreement with Figure 2,
obtained empirically.

In Figure 3 we plot the floor of the solution of Equa-
tion (10), for n = 600 and n = 60, 000. As α increases
from 0.1 to 1.0, the optimal degree decreases from 14 to 1,
corresponding to a transition from graphs favoring smaller
distances to smaller degrees. Note also that the optimal degree
either increases or remains unchanged as the population size
grow from 600 to 60, 000. This is because larger populations
may require higher node degrees to maintain the distance
from nodes to the server at optimal levels.

FIGURE 3. Approximate optimal degree (bkc which satisfies
Equation (10)) and exact optimal degree of K-C trees for n = 600 and
n = 60,000.

The smaller the value of α, the larger the optimal degree.
In particular, for α = 0 (not shown in Figure 3) the optimal
degree equals n−1. As α increases from 0 to 0.1, the optimal
degree sharply decreases to values ranging between 10 and
14 for n = 600 and 60, 000, respectively. Finally, for α = 1
the optimal degree equals 1 independently of n. From now
on, every time we say ‘‘K-C tree’’ we are referring to the best
K-C tree for a given α.

3) UNIFORM QUALITY TREE
The complete k-ary tree has the drawback that all nodes
in the tree, except for leaves and parents of leaves, must
have the same degree. This may not be optimal, as nodes
at larger distances (further down the tree) will experience
lower quality. However, this reduction of quality could be
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compensated by smaller degrees. This is exactly the intuition
behind the uniform quality tree (UNIFQ tree).

Consider a system with n = |S| nodes. In the UNIFQ tree,
we assume all nodes should have roughly the same quality.
Since all nodes have similar quality, all nodes in a given level
of the tree, except leaves, must have parents with the same
degree. Thus, all nodes at the same level of the tree have the
same degree, except for parents of leaves. Let di denote the
degree of nodes in level i, where i = 0, 1, 2, . . . Note that
d0 is the degree of the server. Thus, as given by Equation (3),
the quality of a node in level i of a UNIFQ tree, q(u)i , is given
by:

q(u)i =
1

αdi−1 + (1− α)i
, for 0 ≤ α ≤ 1. (13)

Whenever it is feasible to have q(u)i identical for all i,
we have q(u)i = q(u)i+1. Thus, we find: di = di−1 − (1 − α)/
α. For i = 1, we have d1 = d0 − (1 − α)/α. By induction,
we solve for di:

di = d0 −
(
1
α
− 1

)
i, for 0 < α ≤ 1 (14)

where d0 is the degree of the server which is necessarily
greater than 0.

In general, the degree sequence described in Equation (14)
may yield non-integer degrees. Therefore, we relax the
assumption that q(u)i must be identical for all i, and let di be
given as follows:

di =
⌊
d0 −

(
1
α
− 1

)
i
⌋
, for 0 < α ≤ 1 (15)

The server degree d0 determines the degree sequence of
the tree, as given by Equation (15). The degree sequence
d0, d1, d2, . . . , dn−2 must be such that it can form a tree that
can hold n nodes. Letmi denote the number of nodes in level i,
with i = 0, 1, 2, . . . , n − 1. In particular, the highest level
n− 1 is reached only by the line tree. We have that:

mi ≤
i−1∏
j=0

dj i = 0, 1, 2, . . . , n− 1 (16)

where m0 =
∏
−1
j=0 dj = 1. Since the tree must hold all n

nodes, we have the following additional condition:
h∑
i=0

mi ≥ n (17)

where h is the tree height. In particular, if the tree is a star we
have h = 1 and if the tree is a line we have h = n− 1.

For a given α and target tree height h, the corresponding
UNIFQ tree is obtained by determining the value of d0 satis-
fying Equation (17). Once d0 is determined, the whole degree
sequence follows from Equation (15).

The optimal tree satisfying the above conditions is obtained
through the solution of the following optimization problem,
given 0 ≤ α ≤ 1:

max
d0

q(d0, h(d0)) (18)

subject to:

di = max
(⌊

d0 −
(
1
α
− 1

)
i
⌋
, 0
)
, (19)

i = 1, . . . , h− 1 (20)
h∑
i=0

i−1∏
j=0

dj ≥ n (21)

h ≥ 1, 0 ≤ di ≤ n− 1 (22)

The above optimization problem is solved by iterating over d0
and determining the corresponding tree height h for each d0.
The optimal tree corresponds to parameters (d?0 , h

?) maximiz-
ing average quality.

Whenever is feasible to build a UNIFQ tree wherein all
node qualities are identical we have,

q = qv = q(u)i =
1

αd0 + 1− α
. (23)

In this case, under the best UNIFQ tree d0 must be mini-
mized. Motivated by this observation, in the remainder of
this paper we consider UNIFQ trees wherein d0 must be
minimized, which implies that the UNIFQ trees considered
in this work are obtained solving the following optimization
problem:

min d0 (24)

subject to:

di = max
(⌊

d0 −
(
1
α
− 1

)
i
⌋
, 0
)
, (25)

i = 1, . . . , h− 1 (26)
h∑
i=0

i−1∏
j=0

dj ≥ n (27)

h ≥ 1, 0 ≤ di ≤ n− 1 (28)

For any givenα and n, the UNIFQ tree considered in this work
corresponds to parameters (d?0 , h

?) which solve the above
optimization problem.

B. ONLINE TREES
1) PROBABILISTIC PREFERENTIAL UTILITY
ATTACHMENT TREE
Probabilistic preferential utility attachment tree (PPUA tree),
as already stressed in the text, is obtained by a growth process
where a node randomly connects to the tree based on a
probability proportional to the utility it will receive from its
parent node.

2) UNIFORM AT RANDOM TREE
Uniform tree (URND tree), also known as random recursive
trees [4], is obtained by a growth process where the parent of
a newcomer is selected uniformly at random among the nodes
already present in the tree. The topology of this tree does not
depend on the value of the parameter α.
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3) DETERMINISTIC PREFERENTIAL UTILITY
ATTACHMENT TREE
Deterministic preferential utility attachment tree (DPUA tree)
is obtained by a growth process where we compute the utility
function (Equation (1)) for each node already in the tree. The
node with the highest utility will be chosen as the parent of
the arriving node. If we have a tie at the highest value, the tie
is broken uniformly at random.

4) POWER OF TWO CHOICES TREE
Power of two choices tree (P2C tree) is obtained by a growth
process that works as follows: first, we randomly select two
nodes. Between these two nodes, the newcomer chooses the
one with the highest utility. If we have a tie, we randomly
select one of the nodes to be the parent of the newcomer.

Table 3 summarizes the tree formation policies and Table 4
contains a summary of the symbols used to define those
policies.

TABLE 3. Tree formation policies.

TABLE 4. Symbols used to define tree formation policies.

V. RESULTS
Next, we investigate the performance and topological features
of the considered tree growing mechanisms. In particular,

we compare the online and offline solutions presented in the
previous section. The simulation starts out with the server
(i.e., root node). Nodes are sequentially added to the tree
following the corresponding growth processes, described in
Section IV, noting that PPUA, DPUA and P2C leverage
Equation (2) while determining the parent of the new node
to be added. After each node is added to the tree, the utilities
and corresponding attachment probabilities of all nodes in the
tree are recomputed.
Simulation Setup: For the results that follow, the simulation

stops after exactly |S| = n = 60, 000 nodes are added to
the tree (including the root).2 Each simulation scenario is
executed 20 times for each kind of tree and each α value.
We report the sample average of each metric with its con-
fidence interval. Finally, we are interested in the behavior
and performance as a function of its sole parameter α, which
determines the relative importance between node degree and
distances when assessing the quality of nodes. Some curves
will not show the value of the correspondingmetric of interest
for the extreme value of α = 0.0 (or for α = 1.0) in order
to present more clearly the differences between the values of
that metric for the other values of α being considered; indeed,
the values of some of the metrics of interest are outliers (too
high) in those extremes, e.g., under DPUA, corresponding to
the degree of a star with n − 1 leaves and to the maximum
distance in a line with n levels when α = 0 and α = 1,
respectively.

A. NODE DEGREE
We start investigating node degree, which measures the num-
ber of nodes for which a given node will forward content.
For this purpose, we assess the maximum node degree, aver-
age node degree, server node degree and the complementary
cumulative distribution function (CCDF) of node degrees.

1) MAXIMUM NODE DEGREE—GMAX
Figure 4 shows the maximum node degree for all the trees.
In a K-C tree, as all nodes have the same degree (except
for leafs and parents of leaves), maximum node degree is
determined by the node degree of the K-C tree with the
best quality (best K-C tree), for each α value, as we have
mentioned in Section 4. In UNIFQ tree, the closer the node is
to the server, the greater its degree, to maintain ‘‘fairness’’ in
node quality. Thus, the smaller the value of α, the larger the
value ofmaximumnode degree (implying a greatermaximum
node degree compared to the K-C tree). For α = 0, maximum
node degree is n − 1 (n = 60, 000). The DPUA tree has a
behavior similar to that of the UNIFQ tree.

Under URND trees, the value of α has no influence on the
node selection. Thus, the maximum degree does not statis-
tically vary as a function of α. In addition, it is well known
that underURND themaximumdegree is highly concentrated

2In Appendices B and C we discuss the extent at which our results for
n = 60, 000 also hold asymptotically.
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FIGURE 4. Maximum node degree as a function of α.

around log2 n (Theorem 6.12 in [4]), which corresponds to
15.8 for n = 60, 000.

In P2C trees each newcomer chooses its parent based on the
best utility between two nodes selected uniformly at random.
In this case, the probability of choosing a leaf increases with
respect to α. Nonetheless, even though the maximum node
degree is sensitive to α it varies in a smaller range of values
compared to other alternatives, such as PPUA.

Next, we consider the PPUA tree. We can see that the
PPUA tree does not present extreme values when α = 0 or
α = 1 as is the case for DPUA, UNIFQ and K-C trees. Recall
that as α tends to zero, the contribution of node degree to the
node utility (Equation (1)) goes to zero and only distances are
important. Thus, onewould expect to observe trees withmuch
larger maximum degrees and shorter distances. In the limit of
α = 0, one would expect the server degree to be proportional
to n, the number of nodes in the tree. However, this is not the
case. In the PPUA tree the probability of choosing a specific
node (Equation (2)) decreases with n when α is very small.
Thus, it is extremely unlikely that a single node will attract
all newcomers, leading to a star topology. Figure 4 shows
this characteristic. Notice that themaximum degree decreases
monotonically with α varying from over 45 (when α = 0) to
8 (when α = 1).
Remark 2: Under deterministic policies (DPUA, UNIFQ

and K-C trees) the maximum node degree equals n-1 when
α = 0 (not shown in Figure 4) and decreases as α grows,
reaching 1 when α = 1. Under probabilistic policies (PPUA
and P2C), in contrast, the maximum node degree is also
a decreasing function of α but it varies in a much more
restricted range of values as randomness in the choice of
parents tends to balance node degrees preventing extreme
topologies such as the star or line.

2) AVERAGE NODE DEGREE—GAVG
In this section, we explicitly distinguish between total degree,
in-degree and out-degree. This is in contrast to the rest of this
work, where degree is assumed to refer to the out-degree.

In any tree, the average total degree (out-degree plus in-
degree) equals

d
(t)
=

n∑
v=1

d (t)v /n = 2(n− 1)/n = 2
(
1−

1
n

)
, (29)

where d (t)v is the total degree of vertex v. Therefore, the
average out-degree, d

(o)
, of any of the trees considered in this

work equals

d
(o)
=

(∑n
v=1 d

(t)
v

)
− (n− 1)

n
= 1−

1
n
. (30)

Next, we consider the average total degree of internal
vertices, i.e., all vertices except leaves. Let P(Ln = `) be the
probability that a tree with n vertices has ` leaves. Then,

d
(i,t)
=

n−1∑
`=1

n−∑̀
v=1

P(Ln = `)d (t)v /(n− `) (31)

=

n−1∑
`=1

P(Ln = `)(2(n− `− 1)+ `)/(n− `) (32)

Similarly, we consider the average out-degree of internal
vertices,

d
(i,o)
=

n−1∑
`=1

n−∑̀
v=1

P(Ln = `)d (o)v /(n− `) (33)

=

n−1∑
`=1

P(Ln = `)(n− 1)/(n− `) (34)

In URND trees, for instance, it is known that on aver-
age half the nodes are leaves. In addition, for URND trees
there is a closed-form expression for P(L(URND)n = `)
[4, equation (6.14)],

P(L(URND)n = `) =
1

(n− 1)!

〈
n− 1
`− 1

〉
(35)

where
〈n
`

〉
denotes the Eulerian numbers.

Figure 5 numerically evaluates the above equations for
average node degrees, for n varying between 1 and 50. Note
that whereas the average degrees in Equations (29) and (30)
hold for any tree with n vertices, i.e., any instance of a tree
with n vertices satisfies those equations, the average degrees
in Equations (31) and (34) vary across tree growth strate-
gies and across tree instances. Therefore, in this section we
focus on the average out-degree of internal nodes, given by
Equation (34), as illustrated in Figures 6 and 7.

Figure 6 shows the behavior of average out-degree for
internal nodes under PPUA, P2C and URND trees as a func-
tion of α. Figure 7 shows the behavior for K-C trees.

Recall that for URND trees the tree topology is insensi-
tive to α. Figure 6 shows that URND trees have average
out-degree of internal nodes equal to 2, in agreement with
Equation (34), for large n.
Next, we consider the behavior of the out-degree of internal

nodes of P2C and PPUA trees. P2C trees are constructed from
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FIGURE 5. Average degrees under URND trees.

FIGURE 6. Average out-degree of internal nodes as a function of α for
URND, P2C and PPUA trees.

vertices uniformly drawn from the tree. Although its growth
process depends onα, causing an increase in the out-degree of
internal nodes for small α, for larger values of α the behavior
of P2C and URND are roughly the same with respect to
average out-degree of internal nodes. Similarly, the average
out-degree for internal nodes of PPUA trees will also not
vary much as a function of α because, as we have already
pointed out, the PPUA tree does not have extreme values for
the degrees of its nodes. As shown in Figure 6, P2C is slightly
more sensitive to α than PPUA.

In K-C trees the optimal degree sequence can be computed
as a function of α, and the behavior of the average out-degree
of internal nodes is illustrated in Figure 7 (see optimal k in
Figures 2 and 3). For α = 0, the optimal K-C tree is a star,
with a single internal node with out-degree n− 1 (not shown
in Figure 7).
The elements in Figure 7 are computed using the following

equation, which is a special case of Equation (34):

d
(i,o)
=

n− 1

n− `(KC)n (α)
(36)

FIGURE 7. Average out-degree of internal nodes as a function of α for the
best K-C trees, with n = 60,000.

where `(KC)n (α) is the number of leaves in the best K-C tree
with n nodes (see Equation (40)). As almost all internal
nodes in the K-C tree have degree k , the above expression
produces results very close to k . This, in turn, explains why
Figures 3 and 7 are very similar to each other, noting that the
optimal degrees in Figure 3 are integers whereas the average
degrees in Figure 7 are real numbers.
Remark 3: The average total degree (out-degree plus in-

degree) of any tree equals 2(1 − 1/n). Under probabilistic
policies (URND, PPUA and P2C) the average out-degree of
internal nodes is also close to 2 for all α, when n = 60, 000.
Under deterministic policies (DPUA, UNIFQ and K-C trees)
the average out-degree of internal nodes equals n − 1 and 1
when α = 0 and α = 1, respectively, and varies between
those extremes for 0 < α < 1.

3) SERVER NODE DEGREE—GSER
Next, we consider the server degree. Figure 8 shows the server
node degree as a function of α for the online trees. One can
note that URND and P2C trees show similar behavior, by the
same reasons that we have mentioned while discussing the
maximum node degree (Section V-A1).

In P2C trees, when both the number of nodes and α

are small, the probability of the server being chosen by a
newcomer is high. As the number of nodes increases, this
probability decreases. For larger values of α, as the tree grows
the utility of the server tends to decrease, further reducing the
probability that the server is selected by a newcomer. Thus,
the server degree decreases, albeit not very significantly, as α
increases from 0 to 1. Interestingly, for α = 0 the average
server degree under P2C can be shown to be asymptotically
equal to 2 ln n which is twice the average server degree under
URND (see [5] and [4], respectively). For n = 60, 000, the
average server degree equals 22 and 11, for P2C and URND,
respectively.
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In the DPUA tree the server has degree equal to n − 1 for
α = 0 and degree equal to 1 for α = 1. As α grows, the
server degree decreases. In addition, note that in the DPUA
tree the server degree achieves more extreme values than the
ones obtained for PPUA trees.

In PPUA trees, we note a similar trend as the one obtained
for the maximum node degree. The server degree decreases
monotonically withα. For n = 60, 000, it ranges from 45 to 5.
Remark 4: Under the considered online policies (DPUA,

PPUA, P2C and URND) the server degree roughly
corresponds to the maximum node degree (compare
Figures 4 and 8). In particular, it is well known that under
URND the maximum degree is highly concentrated around
log2 n (Theorem 6.12 in [4]) whereas the server degree is
approximately ln n (page 260 in [4]). For n = 60, 000, the
maximum degree and the server degree under URND are well
approximated by 15.8 and 11, respectively. It is also worth
noting that under UNIFQ trees degrees increase as node level
grows, and in this case the server degree is typically strictly
smaller than the maximum degree.

FIGURE 8. Server node degree as a function of α.

4) CCDF OF NODE DEGREES
Figures 9(a), 9(b) and 9(c) show the CCDF of the node
degrees3 for PPUA, DPUA, URND and P2C trees, for α = 0,
α = 0.5 and α = 1.0, respectively. Whereas in Section V-
A2 we considered the average out-degree of internal nodes,
in this section we consider the CDDF of the out-degree of all
nodes, including leaves. We note that the tail of the degree
distribution increases as α decreases, except for the URND
tree which is insensitive to α. For larger values of α, i.e.,
α > 0.5, the degree distribution drops very sharply. In any
case, even for smaller values of α, the tail does not seem
to follow a power law degree distribution (note the semi-log
scale of the graph).

3Recall that, except otherwise noted, we refer to the out-degree simply as
degree.

FIGURE 9. CCDF of node degree.

For α = 0 (Figure 9(a)) the tree nodes are expected to
be concentrated near the server. Therefore, node degrees are
expected to increase when n increases. For K-C, UNIFQ and
DPUA trees, the server degree will be equal to n − 1 and all
other nodes will be leaves. Such trees are represent by the
DPUA tree in Figure 9(a), noting that the degree of the server
equals n−1 which corresponds to an horizontal line of height
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1.6 · 10−5 from x = 1 up until x = 59, 999. The step down
to zero at x = 59, 999 is not shown in Figure 9(a), whose
horizontal axis is truncated at 50 to simplify visualization.
P2C trees tend to have more nodes with higher degree values
than URND trees, given that P2C is sensitive to α. Indeed,
under P2C once two nodes are selected uniformly at random
the one with the highest utility is chosen. PPUA trees, in turn,
tend to have yet more nodes with higher degrees than P2C.
As an example, a fraction of up to 10−5 nodes reach degree
49 under PPUA, but the corresponding fraction of nodes
under P2C is negligible.

For α = 0.5 (Figure 9(b)), the URND tree has the same
behavior as α = 0 whereas the P2C tree tends to have nodes
with lower degrees than for α = 0, as now the utility function
depends on both the degree and the distance parameters. For
the same reason, the PPUA tree with α = 0.5 also has a
degree distribution with degrees that tend to have smaller
values than those in the previous case with α = 0. In addition,
degrees of PPUA trees tend to be greater than those of P2C
trees. The distribution of degrees for the DPUA tree produces
the smallest degree values, as a consequence of the greedy
optimization performed at each step of the algorithm.

For α = 1.0 (Figure 9(c)), K-C, UNIFQ and DPUA
trees will have a line topology. Therefore, n − 1 nodes
will have degree equal to one and the last node (the single
leaf) will have degree equal to zero. The URND tree will
be statistically equivalent to the previous cases presented in
Figures 9(a) and 9(b), as URND is insensitive to α. P2C and
PPUA trees will have a degree distribution with lower values
than URND. In addition, as in the previous scenarios, P2C
trees have a distribution with lower degree values than PPUA
trees.

Under the K-C tree, node degrees will be all smaller than
or equal to k . The optimal value of k , for any given α,
is discussed in Section IV-A2. In a UNIFQ tree, each level
of the tree has nodes with the same degree value, to maintain
‘‘fairness’’ in node quality. The degree values are given in
Section IV-A3, and the corresponding CCDF of out-degrees
can be readily obtained.
Remark 5: In trees where nodes connect to parents uni-

formly at random (URND), degree distribution has expo-
nentially decreasing tail probabilities [4], [46]. When α ≥
0.5, the degree distributions of all the tree growing mech-
anisms considered in this work have tail probabilities that
decay faster than an exponential. Turning to the other end
of the spectrum, when α = 0, DPUA and the best K-C and
UNIFQ trees yield a star topology, wherein a single node
has degree n − 1 and all other nodes have degree 0. The
degree distributions of PPUA and P2C, when α = 0, in turn,
have tail probabilities that decay slower than an exponential,
as some nodes will have large degrees whereas a significant
number of nodes will be leaves. A detailed analysis of the
degree distribution under PPUA and P2C when α = 0 is
instrumental to determine the asymptotic behavior of PPUA
and P2C in this regime, and is left as subject for future work
(see Appendix B).

B. NODE DISTANCES
We now consider node distances, which measure the distance
in hops from the node to the root of the tree (i.e., the server).
For this purpose, we assess the maximum and average node
distance and the CCDF of node distances.

1) MAXIMUM NODE DISTANCE—DMAX
Figure 10 shows the maximum distance as a function of α
for all the trees. The maximum distance measures the height
of the trees. The distances for K-C, UNIFQ and DPUA trees
have similar behavior. Nonetheless, for 0.7 ≤ α ≤ 0.9 the
maximum distance of the DPUA tree is significantly larger
than that of K-C and UNIFQ trees. Indeed, the ‘‘greedy algo-
rithm’’ used in the growth process of the DPUA tree explains
why its maximum distance rapidly increases as a function
of α, given that the relevance of node degrees, captured
through α, grows. When α = 1, DPUA, K-C and UNIFQ
trees all have maximum distance equal n − 1, as in this case
they all correspond to a line graph.

FIGURE 10. Maximum node distance to the root, as a function of α.

UNIFQ tree has a lower maximum degree compared to
K-C and DPUA trees because it performs a global optimiza-
tion of distances and degrees to produce the tree topology.
The K-C tree, in contrast, subsumes a constant degree for a
significant fraction of the nodes. This, in turn, leads to higher
distances.

Next, we consider probabilistic trees. When nodes select
their parents uniformly at random (URND tree), distances
are not sensitive to α. Therefore, the fluctuations of node
distance as a function of α under URND are not statistically
significant, and are fruit of the random nature of the uniform
sampling of parents.

In the P2C and PPUA trees, as α increases the probability
of selecting a leaf as a parent to a newcomer increases and,
consequently, maximum distance tends to increase. In partic-
ular, under PPUA, maximum distance ranges from around 15,
when α = 0, to 30, when α = 1. The range of maximum
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distance values, as α varies from 0 to 1, is smaller under
PPUA when compared against P2C or DPUA.

Recall that as α approaches 1, the contribution of the node
distance to the node’s utility (Equation (1)) tends to zero.
Thus, one could expect to observe much larger distances
under PPUA, with maximum distances equal to n − 1 in the
limit when α = 1, as in DPUA. However, this is not the case.
As we mentioned before, even when α = 0 or when α = 1,
the probability of choosing the server or a leaf decreases
with n. Thus, it is extremely unlikely that a leaf node will
always be chosen by a newcomer, which would lead to a line
tree and large distances.
Remark 6: Under deterministic policies (DPUA, UNIFQ

and K-C trees) the maximum distance equals 1 when
α = 0 and increases as α grows, reaching n− 1 when α = 1
(not shown in Figure 10). Under probabilistic policies (PPUA
and P2C), in contrast, the maximum distance is also an
increasing function of α but it varies in amuchmore restricted
range of values as randomness in the choice of parents tends
to balance distances preventing extreme topologies such as
the star or line.

2) AVERAGE DISTANCE—DAVG
Figure 11 shows the average distance from the nodes to the
root as a function of α for all the trees. The average distance
under URND and P2C trees are similar, and the rationale is
similar to the one discussed above on the maximum distance:
both URND and P2C leverage the uniform distribution for
parent selection. Although the P2C tree chooses the best node
between two randomized ones, its average distance will not
be too much different from URND’s.

For all the considered trees, except URND, the average
distance is an increasing function of α. Under PPUA, average
distance ranges from around 6 to 14. Note that for α ≤ 0.4
the average distances of PPUA trees are larger than those of
P2C, K-C, UNIFQ and DPUA trees. For α = 0.5 the average
distance values of PPUA begin to approach those of the other
trees, and for α ≥ 0.85 the average distance under PPUA is
smaller than that of K-C and DPUA trees. Indeed, the average
distances of P2C, K-C and DPUA trees are more sensitive to
α than PPUA, causing a more extreme change in topology
when α grows from 0 to 1 under the former when compared
against the latter.
Remark 7: Under all considered policies, the average dis-

tance behavior is qualitatively similar to that of the maximum
distance, slowly increasing as a function of α from 1 up to
20 when 0 ≤ α < 0.8 (n = 60, 000).

3) CCDF OF NODE DISTANCES
Figures 12(a), 12(b) and 12(c) show the CCDF of the node
distances for PPUA, DPUA, URND and P2C trees, for α = 0,
α = 0.5 and α = 1.0, respectively.4

4The distance distribution of K-C and UNIFQ trees can be easily obtained
analytically, without resorting to simulations.

FIGURE 11. Average node distance as a function of α.

For α = 0 (Figure 12(a)), K-C, UNIFQ and DPUA
trees have a star topology, i.e., all nodes have distance
equal 1 towards the root. Interestingly, the distances under
P2C trees decay to zero faster than those under PPUA and
URND trees. The PPUA tree, as expected, does not have an
‘‘extreme’’ topology, even when α = 0, with most distances
ranging from 1 to 8.

For α = 0.5 (Figure 12(b)), the CCDF of the DPUA
tree corresponds to a topology with more than 90% of node
distances almost uniformly distributed between 1 and 8. This
implies that there are, approximately, 8, 000 nodes at each
level of the tree. For distances larger than 8, the distribution
drops very sharply.

The distribution of distances for the P2C tree drops faster
than PPUA, with almost 80% of distances ranging from
1 to 10. Note also that the CCDFs of distances for PPUA and
P2C trees are not so different when α grows from 0 to 0.5.
This occurs due to their probabilistic nature.

For α = 1 (Figure 12(c)), the CCDF of the DPUA
tree becomes a slowly decaying line. Indeed, under DPUA,
node distances towards the root are uniformly distributed
between 1 and n − 1 (a line tree). As the URND tree is
not dependent on α, its CCDF values are smaller than those
corresponding to the CCDFs of DPUA, PPUA and P2C trees,
which account for the role of α. This is because URND tends
to produce trees that have smaller distances and correspond-
ingly larger degrees thanDPUA, PPUA and P2Cwhen α = 1.
Further comparing PPUA and P2C, we observe that distances
under PPUA trees tend to be smaller than those of P2C trees.
Although the growth process of P2C trees chooses between
two random nodes, the ‘‘deterministic choice at the second
phase’’ leads to trees with greater distances, and correspond-
ing smaller degrees, than PPUA.
Remark 8: In trees where nodes connect to parents uni-

formly at random (URND), almost all nodes have distance
to the root close to ln n. When α = 0, the optimal topology is
a star, and under DPUA, P2C and PPUA the distances indeed
decay to zero faster than URND, with P2C decay being faster
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FIGURE 12. CCDF of node distance.

than PPUA. When α = 0.5, the decay of the tail of node
distances under DPUA, P2C and PPUA is still faster than
URND. When α = 1, in contrast, the optimal topology is
a line, and distances are uniformly distributed under DPUA.
In this case, the tail of distances decays slower under P2C and
PPUA when compared against URND.

C. TREE QUALITY
Figure 13 shows the average quality for all considered trees,
with α varying between 0 and 1.

FIGURE 13. Average quality as a function of α (n = 60,000).

The quality of the URND tree increases with respect to α.
This occurs as the average node degree of URND trees is
around 2 and the average node distance is around 10.5.
Therefore, the larger the weight α on the degree the higher
its quality.

TheDPUA tree provides the best quality for all α. For some
values of α shown in the plots, the quality of DPUA is the
same as that of the UNIFQ tree. At the extremes, when α
approaches zero or one, the quality of UNIFQ, DPUA and
K-C trees is the same.

Next, we focus on a comparison between PPUA against
its counterparts. The quality of DPUA is particularly larger
than that of PPUA near the extremes α = 0 and α = 1.
Intuitively, this occurs because the growth process of the
PPUA tree cannot generate extremely degenerate trees, like
the line tree and the star tree, that yield the best tree quality
when α = 1 and α = 0, respectively.

Despite its simplicity, the quality of the PPUA tree is com-
petitive against the considered alternatives. For α ≥ 0.35 the
quality of PPUA trees exceeds the quality of K-C trees. For
α ≥ 0.7, its quality equals and even exceeds the quality of
UNIFQ trees. Indeed, even for α values where the quality
of the PPUA tree is lower than K-C, UNIFQ and DPUA
trees, the PPUA tree quality is at most 30% lower than its
alternatives (except for α ≤ 0.1).

The quality of P2C trees is also competitive against PPUA
and their counterparts. Indeed, both PPUA and P2C count
with randomness in the choice of nodes, but P2C leverages a
‘‘deterministic choice at the second phase.’’ We posit that the
deterministic choice of the best of two parents, at the second
phase, after they are chosen uniformly at random at the first
phase, is one of the reasons for the slightly larger quality
of P2C trees when compared against PPUA. Nonetheless,
a detailed comparison between PPUA and P2C, including the
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asymptotic analysis of the twowhen n→∞, is left as subject
for future work.
Remark 9: The quality of PPUA trees is competitive

against their counterparts when 0.1 < α < 0.9. When
α = 0, the asymptotic average quality of PPUA, for n→∞,
remains to be determined (see Appendix B). When, α = 1,
the asymptotic average quality of PPUA equals 0.6 which
is larger than 0.5 obtained through URND but lower than 1
obtained using DPUA (see Appendix C). Finally, the quality
of PPUA and P2C is similar for n = 60, 000, with P2C
being slightly better than PPUA. The asymptotic comparison
of PPUA and P2C, for n → ∞, is left as subject for future
work (see Appendix C).

D. DISCUSSION
Numerical evaluation of the PPUA model reveals some inter-
esting observation about its behavior. Contrary to the classical
‘‘preferential attachment’’ model, where a few nodes tend to
dominate the graph, attracting most newcomers, our model
leads to a self-organization of the nodes in the tree, without
the appearance of any degenerate structure. Even at extremes,
when α approaches zero or one, the PPUA model does not
produce trees with degenerated structure. Of course, this may
not be optimal at extremes, but otherwise it attests to the
robustness of the model under various α values.
To make this argument precise, consider the case where

α = 0. Assume that, after the arrival of n nodes to the system,
we have a star topology, where the server is the center of the
star and all the other nodes are directly connected to it. In this
case, the probability that the next newcomer connects to the
server, as determined by Equation (2), is ps = 2/(2+n), while
the probability it connects to any other node is pv = 1/(2+n),
for any leaf node v. Note that the probability of attaching to
the server is twice the probability of attaching to any tagged
node v. However, the probability of attaching to any leaf node
is n/2 larger than the probability of attaching to the server.
Thus, it is very likely that the newcomer will break the star
topology, connecting itself to a leaf node and not the server.

Note that throughout the work we considered average node
quality as the key metric to be maximized. Alternatively,
robustness is another aspect to be considered. Consider, for
instance, the scenario α = 1. Under DPUA, the algorithm
converges to a line, which indeed maximizes average node
quality. However, the produced topology is extremely fragile:
a line will be disconnected whenever any of its nodes, except
its single leaf, are removed. Under PPUA, in contrast, the
algorithm converges to a topology whose average node qual-
ity is less than 1 (namely, 0.609, see Appendix C), but with the
advantage of being more robust against node failures, given
that there will be more than one leaf. We leave a thorough
analysis of the tradeoff between performance and robustness
as subject for future work.

Another interesting observation is that the quality of the
trees generated by the model is good, comparable and some-
times superior to the quality of the other trees. This hints
on the power of a self-organized mechanism to generate

trees. Note that constructing a complete k-ary (K-C), uniform
quality (UNIFQ) or deterministic (DPUA) tree is much more
entailed than using a simple probabilistic approach as pro-
posed in the PPUA model (particularly in the DPUA tree,
where we need to identify the node with the best quality
among all the nodes already in the tree, for each newcomer).
Nonetheless, the more rigid structure generated by the offline
mechanisms do not necessarily lead to trees with much supe-
rior quality, at least when not considering the extreme cases
of α near 0 or 1.

Finally, we note that extreme cases for the utility function,
when α approaches zero or one, are likely not to be of interest
in certain applications such as content distribution (extreme
cases are discussed in Appendices B and C). As quality
depends inherently on both node degree and node distance,
these two aspects are likely to be present in the evaluation
of system quality. Under this condition, the proposed PPUA
model exhibit surprising properties, such as very good tree
quality.

VI. CONCLUSION AND FUTURE WORK
Constructing efficient real-time dissemination trees is a real
burden for tree-based systems. In this paper, we considered
a tree growth mechanism based on the idea of ‘‘preferential
attachment’’, where a configurable utility function is used
to determine the parent of an arriving node, and compare
it against deterministic and other probabilistic tree growth
strategies.

Through a numerical evaluation, we observe that the pro-
posed model leads to effective self-organization of the nodes,
generating trees that do not exhibit extreme topological prop-
erties (e.g., a star or line topology) but that can deliver very
good quality under a wide range of quality measures (for var-
ious ranges for α). Moreover, the topological properties and
quality of the PPUA tree were compared to several other trees
generated by different growing processes, showing better or
competitive performance. Also, the proposed model showed
to have a comparable quality (and sometimes superior) to the
deterministic tree and the carefully constructed offline trees
(uniform quality and complete k-ary).
As future work, we are investigating the impact that selfish

nodes (i.e., nodes that do not provide service to other nodes).
In the current study, all nodes are altruistic and contribute
to the system as requested by the mechanism and they never
change their position in the tree. Heterogeneous nodes (nodes
with different upload capacities) also will be investigated.

In this work we considered preferential recursive trees
where the preference is given to nodes of low degrees and
closer to the root. In particular, we used a convex linear com-
bination of these two factors inversely. Other utility functions
combining degrees and distances are subject for future work.

Throughout this work we considered a fine grained time
scale under which arrivals can be assumed to be sequen-
tial, and according to which the system can update itself in
between consecutive arrivals. We envision that as the sys-
tem grows, the requirement that it updates after every single
arrival can be removed, and that our results still hold if the
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system updates after batch arrivals. A detailed analysis of the
system accounting for such two time scales corresponding to
user arrivals and system updates is left as subject for future
work.

APPENDIX A
COMPLETE k-ARY TREES
Next, we derive closed-form expressions for some of the
quantities of interest related to complete K-C trees. The
height h of a k-ary tree is such that

n(f )k,h − n = kh −mod
(
n− n(f )k,h−1, k

)
−k

⌊
n− n(f )k,h−1

k

⌋
(37)

where n(f )k,h is the number of nodes in a full k-ary tree with
height h,

n(f )k,h =
h∑
l=0

k l =


1− kh+1

1− k
, k > 1

h+ 1, k = 1
(38)

and

h =

{⌈
logk (−(1− k)n+ 1)− 1

⌉
, k > 1

n− 1, k = 1.
(39)

The two last terms in Equation (37) correspond to the number
of leaves at the last level whose parents have less than k
and exactly k children, respectively. Therefore, the number
of leaves is given by

`
(K-C)
k,n = kh−1 +mod

(
n− n(f )k,h−1, k

)
+

⌊
n− n(f )k,h−1

k

⌋
k −

⌈
n− n(f )k,h−1

k

⌉
(40)

Let q(c)k,n denote the average node quality of this tree,
as given by Equation (5). In what follows, we drop subscript
n whenever it is clear from context. Thus, we have

q(c)k =
q̃(c)k
n− 1

(41)

and

q̃(c)k =
h−1∑
i=1

k i

αk + (1− α)i
+

⌊
(n− n(f )k,h−1)/k

⌋
k

αk + (1− α)h

+
mod(n− n(f )k,h−1, k)

αmod(n− n(f )k,h−1, k)+ (1− α)h
. (42)

The above expression is used to produce Figure 2.

A. RANDOM RECURSIVE TREES
In what follows, we consider two extremes with respect to
node quality: networks where nodes are sensitive only to their
parents degrees (the larger the degree, the worse), and where
nodes are sensitive only to distances to root (the larger the
distance, the worse). Let the expected number of nodes with

degree k (resp., height k) in a tree beE(X (k)
n ) (resp.,E(Xn,k )).5

We compute the expected quality per node under three cases:
deterministic preferential utility attachment (DPUA), proba-
bilistic preferential utility attachment (PPUA), and uniformly
at random node attachment (URND). The trees produced by
the latter strategy are referred to as recursive trees in the
literature [4].

Recall that S is the set of nodes in the tree, including the
root, and

n = |S|.

APPENDIX B
ACCOUNTING FOR DEPTH
Next, we consider the case where node qualities are sensitive
to depth only (α = 0).

A. TREE QUALITY
Recall that the tree quality is given by q (see (5)). As pointed
above, let E(Xn,k ) be the expected number of nodes with
height k in a network with n nodes. Then,

E(q; n) =

∑n−1
k=1 E(Xn,k )/k
n− 1

(43)

noting that E(Xn,0) = 1, as the root node is assumed to be the
only node that has height 0.

Throughout this section, let

E(Xn,k ) = g(k, n). (44)

In the particular case where nodes deterministically select
their parents (DPUA), all nodes connect to a node with mini-
mum height.We obtain a star, withE(q) = 1. In what follows,
we consider uniform recursive trees where nodes connect to
their parents uniformly at random (URND), and probabilistic
preferential utility attachment (PPUA).

B. UNIFORM AT RANDOM RECURSIVE TREE (URND)
In a recursive tree, where nodes select their parents uniformly
at random, we have

g(0, 1) = 1; g(0, 2) = 1; g(1, 2) = 1 (45)

g(i, n) = 0, n ≤ i (46)

g(i, n+ 1) = g(i, n)+
g(i− 1, n)

n
(47)

Therefore,

g(i, n+ 1) =
n−i+1∑
l=1

1
l + i− 1

g(i− 1, l + i− 1) (48)

Asymptotics: According to Section 6.2 of [4] the expected
number of nodes with height k , E(Xn,k ), is given in terms of
the Stirling numbers. This result, in turn, is shown to imply
that almost all nodes are concentrated around level ln n (see
Sections 6.2 and 6.3 in [4]),

E(Xn,k ) ∼
n

√
2π ln n

e−
(k−ln n)2
2 ln n (49)

5We follow terminology from [4].
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Thus,

E(q; n) ∼ 1/(ln n).

As shown in Figure 14, 1/ ln(n) accurately captures the
behavior of expected quality.
Theorem 1: In a recursive tree where nodes select their

parents uniformly at random (URND), when offered node
quality depends only on node distance towards the root
(α = 0) the expected node quality tends to zero as the tree
size grows,

E(q; n)→ 0 as n→∞.

Proof: Follows immediately from Sections 6.2 and 6.3
and Theorem 6.17 of [4].

Alternatively, the rationale behind the above theorem fol-
lows from a characterization of the degree distribution of
recursive trees, which is known to be well approximated
through an exponential distribution (see Remark 1). There-
fore, degrees are ‘‘small’’, which causes distances to grow
logarithmically with respect to the number of nodes in the
tree. Therefore, the expected tree quality tends to zero as the
number of nodes grows to infinity.

C. PROBABILISTIC PREFERENTIAL UTILITY
ATTACHMENT (PPUA)
Nodes connect to each other according to inverse-height
probabilistic preferential attachment, also referred to as
probabilistic preferential utility attachment (PPUA): the
probability of attaching to a node with height i is inversely
proportional to 1/(i+ 1). Then,

g(0, 1) = 1, g(0, 2) = 1, g(1, 2) = 1 (50)

g(i, n) = 0, n ≤ i (51)

g(i, n+ 1) = g(i, n)+
g(i− 1, n)/i∑n
i=1 g(i− 1, n)/i

(52)

E(q; n) =

∑n−1
i=1 g(i, n)/i
n− 1

(53)

Figure 14 indicates that, for finite trees, probabilis-
tic preferential utility attachment (PPUA) provides gains,
in expected node quality, on top of the strategy wherein nodes
select parents uniformly at random (URND). Does this gain
still hold asymptotically? If the answer is affirmative, what is
the asymptotic value of expected node quality? If the answer
is negative, what is the rate at which expected node quality
decays to zero?

Figure 15 shows the average distances towards the root
(average node height) as a function of the number of vertices
in the tree, n. DPUA, PPUAandURNDcorrespond to average
distances of 1, 6.3 and 10.5 when n = 60, 000, in agreement
with Figure 11. In addition, it indicates that average distances
for URND grow roughly as ln(n).

Figure 16 shows the CCDF of node distance towards the
root, as obtained using the above analytical expressions, for
n = 60, 000. The results are contrasted against those obtained

FIGURE 14. Tree quality; nodes sensitive to height, i.e., node quality
equals inverse of distance to root (α = 0).

FIGURE 15. Average distances towards the root, i.e., average node height
(α = 0).

through simulations, also for n = 60, 000 (Figure 12) indi-
cating a close agreement between them.

Our preliminary numerical investigations suggest a neg-
ative answer on the benefits of PPUA when α = 0, i.e.,
we envision that the expected quality per node, under PPUA,
slowly decays to 0 as n grows; in particular, for n =
64, 000 and n = 1, 000, 000 we have E(q; n) = 0.1729 and
E(q; n) = 0.1383, respectively (the case n = 60, 000 is
illustrated in Figures 13 and 14), motivating the following
conjecture.
Conjecture 1 (Probabilistic preferential utility attachment

is asymptotically neutral when α = 0): Under probabilistic
preferential utility attachment (PPUA), when offered node
quality depends only on node distance towards the root
(α = 0) the expected node quality tends to zero as the tree
size grows,

E(q; n)→ 0 as n→∞.

APPENDIX C
ACCOUNTING FOR DEGREE
Next, we consider the case where node qualities are sensitive
to degree only (α = 1).
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FIGURE 16. CCDF of node distance towards the root, i.e., node height
(α = 0).

A. TREE QUALITY
Let the quality of a node be given by the inverse of the out-
degree of its parent. As before, let the quality of a tree be the
average of the qualities of its nodes (see (5)). We denote its
mean by E(q).
Interestingly, E(q) can be expressed as a function of the

expected number of leaves, i.e., the expected number of nodes
with out-degree zero, E(X (0)

n ). Indeed, let Qi be the number
of nodes whose parents have out-degree i. Then,

E(Qi; n) = iE(X (i)
n )

Therefore,

q =
Q1 + Q2

1
2 + . . .+ Qn−1

1
n−1

n− 1
(54)

E(q; n)=
E(X (1)

n )+ E(X (2)
n ) 22 + . . .+ E(X

(n−1)
n ) n−1n−1

n− 1
(55)

=

∑n−1
i=1 E(X

(i)
n )

n− 1
=
n− E(X (0)

n )
n− 1

(56)

In particular, in the case where all nodes deterministically
connect to a node with minimum out-degree, we obtain a line
graph, and the average node quality is 1 for all n,

E(q) = 1.

Throughout this section, let

E(X (k)
n ) = f (k, n).

B. UNIFORM AT RANDOM RECURSIVE TREE (URND)
In this case,

E(q; n) =
n− E(X (0)

n )
n− 1

=
n/2
n− 1

(57)

where the above result follows from the fact that the expected
number of leaves in a recursive tree with n nodes, n ≥ 2,

is n/2 (see details below). In addition, we can derive the
variance of the tree quality, V (q), using results from [4],

V (q) = V

(
X (0)
n

n− 1

)
=

V (X (0)
n )

(n− 1)2
=

7n/12+ 1/3
(n− 1)2

(58)

1) DEGREE DISTRIBUTION
Next, we characterize the expected number of nodes with a
given out-degree. To that aim, note that,

f (0, 1) = 1, f (0, 2) = 1, f (1, 2) = 1 (59)

f (i, n) = 0, n ≤ i (60)

f (0, n+ 1) =
f (0, n)
n

f (0, n)

+

(
1−

f (0, n)
n

)
(f (0, n)+ 1) (61)

f (i, n+ 1) =
f (i, n)
n

(f (i, n)− 1)

+
f (i− 1, n)

n
(f (i, n)+ 1)

+

(
1−

f (i, n)
n
−
f (i− 1, n)

n

)
f (i, n) (62)

Therefore,

f (0, n+ 1) = f (0, n)+
(
1−

f (0, n)
n

)
(63)

=
n− 1
n

f (0, n)+ 1 (64)

f (i, n+ 1) =
n− 1
n

f (i, n)+
1
n
f (i− 1, n) (65)

Next, we specialize the above results for i = 0, 1, 2.

2) EXPECTED NUMBER OF LEAVES
For i = 0,

f (0, n+ 1) =
f (0, 2)
n
+

1
n

(
n(n+ 1)

2
−1
)
=
n+ 1
2

(66)

Theorem 2: In a recursive tree where nodes select their
parents uniformly at random (URND), when offered node
quality depends only on node degree (α = 1) the expected
node quality tends to 0.5 as the tree size grows,

E(q; n)→ 0.5 as n→∞.

Proof: Follows immediately from (66) and (56).

3) GENERAL RECURSION
Note that it follows from (65) and (66) that

f (i, n+ 1) =
1
n

n∑
l=i

f (i− 1, l). (67)

In particular, the above recursion is in agreement with the
average out-degree being equal to 1 − 1/n in any tree with
n vertices (see Equation (30) and Figure 5). Indeed,

d
(o)
n+1 =

1
n+ 1

n∑
i=0

if (i, n+ 1) (68)
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=
1

n(n+ 1)

n∑
i=0

i
n∑
l=i

f (i− 1, l) (69)

=
1

n(n+ 1)

n∑
l=1

(2l − 1) = 1−
1

n+ 1
(70)

4) EXPECTED NUMBER OF NODES WITH OUT-DEGREE ONE
For i = 1,

f (1, n+ 1) =
1
n

n∑
l=1

f (0, l) =
1
n

(
1+

n∑
l=2

l
2

)
(71)

=
1
n

(
2+ n+ n2

4

)
=
n
4
+

1
n

(
2+ n
4

)
(72)

5) EXPECTED NUMBER OF NODES WITH OUT-DEGREE TWO
For i = 2,

f (2, n+ 1) =
1
n

n∑
l=1

f (1, l) (73)

=
1
n

n∑
l=2

1
l − 1

(
2+ (l − 1)+ (l − 1)2

4

)
(74)

=

(
1
n

n∑
l=2

1/2
l − 1

)
+

1
2

(
f (1, n+ 1)−

1
n

)
(75)

=
n
8
+

(
1
2n

n∑
l=2

1
l − 1

)
+

2+ n
8n
−

1
2n

(76)

Remark: In [49] the authors provide an expression for
the expected number of nodes with a given degree (sum of
in-degrees and out-degrees). We envision that the above steps
to derive an expression for f (i, n) for i = 0, 1, 2 can be
generalized for i ≥ 3 in order to find a general expression
for f (i, n), but leave it as subject for future work (see also
Lemma 6.14 in [4]). For the purposes of this work, f (0, n)
suffices in order to derive the expected tree quality.

C. PROBABILISTIC PREFERENTIAL UTILITY
ATTACHMENT (PPUA)
Consider a growing tree where nodes attach to parents with
probability inversely proportional to the parents out-degree
plus one. As before, let E(X (k)

n ) = f (k, n) be the expected
number of nodes with out-degree k in a network with n nodes.
Then,

f (0, 1) = 1, f (0, 2) = 1, f (1, 2) = 1, (77)

f (i, n) = 0, n ≤ i (78)

In addition,

f (0, n+ 1) =
f (0, n)∑n−1

i=0 f (i, n)/(i+ 1)
f (0, n)

+

(
1−

f (0, n)∑n−1
i=0 f (i, n)/(i+ 1)

)
(f (0, n)+ 1)

(79)

f (i, n+ 1) =
f (i, n)/(i+ 1)∑n−1
i=0 f (i, n)/(i+ 1)

(f (i, n)− 1)

+
f (i− 1, n)/i∑n−1

i=0 f (i, n)/(i+ 1)
(f (i, n)+ 1)

+

(
1−

f (i, n)/(i+ 1)+ f (i− 1, n)/i∑n−1
i=0 f (i, n)/(i+ 1)

)
f (i, n)

(80)

Then,

f (0, n+ 1) = f (0, n)+

(
1−

f (0, n)∑n−1
i=0 f (i, n)/(i+ 1)

)
(81)

f (i, n+ 1) = f (i, n)−
f (i, n)/(i+ 1)∑n−1
i=0 f (i, n)/(i+ 1)

+
f (i− 1, n)/i∑n−1

i=0 f (i, n)/(i+ 1)
(82)

FIGURE 17. Tree quality: nodes sensitive to degrees, i.e., node quality
equals inverse of parent out-degree (α = 1).

Figure 17 indicates that for trees with n ≤ 50 proba-
bilistic preferential utility attachment (PPUA) provides gains
in terms of expected node quality on top of the uniform at
random strategy (URND), where the expected node quality
under PPUA is obtained from (56), (81) and (82). For n =
60, 000, average quality under PPUA and URND is depicted
in Figure 13, again indicating the gains of PPUA on top of
URND.

Figure 18 shows the CCDF of node degree, as obtained
using the above analytical expressions, for n = 10, 000.
The results are contrasted against those obtained through
simulations for n = 60, 000 (Figure 9(c)) indicating a close
agreement between them.

Under the diffusion approximation considered in [6], the
gain of PPUA on top of URND holds for finite n as well as
asymptotically, noting that the asymptotic value of expected
node quality under PPUA (resp., URND) equals 0.60905
(resp., 0.5). Indeed, under the diffusion approximation con-
sidered in [6] we prove the following result.
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FIGURE 18. CCDF of out-degree (α = 1).

Theorem 3 (Probabilistic Preferential Utility Attachment
Is Asymptotically Beneficial When α = 1):Under probabilis-
tic preferential utility attachment (PPUA), when offered node
quality depends only on node degree (α = 1) the expected
node quality tends to a constant greater than 0.5 as the tree
size grows,

E(q; n)→ 0.60905 as n→∞.

Proof: It follows from [6] that for large n we have

E(X (0)
n )→ n

1

1+ 1
0.6419

(83)

Therefore, substituting (83) into (56),

E(q; n)→
n(1− 1/(1+ 1/0.6419))

n− 1

as n→∞.
Remark: The proof of the above theorem relies on the

diffusion approximation considered in [6]. Such an approx-
imation is extremely accurate, specially for large networks.
Nonetheless, a probabilistic proof of Theorem 3 or a rigorous
argument showing that the diffusion approximation indeed
captures the asymptotic behavior of the original stochastic
system remains open.

Inspired by the above result and Conjecture 1, we pose a
conjecture on the benefits of probabilistic preferential utility
attachment when new nodes account for the distance of their
parents towards the root, together with degrees, while deter-
mining how to connect to the network.
Conjecture 2 (Asymptotic Benefits of Probabilistic Prefer-

ential Utility Attachment): There is a threshold α? such that
• for α ≤ α? the expected node quality E(q; n) under
probabilistic preferential utility attachment (PPUA) is
asymptotically equal to that obtained under the classical
recursive tree model where nodes select their parents
uniformly at random (URND). In this regime where

FIGURE 19. Optimal graph for α = 0.2 and n = 8.

α ≤ α?, PPUA outperforms URND for finite n, but is
neutral for n = ∞

• for α > α?, PPUA is asymptotically beneficial, i.e., the
expected node quality E(q; n) under PPUA is strictly
greater than that obtained under URND for any finite
value of n as well as in the limit when n = ∞.

Finally, we also pose a conjecture on the power of two
choices:
Conjecture 3 (Benefits of power of choice): The expected

node quality under power of two choices (P2C) is strictly
greater than that obtained under URND or PPUA for any
finite value of n as well as in the limit when n = ∞.

APPENDIX D
OPTIMAL TREES
Next, we indicate through an example that optimal trees may
be beyond the scope of the algorithms discussed in this work.
Indeed, the optimal tree may not be obtained through any of
the deterministic algorithms considered in this paper, and its
characterization is left as subject for future work.

Let α = 0.2 and n = 8. The optimal tree has the root
connected to 3 children, 1 of those children connected to
2 additional nodes, and the other 2 children connected to one
additional node each (Figure 19). The average quality is

q =
3/(0.6+ 0.8)+ 2/(0.4+ 1.6)+ 2/(0.2+ 1.6)

7
= 0.6077

DPUA, in contrast, yields an average quality of 0.595238,
with the root connected to 4 nodes, and 3 of those nodes
connected to 1 other node (Figure 20).

q(DPUA) =
4/(0.8+ 0.8)+ 3/(0.2+ 1.6)

7
= 0.595238

Under DPUA, note that after inserting node 4 there is a tie
with respect to where to insert node 5. If node 1 (resp., node 0)
is chosen as the parent of node 5, we obtain the tree in
the bottom left (resp., bottom right) of Figure 20. Indeed,
in both cases node 5 will have a quality of 1/(1.0 + 0.8) =
1/(0.2 + 1.6) = 1/1.8. However, if node 0 is set as the parent
of node 5, node 5 produces a negative externality towards the
other nodes connected to node 0, whereas if node 1 is selected
as parent to node 5 the qualities of the nodes already in the tree
do not change. In this particular example, choosing node 1 as
parent of node 5 yields the best DPUA tree.
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FIGURE 20. Graphs obtained through DPUA (α = 0.2,n = 8). Note that
after inserting node 4 there is a tie with respect to where to insert
node 5. If node 1 (resp., node 0) is chosen as the parent of node 5,
we obtain the tree in the bottom left (resp., bottom right). The tree in the
bottom left is the best DPUA tree, whereas the tree in the bottom right is
a UNIFQ tree wherein all nodes have quality 1/(0.2× 5+ 0.8) = 1/1.8.

TABLE 5. Average node quality for K-C trees with α = 0.2 and n = 8.

The best K-C tree can also be verified to be suboptimal (see
Table 5). Indeed, k = 3 yields the best K-C tree, with average
node quality equal to 0.58.

Finally, UNIFQ entails a root with degree 5 or larger (to
satisfy the condition d0 > 1/α − 1 = 4), which again is not
optimal. In particular, in the tree where all 7 nodes except the
root have the same quality, such quality equals 1/1.8 which is
smaller than 0.6077. Interestingly, such tree wherein all nodes
except the root have quality 1/1.8 is also obtained through
DPUA, as discussed above (see Figure 20).

Clearly, the greedy DPUA strategy is suboptimal.
It remains to be determined whether the construction of
optimal trees is an NP-hard problem or whether efficient
algorithms, possibly leveraging dynamic programming, can
be designed to find such trees.
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