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ABSTRACT Smart agriculture techniques have recently seen widespread interest by farmers. This is driven
by several factors, which include the widespread availability of economically-priced, low-powered Internet
of Things (IoT) based wireless sensors to remotely monitor and report conditions of the field, climate, and
crops. This enables efficient management of resources like minimizing water requirements for irrigation and
minimizing the use of toxic pesticides. Furthermore, the recent boom in Artificial Intelligence can enable
farmers to deploy autonomous farming machinery and make better predictions of the future based on present
and past conditions to minimize crop diseases and pest infestation. Together these two enabling technologies
have revolutionized conventional agriculture practices. This survey paper provides: (a) A detailed tutorial
on the available advancements in the field of smart agriculture systems through IoT technologies and AI
techniques; (b) A critical review of these two available technologies and challenges in their widespread
deployment; and (c) An in-depth discussion about the future trends including both technological and social,
when smart agriculture systems will be widely adopted by the farmers globally.

INDEX TERMS Smart agriculture, Internet of Things (IoT), smart irrigation, organic farming, artificial
intelligence (AI), big data.

I. INTRODUCTION
As per the recent report by the UNESCO World Water
Assessment Program (WWAP), the world’s population will
increase by 33% in 2050, doubling the need for food and
water [1]. This will have serious consequences for the whole
world, especially the developing nations. Amongst the ubiq-
uitous Internet of Things (IoT) technology, smart agriculture
is one the most important emerging application, as shown in
Fig. 1. Smart Agriculture Techniques [2], [3] have recently
seen widespread interest by farmers and researchers alike to
meet increased food demands.

Smart Agriculture Systems (SAS) are driven by several
key factors, which include the adoption of IoT technologies
for remote, unmanned monitoring of the agriculture fields
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and taking corrective actions to make the environment most
conducive for crop growth.

SAS depends on a combination of hardware and software
technologies for optimum benefits. The hardware side is now
well supported by the availability of inexpensive, portable,
power-efficient hardware with wireless connectivity, which
enables their deployment in large numbers across vast indoor
and outdoor agriculture fields. Rugged hardware modules
may be installed underground to measure soil conditions,
while others may withstand harsh climate conditions such as
sunlight, rain, and extreme humidity. Other specialized hard-
ware includes Graphical Processing Units (GPUs), which can
process large amounts of data gathered by these modules as
dictated by software-based Artificial Intelligence (AI) frame-
works.

On the software side, the recent boom in AI and Big Data
technologies supports not only themanaging of large amounts
of data accumulated by hardwaremodules but also to give this

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 21219

https://orcid.org/0000-0003-3332-889X
https://orcid.org/0000-0003-1537-5502
https://orcid.org/0000-0003-3393-6617
https://orcid.org/0000-0002-5163-6792


S. Qazi et al.: IoT-Equipped and AI-Enabled Next Generation Smart Agriculture: Critical Review, Current Challenges and Future Trends

data as input to state-of-the-art, AI-based predictors, which
can give more well-informed decisions to the farmer. They
can efficiently analyze the latest trends in the data and provide
several insights to the farmer. These benefits range from
greater crop productivity, saving of tightlymanaged resources
such as water for irrigation purposes, and minimization of
the use of toxic chemicals such as those used in fertilizers,
pesticides, and herbicides.

Such a level of control over agriculture not previously pos-
sible gives the farmer greater flexibility and insight to plan his
activities, such as determining what crops will result in opti-
mum yield under existing and predicted climatic conditions.
It keeps him well informed about his current and projected
use of permissible fertilizer and pesticide use. It also helps
him regulate the usage of tightly managed resources such as
water for irrigation purposes.

This paper presents a detailed review of the architec-
tures of first-generation smart farms relying on various wire-
less sensors and communications technologies around which
IoT technologies in SAS are based. We then discuss how
recent advancements in AI-powered algorithms based on
Deep Learning (DL) can use the collected data from diverse
sources.

This data can be collected from a large number of IoT
sensors and imagery from unmanned aerial vehicles (UAVs)
in different geographically diverse smart agriculture fields to
make more accurate and informed decisions for pest detec-
tion, plant diseases, smart irrigation, limited use of herbi-
cides, and other harmful substances. We then review the cur-
rent state-of-the-art technologies, implementation challenges
associated with them, and future trends and direction in SAS.

In terms of significant contributions, this paper has pre-
sented 1) A detailed tutorial on the available advancements in
the field of SAS through IoT technologies and AI techniques;
2) A critical review of these two available technologies and
challenges in their widespread deployment; and 3) An in-
depth discussion about the future trends including both tech-
nological and social, when SASs will be widely adopted
by the farmers globally. The roadmap of this paper is as
follows: Section II discusses the related work. Section III
discusses the state-of-the-art wireless sensor network (WSN)
technology and use-cases of IoT in SAS. Section IV discusses
the smart irrigation technologies used currently in the world.
Section V presents an overview of the use of UAVs, which
is a current driving force behind AI-powered solutions for
SAS. Section VI discusses these solutions in detail, which
are possible via DL applications. Section VII discusses the
challenges in SAS, and Section VIII discusses the future
trends in the area of smart agriculture technology. Finally,
Section IX concludes the paper.

II. RELATED WORK
IoT-based smart farming has actively been in development
for the last two decades, ever since the boom in wireless
sensor technology. A comprehensive survey on the role of
IoT in SAS has been provided by Farooq et al. [2] and

Ayaz et al. [3]. Li et al. [4] presented an actual working smart
greenhouse (SGH) with remote monitoring option using the
WSN technology. With the advent of smart lower-powered
wireless sensor technology enabling deployment in high den-
sities, micromanagement ideas for SAS have started to evolve
quickly. As soil parameters could be monitored closely, water
conservation strategies such as smart irrigation technologies
were developed. Hydroponics [5] and Aeroponics [6] are
two such cutting-edge, soil-less medium based water man-
agement technologies. Nalwade and Mote [5] described a
hydroponics-based smart irrigation system in which plants
are suspended into a nutrient solution instead of soil for direct
application of water to crop roots as per requirements. Idris
et al. [6] implemented an aeroponics-based water irrigation
system for crops in which water is directly sprayed at crop
roots as per need. Special hardware design for sensor nodes
was actively developed especially for use in smart agriculture
applications [7].

IoT-based SAS studies have also been a popular topic
amongst researchers [8]. These have been practically imple-
mented for efficientmonitoring and controlling of the agricul-
ture systems remotely, sometimes with the option of saving
data to the cloud for the benefit of other farmers working in
similar domains, e.g., crops and climatic conditions.

Internet of Underground Things (IoUT) is a new emerging
concept [9]. Monitoring soil factors and climatic conditions
are twomajor contributors to the well-being of the crops. Like
IoT, it represents an internet of wireless sensors and actuators
which are located below ground to monitor and control soil
conditions such as moisture, nutrients, acidity, pH levels, and
soil electrical conductivity. Wireless signal propagation loss
and protection of sensitive electronics inside wireless sensor
nodes is a challenging issue for the IoUT technology. Single-
hop, wireless, underground sensor networks have been dis-
cussed in detail by Tiusanen et al. [10].

UAVs for smart cities surveillance in real-time have been
proposed previously [11], [12]. The use of UAVs in smart
farming is also being explored by researchers [13]. UAVs
equipped with specialized smart camera applications capture
aerial images of the field, which, combined with advanced
DL-based AI tools, can predict crop diseases, phenotyping,
plant growth monitoring, weed detection, and used for irriga-
tion pesticide spraying.

Architecture of a neural network.
In current circumstances of acute water shortages for agri-

cultural purposes, it is crucial to devise smart strategies for
water conservation. Advanced irrigation concepts centered
around IoT-based precision agriculture include the techniques
of hydroponics [19] and aeroponics [20]. Zahid et al. [46]
present a novel TeraHertz (THz) waves based method to
estimate water content in living plant leaves to maximize
water conservation via smart irrigation strategies.

The concept of greenhouses [17], [18] is not new and has
been around and utilized for agriculture for a few decades
now. However, with the advancement in IoT and wire-
less sensor nodes technology, the SGH concept is rapidly
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TABLE 1. Comparison of recent topics covered in research literature and its comparison with this survey paper.

emerging [47], [48]. SGHs enable farmers to maintain micro-
climate conditions, enhance irrigation and fertilizer use. Sim-
ilar to SGHs is the concept of Tunnel Farming [19]. Plastic
tunnel farming is successful in developing countries due to
its low cost, having off-season crops, and better productiv-
ity [49]. Traditional tunnel farms use drip irrigation, overhead
irrigation, or sprinkler irrigation methods for better results.
This type of irrigation is better than normal floodingmethods.
Various irrigation methods provide various levels of water
and energy efficiency. Semi-Circular cross-section tunnels
are used, which are usually 14 to 28 feet wide and 7 to 12 feet
tall at the center (depending on width), and 48 to 96 feet long.

It is usually recommended that tunnels should be no wider
than 30 feet for cross ventilation and to avoid snow accu-
mulation on the roof. Like SGHs, it is also lined with IoT
sensor technology to constantly monitor soil moisture, tem-
perature, humidity, and light intensity and take corrective
actions accordingly through appropriate actuators.

The use of Machine Learning (ML) and DL has also been
actively researched for improved crop yields [50], agricul-
ture advisory systems [51], [52], detection of crop diseases,

weed detection [53], and pests [38]. Zeynep et al. [21]
have carried out an exhaustive literature survey on the use
of DL techniques in smart agriculture. The use cases of DL
in smart agriculture include detection of plant diseases, pest
recognition, plant classification, smart irrigation, and weed
detection. Table 1 summarizes the topics related to SAS
covered in various research papers and compares them with
the contributions we presented in this survey article.

III. USE OF IOT IN SMART AGRICULTURE
A. WIRELESS SENSOR TECHNOLOGIES FOR SMART
AGRICULTURE
1) TEMPERATURE SENSORS
Ambient temperature monitoring is vital for crops growth
in indoor as well as outdoor smart farms. Some crops are
susceptible to changes in temperature, e.g., wheat. Even for a
short period, high temperature affects the growth of shoots
and, in turn, reduces root growth. Similarly, the high soil
temperature is more crucial as damage to the roots is severe,
resulting in a substantial reduction in shoot growth.
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FIGURE 1. Block diagram showing IoT based emerging smart applications.

2) HUMIDITY SENSORS
Humidity monitoring is essential for crops to estimate water
losses due to evaporation, which is vital for the process of
photosynthesis. Other complications related to humid con-
ditions are that it may promote the growth of mold and
bacteria that cause plants to die and crops to fail, as well
as conditions like root or crown rot. Humid conditions also
invite the presence of pests, such as fungus gnats, whose larva
feed on plant roots and thrive in moist soil [23], [24].

3) SOIL SENSORS
Multiple types of soil moisture sensors are in use in SAS to
study parameters like pH and conductivity. Soil conductivity
maps help to predict crop yield as they indirectly deduce
soil organic matter and soil texture. These two parameters
are indicators of available water content and the presence of
potential weeds. Thus, soil electrical conductivity measure-
ment is also used for the estimation of quantities of soil-
applied herbicides. Similarly, soil pH is essential to have
healthy crops as strongly acidic soils having pH in the range
of 4.0-5.0 can have high concentrations of soluble aluminum,
iron, and manganese, which may be toxic to the growth of
some plants. A pH range of approximately 6 to 7 identifies
the ideal level of plant nutrients.

4) FLUID LEVEL SENSORS
Level sensors are used to detect the level of substances,
including liquids, powders, and granular materials. Level
sensors find their use in SAS to monitor the nutrient solution
level if the hydroponics method is used for smart irrigation.

B. HOW DO SENSORS COMMUNICATE? PHYSICAL LAYER
WIRELESS COMMUNICATION TECHNOLOGIES
Fig. 2 shows the smart agriculture architecture from the
viewpoint of wireless communication strategies to communi-
cate between field devices and Internet Gateways at various

FIGURE 2. Wireless physical layer standards for communication between
IoT based sensors and smart farming machinery at edge to agriculture
database servers at core.

abstraction levels. The capabilities of these wireless tech-
nologies vis-a-vis their practical use cases are discussed in
different sections below.

1) LoRa AND LoRa-WAN
Kontogiannis et al. [54] and Ray et al. [55] have proposed
Low Power Long Range (LoRa) and LoRa-Wide area net-
work (LoRa-WAN) technology at the physical layer for data
communication between the IoT transceivers. Both LoRa
and LoRa-WAN technologies are used in sensor nodes to
implement their AI-based irrigation systems, Open Watering
System (OWS), and LoRa-Agri, respectively. LoRa is a low-
power, long-range spread spectrum modulation technique
enabling IoT sensors to communicate at a distance of up to
12Km [47]. It also provides the highest scalability (5-20K
nodes) but low data-rates of about 100Kb/sec.

2) RFM69
Besides LoRa, another physical layer technology to connect
IoT-based sensor nodes proposed in recent literature includes
the RFM69 standard. RFM69 [88] supports a communication
range of up to 0.5Km and data-rates of up to 100Kb/s for
up to 65K nodes. RFM69 transceivers can operate over a
wide frequency range, including the 433-, 868-, and 915MHz
license-free industrial, scientific, and medical (ISM) fre-
quency bands.

3) ZIGBEE
Zigbee technology [36], also referred to as IEEE 802.15.4,
is another low-powered wireless communication technology
for sensor nodes. It has a moderate communication range of
up to 1Km and supports data-rates of approximately 1Mb/s
for up to 65K nodes. Like RFM69, Zigbee operates in the ISM
radio band, most popularly in the 2.4GHz band, though some
devices also use 784MHz in China, 868MHz in Europe, and
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915MHz in the US/Australia region. Chikankar et al. have
demonstrated the use of ZigBee technology in their automatic
irrigation system [14].

4) BLUETOOTH
Bluetooth [49] is another low-power wireless connection
solution for the sensor nodes. It has the least supported range
of 50m for up to 7 nodes, for the maximum data transmission
capacity of 1Mb/s. Bluetooth transceivers require the least
power out of the technologies mentioned above.

5) NARROW BAND IoT (NB-IoT)
NB-IoT [48] is a low-power WAN technology (LPWAN)
developed through the long-term evolution (LTE) standards,
which support direct communication of wireless sensor nodes
with the existing generations of cellular networks from 2G to
4G. It supports data-rates of up to 150Kb/s.

6) SigFox
SigFox [48] is another LPWAN technology like NB-
IoT. Sigfox employs the differential binary phase-shift
keying (DBPSK) and the Gaussian frequency-shift key-
ing (GFSK) modulation techniques that enable communica-
tion using the ISM radio bands. Sigfox technology works at
868MHz in Europe and 902MHz in the US. It utilizes a wide-
reaching signal that passes freely through solid objects, called
‘‘Ultra Narrowband’’ and requires little energy. The network
is based on a one-hop star topology and requires a mobile
operator to carry the generated traffic. It supports low data-
rates of 100bits/sec.

7) WIRELESS FIDELITY (Wi-Fi)
Wi-Fi belongs to the IEEE 802.11 family of IEEE standards.
This technology is suitable for wireless sensor nodes where
power consumption is not an issue, and higher data trans-
mission rates are required. Thus, it may only be suitable for
high data-rates such as video transmission in indoor settings
like indoor farms. The transmission distances are lower in
the range of 100ft only. For IoT use in SAS, such high data-
rates are rarely required. Two Wi-Fi standards that have been
developed, or are being developed, specifically for IoT are
Wi-Fi HaLow (802.11ah) [48] and HEW (802.11ax) [49].
It can support up to 290Mb/s in the upstream. Wi-Fi based
sensor connection has been used in a practical system by
Buendia et al. [56].

8) WiMAX
Worldwide Interoperability forMicrowaveAccess (WiMAX)
is IEEE 802.16 standard [2], [48]. It is sometimes regarded
as long-haul Wi-Fi due to its similarities with Wi-Fi stan-
dards. It supports up to 380Mb/s data-rate in the upstream.
It has the same limitation as Wi-Fi and may be suitable
when the wireless sensor nodes are present at an indoor
location.

9) CELLULAR TECHNOLOGIES
Cellular technologies will be used to connect IoT-based sen-
sors and smart farming machinery in large fields that oth-
erwise communicate only over a short distance, as depicted
in Fig. 3. Future smart agriculture machinery like drones
will frequently be having flights covering huge areas, and
real-time communication with such drones/UAVs could only
be with the help of cellular networks [11]. Newer cellular
technologies such as 4G LTE, 5G, and B5G are not only
facilitating large communication ranges but also permit large
data transmission capability, which will be suitable for appli-
cations like real-time video transmission from agriculture
drones [12], [104]. Another alternative benefit of using the
cellular technologies is to create an Internet Gateway as these
systems have connectivity to packet data networks as their
core. This will enable the use of Internet-driven applica-
tions such as making the system ‘‘weather aware’’ in real-
time, deciding against irrigation if rainfall is expected or
predicted by real-time weather updates etc. Available cellu-
lar technologies include 2G/3G/4G and 5G. All previously
mentioned physical layer, one hop wireless technologies are
either directly compatible with cellular technologies like NB-
IoT, SigFox, and WiMAX, or they may be linked to cellular
technologies using a gateway. Jawad et al. [57] presented a
comprehensive comparison of the different wireless technolo-
gies discussed above with technical quantifications. It was
suggested by the authors [57] that LoRa and ZigBee wire-
less technologies are most suitable for SAS because of their
low latency and power consumption, easy implementation,
smaller size, simplicity, scalability, and most importantly,
the communication range (typically small for ZigBee and
long for LoRa). Although, as discussed that 5G and B5G
technologies [104] with low latency, large communication
ranges, high data transmission capabilities that allow real-
time video transmission using UAVs/drones will dominate
future SAS with higher reliability.

C. HOW SENSORS AND ACTUATORS COORDINATE -
MICROCONTROLLER PLATFORMS FOR IOT BASED SMART
AGRICULTURE SYSTEMS
Microcontroller-based platforms popularly used by
researchers in IoT based SAS include ATMEGA328P [54]
(sometimes used in conjunction with Arduino development
boards), 18F458 PIC microcontroller [14], and ESP8266
NodeMCU microcontroller [58]. Most of these microcon-
troller platforms provide an integrated Wi-Fi module having
TCP/IP protocol that can able to access any Wi-Fi net-
work. These platforms are cost-effective, power-efficient, and
require minimal external circuitry. They also feature mod-
erate storing capability and on-board processing. On-board
processing is required to define the logic that how corrective
action will be taken according to the sensor reading. All smart
irrigation algorithms (described later) can be implemented
as a logic program running on the microcontroller. These
platforms also allow the integration of different sensors
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through General Purpose IO (GPIO) pins with minimal run
time giving these platforms to scale up to multiple sensors
in a single platform. For example, ATMEGA328P having a
limit of 8 sensors per actuator [54]. Jawad et al. [59] have
presented a practically implemented ZigBee-based system
interfaced with ATMEGA 328p microcontroller, which uses
energy harvesting techniques and sensor sleep/wake cycles to
reduce the power consumption of the WSN network.

IV. SMART IRRIGATION STRATEGIES
A. SOIL-BASED IRRIGATION TECHNIQUES
1) DRIP IRRIGATION
Drip Irrigation [60] is the concept in which the surface irri-
gation method is substituted by a channel of pipes laid into
the land for irrigation. Pinpointed locations are selected at
various depths for placing water closest to the plant roots and
thus minimizing excess water loss in the soil surrounding the
plants. Using drip irrigation, farmers can save up to 95% of
the water. However, the upfront cost of this irrigation system
is high as farmers need an initial investment in purchasing
and laying the network of pipes underground through the
agricultural land and provisioning of expensive power to drive
water pumps for circulation of water in these pipes. Using a
renewable form of energy, e.g., solar power, for meeting the
power requirements, has a high initial cost but is generally
lower in the long run.

B. SOIL-LESS IRRIGATION TECHNIQUES
1) HYDROPONICS
Hydroponics is a branch of hydro-culture, where plants
are grown in a soil-less environment using a nutrient solu-
tion [14], exclusively. A mechanical structure using coir or
coconut fiber may be used for the support of plants. The
nutrient solution parameters such as pH and electrical con-
ductivity have to be monitored constantly [7]. There are two
variations of this technique where water is continuously cir-
culated, or nutrient solution is supplanted with a new solution
to maintain the parameters, the latter method results in power
savings.

2) AEROPONICS
Like Hydroponics, Aeroponics is also a technique where
plants are grown in a soil-less environment, but instead of
placing the plants in a nutrient solution, the roots are sprayed
with a nutrient solution based on the data of root cham-
ber moisture levels [20]. Presently several crops have been
successfully undergone experimental cultivation using the
aeroponics technique [6].

C. SMART IOT BASED IRRIGATION CONTROL
1) FUZZY LOGIC ALGORITHMS
This is a class of algorithms based on a pre-defined set of rules
and degree of membership calculations based upon sensor
values [37]. Fuzzy algorithms are fast and smart adaptive
algorithms and include error-control capabilities [61]. Prac-

tical systems implemented using Fuzzy control algorithms
for smart irrigation control have been developed by several
researchers [17], [37]–[54], [61].

2) MAJORITY VOTE ALGORITHMS
In this type of algorithm, if the majority of the sensors report
a reading greater or less than a pre-specified threshold value
to trigger the irrigation process, then the irrigation is started.

3) TIME-CONTROLLED ALGORITHMS
In this type of algorithm, the actuators are activated at a
particular time of the month and for the pre-specified dura-
tion. For this duration, they stay on as per pre-set or pre-
programmed conditions by the farmer. This algorithm can
sometimes use sensors as a feedback mechanism for adaptive
actuator control.

4) EXPONENTIAL WEIGHT MOVING AVERAGE ALGORITHMS
In this type of algorithm, the immediate sensor reading is
multiplied by the weighting factor and then added to an
average of previous n readings, again multiplied by a second
weighting factor to generate a moving average as per the
equation given below:

S = aSc + (1− a)Sn,avg (1)

where, the coefficient value a is between 0 and 1, Sc is
the current sensor reading, and Sn,avg is the average over
previous n sample readings. This mechanism is resilient to
instantaneous sensor noise.

5) PROPORTIONAL INTEGRAL, DERIVATIVE (PID) CONTROL
ALGORITHMS
This is an advanced control loop feedback process, as shown
in Fig. 4, in which a setpoint set by the farmer is tracked by the
system, using a function of the error to follow it and achieve
it. The setpoint may be a control process variable such as soil
moisture, ambient temperature, or humidity. The output of the
system response is provided in Fig. 5. It can be seen that a
proportional controller achieves fast control action in reach-
ing the setpoint but may result in an overshoot in the process.
The integral controller achieves low steady-state error while
the derivative controller reduces system overshoots. The use
of a PID controller in a solar-based irrigation system has been
discussed in [62].

6) NEURAL NETWORK ALGORITHMS
These belong to an advanced class of ML algorithms in
which the system is trained using training data composed
of sensor values and the level of irrigation required. Train-
ing requires setting system weights to make the output,
a weighted linear sum of input sensor values. An activation
function is used to model non-linearities in the system to
avoid getting negative output values and cater for situations
not covered by an exclusively linear response, as shown in
Fig. 6. Once the system weights are tuned in the training
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FIGURE 3. Use of cellular network for real-time monitoring in large fields using smart agriculture machinery.

stage, the testing stage uses these leaned weights to derive
an optimum irrigation requirement based on the input sensor
value. These algorithms require an immense amount of train-
ing data to be able to give superior results. As the number
of layers increases in the neural networks, so does the train-
ing complexity, which sometimes requires expensive GPUs.
Recently, Al-Naji et al. [63] have developed a system using
input RGB images to a pre-trained, feed-forward back prop-
agation artificial neural network (ANN) and claimed high
system accuracy in determining soil conditions and water
requirement for irrigation.

V. USE OF UAVs IN SMART AGRICULTURE
UAVs are primarily used for crop monitoring through aerial
images being acquired by the UAV and crop spraying owing
to the ease offered by its aerial mobility and maneuver-
ability. Velusamy et al. [44] provide an excellent taxonomy
of the type of UAVs being used in precision agriculture
being classified as fixed-wing, vertical take-off and land-
ing (VTOL) based on their flight patterns and other architec-
tural design such as the number of rotors, being classified as
single rotor, multi-rotor (tri-copter, quad-copter, hexa-copter,
octo-copter). These UAVs are equipped with multiple cam-
era types: RGB, multi-spectral, and hyper-spectral. Different
UAV architectures and mounted cameras may be suited for
specialized applications. For example, fixed-wing may be
better for broad surveillance andmonitoring of the agriculture
field, while VTOL-basedmulti-rotor designmay be suited for
pesticide spraying. Similarly, an RGB camera may be suited
for low altitude UAV operation for close-range detection of
different pests and plant diseases through real-time man-
ual monitoring or DL-based automated monitoring, while
hyper-spectral imagery is useful for high altitude UAV mon-
itoring to monitor and assess the extent of plant disease or
pest infestation spread across a large agriculture field through
inspection of broad foliage.

Often farmers will have to use one UAV type for monitor-
ing of the field and another type of UAV for spraying pur-
poses, as several factors come into play like UAV flight time,
flying altitude, flight speed, camera, and other sensors’ lim-
itations and on-board hardware processing [64], [44], [65].
Jawad et al. [65] have implemented a practical solar-powered

wireless power transfer (WPT) based drone field-landing
platform for drone battery recharging; authors claim 97% bat-
tery saving and flight endurance time increase from 25 min-
utes to 850 minutes on the specific X525 drone used in their
study, when this system is augmented with a specialized
sleep-wake strategy of WSN sensor nodes communicating
with the drone.

Crop Monitoring is enabled through special aerial images
acquired by UAVs based on thermal, multi-band hyper-
spectral, multi-spectral, and light detection and ranging
(LIDAR) technology. This allows farmers to identify crop
conditions and plant diseases through the use of advanced
image data analytics along with exact geolocation data
through GPS measurements [23]. The use of UAVs in mod-
ern SAS makes use of thermal, LIDAR, hyper-spectral and
multi-spectral imaging technologies together with advanced
image processing software to solve a variety of farmers’
issues.

LIDAR technology has been used to detect crop/plant
volumes to predict expected yield and areas with problems.
Since, LIDAR is still a very expensive technology, similar
parameters such as normalized difference vegetation index
(NDVI) [66] and crop water stress index (CWSI) [67] can
be obtained using aerial images acquired using hyper-spectral
and multi-spectral cameras. The NDVI and CWSI parameters
can help identify crop biomass levels and provide predic-
tive information such as crop diseases, water stress levels,
nutrient deficiencies, and pest infestations. Yang et al. [29]
designed a deep Convolutional Neural Network (CNN) to
estimate rice grain yield using images acquired by the UAVs.
This framework can make estimations at the ripening stage.
Dyson et al. [31] integrated a radiometric index with terrain
height images for segmenting crops and trees using high-
resolution UAV images. Nevavuori et al. [28] apply CNNs to
crop yield prediction using RGB image analysis and NDVI
data collected by the UAVs. An interesting combination of
fusion of multi-spectral imaging and RGB images through
UAVs in the detection of weeds was presented by Barrero and
Perdomo [68]. Similarly, Lottes et al. [26] present a crop and
weed classification system using a UAV-based application.

Crop spraying is made possible through UAVs after iden-
tifying problematic locations which require spraying of
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pesticides through GPS-enabled UAVs. Deployed systems
have claimed UAV payload capacities of up to 2 Kg and
flight endurance times of up to 15 minutes [25]. Interestingly,
some researchers have preferred the use of hybrid systems
using both ground-based nodes and UAVs to achieve greater
efficiency. An example is a system proposed by Faical et al.
[24] in which UAVs are guided through ground nodes having
information about wind direction and speed. The UAVs then
incorporate their own flight parameters (position, current
velocity, and direction of travel) so the spraying process is
optimally planned and executed inside targeted areas where
it is most required. The commercial supplier DroneFly esti-
mates that drones can spray fertilizer 40 to 60 times faster
than doing so by hand [69].

The use of UAVs is not limited to conventional SAS, but
they are now also being used for aquatic farming of plants,
e.g., lotus and other aquatic organisms, e.g., fish [45], where
human monitoring is exceedingly difficult.

VI. USE OF DEEP LEARNING IN SMART AGRICULTURE
Z. Unal et al. [25] have compiled a comprehensive bibliog-
raphy on the recent trends of DL-based CNNs in the area of
Smart Agriculture, as shown in Fig. 7. The main feature by
which DL networks are distinguished from neural networks is
their depth, and that feature makes them capable of discover-
ing latent structures within unlabeled and unstructured data.
DL is a computationally expensive algorithm and practically
requires powerful GPUs for the proper training of algorithms
using large training datasets. Ma et al. present an approach
where training could be speeded up using multiple GPUs in
parallel [70].

A. PLANT DISEASES
In order to detect plant diseases in crops, current research
has been focusing on image-processing based DL systems
instead of the conventional practice of using RNA analysis for
timely identification of any crop diseases saving the farmers
from huge economic losses. The most popular image-based
DL framework, shown in Fig. 7, uses a multi-layer CNN
framework that initially self-learns features present in the
labeled training image data. These learned features are then
fed to an ANN in the second stage. Neural weights, bias
functions, and non-linear activation functions are used to
make the classification accuracy high.

Gobalakrishnan et al. [27] present an exhaustive review
of various systems development and in progress. Types of
infectious diseases that can destroy the yield are fungal, bac-
terial, and viral. Similarly, types of non-infectious diseases
result from non-ideal farming situations like improper soil
acidity, mineral toxicities, and deficient nutrients. Efficient
image processing-based ML systems have been developed
by researchers [71]. Most notable of these include work
by Mahlein et al. [72], who devised a technique based
on the generation of spectral disease indices (SDIs) and
spectral vegetation indices (SVIs) for sugar beet plants.
Using hyper-spectral signatures, the plant diseases in sugar

beet plants could be classified with accuracy in the range
of greater than 85%. The advantage of this technique is
that it is not affected by noise from other sources in the
imaging process such as camera flash. Other techniques in
the domain of image processing include genetic algorithms
for image segmentation [73], pattern recognition techniques
based on Gabor Transform [74], [75], CNN based DL frame-
works [34]. Almost all of these claim accuracies of between
90 to 95%. Other specialized image-based techniques are
developed keeping in view the detection of plant diseases
in targeted crops like citrus fruits [76], mango trees [77],
apples [38], and rice [78].

B. AGRICULTURAL ADVISORY SYSTEMS
Niranjan et al. [51] discuss a chat-bot based farmers’
query answering system through which they can get spe-
cific answers to their queries. The system uses online web
resources like documents as training data and Natural Lan-
guage Processing to develop a DL-based Recurrent Neural
Network (RNN) framework. The queries could range from
crop types grown in particular geographical regions to the use
of pesticides and fertilizers. Several ontology-based knowl-
edge bases exist today, like ADANS [79] and AGRI-QAS
[52], which can be queried using SPARQL queries.

C. EDAPHIC PARAMETERS ESTIMATION
Many researchers have devoted attention to the estimation of
soil parameters [80], [81], which play a dominant role in other
factors such as prevention of non-infectious diseases and
increasing crop yield. Many soil-based factors are essential
for maintaining healthy crops, such as moisture, air, temper-
ature, mineral matter, organic matter, organisms, etc. While
external climatic factors such as temperature, humidity, pre-
cipitation can only be controlled when crops are grown in
an indoor environment, soil factors could be controlled when
crops are grown in both indoor and open fields. Many studies
using ML algorithms have investigated the soil properties to
develop Digital Soil Maps [82]. Jia et al. [83] present the idea
where comprehensiveML-based soil models could be applied
to nearby land areas where less training data is available.

D. REAL-TIME PEST DETECTION
Pest detection has been investigated by some researchers. The
most notable of these works is that of Brunelli et al. [38]. The
researchers claim that although many ML algorithms exist
for the detection of plant diseases using images of damaged
crops, there is no provision for real-time pest threat detection.
It is due to the fact that ML algorithms are run on powerful
hardware, physically distant from the wireless sensor nodes
collecting the data from many vantage points, so detection is
done after the damage has been done. They give a framework
for real-time detection of codling moth pest detection, using
AI at edge solution. The solution comprises of readily avail-
able and moderately expensive hardware like Raspberry PI-3,
Intel Movidius neural compute stick (NCS), and Intel Myriad
X neural accelerator as a vision processing unit (VPU) for
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FIGURE 4. Depiction of a PID controller to control a process variable.

FIGURE 5. Depiction of process control variable evolution with respect to target point
using PID control.

real-time pest detection after the training of the deep neural
network (DNN). Using this solution, pest detection accuracy
was greater than 90%.

E. PHENOTYPING
Plant phenotyping is an emerging science that links
the impact on functional plant body development from the
dynamic interaction between its genetic background and the
physical world. Using image-based DL methods such as
CNN [21], as shown in Fig. 7, this is possible, as this problem
is not too different from other problems such as detection
of plant diseases and pest detection. Uzal et al. [33] have
developed a DL technique to predict the number of seeds
per pod. Similarly, grapevine phenotyping using the DL tech-
nique has been implemented using only a consumer-grade
camera is carried out by Milella et al. [84]. Feng et al. [85]
have fused multi-spectral imaging with ML for plant salt
stress phenotyping.

F. WEED DETECTION
Like the nuisance of pests and plant diseases, weeds are
other unwanted plants growing within the agriculture field

and reduce the productivity of the farming lands. Ferri-
era et al. [86] and Moshia and Newete [32] have devised
CNN-based DL approaches for the detection of weeds in
soybean and cornfield. Bah et al. [87] have done the same
with images acquired via UAVs. Kounalakis et al. [22] have
used the transfer learning approach for the detection of weeds
through the DL algorithm. Partel et al. [88] have developed a
smart sprayer for real-time weedmanagement using NVIDIA
GPUs and CNN. Chang and Lin [53] developed a computer
vision-based, robotic watering, and weed detection system.

VII. CHALLENGES FOR SMART FARMING
A. INTERNATIONAL REGULATIONS ON USE OF
PESTICIDES - A CASE FOR ORGANIC FARMING
According to a recent report of the World Health Organi-
zation (WHO), around three million cases of pesticide poi-
soning occur globally each year, leading to nearly 220,000
deaths in developing countries, making the case of pesticide-
free organic farming [89]. Restrictions have already been
implemented by the European Union (EU) and other regu-
latory bodies on the use of harmful pesticides. For example,
the EU has indicated a zero-tolerance policy on the use of
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FIGURE 6. Architecture of a neural network.

FIGURE 7. A deep learning framework using convolutional neural networks to detect and classify plant diseases using labeled training images
of affected plants with pre-known disease.

Tricyclazole chemicals in rice [90]. This makes a case of
organic farming inside contained indoor environments where
the climate can be maintained closely without the threat of
pests as encountered in agriculture farms in open fields.

B. REDUCTION OF ARABLE LAND AMID DROUGHT-LIKE
SITUATIONS - A CASE FOR VERTICAL FARMING
Recently, we have seen several problems hampering the
growth of agriculture. These problems include acute water
shortages for proper irrigation of lands, reduction of farm-
ing lands due to rapid urbanization and industrialization,
widespread crop diseases decreasing productivity, and harm-
ful effects of pesticides/insecticides on human populations.
Currently, researchers have begun giving a lot of attention to
vertical farming techniques [5], [6], [15], [91], [92]. Verti-

cal farming techniques solve all of the problems mentioned
above by using water-based solutions and lightweight porous
aggregates, e.g., coconut coir [16] instead of soil, giving the
possibility of lightweight vertical stacking of plants/crops
over a small area of land such as rooftops of buildings
which have weight limitations. This also gives numerous
other benefits such as the possibility of confining the verti-
cal farming space in a green-house like an environment for
controlled supply of water and nutrients using a variety of
smart sensors connecting via IoT concepts [35], and increased
crop productivity with minimal requirement of water over
the small footprint. This is especially suitable for agro-based
economies like the Middle East, Africa, and the Indian Sub-
continent, which are facing increasingly drought-like situa-
tions and have a dire shortage of water for suitable irrigation.
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By using the IoT technology for intelligent vertical farming,
new types of crops, genetically superior crops, or yield of
certain crops may be increased tremendously with minimal
use of water and creation of an artificial climate if the natural
climate is not favorable.

C. HOW WILL FARMERS MEET THE INCREASED
TECHNOLOGICAL COSTS ASSOCIATED WITH SMART
FARMING YET EXPECT FOOD PRICES TO BE LOW?
Smart farming has huge upfront and operational costs to build
up the required infrastructure. The farmers could meet the
upfront costs through the availability of loans on easy install-
ments by government bodies to support Smart Agriculture
practices.

Similarly, Farmers may offset the operating costs through
increased productivity than conventional farming methods.
For example, farming inside closed spaces or earlier detection
of crop diseases through advanced AI-based Agricultural
Advisory systems may give timely prediction and protection
from airborne and soil-borne crop diseases. Similarly, with
smart irrigation strategies such as aeroponics, cropsmay grow
up to 3 times faster [92]. There is also the potential possibility
that food prices will again be lowered through the reduction
of food-miles as smart indoor vertical farms will typically be
located in urban locations such as rooftops or buildings or
large warehouses.

D. GLOBAL CONSORTIUM FOR DEVELOPMENT OF
SEAMLESS WIRELESS SENSOR TECHNOLOGIES AND DATA
AGGREGATION FOCUSSED ON SMART AGRICULTURE USE
Currently, researchers have been able to piece together avail-
able wireless sensor technologies and platforms for the devel-
opment of Smart Agriculture infrastructures. Almadani and
Mostafa [93] have developed a SAS using multi-vendor
devices using a data distribution service (DDS) middleware.
However, there is a need for a consortium specially dedicated
towards the development of Wireless sensor development for
Smart Agriculture use cases. Currently, this need is felt at
various levels. For example, LoRa EU radio frequencies are in
the ISM bands of 868MHz and 433MHz. The 868MHz band
is mainly used in urban areas; for agricultural applications,
the 433MHz band can achieve better distances with less
attenuation over distance. However, existing devices in the
market utilize only the 868MHz band for the LoRaMac layer
and infrastructure [54]. Similarly, WSN nodes deployment in
underground situations to study soil parameters needs dedi-
cated efforts by the researchers to study the behavior of wire-
less waves propagation through the soil [94]. Similarly, the
issues of the development of standard communication pro-
tocols for seamless integration of different types of sensors
and advanced security mechanisms are required to protect
information transfer in the fields to preserve the privacy of
growers [9].

Similar to the problem of heterogenous communication
protocols of wireless sensors, the data being collected by
them at application layers can suffer from similar problems.

The diverse wireless sensor manufacturers use different data
formats, which results in reduced syntactical and semantic
interoperability among IoT environments. Sensor data can be
encoded in binary, or represented in formats such as json, xml,
text (e.g., csv), shapefile, or even proprietary formats. The
heterogeneity of data types and formats can also affect the
performance of a protocol employed for communicating the
information. To cater to this problem Agricultural Indus-
try Electronics Foundation (AEF) for tractors and agricul-
tural machinery, which is very relevant in arable farming,
has developed a standard ISO 11783 [95]–[97]. Similarly,
AgroXML developed by the Association for Technologies
and Structures in Agriculture (KTBL) [98]–[100].

E. HACKING ATTACKS ON SMART MACHINERY AND
CYBER THREATS TO AGRO DATABASES
An imminent threat to smart farming will be from computer
hackers who may attack smart self-driving farming machin-
ery like smart tractors and UAVs. Self-driving cars already
face several types of cyber threats like Denial-of-Service
(DoS) and its sub-types (Sybil, Grayhole, Wormhole, Rush-
ing attacks) [85]. IoT sensor node communication using sev-
eral IEEE wireless communication standards, e.g., 802.11p
used for autonomous cars and eventually autonomous farm-
ing machinery, are especially vulnerable to jamming/DoS
attacks [110]–[112]. Similarly, DoS attacks on servers host-
ing smart agriculture historical data logs and other agricul-
tural advisory systems will keep smart farmers ill-informed
about timely measures against natural disasters (pest infes-
tation). Robust counter-attacks techniques for these cyber
threats will need to be present at the core (Servers) as well
as the edge (Smart farming machinery and IoT field nodes)
for the protection of smart farmers’ interests.

VIII. FUTURE TRENDS FOR SMART FARMING
A. PARADIGM SHIFT FROM CLOUD-BASED TO EDGE AI
APPLICATIONS FOR SMART AGRICULTURE
As with other applications, AI-based SAS applications will
undergo a paradigm shift in which edge devices like wireless
sensors will become intelligent enough to make autonomous
decisions independently without relying on powerful central
servers running AI algorithms. With the recent advancements
in electronics, embedded systems with increased processing
power and memory, labeled as System on Chip (SoC) [27],
[77], have the ability to provide a complete solution without
reliance on other external entities. Smart AI-based embedded
systems running computer vision algorithms have been devel-
oped using portable architectures as used for real-time pest
detection by Brunelli et al. [38]. Similarly, Gia et al. [15] have
developed an experimental framework in which CNN-based
image compression is implemented inside the sensor node
due to low data transmission rates of current WSN networks
based on LoRa and NB-IoT. Thus, there will be a shift from
cloud-computing solutions to edge-computing based solu-
tions. These solutions will also be able to provide farmers
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with real-time threat detection and its timely prevention.
Alsamhi et al. [101] propose using drones with B5G physical
layer wireless technologies to perform federated learning and
edge AI processing for smart environments. Intensive ML is
possible over B5G networks due to its high data-rates and low
latency [102].

B. OPEN SOURCE SMART AGRICULTURE SOLUTIONS FOR
FARMERS
As there is a shift from cloud-based solutions to edge-
computing based solutions, there will also be a shift from
proprietary to open-source based solutions from the farmers.
Farmers may not be technologically equipped to program
AI-based algorithms from scratch [30]. Many of the edge AI-
based solutions of the future will already be using open source
basedAI-algorithms such as OpenCV libraries [103] for com-
puter vision or other publicly available software frameworks.
This will bring down the cost of SAS. Similarly, the farmer
will not have to design new systems from scratch each time;
consultancy firms will provide plug-and-play based hardware
plus software solutions to farmers alongwith aftersales sup-
port. Open-source software solutions would also mean that
farmers’ measurements could be shared openly with other
farmers enabling farmers to build a strong knowledge base.

C. HUGE YIELDS WILL NO LONGER BE DUE TO FARMERS’
LABORIOUS EFFORTS RATHER HIS INTELLECTUAL
ABILITIES
In the future, most of the farming equipment will be self-
driven, like smart cars [104]. These include smart farm-
ing tractors and UAVs using computer vision technologies
to manage everything from sowing, irrigations, fertilizer
application, weed removal, herbicides applications, and pest
detection. In these situations, tech-savvy farmers could only
survive amidst fierce competition through their knowledge of
AI, big data analytics to fully understand the conditions of
their crops.Many Smartphone software-based services owing
to big leaps in Edge AI applications, will be available to
identify crop conditions, e.g., conditions of fruits, detections
of pests, etc.

D. RISE OF BLOCKCHAIN TECHNOLOGY IN SMART
FARMING SECTOR TO COUNTER CYBER THREATS
Like other emerging areas in the IoT technology [104], Smart
Agriculture will also be vulnerable to cyber-attacks. Hence,
there would be a growing need to protect the farmer’s pri-
vacy as well as the data of his crops if it will be shared
for cloud applications. Future threats to SAS will be in the
form of control systems intrusion, secure key management
for encryption/decryption. There could also be a potential
threat to physical Smart Agriculture equipment. For exam-
ple, GPS spoofing attacks causing incorrect positioning of
UAVs/drones working in the crops field or a smart tractor
could be given incorrect waypoints leading to physical dam-
age. In addition, the delay caused by long-distance signal
transmission from IoT sensors deployed at great distances

in the field also increases the risk of Sybil attacks in which
malicious data is spread through virtual nodes [18]. Addi-
tionally, it is found that the threat was not only in the form
of software but also hardware threats were equally likely.
In one instance, it was found that high voltage pulses emitted
from solar-based insecticidal lamps interfered with the Zig-
Bee based communication of other IoT nodes. Future Open
Source smart farming technologies would also warrant this
free sharing of possibly compromised or corrupted informa-
tion to other smart farmers. BlockChain technology would be
used to secure the data received for onward transmission from
wireless sensors to cloud servers.

E. FUTURE CROPS WILL NOT BE FARMERS CHOICE
RATHER DICTATED BY DATA DRIVEN SMART FARMING
Currently, farmers mostly depend on a combination of guess-
work, estimation, and past experience when deciding about
the crop to be grown and the fertilizer that should be
used for optimum crop yield. In the future, ML models
will be used to study long-term climate patterns in partic-
ular geographical locations, and these will be a guide to
farmers on which crops to target at particular sites in the
future. Villa-Henriksen et al. [105] review the impact of
data-driven decisions on smart farming and identify six dif-
ferent stages of data flowwhich are: sensing/perception, com-
munication/transport/transfer, storage, processing, analytics,
and actuation and display. The data processing/analytics stage
may differ in position according to architecture, e.g., fog/edge
computing or cloud computing. Data processing/analytics
typically has an AI-based prediction framework and forms
the heart of data-driven agriculture. Chakrabarty et al. [113]
have studied the climate patterns and other man-made factors
such as fertilizer use in parts of Bangladesh and its effects on
crop yields. These data points are used as input to a DNN for
prediction framework. Similarly, Jin et al. [114] have studied
a climate predictor that can predict weather conditions for the
next 24 hours. Thus, in the future, crop production decisions
will be heavily guided by the output of advanced predictor
systems fed with climate and crop yield data from the past.

F. 5G WIRELESS TECHNOLOGIES WILL BE USED FOR
ALWAYS CONNECTED SMART FARMING MACHINERY
It is increasingly evident that 5G wireless technologies [104]
will dominate smart agriculture. This is because of the advan-
tages of 5G technologies, such as higher data-rates, larger
coverage areas, and adaptability to heterogeneous communi-
cation environments. These are essential for real-time crop
monitoring in large farmlands [106]. 5G [104] also pro-
vides excellent support for the vehicle-to-vehicle (V2V) and
vehicle-to-infrastructure (V2I) due to its low latency and new
frequency bands, which will be the requirement in the future
for always connected farming machinery like smart tractors
and swarms of smart drones [107].

G. RISE OF GREEN(ER) IoT
Future IoT networks, including those deployed for SAS,
will be energy efficient. Almalki et al. [108] present a
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comprehensive review on the greening of IoT networks in
future smart cities by reducing their carbon footprint. Several
techniques have been proposed for this, which include energy
harvesting techniques, sleep/wake modes for IoT sensors,
efficient routing protocols, cognitive WSN, and 5G-based
mobile communication networks. Alsamhi et al. present a
comprehensive survey on the use of B5G technology for
green IoT [109].

IX. CONCLUSION
A comprehensive review of existing research literature and
recent state-of-the-art developments in the area of Smart
Agriculture Systems was presented. The significant contribu-
tions of this paper are: 1) A detailed tutorial on the available
advancements in the field of SAS through IoT technologies
and AI techniques; 2) A critical review of these two available
technologies and challenges in their widespread deployment;
and 3) An in-depth discussion about the future trends includ-
ing both technological and social when SASs will be widely
adopted by the farmers globally.

In this paper, we first discussed the importance of smart
agriculture practices with the growing gaps in global food
demand versus current food generation, the growing shortage
of arable land for agriculture, stricter regulations by Interna-
tional organizations on the use of toxic pesticides/herbicides,
and global shortage of water resources for irrigation purpose.
Clearly, all of the challenges cannot be met through tradi-
tional agricultural practices.

We then discussed in detail the current hardware building
blocks of the smart agriculture system, which is primarily
based upon a large number of IoT nodes deployed in the
field with suitable sensors to monitor the current situations
of crops. The monitored parameters are transmitted wire-
lessly through various available technologies for the farmer
to take remedial actions manually or automatically through
pre-programmed instructions to actuators. We discuss the
automated control algorithms and strategies along with their
advantages and limitations for one particularly important
application, smart irrigation, in view of recently depleting
water resources.

We also discussed the currently available and implemented
hardware, wireless communications technologies, and soft-
ware aspects of the smart agriculture systems in terms of
implementation with their use-cases and limitations. These
use-cases will define their potential roles in newer Smart
Agriculture standards and specifications as they evolve.

Next, we presented a detailed insight into the emerging
trends of applications of AI and DL in smart agriculture and
the architectural building blocks for smart agriculture sys-
tems. We discussed at length practical prototype implemen-
tations and their effectiveness for applications in automated
plant disease or pest detection. We also briefly discussed the
impact of these technologies on future advancements in smart
agriculture, such as the use of UAV/drones and other smart
farming machinery.

Finally, we discussed the challenges of smart agricul-
ture systems to support the paradigm shift of adopting the
latest technological advancements for mainstream systems.
The foremost is the social implication of these technolog-
ical advancements on traditional farming methods. These
advanced techniques may redefine the way the farmers will
practice agriculture in the years to come. Farmers will have to
be tech-savvy to keep themselves abreast with these techno-
logical advancements, and traditional farming practices will
become obsolete and impractical. Other technical challenges
include standardization aspects of commercially available
smart agriculture systems solutions to make them compatible
across several manufacturers, make them backward compati-
ble and lower costs associatedwith thewide adoption of smart
agriculture systems.

In the end, we also discussed the future directions of
advancement in smart agriculture systems and the techno-
logical difficulties and challenges they will bring with them.
These future directions primarily focus on bringing more
AI-based solutions towards edge devices from the core for
real-time threat detection and quick remedial actions, making
the availability of more open-source, customizable solutions
for farmers, and incorporating measures for cyber security.
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