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ABSTRACT The feature extraction of human activity recognition (HAR) based on sensor data has been
studied as a hand-crafted method. The significant feature extraction ability is a key factor in improving
the accuracy of HAR. Recently, deep learning methods have been employed for feature extraction. In this
paper, we review previous studies on deep learning methods in HAR and discuss suitable models for feature
extraction. First, we applied various convolutional neural networks to clarify the effective architecture for
HAR. Afterward, we developed advanced models by embedding submodules, such as self-attention and
recurrent neural networks, often adopted in recent studies. Comparative experiments on HASC, UCI, and
WISDM public datasets showed that Inception-V3, which used cross-channel multi-size convolution trans-
formation, outperformed other backbones. Through comparative experiments after embedding submodules,
submodules do not always have a positive effect on accuracy. Compared with other submodules, SENet has
a positive effect. We conclude that it is essential to select an appropriate backbone model before applying
the submodules, and submodules are unnecessary in some cases.

INDEX TERMS Human activity recognition, convolutional neural network, CNN architecture, submodules.

I. INTRODUCTION
Sensors of wearable devices and smartphones have enabled
easy data collection. Sensor-based human activity recognition
(HAR) requires high-level features of human activities from
waveform data. Currently, deep learning (DL)-basedmethods
have enabled automatic feature extraction with high accu-
racy in HAR. Convolutional neural networks (CNNs) and
recurrent neural networks (RNNs) commonly use DL-based
HAR methods. The architecture of these methods enables
automatic extraction of multiple feature levels or time
dependence. Wang et al. [1] proposed an attention-based
HAR method to process weakly labeled activity data.
The architecture consists of basic CNN layers and atten-
tion submodules by computing the compatibility between
global and local features to generate weighted feature
maps. Abdel-Basset et al. [2] constructed a CNN and RNN
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dual-path model and enhanced the learning ability of the
model on spatial and temporal representations by adding
attention modules to each path. Finally, the feature represen-
tations generated by the two paths are concatenated for activ-
ity classification. The implementation of DL-based models
focuses on the recognition accuracy performance of different
classifiers and pays less attention to the impact of model
architecture on feature extraction.

HAR has been actively studied, but an effective feature
learning approach is yet to be thoroughly investigated. Most
studies have only compared conventional and simple CNN
architecture. According to our survey, the most effective
CNN architecture has not been verified. Because a suitable
CNN architecture for sensor-based HAR is unknown and
no architecture is universal, it is difficult to determine an
appropriate architecture for a HAR service. In this respect,
this study performs an effective experimental analysis of the
existing HAR technology. The contributions of this study are
as follows.
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• Based on our extensive survey, we employed the
well-known CNN architecture as the backbone model
with submodules.

• Experiments to compare the activity recognition perfor-
mance of many CNNs proposed in the field of image
recognition showed that the number of parameters and
layers have a lower impact on the HAR accuracy than
model architecture. Choosing the appropriate backbone
architecture and multidimensional scaling of architec-
tures are crucial for sensor-based HAR.

• We embedded submodules into different architecture.
For the impact of submodules on HAR, we found that
submodules do not always work well, and selecting an
appropriate backbone is significant.

II. RELATED STUDIES
A. CONVENTIONAL AND DL METHODS
Although current HAR research has made significant
progress, it is still challenging. General HAR includes the
following steps from original data to final activity classifi-
cation: preprocessing, segmentation, feature extraction, and
classification. Feature extraction is a key step inHARbecause
it can capture relevant information to distinguish various
activities. The accuracy of a HAR method largely depends
on features extracted from original signals. HAR methods
are broadly categorized into two: hand-crafted feature extrac-
tion (conventional method) and automatic feature extraction
(DL-based methods).

The conventional method requires strong manual inter-
vention and high-level experience. In particular, a developer
needs to combine specific background knowledge to extract
features from raw data and make a classifier by machine
learning. Therefore, while observing various acceleration
waveforms, It is not easy for humans to recognize activity
from sensor waveforms.

Fig. 1 shows that time series data are first preprocessed;
then, the processed data are divided into multiple instances

according to the window size, and feature extraction for
each instance is performed. Basic statistics, such as repre-
sentative values, are used as features. Extracted features are
selected based on prior knowledge or a feature selection
algorithm. Finally, the selected features are transformed using
a trained classifier. In detecting periodic actions, such as
walking and jogging, a fast Fourier transform is employed to
obtain the peak frequency and its power spectrum. The rep-
resentative model-based feature selection method is random
forest [3].

Researchers are attracted to DL-based methods for their
capacity to extract features automatically. DL-based methods
do not require domain-specific knowledge [4]. Therefore,
DL provides a standardized method to complete the feature
extraction step. The extraction of time features by neural
networks is conducive to building an end-to-end DL-based
model, thereby facilitating the feature learning and recog-
nition process. The feature extraction and model-building
processes of DL-based methods are usually performed simul-
taneously, and the features can be learned automatically. Deep
neural networks obtain deep representations from low-level
data, suitable for complex HAR tasks. Various DL-based
methods have been applied to time series feature extrac-
tion, including RNN, CNN, and hybrid architecture. The
advantage of introducing DL into HAR is automatic feature
extraction.

Fig. 2 shows theDL-basedmethod inHAR. The significant
difference between DL-based and conventional method is
that the feature representation itself is learned from the given
training data. Becausemanual intervention is not required, the
automatic feature extraction program is significant for future
developments. The disadvantage is that it requires large-scale
training data and high computational cost. Because the com-
putational complexity of DL-based methods is generally
much greater than that of conventional classification meth-
ods. The overall model performance needs to be weighed
when applied to smartphones or wearable devices.

FIGURE 1. Conventional method in HAR using feature learning.

FIGURE 2. Deep learning method in HAR.
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TABLE 1. Backbone model and datasets.

B. FEATURE LEARNING IN HAR
Table 1 summarizes the analysis of the CNN model architec-
ture in sensor-based HAR. The summary is based on (1) the
model architecture and (2) datasets.

A simple layer or several convolutional with pooling layers
is typically used and connected to a fully connected layer to
form a model. As shown in Table 1, reference [5] and [6]
used a single-convolutional-and-pooling-layer architecture,
and references [7]–[12] used a multiple-convolution-and-
pooling-layer composite architecture. The architecture of
these models is similar, but the model depths differ.

C. ADVANCED BACKBONE MODELS IN HAR
In advanced models in HAR, compared with the feature
learning described above, more complex and deeper model
architecture improves accuracy. These models use CNN to
extract features automatically. In the field of object detection,
a CNN feature extractor is usually called the ‘‘backbone’’
because themodel architecture of the feature extractor and the
overall model structure are considered separately. This study
employs a CNN-based feature extractor as the ‘‘backbone’’
based on the formulation we describe in the next section and
use self-attention and RNN as the submodules.

1) STUDY ON THE ADVANCED BACKBONE MODEL
Some researchers proposed advanced backbone models
instead of simple ones (Table 2 ). Dong et al. [13] proposed
an inception module combined with HCF. Long et al. [14]
proposed methods to learn large- and small-scale networks
separately and connected them. The core of the method is the
introduction of two sizes of residual blocks. Turker et al. [15]
proposed multiple ResNet architecture with different lay-
ers as feature extractors and cascaded extracted features
to form the backbone. Ronald et al. [16] proposed the
iSPLInception backbone based on Inception-ResNet, which
uses a multichannel-residual composite architecture for HAR
study. Mehmood et al. [17] used DenseNet as the backbone
and dense links for HAR.

TABLE 2. Backbone model and datasets.

TABLE 3. Embedded submodule.

2) STUDY BY EMBEDDING SUBMODULES
Some studies embedded submodules in different backbone
models, e.g., CNN with long short-term memory (LSTM)
and CNN with self-attention (Table 3). References [18], [19]
used CNN with RNN architecture. Particularly, Xu et al. [18]
used a kernel-based convolutional layer to extract multidi-
mensional features by the inception module. Then, it incor-
porated GRU to realize the modeling of time series features
and exploit data features to complete the classification task.
Zhao [19] used the deep network architecture of residual bidi-
rectional LSTM (BiLSTM) as well as the residual connection
between stacked cells as a shortcut to avoid the vanishing
gradient problem. Zohair et al. [20] used an Inception-like
architecture to divide multiple CNN branches; after combin-
ing extracted features, the outputs of all branches were con-
catenated and input into the BiLSTM layer. Challa et al. [21]
combined convolutional and BiLSTM layers; after combin-
ing the two LSTM layers, it was connected to a convolutional
layer. In addition, a global average pooling layer was used to
replace the fully connected layer after convolution to reduce
the model parameters.

References [22]–[24] used convolution layers with self-
attention architecture. Gao et al. [22] used a dual attention
network; the overall architecture of the attention mechanism
was similar to that of the convolution block attention module,
but the attention mechanism emphasized time information.
The model finally performs feature fusion by designing dual
channels. Murahari et al. [23] proposed a DeepConvLSTM

VOLUME 10, 2022 20549



Z. Zhongkai et al.: Comparative Study: Toward Effective CNN Architecture for Sensor-Based HAR

architecture with an attention layer. Attention models learn
weights on the input data and leverage them to weigh the tem-
poral contexts considered. The model architecture was first
composed of DeepConvLSTM. After dropout and LSTM,
the attention layer was embedded behind LSTM to form the
main architecture of the model. Khan et al. [24] designed a
three-channel CNN model block and embedded an attention
module into each model block. The above study used many
public benchmark datasets [25]–[35] to evaluate generaliza-
tion performance.

III. STUDY PROCEDURE
A. FORMULATION
Figure 3 shows the framework of our model. We formulate
the HAR model as a backbone with submodules based on the
abovementioned survey. The input and output of the model
remained unchanged. In the middle part, we categorized the
model backbone into two. The first (A) is the backbone
architecture without submodules. The backbones consisted
of CNNs with different architecture. Other categories (B)
and (C) are composed of a backbone with each submodule.
Among them, the submodules are used in different manners.
We classified them into RNN and self-attention submodules.
The backbone architecture in categories (B) and (C) was
basically implemented as same as the original backbone (A).

B. ARCHITECTURE FOR BACKBONE
DL-based methods, such as CNNs and RNNs, can achieve
state-of-the-art (SOTA) results by automatically learning the
features of raw sensor data. With the emergence of hybrid
networks, the idea of purely deepening neural networks has
gradually changed. By constructing various architecture, the
hybrid networks enhanced feature representation to improve
computing and network performances. This also provides the
possibility for developing DL-based methods of the mobile
terminal.

We comprehensively investigated different CNN back-
bone models and employed Baseline [36], VGG16 [37],
ResNet18 [38], PyramidNet18 [39], MobileNet [40],
MobileNet-V2 [41], MobileNet-V3small [42], MobileNAS-
Net [43], MnasNet [44], DenseNet121 [45], Inception-V3
[46], Xception [47], EfficientNet B0 and EfficientNet
lite0 [48] to conduct an experimental comparative study.
These models were proposed to solve the problem of image
recognition; thus, we rebuild the model architecture for HAR
(Fig. 4 and Fig. 5).

We use a CNN with three stacked convolution and pooling
layers as the baseline CNNmodel because this architecture is
the basic architecture used in Reference [36] and other related
studies.

The main contribution of VGG16 is that increasing the
network depth can improve the final network performance
to a certain extent, and for the first time, VGG16 replaces
the larger convolution kernel using several consecutive 3× 3
convolution kernels.

FIGURE 3. Model framework.

The core of ResNet is to alleviate the problem of gradient
disappearance. As the conventional CNN architecture deep-
ens, its performance may deteriorate, thereby limiting the
number of network layers. ResNet uses the shortcut connec-
tions to solve the network deterioration problem.

PyramidNet18 gradually increases the network dimen-
sion by improving ResNet using the pyramid architecture.
It also uses zero-padding and direct-connected identity map-
ping to increase the network width and improve recognition
accuracy.

The MobileNet series network is a lightweight neural
network focused on mobile devices. Using deep separable
convolution, the network calculation speed is improved, and
new hyperparameters are introduced to adjust the number of
output channels to balance the calculation speed and accuracy
of the network.

The main contribution of DenseNet is to alleviate the
problem of gradient disappearance, strengthen the transfer of
features, and use each output feature effectively. By design-
ing dense blocks, the model obtained a narrower network
architecture.

The EfficientNet series of networks use neural architecture
search (NAS) technology to propose the baseline model and
obtain a model architecture with comprehensive performance
utilizing an approach that conforms to model expansion.

Inception-V3 uses a multibranch architecture to fuse fea-
tures from different receptive fields, recognizes data features
of different scales, and uses stacked small kernel size (3× 3)
convolution instead of large kernel size (5 × 5) convolution.
Fig. 6 shows that the inception module convolves and con-
nects multiple types of receptive fields in parallel as well
as deepens the network by stacking these layers in multiple
stages.

Similar toMobileNet, Xception adopts deep separable con-
volution. The convolution sequence is first 3 × 3 depthwise
convolution, then 1× 1 convolution, and the activation func-
tion is not connected after the convolution layer.

Mobile NASNet and MnasNet use a technology similar
to NAS to search for small and effective network architec-
ture automatically. Therefore, multiple elements are used as
optimization indicators to design neural networks efficiently.
Compared with the previous algorithms that only consider
whether the final result is SOTA, MnasNet improves accu-
racy, reduces latency on real mobile devices, and so on.
NASNet first searches for modules of the neural network
architecture on smaller datasets then migrates the network
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FIGURE 4. Model architecture used in our experiments. (The attention square in the figure is the embedded position of the attention submodule).

architecture to a larger dataset and further proposes the
‘‘Scheduled Drop Path’’ regularization technology, which
improves the generation effect of NASNet. The NASNet
architecture is more concise and has lower computational
complexity than the previous neural network architecture.
The overall architecture uses a multichannel convolution
architecture and residual architecture.

Through extensive study and investigation, we found that
although there are many types of existing CNN model archi-
tecture, most models have similar core architecture.We chose
different CNN models for implementation based on the core
architecture of the model. Large and complex models are
challenging to employ In the HARfield. The application field
of the sensor requires low latency and fast response speed.
Studying small and efficient CNNmodel architecture in these
fields is necessary. To realize a different model architecture,
we selected a lightweight model for this study.

C. SUBMODULES
Self-attention model is divided into spatial, channel, and
hybrid attention modules. Self-attention model usually trans-
forms information features in data to improve the feature
extraction ability. The channel module expresses the corre-
lation between the channel and characteristic information by
adding weight to signals on the output characteristic channel.
The larger the weight, the higher the correlation. The channel
attention mechanism analyzes the relevance of each feature

channel by focusing on the correlation between the differ-
ent channels and feature learning. Finally, different weight
coefficients are assigned to each feature result to strengthen
the expression of essential features and suppress irrelevant
features. The spatial domain mainly enhances the feature
expression of key regions to improve its performance and
interpretability in classification tasks. Essentially, the spatial
information of data features is passed through the spatial
conversion module, and the information features are paid
attention to using the feature spatial relationship. Generally,
the key information on an effective feature descriptor is
retained; a weight mask is generated for each position, and
the output is weighted to calculate the spatial attention.

Studies have shown that the core of a CNN architecture is
the convolutional layer operation. CNN analyzes the informa-
tion feature space components formed by the feature space
and channel information of each layer by calculating the
weight of the entire feature relationship, thereby improving
the analytical power of the data features.

SENet [49] focused on the channel relationship and pro-
posed a lightweight architecture unit, the ‘‘squeeze-and-
excitation network’’ module, to improve data characteristics
and extraction ability by establishing the interdependence
between channels. The architecture is illustrated in Fig. 7.

SKNet [50] was inspired by the fact that cortical neurons
could dynamically adjust their own receptive fields according
to different stimuli, and was improved by combining the
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FIGURE 5. Model architecture used in our experiments. (The attention square in the figure is the embedded position of the attention submodule).

idea of SENet. SKNet is relatively simple in design philos-
ophy, i.e., transforming all convolution kernels larger than 1
with selective kernel and using small theoretical parameters
brought by group convolution. Therefore, even if the design
of multichannel and dynamic selection is added, it will not
incur considerable overhead. Fig. 8 shows the architecture.

CBAM [52] is a hybrid attention mechanism model; as a
lightweight general-purpose module like SENet and SKNet,
it can be integrated into any CNN architecture. The CBAM
architecture is divided into channel and spatial attention
modules. Regarding the order of using attention mechanism
modules in the model, a detailed description of the results
was performed through experimental comparisons; using the
channel attention mechanism first and then using the spa-
tial attention mechanism was more effective. Fig. 9 shows
CBAM architecture. The channel part of CBAM is similar
to the attention module of SENet. The main difference is
that CBAM adopts global average pooling and global max
pooling in the initial stage. The two different global pooling
methods can be used to extract rich features of HAR.

IV. EXPERIMENTS
A. EXPERIMENTAL SETTING
In this study, we handle sensor-based HAR as a supervised
feature learning task using entirely labeled datasets divided
into training set (Dtrain), validation set (Dvalid), and test set
(Dtest). Labeled Dtrain and Dvalid were used for parameter
tuning during model training, e.g., with or without data aug-
mentation (DA) and learning rate. Dtest was used to evaluate
the performance of each model. In that case, a model was
trained on the combined set of Dtrain and Dvalid. There were
two experiments, one to verify backbones performance for
each dataset (Experiment A) and the other to verify the impact
of submodules (Experiment B).

B. DATASETS
We performed experiments to evaluate the performance of
CNN models in sensor-based HAR using three public bench-
mark datasets: HASC dataset [52], UCI Smartphone dataset,
WISDM dataset (hereinafter, HASC, UCI, and WISDM,
respectively). The datasets are summarized in Table 4.

20552 VOLUME 10, 2022



Z. Zhongkai et al.: Comparative Study: Toward Effective CNN Architecture for Sensor-Based HAR

FIGURE 6. Inception-V3 module architecture (The attention square in the
figure is the embedded position of the attention submodule).

HASC is a benchmark dataset for basic HAR from accel-
eration data collected using a smartphone. The estimation
targeted six types of basic activities: standing (stay), walk-
ing (walk), jogging (jog), skipping (skip), going upstairs
(stUp), and going downstairs (stDown). In this study, we used
acceleration data of 170 subjects at a sampling frequency of
100 Hz collected using iOS devices. As a preprocessing step,
we removed the data 5 s before and after each measurement
and divided data into a window width of 256 and a stride
width of 256.

UCI is a benchmark dataset for daily living activities using
smartphone motion sensors. This dataset collected acceler-
ation and gyroscope data from 30 subjects labeled with six
types of activity: walking, going upstairs (walking_upstairs),
going downstairs (walking_downstairs), sitting, standing, and
laying. The dataset comprises data measured at a sampling
frequency of 50 Hz and was divided into 128 samples for
each. There are two types of acceleration data in this dataset:

FIGURE 7. SENet network model architecture.

acceleration from the accelerometer (total acceleration) and
estimated body acceleration. In this study, we used the total
acceleration. We also used the gyroscope data. Thus, we used
six-axis sensor data as inputs.

WISDM is a benchmark dataset for HAR using a
smartphone-based accelerometer. This dataset collected
acceleration data of 36 subjects labeled with six types of basic
activity: walking, jogging, going upstairs (upstairs), going
downstairs (downstairs), sitting, and standing. The dataset
comprises data measured at a sampling frequency of 20 Hz.
As a preprocessing, we removed the data 3 s before and after
each measurement and divided the data into a window width
of 256 and a stride width of 256.

C. TRAINING SETTINGS
We experimented with the training and validation sets for
each of three datasets to determine hyperparameters during
training, such as the number of epochs and learning rate.
As a result of the experiment, for all datasets, we set the
batch size to 1024, optimizer to Adam [53], and the learning
rate to 0.001. In addition, the number of epochs was set
to 1000 and 500 for Experiments A and B, respectively.
The number of epochs in Experiment B was set lower than
in Experiment A because the number of model architecture
to be verified increased due to the combination of model
architecture and submodules; also, the time required for the
experiment increased. It was confirmed by a pre-experiment
that 500 epochs of training generally converged.

In the hyperparameter determination experiment, we also
determined whether to apply DA during the training of each
dataset. We used two DAs: flipping and channel shuffling.
Flipping is a DA that randomly reverses each axis’s posi-
tive and negative values of sensor data. Channel shuffling
is a DA that swaps each axis of the sensor data. These two
DAs can simulate various storage orientations of devices that
measure sensor data. The experiment results showed that the
estimation accuracies of HASC and WISDM were higher
with DA, whereas the estimation accuracy of UCI was lower
with DA. Therefore, we decided to apply DA only to HASC
and WISDM.

The experiments were performed with Intel Core
i9-9900X, 64GB RAM, and NVIDIA TITAN RTX. We used
TensorFlow to implement and train models.

D. EVALUATION INDICES
We used a subject-based hold-out method to evaluate these
models. As the experiment comprisedmultiple trials, we eval-
uated thesemodels via the average accuracy of multiple trials.
The number of trials differed between Experiments A and B
due to the time required for the experiments.
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FIGURE 8. SKNet network model architecture.

FIGURE 9. CBAM network model architecture.

In Experiment A, there were five trials. In the five trials, the
subjects assigned to Dtrain, Dvalid and Dtest differed. Consider-
ing the time consumption and backbone experimental results,
we selected HASC as the experimental data in Experiment B
and the number of trials was two. The dataset used in
Experiment B was part of the dataset of Experiment A, which
was divided into Dtrain : Dvalid : Dtest = 30 : 20 : 20 from 70
subjects. As in Experiment A, the subjects assigned to Dtrain,
Dvalid, and Dtest differed for each trial, and the same split
dataset was used across the models. For HASC and WISDM,
we prepared five sets of subjects randomly split into Dtrain,
Dvalid, and Dtest for each trial. In UCI, we randomly split the
training data prepared by the dataset into Dtrain andDvalid, and
Dtest was a set of nine subjects of the test data in the dataset.
The numbers of subjects in Dtrain, Dvalid, and Dtest for each
dataset is listed in Table 4.

V. EXPERIMENTAL RESULTS
A. DEFFECTIVE BACKBONE ARCHITECTURE
In Table 5, Inception-V3 and Xception have similar back-
bone architecture. The two backbones completely separate
channel coupling and spatial correlations using multibranch
architecture. Although their parameters and layers were dif-
ferent, they exhibited good accuracy and performance on the
three datasets. Therefore, the use of cross-channel multi-size
convolutional transform architecture has a positive impact

on sensor-based HAR. Xception and MobileNet series use
depthwise separable convolution, but the overall accuracy of
MobileNet is not as good as that of Xception. Based on the
Inception-V3 architecture, Xception replaces conventional
convolution with depthwise separable convolution, improv-
ing themodel’s effectivenesswithout increasing the backbone
complexity. In addition, it uses a multichannel multi-size
convolution transformation architecture.

For the MobileNet series, although the network deep-
ened, the overall HAR accuracy was poor. Compared with
Xception, although depth separable convolution is used,
Increasing the network width while ignoring depth hardly
improves accuracy. Moreover, the MobileNet series uses
model compression to reduce computational costs; however,
it reduces accuracy. While deepening the network depth,
MobileNet-V3Small reduces the number of parameters, but
the overall performance is better than that of the other
two mobile series backbones; therefore, This result indi-
cates that many parameters are not always suitable for
HAR. Not too large and a suitable parameter setting is
essential.

DenseNet121, ResNet18, and PyramidNet18 use residual
architecture. However, DenseNet121 has a higher accuracy
rate than the other backbone architecture because DenseNet
uses the residual structure while strengthening the features in
each convolution stage.

TABLE 4. Experimental data details.
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TABLE 5. Comparison of the accuracy with the number of params and layers among various backbone models for each dataset.

TABLE 6. The number of params for each combination of backbone model and submodule.

Comparing the backbone architecture of EfficientNet B0
and MobileNet-V3Smal. They have similar model architec-
ture, but the EfficientNet B0 structure effectively improves
the model accuracy by scaling in multiple dimensions. In the

research of sensor-based HAR, scaling the width and depth
of a network model to a certain ratio can effectively improve
HAR accuracy. MnasNet and NASNet Mobile exhibited poor
results in the three datasets. The model architectures are all
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TABLE 7. Comparison of the activity recognition accuracy between various backbone CNN architecture with a submodule for HASC dataset.

based on searching for the best architecture of an image
dataset. Therefore, this architecture is not well adapted to
sensor-based HAR research. VGG16 had the largest number
of parameters, and NASNet Mobile had the largest number
of layers. However, compared with the other backbones,
both models have poor results. Because VGG16 used two
fully connected layers, the nonlinear expression ability of
the backbone was enhanced. However, the lack of backbone
depth affects the feature expression. NASNet Mobile had the
largest number of layers. But ignoring the model width while
increasing the model depth affects its results.

Thus, based on the overall results, the number of param-
eters and layers have a lower impact on the HAR accuracy
than model architecture. Choosing the appropriate backbone
architecture and multidimensional architecture scaling are
crucial for sensor-based HAR.

B. IMPACT OF EMBEDDING SUBMODULES
ON ACCURACY
Table 6 summarizes parameters of backbones and embedded
submodules (retaining one decimal place). The data show
that the number of parameters of Baseline (Simple CNN)
and VGG16 after embedding RNN submodules decreased
significantly because the fully connected layer was replaced
by RNN. For other backbone models, the RNN submod-
ule replaced the global pooling layer; therefore, the number
of parameters was increased. The self-attention submodule
was directly embedded in backbones. Therefore, the model
parameters increased after embedding the self-attention sub-
module in the backbone.

Li et al. proved that RNN submodules are effective for
CNNs with a simple backbone architecture. In compari-
son to the results in Table 7, embedding the self-attention
submodule in the simple CNN is also effective, but it is
advisable to use the RNN submodule for the simple CNN.
When using a more complex model architecture as a back-
bone, the overall self-attention submodule performs slightly
better than the RNN submodule, and compared with the
RNN submodule, combining the self-attention submodule
and backbone architecture improves the accuracy. Compar-
ing MobileNet-V3Small and MnasNet, shows that the two
models use the same module architecture. The difference is
that SENet is used in the MobileNet submodule, which also
proves that the self-attention submodule has a positive impact
on the results.

The SENet submodule performed better with multiple dif-
ferent backbone architectures. However, the same submod-
ule embedded in different backbone architecture does not
all work well, and the submodules sometimes negatively
affect the convergence of the selected backbone architec-
ture model. For example, the accuracy of SKNet embedding
VGG16 increased by 4.74%, but in Inception-V3, it decreased
by 5.78%.

Comparing the MobileNet and EfficientNet series model
architectures, almost all submodules in the current exper-
iment will negatively impact after being embedded.
In addition, compared to MobileNet’s architecture, the
MobileNet-V3Small architecture incorporates the idea of
SENet, which has a negative impact. MnasNet is based
on MobileNet-V2 and incorporates the SENet concept.
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However, compared to the experimental results, the original
accuracy of MnasNet decreased significantly. Therefore,
for a lightweight model architecture, it is worth consider-
ing whether to embed submodules in sensor-based HAR
research. The backbone architecture of the NasNet series can
be effectively combined with submodules, but for NASNet
Mobile, the self-attention submodule is more effective than
the RNN submodule.

Combining Tables 6 and 7, the submodule selection has
no direct relationship with the model parameters and layers.
In addition, for embedded submodules, no one submodule
can be suitable for all backbone architecture. It is crucial to
select an appropriate backbone architecture.

VI. CONCLUSION
In the study of sensor-based HAR, most conventional meth-
ods have a single model architecture and lack detailed
analysis and comparison of different model architecture
and various submodules. To address this problem, we first
adopted the CNN model of different architecture, initially
used in image recognition as the backbone architecture.
Second, the impact of the submodules on the backbone archi-
tecture was evaluated by embedding different submodules in
backbone architecture. We applied different backbone mod-
els to three benchmark datasets HASC, UCI, and WISDM
to compare and evaluate the effectiveness of the backbone
models. The results showed that the coupling between the
channel and spatial correlations was completely separated is
effective. The accuracy result could improve by simultane-
ously scaling the depth and width to a specific ratio. The use
of submodules is conducive to improving accuracy, but it is
necessary to select appropriate submodules according to dif-
ferent backbone architectures. It is worth consideringwhether
the submodules are used in sensor-based HAR research for
lightweight models. In future research, we will combine the
experimental results to propose a new HAR model that is
suitable for sensors.
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