
Received February 3, 2022, accepted February 14, 2022, date of publication February 16, 2022, date of current version February 28, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3152217

TensorCrypto: High Throughput Acceleration of
Lattice-Based Cryptography Using Tensor Core
on GPU
WAI-KONG LEE 1, (Member, IEEE), HWAJEONG SEO 2, (Member, IEEE), ZHENFEI ZHANG3,
AND SEONG OUN HWANG 1, (Senior Member, IEEE)
1Department of Computer Engineering, Gachon University, Seongnam 13120, South Korea
2College of IT Engineering, Hansung University, Seoul 02876, South Korea
3Ethereum Foundation, 6300 Zug, Switzerland

Corresponding author: Seong Oun Hwang (sohwang@gachon.ac.kr)

This work was supported in part by the Institute of Information & Communications Technology Planning & Evaluation (IITP) under the
High-Potential Individuals Global Training Program under Grant 2021-0-01532 (40%), and in part by the National Research Foundation of
Korea (NRF) funded by the Korean Government through Ministry of Science and ICT (MSIT) under Grant 2019H1D3A1A01102607
(30%) and Grant 2020R1A2B5B01002145 (30%).

ABSTRACT Tensor core is a newly introduced hardware unit in NVIDIA GPU chips that allows matrix
multiplication to be computed much faster than in the integer and floating-point units. In this paper, we show
that for the first time, tensor core can be used to accelerate state-of-the-art lattice-based cryptosystems.
We employed tensor core to speed up polynomial convolution, which is the most time consuming operation
in lattice-based cryptosystems. Towards that aim, several parallel algorithms are proposed to allow the tensor
core to handle flexible matrix sizes and ephemeral key pairs. Experimental results show that the polynomial
convolution computed using the tensor core is at least 2× faster than the version implemented with
conventional integer units of the NVIDIA GPU. The proposed tensor-core-based polynomial convolution
technique was applied to NTRU, one of the finalists in NIST post-quantum cryptography (PQC) standard-
ization. It achieved 2.02×/1.98× (encapsulation) and 1.56×/1.90× (decapsulation) higher throughput on
two parameter sets (ntruhps2048509 and ntruhps2048677), compared to the conventional integer-based
implementations on a GPU. In particular, the proposed implementation techniques achieved throughput
up to 793651 key encapsulations per second and 505051 decapsulations per second on a RTX2060 GPU.
To demonstrate the flexibility of the proposed technique, we extend the implementation to other lattice-based
cryptosystems that have a small modulus: LAC and two variant parameter sets in FrodoKEM. Considering
that the IoT gateway devices and cloud servers need to handle massive connections from the sensor nodes,
the proposed high throughput implementation on GPU is very useful in securing the IoT communication.

INDEX TERMS Cryptography, convolution, lattice-based cryptography, tensor core, graphics processing
units, information security, polynomial convolution.

I. INTRODUCTION
This security of traditional Public-Key Cryptography (PKC),
such as Rivest–Shamir–Adleman (RSA) and elliptic curve
cryptography (ECC), relies on one of the three hard math-
ematical problems: integer factorization, discrete logarithm,
or the elliptic-curve discrete logarithm. These hard problems
can easily be solved on a sufficiently powerful quantum
computer with Shor’s algorithm [1], [2]. This creates the need

The associate editor coordinating the review of this manuscript and
approving it for publication was Sedat Akleylek.

for post-quantum PKC algorithms that can resist the threat
from quantum computers in near future.

The National Institute of Standards and Technol-
ogy (NIST) is in the process of selecting one or more
post-quantum cryptography algorithms through a public
competition-like process [3], where the candidates need to
specify the digital signature and key encapsulation mech-
anism (KEM). The evaluation criteria not only focuses on
security aspects of an algorithm, but also looks into per-
formance from its implementation. Considering the per-
formance aspects, the algorithm should be evaluated on

20616 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0003-4659-8979
https://orcid.org/0000-0003-0069-9061
https://orcid.org/0000-0003-4240-6255


W.-K. Lee et al.: TensorCrypto: High Throughput Acceleration of Lattice-Based Cryptography

various classical platforms to show its efficiency in practical
applications. In November 2017, 82 candidate algorithms
were submitted to the NIST post-quantum competition for
consideration. Of those candidates, seven finalists and eight
alternate candidates were selected for the third round, accord-
ing to the announcement made by NIST in July 2020.

In the third round, five lattice-based cryptography algo-
rithms were selected as finalists (i.e., KYBER, NTRU,
SABER, DILITHIUM, and FALCON) while another two are
chosen as alternate candidates (i.e., FrodoKEM and NTRU
Prime). Compared with other post-quantum cryptography
candidates, lattice-based cryptographymaintains themajority
share in third round. In order to evaluate the practicality
of cryptographic algorithms, a lot of work is devoted to
improving the performance on various platforms, such as
FPGA, microcontrollers and massively parallel processors
(GPU). Recently, an FPGA implementation based on approx-
imate computation was proposed [4] to accelerate lattice-
based cryptography. The first GPU implementation of NTRU
was presented in 2010 [5] and showed that the GPU can
achieve very high encryption and decryption throughput by
utilizing the product form polynomial and some bit-packing
techniques. Other works have been proposed to accelerate the
performance of NTRU on aGPU [6]–[10]. There are also sev-
eral attempts to accelerate post-quantum cryptography (PQC)
on various GPU platforms [11]–[14], targeting the parame-
ters in NIST standardization process [15]. However, previous
works paid little attention to the power of the newGPU tensor
core, which would be a better choice than the ordinary GPU
instruction set (i.e., integer/floating point units). The tensor
core is a specialized unit released by NVIDIA in its’ latest
GPU architectures (Volta, Turing and Ampere). Many deep
neural network applications take advantages of NVIDIA’s
tensor core to improve the training and inference perfor-
mance. However, it is unclear how cryptography can exploit
tensor core to improve the implementation performance.

In this paper, our aim is to exploit tensor core to speed up
the lattice-based KEM implementation on GPU, in order to
achieve high throughput KEM. Our main contributions are
summarized below:

1) For the first time, a tensor-core-based polynomial con-
volution on GPU is presented. Experiments are car-
ried out on two latest GPUs (RTX2060 and RTX3080)
that supports tensor core. The proposed technique can
handle polynomials with a degree in multiples of 16,
which shows up to 3.41× (RTX2060) and 5.77×
(RTX3080) faster performance compared to the con-
ventional implementation using 32-bit integer units in
the GPU, for polynomial degree N = 1024.

2) The first NTRU [16] implementation based on ten-
sor core is proposed in this paper. Since the polyno-
mial degree in NTRU is not a multiple of 16, some
modifications are required in order to use the tensor-
core-based polynomial convolution. A series of parallel
algorithms, including zero padding, sign conversion
and type casting, is proposed to achieve this, resulting

a high-performance NTRU implementation in a GPU.
For instance, the tensor-core-based ntruhps2048509
can achieve a throughput of 793651 encapsulations
per second and 505051 decapsulations per second on
RTX2086 GPU. The results are 28.47×/2.02× and
66.50×/1.56× faster than implementation in Central
ProcessingUnit (CPU)/integer units in GPU, for encap-
sulation and decapsulation, respectively. The same
experiments were conducted on RTX3080, where sim-
ilar speed-ups were obtained. Note that this is also the
first NTRU implementation on GPU that follows the
NIST PQC specifications [16].

3) The proposed tensor-core-based polynomial convo-
lution can handle various polynomial sizes. To val-
idate this point, we apply the proposed technique
to another two lattice-based cryptosystems: LAC
and two variant parameter sets of FrodoKEM. The
tensor-core-based polynomial convolution in LAC
and one variant of FrodoKEM outperformed integer-
units-based implementations by 3.10× and 3.31×,
respectively (RTX2060). Detailed steps to efficiently
utilize the proposed technique for polynomial/matrix
multiplication in these two schemes are described
Section IV.E and IV.F.

4) The source code for tensor-core-based polynomial con-
volution was placed in the public domain at https:
//github.com/benlwk/Tensorcrypto. This
allows researchers to easily re-produce our results in
their own development environments to utilize the
tensor-core-aided lattice-based cryptography imple-
mentation for their own purposes.

Here we established the criteria to apply our technique
over other lattice-based schemes. At a high level, our solution
allows very high throughput key encapsulation/decapsulation
using a same public-private key pair for each communi-
cation session. The proposed solution is applicable to all
lattice-based cryptography with small modulus, where mul-
tiplication is expressed in the form of a vector and a matrix.
This can be either an ideal lattice construction, as in NTRU
and LAC, or a generic lattice construction, as in FrodoKEM.
However, schemes such as KYBER [12] and NewHope [13]
already use NTT-based multiplications, the polynomial con-
volution is already efficient, so it would be more advan-
tageous to use NTT instead of schoolbook multiplication
presented in this paper. Moreover, it is also difficult to use
tensor cores to accelerate the NTT computations, since the
size of modulus (q) is most likely to exceed 11-bit, which is
larger than the supported size of half-precision tensor core.
Therefore, we restrict the scope of our paper to the schemes
where NTT is slow or not applicable.

Although this paper only use the proposed tensor-core-
based polynomial convolution for cryptography, it can be
extended to support other applications on GPU. For instance,
polynomial convolution is used to perform image reconstruc-
tion [17], feature extraction [18], data preprocessing [19]
and signal processing [20]. These applications may also

VOLUME 10, 2022 20617

https://github.com/benlwk/Tensorcrypto
https://github.com/benlwk/Tensorcrypto


W.-K. Lee et al.: TensorCrypto: High Throughput Acceleration of Lattice-Based Cryptography

benefits from the tensor-core-based polynomial convolution
to achieve high throughput performance.

The remainder of this paper is organized as follows.
In Section II, we introduce the background and related
prior works. In Section III, we present a novel tensor-core-
based polynomial convolution and the implementation of
two parameter sets in NTRU. Thereafter, we summarize our
experimental results for NTRU, LAC, and FrodoKEM in
Section IV. Finally, we conclude the paper in Section V.

II. BACKGROUND AND RELATED WORKS
A. OVERVIEW OF GPU ARCHITECTURE AND CUDA
PROGRAMMING MODEL
A GPU consists of thousands of cores, enabling massively
parallel computation in many interesting applications. From
the hardware perspective, the GPU groups many cores
(e.g., 64, 128, or 192) into a Streaming Multiprocessor (SM).
The memory in the GPU can be categorized into on-chip and
off-chip. On-chip memory refers to register files and shared
memory that resides near to the GPU cores. Registers are very
fast, but come in small sizes (64–96K 32-bit words per SM).
Shared memory is known as ‘‘user-managed cache’’, which
is usually used to store frequently accessed values (e.g., look-
up table or pre-cached values). Like registers, shared memory
is fast but small in size (48–164K 32-bit words per SM). Off-
chip memory refers to global memory, which is essentially
the DRAM. It comes in a large size (2–16 GB), but the access
latency can be up to 300× slower than the registers.

From a programming perspective, many parallel threads
form a block and multiple blocks form a grid. This allows
flexible arrangement of software threads into the physical
SM and cores across many different GPU architectures. The
relationship between grids, blocks, and threads is illustrated
in Figure 1. NVIDIA GPUs group 32 threads into a warp,
wherein all 32 threads execute the same instruction in par-
allel. For this reason, the number of threads per block is
usually set in multiples of 32 to avoid divergence in the
instruction execution path. Besides that, shared memory also
has 32 banks, allowing parallel access by all 32 threads within
a warp. Additional features like warp shuffle instruction and
tensor core are also designed to work at the warp level to
maximize the efficiency of the GPU warp scheduler.

FIGURE 1. Relationship between grid, blocks and threads in CUDA.

B. TENSOR CORE
In 2017, NVIDIA released the Volta GPU architecture, which
introduced a specialized unit named as the tensor core. Tensor
core is used to perform one half-precision matrix-multiply-
and-accumulate (MMA) on a 4× 4 (Volta) or 16× 16 matrix
(Turing, Ampere) per clock cycle. This greatly improves
the throughput of MMA operations, compared to the con-
ventional implementation using CUDA cores, which often
requires multiple clock cycles to complete the same number
of operations. The tensor core in Turing architecture sup-
ports MMA with half-precision inputs and single-precision
accumulator. Recently, the Ampere architecture that supports
double-precision MMA was released, enabling the use of
tensor core in generic scientific computing applications. The
latest tensor core in the Ampere architecture also supports
TensorFloat-32 (TF32) and Bfloat16 (BF16) new formats that
reduces the floating-point precision but maintains the same
range. Note that for different precisions, the performance
of tensor core varies. The detailed information about the
performance of tensor core can be obtained from [28].

Many deep neural network applications can take advantage
of the NVIDIA tensor core. For instance, the convolutional
neural network (CNN) requires many dot-product computa-
tions, which can easily be expressed as MMA operations.
However, it is unclear how cryptography implementations
can exploit the newly introduced tensor core. In this work,
we present a series of algorithms to map the polynomial
convolution in lattice-based cryptography to matrix multipli-
cation in order to exploit tensor core for faster performance.

C. LATTICE-BASED CRYPTOGRAPHY
Lattice-based cryptographic constructions are based on the
hardness of Shortest Vector Problem (SVP) which approx-
imates the minimal Euclidean length of a lattice vector.
Lattice-based cryptography is believed to be secure against
both conventional and quantum computers. In the third
round of the NIST post-quantum cryptography standardiza-
tion process, five lattice-based cryptography algorithms were
selected as finalists (CRYSTALS-KYBER, NTRU, SABER,
CRYSTALS-DILITHIUM, and FALCON) and another two
are selected as alternate candidates (FrodoKEM and NTRU
Prime). Table 1 shows the summary parameters for these
candidates. Most of the lattice-based schemes rely on polyno-
mial convolution, which has high computational complexity.
In order to improve the performance of polynomial con-
volution, we utilize the tensor core and show performance
enhancements on lattice-based cryptography with a small
modulus, such asNTRU, LAC, and two variant parameter sets
of FrodoKEM.

NTRU encryption is a lattice-based one-way CPA-secure
(OW-CPA) public-key encryption scheme that was invented
in 1996 [29]. For the purpose of this paper, we do not
go into the details of the scheme, interesting readers may
refer to [16] for details. The major computation bottleneck
in NTRU is the polynomial multiplication over the ring

20618 VOLUME 10, 2022



W.-K. Lee et al.: TensorCrypto: High Throughput Acceleration of Lattice-Based Cryptography

TABLE 1. Comparison of lattice-based cryptography in the NIST PQC competition. PKE, KEMs, and DS stand for public-key encryption, key encapsulation
mechanisms, and digital signature, respectively.

Rq := Zq[x]/(xN −1). Since the multiplication is carried out
on a ring structure, it is essentially a polynomial convolution.
In a nutshell, for a polynomial ringRq := Zq[x]/F(x), and a
small parameter p, an NTRU public key is the ratio of two
small polynomials over h = g/f for some small g and f ,
where f is also invertible modulo p. The small polynomials
refer to polynomials with small coefficients, either binary or
ternary. The NTRU assumption says that given h, one cannot
recover g and f , or distinguish h from a random element over
the ring. To encrypt a message polynomial m, one computes
c = prh + m for that is co-prime with q, and a randomly
sampled small polynomial r . To decrypt, one then computes
cf = prg+ mf ≡ mf mod p. Since f is invertible modulo p,
one can extract m from mf with f −1 mod p.
In the NIST PQC competition, there have been two flavors

of NTRU, differing in the choice of. The original NTRU
scheme, known as NTRU-HPS [29], [30], works overRq :=

Zq[x]/(xN − 1) = φN (x)φ1(x). A newer design, referred to
as NTRU-HRSS [31], works over Zq[x]/φN (x). Note that,
although NTRU-HRSS works over Zq[x]/φN (x), computa-
tions are carried out overRq for better efficiency. In addition,
both schemes now use a variant of FO transformation to
achieve CCA-2 security.

D. PREVIOUS PQC IMPLEMENTATIONS ON GPU
The first implementation of NTRU in GPU dates back to
2010. Hermans et al. [5] showed that GPU can achieve very
high encryption and decryption throughput by utilizing prod-
uct form polynomial and bit-packing techniques. The product
form polynomial is no longer used in the NTRU submission
to NIST. Following up this work, Lee et al. [7] proposed a
sliding window technique to pre-compute some repeating
patterns in NTRU polynomial and then stored them in a
lookup table. With this technique, some of the multiplica-
tion operations can be skipped. Although this work is able
to achieve high throughput, it may not be secure against a
side channel attack, because the look up table leaks timing
information. The NTRU modular lattice signature (NTRU-
MLS) scheme [32], [33], which requires operations on large
vectors, was optimized with parallel polynomial multipli-
cation on a GPU by Dai et al. [9]. Recently, Lee et al. [10]
proposed utilizing the Karatsuba algorithm to speed up poly-
nomial multiplication in NTRU. These previous works were

all implemented on the integer units available in GPU. Unlike
previous NTRU implementations on GPU, we introduce the
first tensor-core-based NTRU implementation.

Recently, there are also interests on implementing other
PQC schemes on GPU. Lee et al. [34] show various ways
to speed up NTT computation on GPU, targeting poly-
nomials used in qTESLA signature scheme. A following
up work from [35] demonstrated that Nussbaumer algo-
rithm can be faster than NTT on the polynomial con-
volutions when executed on GPU. Sun et al. [14] show a
parallel implementation of SPHINCS signature scheme on
GPUs with significantly higher throughput compared to
CPU implementation. Gupta et al. [11] analyzed various par-
allelism available in GPU (batch mode and single mode),
and evaluate three PQC schemes (FrodoKEM, NewHope and
Kyber). Later on, Lee et al. [12] demonstrated a low latency
implementation of Kyber KEM, which can be beneficial to
latency-sensitive applications. Another interesting work from
Gao et al. [13] further improved the throughput achieved by
NewHope on two different GPU platforms. Note that all
these previous work also do not consider the possibility to
use tensor core in their implementation. Besides high perfor-
mance implementation of PQC, another interesting research
direction is to develop efficient implementation of various
sieving algorithms to solve hard lattice problems [36].

III. OPTIMIZED PARALLEL IMPLEMENTATION OF NTRU
A. PARALLEL POLYNOMIAL CONVOLUTION THROUGH
SCHOOLBOOK CONVOLUTION
Polynomial convolution is known as ‘‘truncated polynomial
multiplication’’. This is the most time-consuming operation
in NTRU PKC. A straightforward way to implement this is
schoolbook multiplication, wherein the operation exhibits a
high degree of parallelism. Referring to Algorithm 1, school-
book polynomial convolution can be arranged in such a way
that it processes one column at a time (the k loop, lines 2-6).
The i loop first computes the multiplication and accumulation
up to the k element by following ordinary schoolbook multi-
plication. Next, it proceeds with the remaining polynomial
convolution through cyclic computation.

Detailed illustrations are presented in Figure 2. One can
observe that the operations within the k loop are independent
of each other, which allows a highly parallel implementation

VOLUME 10, 2022 20619



W.-K. Lee et al.: TensorCrypto: High Throughput Acceleration of Lattice-Based Cryptography

FIGURE 2. Parallel computation of polynomial convolution with integer units in GPU; operations from (1) to (4) are performed,
independently.

FIGURE 3. Computing polynomial convolution using tensor core in GPU: Matrix A, B, and C
represent constant polynomial (e.g. public-key h), non-constant polynomial (e.g. random
vectors, r), and result, respectively. Note that ‘‘?’’ refers to non-constant polynomials that are
different from polynomial b and c.

Algorithm 1 Schoolbook Polynomial Convolution
Input: Polynomial a with degree N, Polynomial b with

degree N, modulus q.
Output: Polynomial c with degree N, which is the cyclic

convolution of a and b.

// Accumulate each column serially
1: for k from 0 to N − 1 do
2: c[k] = 0
3: for i from 0 to k do
4: c[k] = c[k]+ a[k − i]× b[i]
5: end for
6: for i from 1 to N − k − 1 do
7: c[k] = c[k]+ a[k + i]× b[N − i]
8: end for
9: end for

10: return c%q

on the GPU platform to achieve good performance. This tech-
nique was previously explored by Dai et al. [9] and it remains
themost efficient way to compute polynomial convolutions in
a GPU. Note that for NTRU, the polynomial convolution is
performed with 32-bit integer unit (INT32).

Algorithm 2 shows the parallel version of schoolbook
polynomial convolution that can be implemented efficiently
in a GPU. This implementation utilizes P blocks in GPU
to perform P polynomial convolutions, where each block
computes one polynomial convolution with N threads. Poly-
nomials are first loaded from global memory and cached

Algorithm 2 Parallel Schoolbook Polynomial Convolution in
NTRU
Input: P blocks of Polynomial a and Polynomial b with

degree N, modulus q.
Output: Polynomial c with degree N, which is the cyclic

convolution of a and b.

1: tid = thread ID
2: bid = block ID
// Copy polynomials into shared memory
// in parallel
3: shared_a[tid] = a[bid × N + tid]
4: shared_b[tid] = b[bid × N + tid]
5: __syncthreads() B Synchronize all the
threads

// Accumulate each column in parallel
// with N threads
6: sum = 0 B Use register to accumulate ‘
7: for i from 0 to tid do
8: sum = sum+shared_a[tid − i] × shared_b[i]
9: end for
10: for i from 1 to N − tid-1 do
11: sum = sum+shared_a[tid + i] × shared_b[N − i]
12: end for
13: return c[bid × N + tid] = sum%q

in shared memory to reduce read/write latency (lines 3-5).
Next, each thread is responsible for accumulating one col-
umn independently (lines 7-12), with the intermediate results

20620 VOLUME 10, 2022



W.-K. Lee et al.: TensorCrypto: High Throughput Acceleration of Lattice-Based Cryptography

stored in a register (i.e., sum). Finally, results are copied
to array c which resides in global memory (line 11). One
can also easily modify Algorithm 2 to perform nega-cyclic
convolution. In particular, instead of performing addition in
line 10, one can perform subtraction to achieve nega-cyclic
convolution. Besides high parallelism, this implementation
ensures minimal access to global memory (two reads opera-
tions and one write), with majority of the operations residing
in shared memory and registers.

Note that we only need to perform the modulo operation
(sum%q) at the end of the convolution. This is because in
a GPU implementation, sum is a 32-bit register that is large
enough to accommodate the two selected NTRU parameter
sets. It is also possible to use a 16-bit sum, because q is a
power-of-2 for NTRU. Whenever sum experiences overflow,
it carries out a free modulo operation over its word size.
However, this is not beneficial to GPU because it does not
support a native 16-bit register.

B. PROPOSED POLYNOMIAL CONVOLUTION
THROUGH TENSOR CORE
The tensor core was introduced into the GPU to accelerate
MMA operations with much higher throughput. By taking
a closer look at Algorithm 1, we find that the polynomial
convolution can be expressed in the form of matrix multipli-
cation. To achieve this, polynomial a is first packed into a
cyclic form to allow the convolution to take place, whereas
polynomial b can be stored in a column major form. This
operation is illustrated in Figure 3, where the multiplica-
tion between matrix A and B produces the same results as
polynomial convolution. In other words, one can perform
matrix-vector convolution between polynomial a (matrix)
and polynomial b (vector), using tensor core. Note that this
technique only works where polynomial a can be reused
repeatedly. This is not a problem for encryption in NTRU that
executes r ∗ h, where h is the public-key and r is the random
ternary polynomial. One can reuse the public-key h to encrypt
multiple plaintexts, and renew the public-key from time to
time. On the other hand, polynomial b does not need to be
reused, so we can pack many random vectors r into matrix B.
With this proposed technique, NTRU polynomial convolu-

tion can be formulated as matrix multiplication and acceler-
ated through the use of the tensor core, which is faster than
the conventional INT32 operations.

C. TensorTRU: NTRU IMPLEMENTATION BASED ON
TENSOR CORE
1) REPRESENTING A POLYNOMIAL IN FLOATING POINT
Referring to Table 1, NTRU requires modulus q to be 211,
212 or 213 depending on the parameter sets chosen. To allow
the use of tensor core in performing polynomial convolu-
tion, we need to ensure that the polynomial coefficients
can be represented in the supported precision in tensor
core, as depicted in Table 2. Because tensor core only sup-
port byte-level integers (configurations 4 and 5), we cannot

TABLE 2. Supported precision in tensor core [28].

represent the NTRU polynomial coefficients in integer due to
insufficient precision. Another option would be to convert the
polynomial coefficients from integers to floating point num-
bers, and then utilize one of the three possible configurations
(configurations 1-3). Since configurations 1 and 2 have much
higher performance compared to configuration 3, we explore
these two options to implement NTRU.

The parameter sets ntruhps2048509 and ntruhps2048677
requires q = 211, which allows polynomial elements to be
represented exactly in FP16. The accumulator needs to be
sufficiently large to hold the results of matrix multiplication.
For instance, by using q = 211 the element size is 11-bit,
so each pair of multiplications between poly_a and poly_b
produces a number with a 22-bit maximum. However, one of
the polynomials in NTRU is ternary (i.e., elements are only
consists of −1, 0 and 1). Since we are using floating point
numbers to represent the polynomial elements, multiplication
produces only the maximum 11-bit results (i.e., (211 − 1) ×
1 = 211 − 1 and (211 − 1) × −1 = −211 − 1). In the
process of polynomial convolution, the accumulated value
can grow up to a maximum of N×211−1. Hence, for the two
selected parameter sets, the accumulator must be able to hold
at least 20-bit (log2(509× (211− 1))) and 21-bit (log2(677×
(211 − 1))) data for ntruhps2048509 and ntruhps2048677,
respectively. Due to this restriction, we utilized configuration
1 in accelerating NTRU polynomial convolution, because the
single precision accumulator can hold 24-bit integer value at
maximum. Note that in practice, the accumulated values may
well below 20-bit, because the accumulation can go in both
directions (addition or subtraction) depending on the ternary
polynomials.

Another two NTRU parameters (ntruhps4096821 and
ntruhrss701) can be implemented in tensor core with double
precision using configuration 3. However, the performance
of FP64 tensor core is much slower compared to FP32, and
they only support a smaller matrix size (8×8). A faster FP64
tensor core released in the future may open up opportunities
to apply our technique into these two parameter sets.

2) PARALLEL POLYNOMIAL CONVOLUTION
USING TENSOR CORE
Tensor core were developed to handle a small matrix with
dimension of 16× 16 within a warp (32 threads), as depicted

VOLUME 10, 2022 20621



W.-K. Lee et al.: TensorCrypto: High Throughput Acceleration of Lattice-Based Cryptography

FIGURE 4. Matrix multiplication: dimensions 32× 32; w : warps running in parallel; the arrow
indicates computation order.

in the upper right part of Figure 4. To handle a larger matrix,
one can utilize many warps computing different parts of the
matrix, and then accumulate the results, iteratively. Referring
to Figure 4, there are three steps to complete when we per-
form matrix multiplication for a 32 × 32 matrix. First, four
warps (w0 to w3) are launched in parallel to compute matrix
multiplication on 16 × 16 dimensions. For instance, w0 and
w2 read the same piece of data (16× 16) from Matrix A, but
they read different data from Matrix B for multiplication and
accumulation. Intermediate results from this step are stored in
a temporary array. Next, the four warps proceed to compute
another half of the matrix in parallel. In other words, two
iterations are required to complete a 32 × 32 matrix multi-
plication. Lastly, results are stored into Matrix C in parallel
in different memory locations. To compute a larger matrix,
we need (M/16)2 warps and M/16 iterations to compute
M × M matrix multiplication in parallel. This tensor-core-
basedmatrix multiplication is utilized to compute polynomial
convolutions in NTRU.

Referring to Algorithm 3, the tensor-core-based polyno-
mial convolution requires the input matrices to be inmultiples
of 16×16. Matrix A is the constant polynomial a organized in
cyclic form (e.g. public-key h in NTRU), while Matrix B con-
sists ofM non-constant polynomials (e.g. random vector r in
NTRU). Note that all matrices are stored as a one-dimensional
memory array (i.e., global memory). The algorithm first
initializes two fragments to hold the 16 × 16 sub-matrices
and one fragment to hold the accumulated results (lines 1-3).
Next, it loops through Matrix A (row major) and Matrix
B (column major) to perform the matrix multiplication in
parallel (lines 11-16). For each iteration, 16×16 sub-matrices
are loaded fromMatrix A andMatrix B (in global memory) to
perform matrix multiplication in parallel. (M/16)2 warps are
executed in parallel, with each warp operating on different
parts of Matrix A and Matrix B as depicted in Figure 4.
Finally, the accumulated results are copied from the tensor
core to Matrix C in global memory (line 17) in column major
form.

FIGURE 5. Handling a matrix that is not a multiple of 16× 16 (parameter
set: ntruhps2048509), E = A+ B+ C + D.

3) HANDLING A MATRIX NOT IN A MULTIPLE OF 16× 16
The polynomial degrees of two selectedNTRUparameter sets
(ntruhps2048509 and ntruhps2048677) are N = 509 and
N = 677 respectively. However, the tensor-core-basedmatrix
multiplication can only work for matrices that are multiples
of 16 × 16. This implies that we cannot use tensor core to
accelerate these two NTRU parameter sets straightforwardly.

There are two methods to overcome this limitation. The
first method is through a hybrid algorithm that combines
the tensor core and integer-based polynomial convolution.
Figure 5a shows a high-level illustration of such a hybrid

20622 VOLUME 10, 2022



W.-K. Lee et al.: TensorCrypto: High Throughput Acceleration of Lattice-Based Cryptography

Algorithm 3 TC-PC: Parallel Polynomial Convolutions
Using Tensor Core
Input: M × M matrix A (constant polynomial a in cyclic

form),M×M matrix B (non-constant polynomials b),M
must be multiple of 16.

Output: M ×M matrix C, which contains the cyclic convo-
lution of polynomial a
and many polynomial b.

// Initialize fragment a and b with
// 16× 16 dimension and FP16 precision
1: fragment<A, 16, 16, 16, half, row_major> a_frag
2: fragment<B, 16, 16, 16, half, col_major> b_frag
// Initialize fragment c with 16× 16
// dimension and FP32 precision
3: fragment<accumulator, 16, 16, 16, float> c_frag

// Compute the warp ID and indices
4: tid = thread ID
5: bid = block ID
6: blockDim = block dimension
7: warpID = b(bid × blockDim + tid)/32c B
32 threads per warp

8: row_idx = (warpID%bM/16c)× 16
9: col_idx = (warpID/bM/16c)× 16

10: store_idx = row_idx + col_idx ×M

11: for i from 0 to bM/16c do
12: ldA = row_idx ×M + i× 16
13: ldB = col_idx ×M + i× 16
//Load 16× 16 sub-matrix from
//Mat. A and B
14: load_matrix_sync(a_frag, A + ldA, M)
15: load_matrix_sync(b_frag, B + ldA, M)
// Perform matrix multiplication and
// accumulate the results in c_frag
16: mma_sync(c_frag, a_frag, b_frag, c_frag)
17: end for
// Store the results from c_grat
// into Matrix C
18: store_matrix_sync(C+ store_idx, c_frag,M, col_major)

algorithm. In this example (parameter set ntruhps2048509),
one can utilize tensor core to compute the polynomial con-
volution of 496 × 496 (Region A), and then complete the
remaining computations (region B, C, and D) in three steps.
Note that this hybrid algorithm is less efficient, because some
of the computations cannot be fully parallelized with tensor
core. This limitation, however, allows us to utilize the fast
tensor core to accelerate a polynomial convolution in NTRU
and other similar lattice-based cryptographic schemes. On the
other hand, one can utilize the second method by padding
zeros into poly_a to form a matrix that is a multiple of
16 × 16. Referring to Figure 5b, zeros are padded to form a

FIGURE 6. Arranging a polynomial in cyclic form and storing it in a matrix.

Algorithm 4 ParCyc: Parallel Algorithm to Arrange Polyno-
mial in Cyclic Form
Input: Polynomial in with degree N.
Output: Matrix out with M × M dimension, which is the

polynomial in organized
in cyclic form and padded with zeros for unused ele-
ments.

1: tid = thread ID
2: bid = block ID
// Launch M blocks and M threads
// in parallel
3: if tid <N then
4: out[bid + tid ×M ] = in[(tid − bid)%N ]
5: else
6: out[bid + tid ×M ] = 0
7: end if

matrix of 512× 512. This allows us to perform a polynomial
convolution ofN×N completely in tensor core, at the expense
of some additional memory. The redundant storage required
by this method can go up to a maximum of (p − N ) × N +
(p−N )×p, where p refers to the closest multiple of 16 that is
larger than N. In this paper, we proposed utilizing the second
method (i.e., zero-padded polynomial convolution), since it
can be computed fully in tensor core, which is more efficient
than first method (i.e., the hybrid approach).

To achieve high-performance NTRU implementation in
GPU, we proposed a series of parallel algorithms to effi-
ciently perform the following tasks:

1) Organize the polynomial in cyclic form and pad the
remaining parts with zeros to construct the matrix in
a multiple of 16× 16 (Algorithm 4).

2) Convert unsigned 16-bit integer (U16) polynomial
elements to 16-bit floating point (FP16) format
(Algorithm 5).

3) Convert 32-bit floating point (FP32) elements to
unsigned 16-bit integers (U16) and perform modulo
operations (Algorithm 6).

Referring to Algorithm 4 and Figure 6, the input polyno-
mial (in) is read by N threads in parallel, and then written to

VOLUME 10, 2022 20623



W.-K. Lee et al.: TensorCrypto: High Throughput Acceleration of Lattice-Based Cryptography

Algorithm 5 ParU16toFP16: Parallel Algorithm to Convert
Polynomial Elements From U16 to FP16
Input: Matrix in with N different polynomials of degree N

in U16 format.
Output: Matrix out with N different polynomials of degree

N in FP16 format.

1: tid = thread ID
2: bid = block ID
3: temp = 0 B Initialize a FP16 variable
// Launch N blocks and N threads
// in parallel
4: temp = in[bid ×M ]+ tid
5: if temp = 2047 then
6: out[bid × M + tid] = −1 B

Converting -1 from U16 to FP16
7: else
8: out[bid ×M + tid] = temp
9: end if

Algorithm 6 ParFP32toU16: Parallel Algorithm to Convert
Polynomial Elements From FP32 to U16 and Perform Mod-
ulo q
Input: M ×M matrix in with elements in FP16 format.
Output: M ×M matrix in with elements in U16 format and

modulo q.

1: tid = thread ID
2: bid = block ID
3: temp = 0 B Initialize a FP32 variable
// Launch N blocks and N threads
// in parallel
4: temp = in[bid ×M ]+ tid
5: out[bid ×M + tid] = temp%q

the output matrix (out). Note that each block reads different
cyclic form in order to achieve high parallelism. Algorithm 5
shows the steps to convert U16 polynomial elements into
FP16 format. Lines 5-8 are only necessary if we are dealing
with ternary values; it converts -1 in integer format (i.e.,
2047 when q = 1048) to FP16 format. Algorithm 6 first
converts FP32 elements to INT32 format (line 4) to keep the
original precision, then performs modulo q and store final
results in U16 format.

With these three proposed algorithms, one can perform
highly parallel polynomial convolution for NTRU using ten-
sor core, where the steps are given in Algorithm 7. Three
floating point matrices are first initialized to zero in the
CPU; this process is only performed once. Next, the two
proposed algorithms are implemented in the GPU to per-
form pre-processing on Matrix A and Matrix B (lines 8-9).
Subsequently, tensor core is used to perform the polyno-
mial convolution, resulting in Matrix fp32_C in FP32 format

Algorithm 7 Parallel Implementation of NTRU Polynomial
Convolution Using Tensor Core in a GPU
Input: polynomial awith degreeN (constant polynomial),N

polynomial b with
degree N (non-constant polynomials), modulus q.

Output: M ×M Matrix C, which contains the cyclic convo-
lution of polynomial a
and many different polynomial b.

// CPU Phase:
// Init. two matrices in FP16 to store
// the converted a and b
1: fp16_A
2: fp16_B
// Init. a matrix in FP32 to store
// the results from tensor core
3: fp32_C

// GPU Phase:
// Calc. total number of warps required

4: warp_tot = (M/16)2

5: tc_threads = warp_tot × 32
// Calc. number of blocks
6: tc_blocks = tc_threads/max_threads
// Limit the number of threads
7: tc_threads = max_threads
8: ParCyc< N ,N > (fp16_A, a) B Alg. 4
9: ParU16toFP16< N ,N > (fp16_B, b) B Alg. 5
10: TC-PC< tc_blocks, tc_threads >

(fp16_A, fp16_B, fp32_C) B Alg. 3
11: ParFP32toU16< N ,N > (C, fp32_C) B Alg. 6

(line 10). Lastly, this result is converted to Matrix Cwith U16
format and modulo with q to obtain the final output.

Another point to note is that when we use the proposed
technique to implement NTRU, the polynomial convolution
for decryption is slightly different from the encryption. Dur-
ing the encryption process, one computes r ∗ h, where h is
the public-key to be treated as a constant polynomial, while
r is the non-constant and small ternary polynomial. On the
other hand, the private key f used in decryption is a small
ternary polynomial to be treated as a constant polynomial.
In such a case, Algorithms 4 and 5 needs to be slightly revised.
In particular, lines 5-6 in Algorithm 5 should be moved to
Algorithm 4 to cater for to the small ternary polynomial.
In other words, one does not need to execute lines 5-6 in
Algorithm 5 anymore, because the input polynomial does not
contain any negative value.

D. EPHEMERAL KEY PAIR
The proposed tensor-core-based polynomial convolution can
be more efficient than an integer-based implementation in a
GPU. So far, we have only discussed situations that allow the

20624 VOLUME 10, 2022



W.-K. Lee et al.: TensorCrypto: High Throughput Acceleration of Lattice-Based Cryptography

same public/private key pair to be reused for a small num-
ber of encryption/decryption. For instance, one can perform
K encryptions/decryptions with the same public/private key
pair, and refresh the key pair before executing the next K
encryption/decryption. In the previous discussion, we assume
that K = N to fully exploit the performance gain by using
a tensor core that operates on a square matrix. For appli-
cations that need to refresh the key pair more frequently
(i.e., K < N ), we can scale the proposed technique accord-
ingly by adjusting K , where K = 1, 2, . . . ,N − 1. By setting
K = 1, we refresh the key pair for every single encryp-
tion/decryption. However, due to the tensor core limitation
whereby it only handle a 16× 16 matrix, the value of K must
be a multiple of 16.

Algorithm 8 NTRU Polynomial Convolution Using Tensor
Core With Scalable Ephemeral Key Pair Configurations
Input: polynomial awith degreeN (constant polynomial),N

polynomial b with
degree K (non-constant polynomials), modulus q.

Output: K ×M Matrix C, which contains the cyclic convo-
lution of polynomial a
and many different polynomial b.

// CPU Phase:
1: (Same with Alg. 7)

// GPU Phase:
// Calc. total number of warps required

2: warp_tot = (M/16)× (K/16)
3: tc_threads = warp_tot × 32
// Calc. number of blocks
4: tc_blocks = tc_threads/max_threads
// Limit the number of threads
5: tc_threads = max_threads
6: ParCyc< N ,N > (fp16_A, a) B Alg. 4
7: ParU16toFP16< K ,N > (fp16_B, b) B Alg. 5
8: TC-PC< tc_blocks, tc_threads >

(fp16_A, fp16_B, fp32_C) B Alg. 3
9: ParFP32toU16< K ,M > (C, fp32_C) B Alg. 6

Referring to Algorithm 8, the number of warps required to
perform tensor-core-base polynomial convolution (TC-PC) is
reduced from (M/16)2 in Algorithm 7 to (M/16) × (K/16)
(line 1). Besides, the parallel blocks utilized to compute
ParU16toFP16 and ParFP32toU16 are also reduced from N
to K . This is because polynomial a is only used to con-
volute K polynomial b, where K < N . With these small
changes, the proposed technique can be used for applications
that need to refresh the key pair more frequently. Note that
Algorithm 8 is less optimal than Algorithm 7 because the
tensor core is only used to compute anM ×K matrix instead
of M ×M .

E. POLYNOMIAL ADDITION
NTRU Encrypt involves polynomial convolution followed by
addition to another polynomial (r ∗ h + e). Since the tensor
core can perform MMA in one cycle, one can also utilize this
feature to performMMA for NTRU Encrypt. We utilized this
feature in the NTRU implementation. However, polynomial
addition itself is a lightweight operation; a simple parallel
implementation using INT32 is already very efficient. Per-
forming the accumulation in tensor core involves type conver-
sion from U16 to FP16, which introduces a small overhead.
Hence, the benefit of performing polynomial addition within
the tensor core is not significant in this situation.

IV. EVALUATION
This section presents experimental results for the proposed
tensor-core-based polynomial convolution and its applica-
tion to three different lattice-based cryptographic schemes.
Results are compared to the reference and AVX2 accelerated
implementation found in the NIST PQC standardization sub-
mission package [15]. CPU implementations were evaluated
on a machine with Intel Core i7-9700F clocked at 4.7 GHz
with 16 GB RAM. The GPUs used in this paper are the
NVIDIA RTX2060 with 8 GB RAM and RTX3080 with
10GB; both devices are clocked at 1.71 GHz. GPU imple-
mentations of NTRU follow closely the NIST submission
package [15] and the results are verified against the test
vectors provided.

A. PERFORMANCE EVALUATION OF
TENSOR-CORE-BASED POLYNOMIAL CONVOLUTION
The first experiment was aimed at demonstrating the superi-
ority of tensor-core-based polynomial convolution (TC-PC)
against the conventional implementation using 32-bit integer
units (INT32-PC). In INT32-PC implementation, N blocks
are launched, where each block computes one polynomial
convolution in parallel, with N threads. To optimize the per-
formance of this implementation, we stored the two polyno-
mials (poly_a and poly_b) in shared memory to reduce the
overhead in accessing global memory. For the TC-PC imple-
mentation, (N/16)2 warps were launched to complete the
matrix multiplication. The performance of both INT32-PC
and TC-PC implementations are presented in Table 3. Note
that the results reported for GPU implementations are the
average time of processing one polynomial convolution (i.e.,
(total time to process N polynomial convolutions)/N ). Refer-
ring to the implementation results on RTX2060, when the
polynomial degree was small (N ≤ 64), INT32-PC showed
better performance than TC-PC. This is because TC-PC
requires additional steps in reorganizing poly_a into cyclic
form and converting the polynomial elements between inte-
ger and floating point formats. However, when N increases
beyond 64, the benefit of using tensor core is obvious.
The speed-up gained by TC-PC against INT32-PC increases
steadily when 64 < N ≤ 1024, where it records the highest

VOLUME 10, 2022 20625



W.-K. Lee et al.: TensorCrypto: High Throughput Acceleration of Lattice-Based Cryptography

TABLE 3. Performance of tensor-core-based polynomial convolution (Algorithm 7).

speed-up of 3.41× when N = 1024. We do not report on
the cases beyond 1024, because the speed-up gained does
not increase anymore. Note that the implementation results
on RTX3080, a similar behaviour can be observed, wherein
the speed-up gained by TC-PC increases steadily when
128 < N ≤ 1024.

B. PERFORMANCE EVALUATION UNDER THE
EPHEMERAL KEY PAIR SCENARIO
By changing the dimensions of matrix multiplication from
M × M to M × K , one can compute K polynomial convo-
lutions using the proposed tensor core technique, with the
same public/private key pair. Due to the current tensor core
limitation in NVIDIA GPU that only handles 16×16 matrix,
K has to be a multiple of 16. From Table 4, we observed that
the proposed TC-PC is more efficient than the conventional
integer-based implementation when K ≥ 32 (RTX2060) or
K ≥ 128 (RTX3080). However, the performance is less
efficient compared to the case of computing M × M , and
sometimes it is even slower than AVX2. For instance, con-
sidering the case where both M and N are 512, the GPU can
complete one polynomial convolution in 0.33µs on average
(see Table 3), which is faster than all the M × K combi-
nations. This is because the same polynomial a is reused
for N convolutions against polynomial b, so the overhead
of pre- and post-processing are effectively amortized. On the
other hand, AVX2 can complete one polynomial convolution
in 1.51µs, so it is only beneficial to employ the GPU to
perform polynomial convolutions if K ≥ 64 (RTX2060) or
K ≥ 128 (RTX3080). For cases where GPU does not provide
good speed up, it is better to use AVX2 for accelerating the
polynomial convolutions. The break-even point whereGPU is
more advantageous than AVX2 has to be determined through

TABLE 4. Performance of tensor-core-based polynomial convolution for
an M × K dimension ((Algorithm 8, where both M and N are 512).

experiments, because the computational capability of each
GPU platform differs.

C. PERFORMANCE EVALUATION OF NTRU
To demonstrate the benefit of tensor core in accelerating
lattice-based cryptographic schemes, we implemented NTRU
public-key encryption and KEM scheme with parameter
sets ntruhps2048509 and ntruhps2048677 using TC-PC
and INT32-PC. In the experiment, 512 blocks are launched,
where each block computes one NTRU operation. Results of
our GPU implementation are presented in Table 5, where they
are compared against the reference and AVX2 implementa-
tion in CPU. Note that the AVX2 implementation is heavily
optimized for performance. On the other hand, the reference
implementation aims at providing a clear description to the
underlying operations, so it is not optimized for performance.

Considering the results in RTX2060, for the ntruhps2048
509 parameter set, the TC-PC throughput of implementation
was 2.02× and 1.56× higher than INT32-PC for encap-
sulation and decapsulation respectively. A similar speed-up
ratio was also observed for ntruhps2048677, wherein the
throughput of TC-PC implementation was 1.98× and 1.90×
higher than INT32-PC. We observed that TC-PC achieved
more than 20× higher throughput compared to the reference
implementation for encapsulation and decapsulation; it is also
more than 2× higher than the AVX2 implementation. The
results in RTX3080 also shows similar speed up for TC-PC
against INT32-PC, but it is significantly faster RTX2060 due
to higher number of cores available. For instance, considering
parameter set ntruhps2048677, throughput in RTX3080 is
2.52× and 1.65× higher than RTX2060 for encapsulation
and decapsulation respectively.

Note that GPU is a throughput-oriented accelerator that is
only useful when there are many operations to be computed.
Conversely, the AVX2 implementation is advantageous in
improving the latency of a single NTRU operation. In other
words, the reported speed-up against AVX2 in Table 5 is the
full throughput achievable when there is a sufficient workload
(512 encapsulation/decapsulation or encryption/decryption).
Under such circumstances, the GPU can be an effective
accelerator to assist the computation in the CPU, especially
in server environment where CPU cores are usually busy
handling many other tasks. With insufficient workload, one
can always fallback on the AVX2 implementation or employ
the techniques for an ephemeral key pair (see Section 3.3).

20626 VOLUME 10, 2022



W.-K. Lee et al.: TensorCrypto: High Throughput Acceleration of Lattice-Based Cryptography

TABLE 5. Comparing the throughput of TensorTRU against other GPU and CPU implementations.

FIGURE 7. Comparing the throughput of AVX2 and GPU implementation
of ntruhps2048509 parameter set with various batch sizes.

FIGURE 8. Comparing the throughput of AVX2 and GPU implementation
of ntruhps2048677 parameter set with various batch sizes.

Fig. 7 and 8 show the throughput achieved by CPU (using
AVX2) and GPU (using TC-PC) at various batch sizes, for
two different parameter sizes. In this experiment, each block

performs one encapsulation/decapsulation, so the batch size
is essentially the number of blocks. When the batch size is
small (2 to 32), AVX2 implementation is achieving higher
or similar throughput compared to the GPU version. How-
ever, GPU can produce higher throughput when batch size
increases beyond 128 (approximately). This shows that the
proposed TensorTRU can be used in various applications to
provide high throughput KEM.

D. COMPARISON WITH OTHER NTRU AND PQC
IMPLEMENTATIONS ON A GPU
Existing NTRU implementations on GPU platforms are pre-
sented in Table 6. Note that the previous implementations
do not follow the NIST NTRU specifications; they targeted
different polynomial sizes and GPU devices, which are dif-
ficult to benchmark with our work directly. To allow a fair
comparison, we scale the results from previous implemen-
tation to match our GPU, which is calculated as Throughput

1920/core ,
where the number of cores in our RTX2060 was 1920.
We also configure the polynomial degree (N) in TensorTRU
to match the one in previous implementations (i.e., N = 251
and N = 401.) However, we did not compare with
Hermans et al. [5] because it targets the product-form poly-
nomial, which is not used in the NTRU submission to
NIST [16].

TensorTRU achieved 1.29× higher throughput than the
implementation by Lee et al. [7] for N = 251. Note that
the sliding window approach requires pre-computation and
storage of the polynomial in a look-up table, which can be
vulnerable to side channel (timing) attacks. In contrast, the
execution of TensorTRU does not depends on a look-up table
or any secret information, since it was developed based on
the schoolbook convolution. Referring to Algorithm 3, the
polynomials are loaded (lines 14 and 15), computed (line 16)
and stored (line 17) in a synchronized manner at the warp
level. All parallel warps actually perform the same number
of operations on different data (see Figure 4), resembling
the matrix–matrix multiplication operation. This implies that
TensorTRU is constant time and does not have the vulnera-
bilities found in the work by Lee et al. [7].

Compared to the most recent work by Lee et al. [10], Ten-
sorTRU also achieved 9.04× higher throughput. Note that

VOLUME 10, 2022 20627



W.-K. Lee et al.: TensorCrypto: High Throughput Acceleration of Lattice-Based Cryptography

TABLE 6. Comparing the performance of TensorTRU (polynomial convolution) with other existing NTRU implementations on GPU. Throughput is
measured as tasks per second.

TABLE 7. Comparing the performance of TensorTRU KEM with other existing PQC implementations on GPU. Throughput is measured as key exchange per
second.

Lee et al. [10] exploited the Karatsuba algorithm to split the
polynomials for more efficient computation. Due to the lim-
itation in the GPU architecture (see Section II), a thread can
only access the registers in other threads through a warp
shuffle instruction. This instruction can only be used within a
warp (32 threads), but NTRU polynomials are usually much
larger than the warp size. Hence, Lee et al. [10] stored the
polynomials in shared memory and accessed them across
different parallel threads. This is considered themost efficient
way to implement schoolbook and Karatsuba polynomial
convolutions, but it still requires access to the shared mem-
ory, which is slower than registers. In contrast, TensorTRU
stores the polynomials directly into registers without using
shared memory. This is made possible by converting a poly-
nomial convolution to matrix multiplication in the tensor
core, through the series of algorithms proposed in this paper
(Algorithm 3, 4, 5 and 6). Moreover, TensorTRU is executed
in the tensor core, which are more optimized than ordinary
GPU cores to process matrix multiplication. This justifies the
high performance in TensorTRU compared to other NTRU
GPU implementations.

Table 7 shows the comparison with existing PQC KEM
implementations on GPU. Gupta et al. [11] shows that Kyber
KEM can achieve a very high throughput when it is imple-
mented in batch mode, which is essentially a serial imple-
mentation. The key exchange throughput achieved by Ten-
sorTRU is 1.74× higher than Kyber [11]. Another recent
Kyber implementation from Lee et al. [12] also shows high
throughput; TensorTRU achieves 4.81× higher throughput
on the same GPU platform. Compared to the GPU imple-
mentation of another NIST Round-2 PQC candidate [13],
NewHope, the proposed TensorTRU achieves 2.82× higher
throughput.

E. TensorLAC: APPLICATION TO LAC
LAC is a cryptosystem based on the poly-LWE variant of the
Learning with Errors problem, and was selected as Round 2

candidate in the NIST PQC competition. The modulus of
LAC is restricted to q = 251, which allows each polynomial
element to fit into a single byte [27]. The decoding correct-
ness in LAC relies heavily on the ability of Bose-Chaudhuri-
Hocquenghem (BCH) error correction code to recover errors.
Even though LAC was not selected to advance to Round 3,
it won first prize in the post-quantum cryptography com-
petition hosted by the Chinese Association for Cryptologic
Research (CACR). LAC remains an interesting candidate due
to its superior implementation performance and simplicity in
design.

In this paper, we have extended our idea of using ten-
sor core to compute polynomial convolution in LAC. Since
LAC uses modulus q = 251, one can use Configuration 5
(see Table 2) to implement polynomial convolution in tensor
core. The polynomial degrees in LAC are N = 512 and
N = 1024, which appear to be multiples of 16, so it can be
computed by Algorithm 7 without padding zeros. However,
the polynomial convolution in LAC is of nega-cyclic form,
which implies that we cannot use Algorithm 4 to arrange
the polynomial a (a constant) into cyclic form. However, this
can be resolved easily by converting the relevant elements to
a nega-cyclic form in line 4 (replace in[(tid − bid)%N ] by
q− in[(tid − bid)%N ]).
The implementation of polynomial convolution in LAC

is similar to NTRU, and is presented in Algorithm 9. Since
polynomial elements in LAC are already represented in 8-bit
integer (U8) form, we can use Configuration 5 in tensor core,
and no type conversion is required. This reduces one step
compared to Algorithm 7. Firstly, one N × N matrix with
U8 and another one N × N matrix in FP32 are initialize in
the CPU. Next, we arrange the polynomial in nega-cyclic
form (line 7), followed by matrix multiplication in tensor
core (line 8). Finally, the results from tensor core (FP32) are
converted to U8 and modulo q (line 9). Note that the last step
is similar to Algorithm 6, except that we are converting the
results to U8 instead of U16.

20628 VOLUME 10, 2022



W.-K. Lee et al.: TensorCrypto: High Throughput Acceleration of Lattice-Based Cryptography

TABLE 8. Comparing TensorLAC (polynomial convolution) against other GPU and CPU implementations.

TABLE 9. Performance of tensor-core-based matrix multiplication for Frodo variants, implemented on RTX2060 and RTX3080.

Algorithm 9 Parallel Implementation of LAC Polynomial
Convolution Using Tensor Core in a GPU
Input: polynomial awith degreeN (constant polynomial),N

polynomial b with
degree N (non-constant polynomials), modulus q.

Output: N × N Matrix C, which contains the nega-cyclic
convolution of polynomial
a and many different polynomial b.

// CPU Phase:
1: u8cyclic_A B Initialize one matrix in U8

2: fp32_C B Initialize one matrix in FP32

// GPU Phase:
3: warp_tot = (N/16)2 B Calc. total number
of warps required

4: tc_threads = warp_tot × 32
5: tc_blocks = tc_threads/max_threads B Calc.
number of blocks

6: tc_threads = max_threads B Limit the number
of threads

7: LACParCyc< N ,N > (u8cyclic_A, a)
8: TC-PC < tc_blocks, tc_threads >

(u8cyclic_A,B, fp32_C) B Algorithm 3
9: ParFP32toU8< N ,N > (C, fp32_C)

Table 8 shows the implementation results of nega-cyclic
polynomial convolution of LAC in a CPU (reference
and AVX2) and a GPU (integer units and tensor core),
respectively. TC-NPC is showed 2.93× and 3.1× higher
performance than INT8-NPC, for N = 512 and N =

1024 respectively. These speed-ups are slightly higher than
with TensorTRU, because there is no need to convert the data
from INT8 to FP16 as required in NTRU.

F. TensorFro: APPLICATION TO FrodoKEM
FrodoKEMwas selected as an alternate candidate in the third
round of the NIST PQC competition. The official FrodoKEM
parameter sets require that modulus q = 215 and q = 216,
which are too large to be represented in FP16, so we cannot
utilize tensor core to perform the matrix multiplication. How-
ever, Frodo allows flexible configuration on its parameters
as a trade-off between security level, size of modulus and
the probability of decryption failure. One of the interesting
parameters was proposed by Bian et al. [37], wherein the
modulus can be as small as q = 211. This parameter set
allows the server side to perform only matrix-vector multi-
plication (N× ñ), but it requires the client side to do much
more work (N× m̃). On the other hand, one can also utilize
the parameter searching script provided by the FrodoKEM
Round 3 submission [25] to obtain a parameter set with small
modulus. In this paper, we instantiated another parameter set
for FrodoKEM, which is presented in Table 10. With the
restrictions q = 2048 and σ = 1.0, we obtained a parameter
set that has a balanced workload between server and client,
since m̃ and ñ is close to each other. We show that the
proposed tensor core technique can be utilized to accelerate
the matrix multiplication in these two variant parameter sets.

TABLE 10. Parameter instantiations of FrodoKEM.

Polynomial degree N for Frodo-II and TensorFro is not
a multiple of 16, so we need to use the proposed method
to pad zeros into the polynomial (see Figure 5b). For
Frodo-II, the server side can pack many polynomials into

VOLUME 10, 2022 20629



W.-K. Lee et al.: TensorCrypto: High Throughput Acceleration of Lattice-Based Cryptography

FIGURE 9. Key refreshment in IoT communication systems.

a matrix and perform many matrix–vector multiplications
using Algorithm 3. The client side can pack twoN×m̃ (570×
256) matrices and can perform matrix multiplications with
tensor core. A similar technique is applicable to TensorFro on
both the client and the server side by packingmultiple smaller
matrices to form a larger one. Note that we do not need to
arrange the polynomial in cyclic form, since FrodoKEM does
not perform convolutions.

The error vectors in FrodoKEM span a larger distribution
compared to ternary values in NTRU and LAC. For instance,
Frodo-II and TensorFro have error vector with values in
the range {−4, −3, . . . 0, . . . , +3, +4}. When the proposed
tensor-core-based technique is used, multiplication between
a 11-bit (q = 2048) sample and an error vector produces
a maximum of 13-bit value in floating point format i.e.,
(211 − 1) × 4 ≈ 213 and (211 − 1 × −4 ≈ −213). In the
process of polynomial convolution, the accumulated value
can grow up to amaximumofN×(213−1). Hence, for the two
variant parameter sets, the values stored in the accumulator
can grow to 23-bit (Frodo-II, log2(570×(213−1)); TensorFro,
log2(560 × (213 − 1))). This allows matrix multiplication to
be computed correctly within the single precision, so we can
utilize the tensor core Configuration 1.

Table 9 shows the results of matrix multiplication for
Frodo variant parameter sets implemented on RTX2060. The
achieved speed-up between INT32-MM and TC-MM is sim-
ilar to cases in TensorTRU and TensorLAC.

G. USE CASE: SECURE COMMUNICATION IN IoT
APPLICATIONS
IoT applications typically employ symmetric encryption
schemes (e.g., AES) to encrypt the IoT data. To reduce the
risks of compromising symmetric encryption keys, we need
to refresh these encryption keys frequently. Referring to Fig-
ure 9, this key refreshment task in a typical IoT application
can be carried out in two ways:

1) Scenario 1: The IoT sensor nodes generate new sym-
metric encryption keys locally and forward them to
the gateway device and cloud server via KEM. This
process takes place in every communication session,
in which pseudorandom number generator (PRNG)
can be employed to produce the new symmetric encryp-
tion key.

2) Scenario 2: The cloud server generates new symmet-
ric encryption keys and forward them to the gate-
way device and each sensor node via KEM. Similarly,
PRNG can be utilized to generate new keys for every
session.

In scenario 1, the gateway device and cloud server need
to handle many key decapsulations in real time. On the other
hand, in scenario 2, the cloud server needs to generate and
encapsulate many keys, so that these keys can be sent to each
sensor node in a timely manner. Under the IoT application
scenario, a gateway device typically needs to communicate
with tens to hundreds of sensor nodes. On the IoT cloud
servers, this connection can go up to tens of thousands. With
such massive connections in IoT communication, it is clear
that both scenarios needs high throughput key encapsula-
tion/decapsulation, which is difficult even for a high-end
workstation. To mitigate this challenge, one can offload
the KEM to GPU, which is already found in many gate-
way device (e.g., Jetson AGX Xavier [38]) and cloud server
platforms. The proposed tensor-core-based technique can be
very useful in handling this kind of massive key encapsula-
tions/decapsulations.

Due to constrained energy storage, IoT sensor nodes usu-
ally transmit the collected sensor data in a coordinated ses-
sion [39], intermittently. Instead of using a separate public-
private key pair for each sensor node, the same key pair is used
for key encapsulations/decapsulations for a particular session
in all sensor node. This implies that performing hundreds to
thousands of KEMs using the same public-private key pair
for one communication session is common in IoT applica-
tions [12]. In the subsequent sessions, the user can choose to
use the same key pair or generate a new one (ephemeral key
pair).

V. CONCLUSION
In this paper, we present the first tensor-core-aided cryptog-
raphy implementation on a GPU. The proposed tensor-core-
based polynomial convolution is faster than conventional
implementations that rely on integer units in the GPU. Since
the proposed tensor-core-based polynomial convolution is
a generic algorithm, it can be applied to various sizes of
matrix/polynomial. Although the current tensor core can only
support limited floating point precision and integer types,
we believed the situation may change in near future. In partic-
ular, the introduction of FP64 into tensor core recently opened
up its adoption into the mainstream scientific computing
applications, fostering the use of the GPU in a wider range
of applications. As this trend persists, we believe the perfor-
mance of FP64 tensor core will increase and eventually sup-
port more parameters for lattice-base cryptography. On top
of that, a recently released embedded GPU (the Jetson AGX
Xavier) also offers tensor core to accelerate deep learning
inference. This embedded GPU can be used to implement
gateway device in IoT applications (e.g., road side units in
a smart city), in which our solution can be applied to enable
high throughput key encapsulations/decapsulations.

20630 VOLUME 10, 2022



W.-K. Lee et al.: TensorCrypto: High Throughput Acceleration of Lattice-Based Cryptography

Advanced Matrix Extensions (AMX) is a new x86 instruc-
tion set architecture (ISA) released by Intel to support
matrix multiplication, which is similar to the tensor core
on GPUs. AMD had also released the MI100 accelerator
recently, which has a matrix engine similar to tensor core.
Adapting the proposed tensor-core-based polynomial convo-
lution these platforms would be an interesting future work
that we wish to pursue. On the other hand, a recent work
utilized the Strassen’s algorithm to speed-up the matrix-
multiplication [40], [41]. This can also be an interesting
future direction, as the performance of such approach on a
GPU is still unknown.

The proposed tensor-core-based polynomial convolution
can be implemented on consumer (RTX2060 and RTX3080)
and server grade (T4 and A100) GPU platforms with Tur-
ing and Ampere architecture, with similar performance gain.
However, the tensor core in Volta architecture GPU (e.g.,
V100) is not as powerful as the one in Turing and Ampere
architectures. Hence, we expect that the performance of our
solution implemented on Volta architecture GPU may not be
as impressive compared these two architectures.

REFERENCES
[1] P. W. Shor, ‘‘Polynomial-time algorithms for prime factorization and

discrete logarithms on a quantum computer,’’ SIAM Rev., vol. 41, no. 2,
pp. 303–332, 1999.

[2] D. J. Bernstein, ‘‘Introduction to post-quantum cryptography,’’ in Post-
Quantum Cryptography. Berlin, Germany: Springer, 2009, pp. 1–14.

[3] G. Alagic, G. Alagic, J. Alperin-Sheriff, D. Apon, D. Cooper, Q. Dang,
Y.-K. Liu, C. Miller, D. Moody, and R. Peralta, ‘‘Status report on the first
round of the NIST post-quantum cryptography standardization process,’’
U.S. Dept. Commerce, Nat. Inst. Standards Technol., Gaithersburg, MD,
USA, Tech. Rep. 8240, 2019.

[4] D.-E.-S. Kundi, A. Khalid, S. Bian, C. Wang, M. OrNeill, and W. Liu,
‘‘AxRLWE: A multi-level approximate ring-LWE co-processor for
lightweight IoT applications,’’ IEEE Internet Things J., early access,
Oct. 22, 2021, doi: 10.1109/JIOT.2021.3122276.

[5] J. Hermans, F. Vercauteren, and B. Preneel, ‘‘Speed records for NTRU,’’ in
Proc. Cryptographers’ Track RSA Conf. Berlin, Germany: Springer, 2010,
pp. 73–88.

[6] A. A. Kamal and A.M. Youssef, ‘‘Enhanced implementation of the NTRU-
Encrypt algorithm using graphics cards,’’ in Proc. 1st Int. Conf. Parallel,
Distrib. Grid Comput., Oct. 2010, pp. 168–174.

[7] M.-K. Lee, J. W. Kim, J. E. Song, and K. Park, ‘‘Efficient implemen-
tation of NTRU cryptosystem using sliding window methods,’’ IEICE
Trans. Fundamentals Electron., Commun. Comput. Sci., vol. 96, no. 1,
pp. 206–214, 2013.

[8] S. Akleylek and Z. Y. Tok, ‘‘Efficient interleaved Montgomery modu-
lar multiplication for lattice-based cryptography,’’ IEICE Electron. Exp.,
vol. 11, no. 22, 2014, Art. no. 20140960.

[9] W. Dai, B. Sunar, J. Schanck, W. Whyte, and Z. Zhang, ‘‘NTRU modular
lattice signature scheme on CUDA GPUs,’’ in Proc. Int. Conf. High Per-
form. Comput. Simulation (HPCS), Jul. 2016, pp. 501–508.

[10] S. Akleylek, B.-M. Goi, W.-S. Yap, D. C.-K. Wong, and W.-K. Lee,
‘‘Fast NTRU encryption in GPU for secure IoP communication in post-
quantum era,’’ in Proc. IEEE SmartWorld, Ubiquitous Intell. Comput.,
Adv. Trusted Comput., Scalable Comput. Commun., Cloud Big Data Com-
put., Internet People Smart City Innov. (SmartWorld/SCALCOM/UIC/ATC/
CBDCom/IOP/SCI), Oct. 2018, pp. 1923–1928.

[11] N. Gupta, A. Jati, A. Kumar Chauhan, and A. Chattopadhyay, ‘‘PQC
acceleration using GPUs: FrodoKEM, NewHope, and kyber,’’ IEEE Trans.
Parallel Distrib. Syst., vol. 32, no. 3, pp. 575–586, Mar. 2021.

[12] W. K. Lee and S. O. Hwang, ‘‘High throughput implementation of
post-quantum key encapsulation and decapsulation on GPU for Internet
of Things applications,’’ IEEE Trans. Services Comput., early access,
Aug. 10, 2021, doi: 10.1109/TSC.2021.3103956.

[13] Y. Gao, J. Xu, and H. Wang, ‘‘CuNH: Efficient GPU implementations
of post-quantum KEM NewHope,’’ IEEE Trans. Parallel Distrib. Syst.,
vol. 33, no. 3, pp. 551–568, Mar. 2022.

[14] S. Sun, R. Zhang, and H. Ma, ‘‘Efficient parallelism of post-quantum
signature scheme SPHINCS,’’ IEEE Trans. Parallel Distrib. Syst., vol. 31,
no. 11, pp. 2542–2555, Nov. 2020.

[15] C. S. Division. Round 3 Submissions—Post-Quantum Cryptography:
CSRC. Accessed: Nov. 5, 2021. [Online]. Available: https://csrc.nist.gov/
projects/post-quantum-cryptography/round-3-submissions

[16] C. Chen, O. Danba, J. Hoffstein, A. Hülsing, J. Rijneveld, J. M. Schanck,
P. Schwabe, W. Whyte, and Z. Zhang, ‘‘NTRU algorithm specifications
and supporting documentation,’’ in Proc. 2nd PQC Standardization Conf.,
2020, pp. 1–40.

[17] C.-C. Lin, M.-H. Sheu, C. Liaw, and H.-K. Chiang, ‘‘Fast first-order
polynomials convolution interpolation for real-time digital image recon-
struction,’’ IEEE Trans. Circuits Syst. Video Technol., vol. 20, no. 9,
pp. 1260–1264, Sep. 2010.

[18] Y. Zeng, L. Zhang, J. Zhao, J. Lan, and B. Li, ‘‘JRL-YOLO: A novel
jump-join repetitious learning structure for real-time dangerous object
detection,’’ Comput. Intell. Neurosci., vol. 2021, pp. 1–16, Apr. 2021.

[19] Q. Ding, A. R. Sheikh, W. Pan, X. Gu, N. Sun, X. Su, L. Luo, H. Ma,
R. He, and T. Zhang, ‘‘In situ monitoring of grape seed protein hydrolysis
by Raman spectroscopy,’’ J. Food Biochem., vol. 45, no. 4, Apr. 2021,
Art. no. e13646.

[20] X. Zhang, J. Saniie, and A. Heifetz, ‘‘Spatial temporal denoised thermal
source separation in images of compact pulsed thermography system for
qualification of additively manufactured metals,’’ in Proc. IEEE Int. Conf.
Electro Inf. Technol. (EIT), May 2021, pp. 209–214.

[21] J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M. Schanck,
P. Schwabe, G. Seiler, and D. Stehlé, ‘‘CRYSTALS–kyber: A CCA-secure
module-lattice-based KEM,’’ in Proc. IEEE Eur. Symp. Secur. Privacy,
Apr. 2018, pp. 353–367.

[22] J.-P. D’Anvers, A. Karmakar, S. S. Roy, and F. Vercauteren, ‘‘SABER:
Module-LWR based key exchange, CPA-secure encryption and CCA-
secure KEM,’’ in Proc. Int. Conf. Cryptol. Afr. Cham, Switzerland:
Springer, 2018, pp. 282–305.

[23] L. Ducas, T. Lepoint, V. Lyubashevsky, P. Schwabe, G. Seiler, and
D. Stehlé, ‘‘CRYSTALS—Dilithium: Digital signatures from module lat-
tices,’’ in Proc. IACR TCHES, vol. 2018, no. 1, 2018, pp. 238–268.

[24] P.-A. Fouque, J. Hoffstein, P. Kirchner, V. Lyubashevsky, T. Pornin,
T. Prest, T. Ricosset, G. Seiler, W. Whyte, and Z. Zhang, ‘‘FALCON: Fast-
Fourier lattice-based compact signatures over NTRU,’’ Submission NIST’s
Post-Quantum Cryptogr. Standardization Process, vol. 36, no. 5, pp. 1–75,
2018.

[25] M. Naehrig, E. Alkim, J. Bos, L. Ducas, K. Easterbrook, B. LaMacchia,
P. Longa, I. Mironov, V. Nikolaenko, C. Peikert, A. Raghunathan, and
D. Stebila, ‘‘FrodoKEM: Learning with errors key encapsulation—
Algorithm specifications and supporting documentation,’’ Nat. Inst.
Standards Technol., Gaithersburg, MD, USA, Tech. Rep., 2020.
Accessed: May 9, 2021. [Online]. Available: https://csrc.nist.gov/Projects/
Post-Quantum-Cryptography/

[26] D. J. Bernstein, C. Chuengsatiansup, T. Lange, and C. Van Vredendaal,
‘‘NTRU prime,’’ IACR Cryptol. ePrint Arch., vol. 2016, p. 461,
May 2016.

[27] X. Lu, Y. Liu, Z. Zhang, D. Jia, H. Xue, J. He, B. Li, K. Wang, Z. Liu,
and H. Yang, ‘‘LAC: Practical ring-LWE based public-key encryption
with byte-level modulus,’’ IACR Cryptol. ePrint Arch., vol. 2018, p. 1009,
May 2018.

[28] C. NVIDIA,CUDAC Programming Guide, Version 11.2. Santa Clara, CA,
USA: NVIDIA, 2020.

[29] J. Hoffstein, J. Pipher, and J. H. Silverman, ‘‘NTRU: A ring-based public
key cryptosystem,’’ in Proc. Int. Algorithmic Number Theory Symp.Berlin,
Germany: Springer, 1998, pp. 267–288.

[30] J. Hoffstein, J. Pipher, J. M. Schanck, J. H. Silverman, W. Whyte, and
Z. Zhang, ‘‘Choosing parameters for NTRUEncrypt ,’’ in Proc. Cryptogra-
phers’ Track RSAConf., in Lecture Notes in Computer Science, vol. 10159,
H. Handschuh, Ed. San Francisco, CA, USA: Springer, 2017, pp. 3–18,
doi: 10.1007/978-3-319-52153-4_1.

[31] A. Hülsing, J. Rijneveld, J. M. Schanck, and P. Schwabe, ‘‘High-
speed key encapsulation from NTRU,’’ in Proc. Int. Conf. Crypto-
graph. Hardw. Embedded Syst., in Lecture Notes in Computer Science,
vol. 10529, W. Fischer and N. Homma, Eds. Taipei, Taiwan: Springer,
2017, pp. 232–252, doi: 10.1007/978-3-319-66787-4_12.

VOLUME 10, 2022 20631

http://dx.doi.org/10.1109/JIOT.2021.3122276
http://dx.doi.org/10.1109/TSC.2021.3103956
http://dx.doi.org/10.1007/978-3-319-52153-4_1
http://dx.doi.org/10.1007/978-3-319-66787-4_12


W.-K. Lee et al.: TensorCrypto: High Throughput Acceleration of Lattice-Based Cryptography

[32] J. Hoffstein, J. Pipher, J. M. Schanck, J. H. Silverman, and W. Whyte,
‘‘Transcript secure signatures based on modular lattices,’’ in Proc. Int.
Workshop Post-Quantum Cryptogr., in Lecture Notes in Computer Sci-
ence, vol. 8772, M. Mosca, Ed. Waterloo, ON, Canada: Springer, 2014,
pp. 142–159, doi: 10.1007/978-3-319-11659-4_9.

[33] D. Das, J. Hoffstein, J. Pipher, W. Whyte, and Z. Zhang, ‘‘Modular lattice
signatures, revisited,’’ Des., Codes Cryptogr., vol. 88, no. 3, pp. 505–532,
2020, doi: 10.1007/s10623-019-00694-x.

[34] W.-K. Lee, S. Akleylek, W.-S. Yap, and B.-M. Goi, ‘‘Accelerating number
theoretic transform in GPU platform for qTESLA scheme,’’ in Proc. Int.
Conf. Inf. Secur. Pract. Exp. Berlin, Germany: Springer, 2019, pp. 41–55.

[35] W.-K. Lee, S. Akleylek, D. C.-K. Wong, W.-S. Yap, B.-M. Goi, and
S.-O. Hwang, ‘‘Parallel implementation of Nussbaumer algorithm and
number theoretic transform on a GPU platform: Application to qTESLA,’’
J. Supercomput., vol. 77, no. 4, pp. 3289–3314, Apr. 2021.

[36] H. Satılmış, S. Akleylek, and C.-C. Lee, ‘‘Efficient implementations of
sieving and enumeration algorithms for lattice-based cryptography,’’Math-
ematics, vol. 9, no. 14, p. 1618, Jul. 2021.

[37] S. Bian, M. Hiromoto, and T. Sato, ‘‘Filianore: Better multiplier architec-
tures for LWE-based post-quantum key exchange,’’ in Proc. 56th Annu.
Des. Autom. Conf., Jun. 2019, pp. 1–6.

[38] CUDA. Nvidia AGX Xavier Module. Accessed: Apr. 6, 2021. [Online].
Available: https://developer.nvidia.com/embedded/jetson-agx-xavier

[39] S.-Y. Liew, C.-K. Tan, M.-L. Gan, and H. G. Goh, ‘‘A fast, adaptive,
and energy-efficient data collection protocol in multi-channel-multi-path
wireless sensor networks,’’ IEEE Comput. Intell. Mag., vol. 13, no. 1,
pp. 30–40, Feb. 2018.

[40] J. Huang, C. D. Yu, and R. A. V. D. Geijn, ‘‘Strassen’s algorithm reloaded
on GPUs,’’ ACM Trans. Math. Softw., vol. 46, no. 1, pp. 1–22, 2020.

[41] J. W. Bos, M. Ofner, J. Renes, T. Schneider, and C. V. Vredendaal, ‘‘The
matrix reloaded: Multiplication strategies in FrodoKEM,’’ in Proc. Int.
Conf. Cryptol. Netw. Secur. Berlin, Germany: Springer, 2021, pp. 72–91.

WAI-KONG LEE (Member, IEEE) received the
B.Eng. degree in electronics and the M.Sc. degree
from Multimedia University, in 2006 and 2009,
respectively, and the Ph.D. degree in engineering
from Universiti Tunku Abdul Rahman, Malaysia,
in 2018. He was a Visiting Scholar with Carleton
University, Canada, in 2017, Feng Chia University,
Taiwan, in 2016 and 2018, and OTH Regensburg,
Germany, in 2015, 2018, and 2019. Prior to join-
ing academia, he worked in several multi-national

companies, including Agilent Technologies (Malaysia) as a Research and
Development Engineer. He is currently a Postdoctoral Researcher with
Gachon University, South Korea. His research interests include the areas of
cryptography, numerical algorithms, GPU computing, the Internet of Things,
and energy harvesting.

HWAJEONG SEO (Member, IEEE) received the
B.S., M.S., and Ph.D. degrees in computer engi-
neering from Pusan National University. He is
currently an Assistant Professor with Hansung
University. His research interest includes crypto-
graphic engineering.

ZHENFEI ZHANG received the Ph.D. degree from
the University of Wollongong, Australia, in 2014.
He was the Director of Cryptographic Research
with OnBoard Security, a company that devel-
oped NTRU and the related technologies. He was
also the CTO and a Co-Founder of Manta Net-
work. He is currently working as a Cryptographer
at Ethereum Foundation. His research interests
include quantum-safe cryptography, specifically,
and lattice-based cryptography.

SEONG OUN HWANG (Senior Member, IEEE)
received the B.S. degree in mathematics from
Seoul National University, in 1993, the M.S.
degree in information and communications engi-
neering from the PohangUniversity of Science and
Technology, in 1998, and the Ph.D. degree in com-
puter science from the Korea Advanced Institute
of Science and Technology, South Korea, in 2004.
He worked as a Software Engineer with LG-CNS
Systems Inc., from 1994 to 1996. He worked as a

Senior Researcher with the Electronics and Telecommunications Research
Institute (ETRI), from 1998 to 2007. He worked as a Professor with the
Department of Software and Communications Engineering, Hongik Univer-
sity, from 2008 to 2019. He is currently a Professor with the Department
of Computer Engineering, Gachon University. His research interests include
cryptography, cybersecurity, and artificial intelligence. He is an Editor of
ETRI Journal.

20632 VOLUME 10, 2022

http://dx.doi.org/10.1007/978-3-319-11659-4_9
http://dx.doi.org/10.1007/s10623-019-00694-x

