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ABSTRACT Monitoring of streamed data to detect abnormal behaviour (variously known as event detection,
anomaly detection, change detection, or outlier detection) underlies many applications, especially within the
Internet of Things. There, one often collects data from a variety of sources, with asynchronous sampling,
and missing data. In this setting, one can detect abnormal behavior using low-rank techniques. In particular,
we assume that normal observations come from a low-rank subspace, prior to being corrupted by a uniformly
distributed noise. Correspondingly, we aim to recover a representation of the subspace, and perform event
detection by running point-to-subspace distance query for incoming data. We use a variant of low-rank
factorisation, which considers interval uncertainty sets around ‘‘known entries’’, on a suitable flattening of
the input data to obtain a low-rank model. On-line, we compute the distance of incoming data to the low-rank
normal subspace and update the subspace to keep it consistent with the seasonal changes present. For the
distance computation, we consider subsampling.We bound the one-sided error as a function of the number of
coordinates employed. In our computational experiments, we test the proposed algorithm on induction-loop
data from Dublin, Ireland.

INDEX TERMS Multidimensional signal processing, monitoring, matrix completion, point-to-subspace
proximity, probably approximately correct learning.

I. INTRODUCTION
When detailed multivariate data are available in real time, it is
highly desirable to monitor the appearance of ‘‘abnormal’’
behavior across the multivariate data, with guarantees on the
performance of the monitoring procedure, but without the
computational burden of processing the data set in its entirety.
Across the Internet of Things, many examples abound [1].
To consider one example, many cities have been instrumented
with large numbers of sensors capturing the numbers and
average speeds of cars passing through the approaches of
urban intersections (induction loops), volume of traffic (from
CCTVdata or aggregate data ofmobile-phone operators), and
speeds of public transport vehicles (e.g., on-board satellite
positioning units in buses), but many still lack the infrastruc-
ture to detect traffic accidents prior to them being reported.
This is to a large extent due to the limited utility of the
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information from each of the sensors, e.g.,maintaining statis-
tics about traffic at a particular approach of an intersection.
Only the combination ofmultivariate time series acrossmulti-
ple sensor types could allow the detection of events of interest
in many applications.

More broadly, there is a monitoring component in most
applications of the Internet of Things. In transportation appli-
cations, one may wish to detect traffic accidents [2]–[5],
(imminent) aircraft engine failures [6], or deviations from
a flight schedule [7]. In electric power distribution sys-
tems [5], [8]–[10], there may be reclosers and sectionalisers
acting automatically upon a tree branch falling on an over-
head power line, but the distribution system operator may
not know about the event, until it is either detected from
sparsely-deployed sensors or reported by customers. Similar
techniques can be used [11] in water distribution networks.
Likewise, Internet of Things (IoT) in manufacturing [12],
[13] and environmental applications [14] crucially relies on
monitoring, as does intrusion detection in IoT [15]–[17],
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albeit the details of the model tend to be more involved
and more application-specific. Correspondingly, there is a
long history of work on monitoring and event detection
(also known as anomaly detection or outlier detection), going
back at least to [18], [19] in the univariate case. Outside of
traditional methods, such as dimension reduction [20] and
Gaussian processes [9], deep-learning methods [21]–[24]
have been widely used recently. We refer to [25], [26] for
excellent surveys.

Notice that processing heterogeneous sensor data in IoT
applications poses several challenges: (1) One of the main
challenges is, clearly, dealing with the velocity and, when
accumulated, the volume of the data. A city can have thou-
sands of sensors sampling at kHz rates. For example, in a
network of 10, 000 sensors, sampling with 1-byte resolution
at 1 kHz, one obtains close to 311 TB of data per year that
needs to be analyzed to estimate what is normal. (2) The
second challenge involves detecting an event in real-time.
An automated event detection is useful in cases that the
event is detected within seconds after it occurs, such as
when a road is completely blocked before people start vent-
ing their frustration on social media or dialling rescue ser-
vices. (3) Another common challenge is the missing values
and failures of sensors. It is widespread for sensors to stop
working or start reporting wrong values (e.g., negative car
flow). Distinguishing themal-function of a single sensor from
a genuine event shows the necessity of utilising multivariate
data. (4) Finally, there is measurement noise. In field condi-
tions, e.g., an induction loop buried under inches of tarmac,
or a traffic-volume estimate from a video feed captured in a
rainstorm, does have a very limited accuracy. While there are
methods for dealingwith each of these challenges in isolation,
one should like to address all four at the same time.

To overcome these challenges, we propose a novel frame-
work that utilizes low-rank methods [27] to provide fast
and accurate event detection on data from varied sources.
Throughout, we consider uniformly-distributed measurement
noise, but let us present the model in the noise-free case
first in this paragraph. There, events correspond to points
lying outside a certain subspace. To estimate the sub-space,
we flatten the input data to a matrix and apply state-of-the-
art low-rank matrix-factorization techniques. In particular,
we factorize the original matrix into two smaller matrices,
whose product approximates the original matrix. Subse-
quently, we develop a point-in-subspace membership test
capable of detecting whether new samples are within the
subspace spanned by the columns of one of the factors
(smaller matrices). An affirmative answer is interpreted as
an indication that the samples from the sensors present
normal behavior. In the case of a negative answer, a point-to-
subspace distance query can estimate the extent of abnormal-
ity of an event. Crucially, this point-in-subspace membership
test can be sub-sampled, while still allowing for guaran-
tees on its performance. The sub-sampling of, e.g., one per
cent of the data, allows for efficient applicability in IoT
applications.

Our main contributions are the following:

• a general framework for representing what is an event
and what is a non-event considering heterogeneous data,
which are possibly not sampled uniformly, with missing
values and measurement errors.

• a novel randomized event detection technique, imple-
mented via a point-to-subspace distance query, with
guarantees of probably approximately correct (PAC)
learning [28] in sublinear time,

• an experimental evaluation on data from a traffic-control
system in Dublin, Ireland, which shows that it is possible
to process data collected from thousands of sensors over
the course of one year within minutes, to answer point-
to-subspace distance queries in milliseconds and thus
detect even hard-to-detect events.

II. AN APPROACH
Our goal in this paper is to build a model of what is
a non-event across many time series, possibly with non-
uniform sampling across the time series, missing values,
and measurement errors present in the values. We build a
framework around this model and, in Section III, suggest
algorithms for the individual components in this framework.

A. A MODEL
For example, one could consider applications in urban traffic
management, where the number of vehicles passing over
induction loops are measured, but often prove to be noisy,
with the reliability of the induction loops and the related
communication infrastructure limited. Subsequently, we aim
at an online event detection mechanism, which would be able
to decide whether multiple fragments of multiple incoming
time-series present an event (abnormal behaviour) or not.
In urban traffic management, for example, one aims at detect-
ing a road accident, based on the evolution of the traffic
volumes across a network of induction loops. Notice that an
accident will manifest itself by some readings being low, due
to roads being blocked, while other readings are high, due to
re-routing, while no induction loop has to have its readings
more than one standard deviation away from the long-run
average, which renders univariate methods difficult to use.
Such monitoring problems are central to many Internet-of-
Things applications.

This pattern can be exploited by storing each day worth of
data as a row in a matrix, possibly with many missing values.
For multiple time series, we obtain multiple partial matrices,
or a partial tensor. These can be flattened by concatenating the
matrices row-wise to obtain one large matrix, as suggested in
Figure 1. For D days discretised to T periods each, with up
to S sensors available, the flattened matrixM is in dimension
n = TS and has m = D rows.
Considering this flattened representation, it is natural to

assume that each new day resembles a linear combination
of r prototypical days, or rows in the flattened matrix in
dimension m � r . Formally, we assume that there exists
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R ∈ Rr×n, such that our observations x ∈ Rn are

x = cR+ U(−1,1), (1)

possibly with many values missing, for some coefficients
c ∈ Rr weighing the r vectors {e1, e2, . . . , er } row-wise in
R, with uniformly-distributed noise U between −1 and 1.
We compute the matrix R, using low-rank approxima-

tion of the flattened matrix with an explicit consideration
of the uniformly-distributed error in the measurements Mij
for (i, j) ∈ M . Considering the interval uncertainty set
[Mij − 1,Mij + 1] around each observation, this can be
seen as matrix completion with element-wise lower bounds
XL
ij := Mij−1 for (i, j) ∈ M and element-wise upper bounds
XU
ij := Mij +1 for (i, j) ∈ M .
Considering the factorization LR, where L ∈ Rm×r and

R ∈ Rr×n obtained above (6), given an incoming x ∈ Rn, the
maximum likelihood estimate ĉ ∈ Rr of c in (1) is precisely
the point minimizing |x|∞:

min
ĉ∈Rr

max
i
|xi − (ĉR)i| (2)

whenever ĉ ≤ 1. We refer to Section 7.1.1 of [29] for a
discussion. In a linear program corresponding to (2), we con-
sider a subset of coordinates of Rn and prove a bound on the
one-sided error when using the subset. This is the first use of
a point-to-subspace query considering the supremum norm
(`∞) in event detection.

B. THE MODULOR FRAMEWORK
This naturally leads to a framework comprising three main
components, as illustrated in Figure 1:

1) Data flattener, which captures the unstructured raw
input data coming from different sources and reformats
them into a partial matrix, which is processed further.

2) Matrix-factorization component, which approximates
the partial matrix obtained by the data flattener. The
approximation consists of two matrices (known as fac-
tors), whose product is a low-rank approximation of the
original one. Using the two factors, we are able to cap-
ture the most salient features of the original matrix in a
compressed form. Sparsity of the partial matrix on the
input makes the calculation of the matrix factorization
possible with high accuracy within modest run time,
while allowing formissing values in the input data. This
component is further described in Section III-A.

3) Subsampled point-to-subspace proximity tester (or
subspace-proximity tester for short) uses the output
of the matrix-factorization component and estimates
whether the current sensor readings present an abnor-
mal behavior or not. This component is described in
detail in Section III-B, but crucially, its run time is
independent of the dimension. In experimental results
with a history of sensor readings encoded in a par-
tial matrix in R304×299430 and current sensor readings
encoded in a vector in R299430, for instance, it takes

only milliseconds to perform the test, as we illustrate
in of Section V.

The framework can be utilised as follows: Data flattener
collects all data from different sources and creates the cor-
responding matrices, e.g., a partial matrix with traffic vol-
umes and speeds. Then the data structure thus produced is
passed to the matrix-factorization component, which fac-
torizes the data, and creates two matrices L and R. One
of the factors (matrix R) is then passed to the subspace-
proximity tester, which uses it to assess whether incom-
ing sensor readings present abnormal behavior or not and
report the results to the end user. Finally, subspace-proximity
tester relays the data back to the matrix-factorization
component to update the input matrix, replacing the
oldest data present, and updating online [30]–[32],
if needed.

We denote this framework MODULoR, where this back-
ronym can stand for ‘‘MOnitoring Distributed systems Using
Low-Rank methods‘‘, or more accurately as a ‘‘Method for
Outlier Detection Using Low-Rank factorization and range-
space subsampling’’.We stress that the novelty lies in the sub-
sampled point-to-subspace proximity tester, whose low run
time makes the use of low-rank factorization practical. With-
out the subsampling, the point-to-subspace distance query in
such an approach [30], [32]–[36] would be too demanding for
online use.

III. THE ALGORITHMS
As outlined above, there are two key algorithms needed.
The first one implements thematrix-factorization component.
In our experiments, we chose the alternating parallel coor-
dinate descent for inequality-constrained matrix completion
to estimate the low-rank approximation of a partial matrix,
either in an online or offline fashion. This makes it possible,
rather uniquely, to be robust to uniformly-distributed mea-
surement noise, while being able to detect sparse noise as
abnormal (events, anomalies).

The second algorithm implements the subspace-proximity
tester. In our experiments, we consider the test with the
supremum norm, implemented as a linear program, which
is subsampled. As an input, it uses the output of the matrix-
factorization component and it is able to predict if an incom-
ing time series presents normal or abnormal behavior. This
second algorithm is run in an online fashion. We describe
the two algorithms in more detail in the following two
sections.

A. MATRIX-FACTORIZATION COMPONENT
To formalise the factorisation M ≈ LR, let Li: and R:j be

the i-th row and j-th column of L and R, respectively. With
Frobenius-norm regularisation, the factorization problem we
wish to solve reads:

min
L∈Rm×r , R∈Rr×n

fL(L,R)+ fU (L,R)+
µ

2
‖L‖2F +

µ

2
‖R‖2F

(3)
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FIGURE 1. A schematic illustration of the MODULoR framework: a history of sensor readings is processed into a partial matrix, which is factorized.
One of the factors is subsampled and the corresponding subsampling is applied also to incoming sensor readings. This makes it possible to run a
point-to-subspace test in an online fashion, with a constant run time and a small one-sided error.

Algorithm 1 Matrix Factorization via Alternating Parallel
Coordinate Descent, cf. [27]

Input: E,L,U,XE ,XL,XU , rank r
Output: m× n matrix

1: choose L ∈ Rm×r and R ∈ Rr×n

2: for k = 0, 1, 2, . . . do
3: choose a random subset Ŝrow ⊂ {1, . . . ,m}
4: for i ∈ Ŝrow in parallel do
5: choose r̂ ∈ {1, . . . , r} uniformly at random
6: compute δir̂ using formula (11)
7: update Lir̂ ← Lir̂ + δir̂
8: end for
9: choose a random subset Ŝcolumn ⊂ {1, . . . , n}

10: for j ∈ Ŝcolumn in parallel do
11: choose r̂ ∈ {1, . . . , r} uniformly at random
12: compute δr̂ j using (12)
13: update Rr̂ j← Rr̂ j + δr̂ j
14: end for
15: end for
16: return (L,R)

where

fL(L,R) :=
1
2

∑
(ij)∈L

(XL
ij − Li:R:j)

2
+, (4)

fU (L,R) :=
1
2

∑
(ij)∈U

(Li:R:j − XU
ij )

2
+, (5)

where ξ+ = max{0, ξ}, calligraphic L is used for bounds
from below and U for bounds from above. Notice that this
is a non-convex problem, whose special case of 1 = 0 is
NP-hard [37], [38].

The matrix completion under interval uncertainty can be
seen as a special case of the inequality-constrained matrix
completion of [27]:

min{f (L,R) : L ∈ Rm×r , R ∈ Rr×n
}, (6)

where

f (L,R) := fE (L,R)+ fL(L,R)+ fU (L,R) (7)

+
µ

2
‖L‖2F +

µ

2
‖R‖2F

fE (L,R) :=
1
2

∑
(ij)∈E

(Li:R:j − XE
ij )

2, (8)

fL(L,R) :=
1
2

∑
(ij)∈L

(XL
ij − Li:R:j)

2
+, (9)

fU (L,R) :=
1
2

∑
(ij)∈U

(Li:R:j − XU
ij )

2
+, (10)

where for (i, j) ∈ U we have an element-wise upper
bound XU

ij , for (i, j) ∈ L we have an element-wise lower
bound XL

ij , for (i, j) ∈ E we know the exact value XL
ij ,

and ξ+ = max{0, ξ}.
A popular heuristic for matrix completion considers a

product of two matrices, X = LR, where L ∈ Rm×r and R ∈
Rr×n, obtaining X = LR of rank at most r , cf. [39]. In partic-
ular, we use a variant of the alternating parallel coordinate
descent method for matrix completion introduced by [27]
under the name of ‘‘MACO’’, summarized in Algorithm 1.
It is based on the observation that while f is not convex jointly
in (L,R), it is convex in L for fixed R and in L for fixed R.
In Steps 3–8 of the algorithm, we fix R, choose random r̂ and
a random set Ŝrow of rows of L, and update, in parallel, for
i ∈ Ŝrow: Lir̂ ← Lir̂ + δir̂ . Following [27], we use

δir̂ := −〈∇L f (L,R),Eir̂ 〉/Wir̂ , (11)

where the computation of 〈∇L f (L,R),Er̂ j〉 can be simplified
as suggested in Figure 2. In Steps 9–14, we fix L, choose
random r̂ and a random set Ŝcolumn of columns of R, and
update, in parallel for j ∈ Ŝcolumn: Rr̂ j← Rr̂ j + δr̂ j.

δr̂ j := −〈∇Rf (L,R),Er̂ j〉/Vr̂ j, (12)

where the computation of 〈∇Rf (L,R),Er̂ j〉 can, again, be sim-
plified as suggested in Figure 2.
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FIGURE 2. Multiplication by the gradients in (11) and (12) of Algorithm 1 can be simplified considerably.

We should also like to comment on the choice of 1 and ε.
A sensible approach seems to be based on cross-validation:
out of the historical data (or out of L), one can pick one row,
and compute the 1 needed. The maximum of 1 for any row
seems to be a good choice. We refer to [27] for a discussion
of the choice of the parameter µ > 0.

B. SUBSAMPLED POINT-TO-SUBSPACE PROXIMITY
TESTER
As suggested previously, instead of computing the distance
of an incoming time-series to each one of those already
available per-day time-series, classified as event or non-event,
we consider a point-to-subspace query in the infinity norm:

min
ĉ∈Rr

max
i
|xi − (ĉR)i|, (13)

and test whether the distance (13) is less than or equal to 1.
As we described in Section II for uniform noise, the supre-
mum norm (`∞) gives the maximum likelihood estimate. The
infinity norm is sometimes seen as difficult to work with, due
of the lack of differentiability. However, note that it (13) can
be recast as a test of the feasibility of a linear programming
problem:

min
ĉ∈Rr

1 s.t. xi − (ĉR)i ≤ 1, (14)

(ĉR)i − xi ≤ 1. (15)

Alternatively, this is an intersection of hyperplanes, also
known as a hyper-plane arrangement. As we will show in
the following section, this geometric intuition is useful in the
analysis of the algorithms.

In Algorithm 2 we present a test, which considers only
a subset S, |S| � n of coordinates, picked uniformly at
random. As we show in the following section, this test has
only a modest one-sided error.

IV. AN ANALYSIS
Before we present the main result, let us remark on the
convergence properties of Algorithm 1, which has been pro-
posed and analyzed by [27] and [32]. A simple conver-
gence result of [27] states that the method is monotonic and,
with probability 1, limk→∞ inf ‖∇L f (L(k),R(k))‖ = 0, and
limk→∞ inf ‖∇Rf (L(k),R(k))‖ = 0. This applies in our case
as well. See [32] for details of the rate of convergence.

Our main analytical result concerns the statistical perfor-
mance of the point-to-subspace query. Informally, the ran-
domized point-to-subspace distance query in Algorithm 2
has one-sided error: If the distance between the vector x and
span(R) is no more than1 in `∞, we never report otherwise.
If, however, the distance actually is more than 1 in `∞,

Algorithm 2 Subsampled Point-to-Subspace Proximity
Tester With the Supremum Norm

Input: R ∈ Rr×n, x ∈ Rn, s,1 ∈ R
Output: true/false

1: choose S ⊂ {1, . . . , n}, |S| = s, uniformly at random
2: initialise a linear program P in variable v ∈ Rs

3: for i ∈ S do
4: add constraint xi − (projS (L)v)i ≤ 1
5: add constraint xi − (projS (L)v)i ≥ −1
6: end for
7: if ∃v ∈ Rs such that the constraints are satisfied then
8: return true
9: else
10: return false
11: end if

considering only a subset S of coordinates may ignore a
coordinate where the distance is larger, and hence mis-report
that the vector is within distance 1 in `∞, with a certain
probability, depending on the number of constraints that are
actually violated. For example, to achieve the one-sided error
of ε with probability of 1/3 or less, this test needs to solve a
linear program in dimension O( r log r

ε
log r log r

ε
). Notice that

this bound is independent of the ‘‘ambient’’ dimension n.
Formally:
Theorem 1: (i) When the distance (13) is D ≤ 1, Algo-

rithm 2 never reports the point is outside the sub-space. (ii)
When the distance (13) is D > 1, because there are εn
coordinates i such that for all ĉ, there is |xi−(ĉR)i| ≥ 1, then
for any δ ∈ (0, 1), when Algorithm 2 considers s coordinates

O
(
1
ε
log

1
δ
+
r log r
ε

log
r log r
ε

)
sampled independently uniformly at random, the point is
inside the subspace with probability 1− δ.

To prove this theorem, we need several definitions from
discrete geometry. We follow the notation of [40] and [41]
and use calligraphic fonts to distinguish from symbols in the
remainder of the text (e.g. S from S).
Definition 2 (Range Space of [40]): A range space S is a

pair (X ,R), where X is a set andR is a family of subsets of
X , R ⊆ 2X . Members of X are called elements or points of
S and members of R are called ranges of S. S is finite if X is
finite.

Notice that the range space is a (possibly infinite) hyper-
graph.
Definition 3 (Shattering of [40]): Let S = (X ,R) be a

range space and let A ⊂ X be a finite set. Then 5R(A)
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denotes the set of all subsets of A that can be obtained by
intersecting A with a range of S. If 5R(A) = 2A, we say
that A is shattered byR.
Definition 4 (Dimension of [40]): The Vapnik-

Chervonenkis dimension of S is the smallest integer d such
that no A ⊂ X of cardinality d + 1 is shattered by R. If no
such d exists, we say the dimension of S is infinite.
Definition 5 (ε-net of [42]): An ε-net of a finite subset of

points P ⊆ X is a subsetN ⊆ P such that any range∇ ∈ R
with |∇ ∩ P| ≥ ε|P| has a non-empty intersection with N .

With these definitions, recall the celebrated result:
Theorem 6 ([41]–[44]): Let (X ,R) be a range space of

Vapnik-Chervonenkis dimension d. Let ε, δ ∈ (0, 1). If S is a
set of

O
(
1
ε
log

1
δ
+
d
ε
log

d
ε

)
points sampled independently from a finite subset of X , then
S is an ε-net for the finite subset with probability at least 1−δ.
Now, let us present the proof of Theorem 1.
Proof: To see (i), consider the linear program con-

structed in Algorithm 2 and notice that its constraints are a
subset of those in (14). If (14) is feasible, then any subset
of constraints will be feasible. To see (ii), we show that
a set related to the polyhedron of feasible x has a small
Vapnik-Chervonenkis (VC) dimension, which makes it pos-
sible to apply classical results from discrete geometry pre-
sented above. In particular, we proceed in four steps:

1) denote byS1 the range space for all possible constraints
added in Line 4 and by S2 the range space for all
possible constraints added in Line 5.

2) The VC dimension of each of S1,S2 is at most r + 1.
3) The VC dimension of S1 ∪ S2 is O(r log r).
4) Subsequently, we apply Theorem 6 of [41]–[44].

A. STEP 1
The range spaces S1 and S2 will share the same set of points,
namely [n] := 1, 2, . . . , n, and feature very similar ranges:
S1 will feature the hyperplanes xi− (ĉR)i ≤ 1 corresponding
to the first set of constraints in the LP (14), while S2 will
feature the hyperplanes (ĉR)i − xi ≤ 1. We keep them
separate, so as to allow for the hyperplanes to be in a generic
position.

Alternatively, one could construct a single range space,
with the same set of points and ranges given by the subspaces
given by the intersections of xi−(ĉR)i ≤ 1 and (ĉR)i−xi ≤ 1
for i ∈ [n]. This would, however, complicate the analysis,
somewhat.

B. STEP 2
TheVC dimension of each ofS1,S2 is at most r+1. For range
spaces, where the ranges are hyper-planes, this is a standard
result. We refer to Section 15.5.1 of [45] for a very elegant
proof using Radon’s theorem. Notice that r would suffice,
if there were no vertical hyperplanes.

C. STEP 3
The VC dimension of S1 ∪ S2 is O(r log r). This follows by
the counting of the possible ranges and Sauer-Shelah lemma,
a standard result. We refer to Lemma 15.6 in [45].

D. STEP 4
The intuition is that if there is a large-enough subset, a large-
enough random sample will intersect with it. The surprising
part of Theorem 6 on the existence of ε-nets is that the bound
of the large-enough does not depend on the number of points
of the ground set, but only on the VC dimension established
above. In particular, we sample coordinates S, |S| = s in
Line 1. This corresponds to sampling from X in S1 ∪ S2.
Because we assume there are εn coordinates i such that such
that for all ĉ, there is |xi − (ĉR)i| ≥ 1, an ε-net will intersect
these by Theorem 6. �
Next, let us consider the run-time of Algorithm 2, which

is dominated by the feasibility test of a linear program P in
Line 7. Using standard interior-point methods [46], if there
is a feasible solution to the linear program P, an ε-accurate
approximation to the can be obtained in O(

√
s ln(1/ε)) iter-

ations, wherein each iteration amounts to solving a linear
system. This yields an upper bound on the run-time of

O

(
r3.5 log3.5 r

ε3.5
log3.5

r
ε

)
,

which could be improved considerably by exploiting the
sparsity in the linear program’s constraint matrix. The same
iterations make it possible to detect infeasibility using the
arguments of [47], although the homogeneous self-dual
approach of [48] with a worse iteration complexity may be
preferable in practice. Either way, a solver generator [49],
[50] allows for excellent performance.

Alternatively, however, one may consider:
Theorem 7: There is an algorithm that can pre-process

a sample of s coordinates such that the point-in-subspace
membership query can be answered in time O(log s) in the
worst case. The expected run-time of the pre-processing is
O(sr+ε), ε ≥ 0, where the expectation is with respect to the
random behaviour of the algorithm, and remains valid for any
input.

Proof (Sketch): Notice that one can replace the test
of feasibility of a linear program P with a point-location
problem in a hyperplane arrangement. We refer to [51], [52]
for a very good introduction to hyperplane arrangements, but
to provide an elementary intuition: An alternative geometric
view of Algorithm 2 is that we have a subspace P ⊆ Rs, ini-
tialiseP = Rs in Line 2, and then intersect it with hyperplanes
on Lines 4–5. Equally well, one may consider a hyper-plane
arrangement P, initialise it to an empty set in Line 2, and then
add hyperplanes on Lines 4–5. Our goal is not to optimise
a linear function over P, but rather to decide whether there
exists a point within P, the intersection of the hyperplanes,
which corresponds to one cell of the arrangement. The actual
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result follows from the work of [43], [44] on hyperplane
arrangements. �
While the use of solver-generator [49], [50] may be pre-

ferrable in many IoT applications, there may be large-scale
use cases, where the asymptote of the run-time of the algo-
rithm of [44] does matter and the sampling of the coordinates
may be reused.

V. EXPERIMENTAL EVALUATION
To evaluate our approach, we have implemented our matrix-
factorization component in Apache Spark [53], in order to
ensure its scalability, and the subspace proximity tester in
Python, using Numpy [54] for numerical linear algebra and
multiprocess for parallel processing. Our open-source
code is available at https://github.com/stathisq/modulor.

A. THE DATA
To validate the ability of our proposed method to detect
events, we evaluated it on both synthetic and real-world
datasets. Considering the limitations of the benchmarks in
the literature [55], we used data from traffic monitoring
collected by the Sydney Coordinated Adaptive Traffic Sys-
tem (SCATS) system of Dublin City Council (DCC) from
intersections in Dublin, Ireland, between January 1 and
November 30, 2017. Therein, each time series is obtained
by one induction loop at an approach to an intersection with
sensors at stop-lines and irregular intervals from stop-lines.
Overall, our data contains readings from 3432 such sensors,
distributed across the city. To use a realistic data set, reflecting
the asynchronous operations of the system, we record the
samples as they arrive asynchronously and do not impute
any missing values. In particular, each intersection operates
asynchronously, with all predefined phases changing, in turn,
within a cycle time varying between 50 and 120 seconds
both across the intersections and over time. Whenever an
intersection’s cycle time finishes, we record the flow over
the cycle time. Within any given period, e.g., 2 minutes,
we receive vehicle count data from only a fraction of the
sensors. For each day, we consider data between 7 a.m. and
10 p.m., which are of particular interest to traffic operators.

Altogether, the data from 3, 432 sensors recorded with
sampling period of 2 minutes, or shorter, are flattened to
a partial matrix X ∈ R304×299,430, where there were
38, 767, 895 zeros out of the 91, 026, 720 elements, repre-
senting 42% sparsity. This is due to a large part to the asyn-
chronicity of the sensor readings, and to a lesser part due to
actual sensor failures. To evaluate our approach, we have cre-
ated several matrices from X : matrix Y with a small amount
of noise, which represents normal behaviour, and matrix
G with additional noise, which represents events. We have
repeated this process in a repeated six-fold cross validation
(out-of-sample testing) and we report the mean and standard
deviation of the performance measures across the six runs.

In each run, using rows of matrix X , we have created matri-
ces Y and Y ′ in the following way. First, we have constructed
the matrix Y ∈ R1,200×299,430 representing normal behaviour

in several steps. In the first step, each row of Y has been
initialised with one row sampled uniformly at random (with
repetition) from the 304 rows of matrix X . In the second
step, we have multiplied each row with a random scalar
sampled (independently) from the uniform distribution over
(0, 2). In the third step, we have applied a perturbation by
an independently identically uniformly distributed noise on
[−0.81, 0.81]. Thus constructed matrix Y represents 1,200
time series of normal behaviour. Next, we have introduced
events Y , obtaining Y ′ ∈ R1,200×299,430, or rather five
variants thereof. In particular, we have sampled 200 rows
of matrix Y uniformly at random to create G, which is a
200 × 299, 430 submatrix of Y . From G, we have created
five variants ofG′ ∈ R200×299,430 by the addition of Gaussian
noise with meanµ = 5, 10, 15, 20, 25 and standard deviation
equal to one half of the mean. This corresponds to the peak
signal-to-noise ratio (PSNR) of 23.58, 19.97, 16.94, 14.71,
and 12.84 dB, respectively, when averaged over the six runs,
where PSNR is the ratio between the maximum possible
power of a signal and the power of the corrupting noise
introduced, that is

PSNR(G,G′) = 20 log10(max
ij

({Gij})/α(G,G′))

for root mean square error

α(G,G′) = ‖G′ − G‖F =

√√√√√ 200∑
i=1

299,430∑
j=1

(G′ij − Gij)
2,

whereG is the 200×299, 430 submatrix of Y thatG′ is based
on. Subsequently, we have worked with a variant Y ′ of Y ,
wherein the submatrix G is replaced by G′. Our training data
were 1, 000 rows of this new matrix Y ′ chosen uniformly at
random and we left the remaining 200 rows as the ground
truth for testing. Using the left-out 200 rows, we have eval-
uated our model with respect to recall, precision, and the so-
called F1 score, which is a harmonic mean of the former two
measures.

B. THE RESULTS
Figure 3(a) presents the performance of our matrix-
factorization component, while Figure 3(b) presents a
trade-off between time required for training and reconstruc-
tion error in the choice of the rank r . Notice that the recon-
struction error is the usual extension of the root mean square
error (RMSE) to thematricial setting, i.e., the Frobenius norm
of the difference between the matrix Y and the product LR.
It is clear that increasing the rank above 10 leads to marginal
improvements in the reconstruction error, but increasing it
above 40 leads to a sharp increase in the training time.
We chose r = 10 for our experiments.
Figure 4(a) compares the readings of sensors from the non-

event matrix Y with events inG, while omitting zeros.We can
observe that G with µ = 5 is hard to distinguish from Y . Fig-
ure 4(b) presents the distribution of the values of the samples
used for training: the average values of normal samples we
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FIGURE 3. Performance of the matrix-factorization component on the instance of Section V-A. Figure 3(a) presents one sample
evolution of the reconstruction error over time for r = 10. Figure 3(b) displays the reconstruction error and training time (until
improvement in the error falls below 10−4), both as functions of rank r . Notice that the approach seems rather robust to the choice
of r . Figure 3 (c) compares the evolution of reconstruction error for three variants of the method, as described in the text. Notice that
online variants seem superior to the offline variant.

FIGURE 4. Properties of the instance of Section V-A: Figure 4(a) shows frequencies of the values reported from sensors, with and
without additional Gaussian noise. Figure 4(b) illustrates the mean and standard deviation of the historical flow data at all
available sensors (grey), plus the mean values for events (yellow for µ = 5, red for µ = 35) and non-events (green) at the same
sensors. Finally, in Figure 4(c), there is a heatmap of a validation matrix, which contains the normal reading (upper half) and
event readings with µ = 35 (lower half).

used as input plotted in green and the average values of the
samples of events (i.e., with the Gaussian noise for all mean
values we used) plotted in red and yellow. We can observe
that the supports of the distributions overlap, and especially
in the case of µ = 5, PSNR 23.58 dB, the event data seem
hard to distinguish from non-event data. In Figure 4(c) we
illustrate a heatmap of the validation matrix. The upper half
of the matrix contains the normal readings while the lower
half contains the event readings when µ = 35 is used for the
noise. To evaluate the performance of our subspace proximity
tester, we havemeasured recall, precision, and F1-score using
different values of 1 on the 4 matrices G.

Figure 5 presents the evolution of recall, precision, and
F1-score as a function of1 for 5 different values ofµ. As can
be observed, for small values of1, the precision is high, while
recall is low, because small values of 1 lead are more likely
to lead to infeasibility of the LP, and hence the negative result
of the test. As we increase 1, we observe that our approach
identifies more of the input as Normal. On G′ matrices with
µ ranging from 15 to 25, we can observe that values 1 ∈
[10, 15] lead to the perfect performance with F1-Score of
1.0, which should not be too surprising, considering that
this regime corresponds to PSNR below 20 dB. We can also
observe that for noise of a lesser magnitude (µ = 5), the
subspace proximity tester is able to identify samples from G′

with maximum F1-score of approximately 0.8 for1 = 8. By
increasing1 beyond this value, precision falls to 50%, which

is due to the fact that too many input samples are classified
as non-event. This behaviour is to be expected, because by
increasing the value of1, we are ‘‘relaxing’’ the constrains of
the linear program,which in turn leads to theNormal outcome
being more common.

Figures 6 and 7 illustrate a more challenging scenario:
we keep the mean of the Gaussian noise low at µ = 5,
but vary the standard deviation σ = 1, 2, . . . , 6. This
corresponds to peak signal-to-noise ratios (PSNR) within
22–24 dB, as detailed in the legend of the figures. Just as
above, there is a setting of 1 = 10, where the F1 score
approaches 1.0.

Last but not least, we note that in order to classify a new
sample in dimension R(1×299,430), our subspace proximity
tester requires approximately ∼ 0.009 seconds for subset of
cardinality s = log r log (r/e) to obtain e = 0.1. This run-
time has been recorded on a standard PC equipped with an
Intel i7-7820X CPU and 64 GB of RAM, where we have
executed all the experiments. Having said that, the execution
of the sub-space proximity tester is certainly possible in many
embedded systems currently available. We note that this does
not use the algorithm of [44], and hence can be improved by
many orders of magnitude, if needed.

C. BENEFITS OF ONLINE OPTIMIZATION
Next, to demonstrate the benefits of the pursuit in the time-
varying setting, we conducted the following experiment.
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FIGURE 5. Results of repeated six-fold cross validation as a function of the half-width 1 of the uncertainty set and the PSNR used to generate the
synthetic instance of Section V-A: Mean (solid line) and one standard deviation (half-width of the semi-transparent error band around the solid
line) of three performance measures (recall, precision and F1 score).

FIGURE 6. Results of repeated six-fold cross validation as a function of the half-width 1 of the uncertainty set and the PSNR used to generate
the synthetic instance of Section V-A: Mean (solid line) and one standard deviation (half-width of the semi-transparent error band around the
solid line) of three performance measures (recall, precision and F1 score). The variation of PSNR is solely due to varying the standard deviation
of the noise used to generate the synthetic instance, while keeping its mean low and constant at µ = 5.

We took 200 rows from our matrix X of the previous section,
which corresponded to normal readings from the sensors.
Then, for i = 0 . . . 200, we sampled a row from X , and
added noise, which had mean µ = 5 and zero variance.
The 200 rows thus added represented slowly increasing traffic
volumes, which we would like the algorithm to adapt to.

We compare three variants of the algorithm. One, which
we call ‘‘offline’’, obtains the estimate of R200 and then does
not update it further, R200 = R200+i, i = 0 . . . 200. Another
‘‘online’’ variant performs nr updates (11) and rm updates
(12) (which is known as 1 epoch) between receiving rows
i and i + 1, i = 0 . . . 199. (We pick τ so as to have the
cardinality of Ŝrow = Ŝcolumn equal to the number of hardware
threads.) Finally, another online variant performs two epochs
between receiving rows i and i + 1, i = 0 . . . 199. We refer
to [32] for a detailed discussion of such online algorithms.
Figure 3(c) presents the resulting evolution of the RMSE.
As can be expected, using two epochs per update (and hence
more CPU cycles) performs better than using one epoch per
update, which in turn performs considerably better than the
offline version, whose error increases over time.

VI. RELATED WORK
There is much related work in change-point, anomaly, out-
lier, and event detection, and the related problem of attack
detection [56]. Since the work of Lorden [18], [19], there has
been much work on change-point detection in univariate time
series. See [18], [19], [25] for a book-length history and [26]

for an overview of the latest developments. Within anomaly
detection, most statistical approaches have been tested,
including hypothesis testing [9], dimension reduction [20],
variants of filtering [13], and Gaussian processes [9].
In Computer Science, Complex Event Processing [57]–[59]
and deep-learning methods [21]–[24] are popular. Within
change-point detection [15], [60], such as cumulative statis-
tics thresholding (CUSUM) or adaptive online thresholding
(AOT), there are relatively few papers on the multi-variate
problem [61]–[64, e.g.], and fewer still, which allow for miss-
ing data [65], [66]. Some of the recent ones [30], [33]–[35],
[67], [68] also consider low-rank factorizations, albeit with-
out subsampling. From the methodological works, we differ
in our assumptions (uniform, rather than Gaussian noise),
focus on efficient algorithms (subsampled subspace proxim-
ity testers) for the test, and our PAC guarantees.

Our approach builds upon a rich history of research in
low-rank matrix completion methodologically. There, [69]
suggested to replace the rank with the nuclear norm in the
objective. The corresponding use of semidefinite program-
ming (SDP) has been very successful in theory [70], while
augmented-Lagrangian methods [71]–[74] and alternating
least-squares (ALS) algorithms [75], [76] have been widely
used in practice [75]–[79]. As it turns out [80], [81], they also
allow for perfect recovery in some settings. The inequality-
constrained variant of matrix completion, which we employ,
has been introduced by [27] and extended towards on-line
applications in Computer Vision by [32].
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FIGURE 7. A further illustration of the results of repeated six-fold cross
validation: mean of three performance measures (recall, precision and F1
score) plotted as a function of the half-width 1 of the uncertainty set.
Here, we have used a low constant mean µ = 5 and high standard
deviation σ = 6.0, which correspond to PSNR = 22.26 dB.

IoT applications of anomaly detection are numerous and
varied [15], [60], [82], mirroring much of the development
in change-point, anomaly, outlier, and event detection at
large. As suggested in the introduction, notable examples
include transportation applications [2]–[4], [6], [33], [34],
[67], power systems [1], [8]–[10], manufacturing [12], [13]
and environmental applications [14]. These are, clearly, only
some sample references in a much larger field.

In particular, the related work to our motivating applica-
tion of IoT in Urban Traffic Management goes back at least
to [83]. More recently, [2] proposes a method for detecting
traffic events that have an impact on the road traffic condi-
tions by extending the Bayesian Robust Principal Component
Analysis. They create a sparse structure composed ofmultiple
traffic data streams (e.g., traffic flow and road occupancy)
and use it to localize traffic events in space and time. The
data streams are subsequently processed so that with little
computational cost they are able to detect events in an on-line
and real-time fashion. [3] analyze road traffic accidents based
on their severity using a space-time multivariate Bayesian
model. They include both multivariate spatially structured
and unstructured effects, as well a temporal component to
capture the dependencies between the severity and time
effects within a Bayesian hierarchical formulation.

Beyond the Internet of Things, Computer Vision studies
a large number of related problems within ‘‘background
modelling’’, where the aim is to distinguish moving objects
from stationary or dynamic backgrounds in a video feed.
These are closely related to event detection, although typi-
cally focus on a single video feed, uniformly sampled, with
no missing data. We refer to the recent handbook [84] and
to the August 2018 special issue of the Proceedings of the
IEEE [85] for up-to-date surveys. Compared to the work
in Computer Vision, we develop both subsampled subspace
proximity testers (point-to-subspace distance queries), and
focus on the needs of applications in IoT, where there is more
variety of less reliable data sources.

VII. CONCLUSION
Within a framework for representing what is an event and
what is a non-event considering heterogeneous data, which
are possibly not sampled uniformly, with missing values and
measurement errors, we have presented a novel random-
ized event detection technique, implemented via a point-to-
subspace distance query, with guarantees within probably
approximately correct (PAC) learning. This is the first time
such guarantees have been provided for any subsampling in
matrix completion. The proofs use elaborate techniques from
computational geometry (a bound on the VC dimension).
We have also presented an experimental evaluation on data
from a traffic-control system in Dublin, Ireland, which shows
that it is possible to process data collected from thousands
of sensors over the course of one year within minutes, to
answer point-to-subspace distance queries in milliseconds
and thus detect even hard-to-detect events. We envision that
this approach may have wide-ranging applications, wherever
asynchronous high-dimensional data streams need to bemon-
itored.
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