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ABSTRACT In an airway network, some critical links exist that are vital for the structural integrity and
performance of the network. The detection of such links may assist with improving the imbalance between
the limited airspace capacity and the ever-increasing traffic demand, which elicit flight delays, significant
economic losses, etc. However, it is challenging to identify such links as they evolve (both in space and time)
with changing traffic flow dynamics. This paper proposes a complex network approach for spatial-temporal
critical links detection in a given airway network. First, flight track data is employed to characterize the
airway network as weighted spatial-temporal networks. Then edge centrality and network percolation
metrics are adopted to detect the critical links in each snapshot of the spatial-temporal networks. Afterward,
the critical links detected by the two metrics are spatially overlapped to determine the final critical links
over time. To examine the operational validity of the proposed method, we carry out a case study on the
Southeast Asia airway network derived from one-month flight track data. Results demonstrate that the spatial
distribution of the critical links varies over different traffic scenarios, and most of the identified critical links
are found in the transition sectors with complex traffic situations. Four links, which are parts and at crosses
of major trunk airways connecting to major navigation aids (VOR/DME) in the studied network, appear
highly in all examined traffic scenarios. The unavailability of such links may lead to traffic flow disruptions.
Observations by subject matter experts from air-traffic data visualizations demonstrate that the complex
network-based methods can dynamically identify airway links that are operationally critical under time-
evolving air-traffic scenarios.With good traffic flow prediction tools in the future, this method can be adopted
to predict critical links in airway networks to better assist controllers in real-time air traffic management.

INDEX TERMS Air transportation, airway network, spatial-temporal network, critical link detection,
network centrality, percolation theory.

I. INTRODUCTION
Although the air traffic demand during the outbreak of the
COVID-19 pandemic almost came to a standstill, the traffic
demand is now on its way to ramping up across nations as
many traveling restrictions are lifted [1]. To accommodate
the projected air traffic demand, air transport system needs to
continuously evolve both in terms of infrastructure and opera-
tionally [2]. Currently, the biggest challenge confronted by air
navigation service providers (ANSPs) is the capacity-demand
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dilemma, as known as the imbalance between airspace capac-
ity and traffic demand [3], [4], which is the major source for
en-route congestion that elicits not only traffic delays, but also
environmental impact [5], [6]. Note that the en-route phase
of aircraft is based on flight plans which typically follow air-
way networks with intermediate waypoints (nodes) forming
the links in the network. An airway network constitutes the
virtual highway in the sky on which the air traffic operates.
Therefore, it is very promising to manage congestion by
improving air traffic flow on airway networks [7], [8].

In the literature, some researchers aim to optimize the net-
work traffic flow to mitigate traffic congestion. For example,
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in [9], a network-based dynamic air traffic flow model for
en-route airspace traffic flow optimization was proposed to
maintain the balance between demand and capacity. In [10],
a collaborative flight route-planning method was demon-
strated to reduce en-route airspace congestion by amending
flight plans to avoid congested sectors. The optimization of
air traffic flow on airway networks adapts traffic flow to the
airway network structure which is restricted by the structure
of the airway network. Therefore, some researchers propose
to mitigate congestion by optimizing the designs of airway
networks [7]. In [11], a multi-objective optimization algo-
rithm was introduced to optimize the crossing waypoint loca-
tions of Air Traffic Service (ATS) routes, with the objective
being the maximization of the flight efficiency and airspace
capacity. In [12], an airway network optimization model was
developed tominimize the total operational cost with airspace
restriction and air route network capacity being considered as
the major constraints. In [13] the authors proposed to remove
some links in the potentially over-designed airway networks
based on the theory of Braess’s Paradox. They discovered
that the total flight duration on an airway network could be
reduced by making minor changes to the airway network
structure.

It should be pointed out that en-route congestion usually
emerges locally in an airway network. The local congestion
on some links can propagate to their vicinity [8], which
then essentially impedes traffic flows in the airspace and
exacerbates the traffic congestion. In the presence of limited
airspace capacity and the saturated airway network, it is of
great significance to identify such critical links in an air-
way network. Generally speaking, a critical link in a com-
plex network is a link whose failure will significantly affect
the network’s performance in terms of structural integrity,
functionality, etc [14]. When an airway network is of con-
cern, we regard a critical link as the airway link (connect-
ing two waypoints), which acts as a pivot link and whose
failure may decrease the network’s structural integrity con-
cerning the given traffic scenario. Therefore, identification
of such critical links in an airway network can assist air
trafficmanagers with better traffic flow planning and decision
making.

Critical links detection in complex networks is not new and
has long been explored [15]–[17]. One of the most popular
methods for critical links detection in complex networks is
based on network centrality metrics [18]. A centrality metric
provides a straightforward way of calculating how central a
network’s component is. The second widely adopted methods
are based on network vulnerability analysis in the presence of
link failures [19]. The underlying idea is that the critical links
of a network should be the links whose failures will decrease
its robustness in the face of perturbations [20], [21]. In recent
years, many researchers have applied network theories to
detect critical links in transportation networks by investi-
gating the networks’ performance such as the overall travel
cost [22], the total demand losses [23], decreased network
capacity [24], etc.

Although various methods have been proposed for
critical links detection in transportation networks, exist-
ing approaches mainly have three drawbacks. Firstly, the
model-driven methods [25] neglect the merits of real-
world traffic data, which may limit its implementation in
the real-world context [26]. Secondly, many methods only
consider a single metric such as network centrality [27],
[28], traffic capacity [24], or network robustness [29], [30],
to quantify the criticality of a network’ links [16]. Multi-
ple criteria should be taken into account for critical links
detection for real application purposes to avoid uncertainty
and unreliability [31]. Thirdly, as indicated in [32] that the
majority of existing methods only deal with static networks,
while real-world transportation networks are time evolving.
Meanwhile, most if not all of the existing studies are urban
traffic networks oriented [33], [34], rendering their direct
applications to air traffic networks infeasible, given its four-
dimensional nature.

In this paper, the research focus is to identify the critical
links in an airway network, which may assist with better
air traffic flow management while addressing the increasing
traffic demand. Existing studies for critical links detection
primarily deal with static networks which does not fit for
airway networks due to their time-evolving nature. To dynam-
ically detect critical links from airway networks over time
using real-world data could be more appealing. Moreover,
in literature, researchers mainly label the critical links in
networks using a single metric. However, adoption of an
assembled metrics could provide a more reliable way for crit-
ical links detection. In view of this, the proposed method in
this paper aims to detect the critical links spatially and tempo-
rally with respect to different traffic situations. Furthermore,
instead of using a single metric, two metrics in network the-
ory, i.e., network centrality [18], [35] and percolation theory
[36], [37], are adopted as ensemble to identify the critical
links in the spatial-temporal networks. More specifically,
We first construct weighted spatial-temporal airway networks
based on given flight track data. Then, edge betweenness cen-
trality and network percolation theory are introduced to detect
critical links in each snapshot of the temporal networks.
Finally, comparisons among the detection results using the
two metrics are made to determine the final critical links for
the snapshot of the given traffic scenario. A case study is
carried out on the Southeast Asia airway network which is
derived from one-month flight track data for the calendar year
2018 to demonstrate the efficacy of the proposed method.
The studied network covers the ATS routes in Singapore
Flight Information Region (FIR) and transiting links between
Singapore FIR and its neighbouring airspace. For the purpose
of simplicity, we term this network as Southeast Asia Airway
Network (SEAN) throughout the paper.

II. RELATED BACKGROUNDS
A. SPATIAL-TEMPORAL Networks
A complex network is usually depicted by a graph that
is composed of a set of node/vertices and links/edges.
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Mathematically, a graph G is denoted by G = {V ,E} with V
and E respectively being the sets of nodes and links. Usually,
we use n = |V | and m = |E| to respectively denote the
number of nodes and edges in G.
In reality, the nodes of complex networks like airway

networks carry geographical coordination information. Such
networks are generally called spatial networks. Note that
some complex networks are time-evolving, i.e., their struc-
tures change over time. Such networks are generally called
temporal networks. Mathematically, a temporal network
G can be denoted by a network sequence, i.e., G =

{Gt0 , . . . ,Gti , . . .} with Gti being the snapshot at time point
ti or for a certain time period. A complex network carrying
both spatial and temporal information is normally modelled
as a spatial-temporal network.

B. NETWORK CENTRALITY
For a given complex network, one may wish to know which
nodes or edges are more important than others concerning
the network structure. The network centrality metric provides
an outlet for that purpose. In the literature, many centrality
metrics are available [18], [35]. There are mainly two types
of centrality metrics, viz., node centrality and edge centrality,
while the latter is generally the extensions of the former ones.

In this study, we adopt edge centrality metrics as the pur-
pose of this study is to detect critical links from a given airway
network. Specifically, we adopt the betweenness centrality
metric (CB

E ), which has been tested to have a larger impact
on a network’s robustness [18]. For a given network G, the
betweenness centrality for an edge e ∈ E is calculated as

CB
E (e) =

2
n(n− 1)

∑
i6=j

pij(e)
Pij

(1)

in which pij(e) is the number of shortest paths between nodes
i and j running through edge e, and Pij is the total number of
shortest paths between nodes i and j.

C. PERCOLATION THEORY
Complex networks, in reality, suffer from various perturba-
tions. Consequently, the components of a network may break
down, and potential risk is likely to happen. To better design
the structure of a network to make it robust to perturbations,
it is pertinent to analyse the dynamics of a complex network
subject to perturbations. Percolation theory has proven as an
effective instrument for analysing the capability of a complex
network in the face of perturbations [36], [37].

Suppose that 1 − p fraction of network components are
disconnected to the rest of the focal network due to exter-
nal/internal perturbations. The disconnection of those failed
network components can fragment the focal network into
pieces amongst which there exists the largest connected com-
ponent (LCC) [38]. The LCC of a network is an essential
indicator for capturing the network’s capability in response
to perturbations. When p = 0, the LCC of the network
disappears, simulating the scenario that the focal network is

entirely down due to perturbations. For p = 1, it corresponds
to the situation that the network is not suffering from pertur-
bations and the LCC keeps its original state.When p increases
from 0 to 1, the size of the LCC changes with p. When p
reaches a particular value, the size of the LCC shows a notable
change, such as a sharp decline or becomes extremely small
or even zero. Such a value of p is generally termed as the
percolation threshold denoted by pc.

III. RESEARCH PROBLEM AND Contribution
A. PROBLEM DESCRIPTION
This paper aims to identify the critical links in a given airway
network. In this paper, we define the critical links in an airway
network from the network theory perspective. Specifically,
we define the critical links as the airway links that meet the
following two requirements:

1) the links act as the traffic pivots through which shortest
paths frequently pass;

2) the links that act as the bridges whose failures will
significantly decrease the network’s structural integrity in the
face of perturbations.

Note that for different traffic situations, the critical links
may vary. Therefore, directly detecting critical links in a static
and unweighted airway network is not of practical usage.
Thus, in this paper, we propose to detect the critical links
spatially and temporally for different traffic situations. More-
over, instead of using a single metric, two metrics in network
theory, i.e., network centrality and percolation theory, are
adopted and combined to identify the critical links in the
spatial-temporal networks. Centrality is a widely appliedmet-
ric for quantifying the importance of a network’s components
(nodes and links). Large centrality values can distinguish the
pivots links through which shortest flight paths frequently
pass, while the percolation theory is an effective method for
measuring the structural integrity of a given network concern-
ing network component failures.

Fig. 1 presents a graphical illustration of the studied
research problem. In the network modelling step, for a
given airway network, we process the flight track data to
construct weighted spatial-temporal airway networks G =
{Gt0 , . . . ,Gti , . . .}withGti being the weighted network snap-
shot built for a certain time period ti. Then, we adopt central-
ity metric and network percolation theory to identify critical
links from each network snapshot Gti . Finally, in the final
critical links determination step, the critical links obtained
by percolation theory and edge centrality are compared and
integrated to determine the final critical links. The detailed
methodology will be presented in the Research Methodology
section.

B. RESEARCH CONTRIBUTION
This work suggests a complex network perspective towards
spatial-temporal critical links detection in airway networks.
The research highlights are summarized as follows.
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FIGURE 1. A graphical illustration to the proposed research problem of detecting critical links in a given airway network by
making use of complex network theories.

1) We adopted two network approaches, i.e., percolation
theory and network centrality, for dynamic critical
links detection in spatial-temporal airway networks
constructed from real flight data. Compared to many
existing methods that only consider a single metric,
such as network centrality metric, the proposed method
combines two metrics that identify the critical links
from both airway network structure and air traffic
structure perspectives using real traffic data. Moreover,
existing studies for critical links detection primarily
deal with static networks that do not fit airway networks
due to their time-evolving nature under different traffic
situations.

2) We verified the efficacy of the proposed critical link
identification method from three perspectives: 1) air
traffic volume perspective, i.e., the ratio of flights in
SEAN transiting through the identified critical links;
2) airspace design perspective, i.e., positions of the
identified critical links on trunk jet routes and their
connections to key navigational aids; 3) operational
perspective, i.e., a spatial view based on both airspace
as well as traffic flow structures, and a temporal view
based on varying traffic scenarios.

3) We further visualized the real-time movements of
flights and the dynamic changes of critical links
over time. Observations made by Subject Matter
Experts (SMEs) from the traffic visualization demon-
strated that the network-theory-based method could
dynamically identify critical links which are opera-
tionally critical in fact.

IV. RESEARCH METHODOLOGY
A. METHODOLOGY OVERVIEW
The proposedmethod for critical link detection contains three
key steps: spatial-temporal network modelling, critical links
detection based on network theories, and final critical links
determination, as shown in Fig. 1.
In the first step, i.e., spatial-temporal network modelling,

given the air traffic data during different periods, the weighted

spatial-temporal airway networks are constructed based on
the flight fixes and flight paths information to describe the
changing traffic situations on the airway network during
different time snapshots. The second step, critical links detec-
tion, works on the constructed spatial-temporal airway net-
works. This step will leverage two network metrics, i.e., edge
centrality metric and percolation theory, to detect critical
links from each network snapshot of the spatial-temporal
networks. For each network snapshot, the critical links detec-
tion step is likely to yield different critical links from the
two metrics. The third step, the critical links determination
step, compares and analyzes all the detected critical links
and merges them to filter out the final critical links for the
studied airway network. In the following three subsections,
i.e., Section IV-B, IV-C and IV-D, the detailed descriptions
of each of the three steps are illustrated respectively.

B. NETWORK MODELLING
The purpose of network modelling is to construct the
weighted spatial-temporal airway networks for the critical
links detection step. Networkmodelling consists of two steps,
namely, extract the airway network configuration and deter-
mine the weight on each link from the flight track data. In this
study, we use the normalized average ground speed instead of
the number of aircraft on each link as its weight. The main
reason is that buffer time for airborne congestion as well
as the risk of delay propagation through the entire airway
network can be reduced if flights can faster transit through
their routes [39]. Moreover, when an airway link is faced with
congestion or other disruptions, major reactive measures in
operational air traffic flow management (ATFM) are flights
vectoring and speed adjustment [40]. These measures will
consequently influence the speed of flights transiting through
the affected links. The travel speed on a link is normalized
using the daily maximum speed. Therefore, the lower weight
of a link indicates that the current traveling speed on the link
is more degenerated than the best daily traffic situation.

The flight track data required for network modelling
includes the flight paths of each flight, i.e., the flight fixes of
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the flight trajectory and the time when the flight is reported to
be at these fixes. From the flight path information, we will be
able to construct the airway network configuration by setting
the flight fixes as the nodes and determining the connections
between nodes, i.e., links, from the path of each flight. If there
are flights whose paths pass the link between two nodes, the
two nodes will be considered as connected. Consequently,
there will be a link connecting the two nodes on the resulted
airway network. In this manner, the airway network will be
constructed entirely from the flight track data.

With the time information of flights reaching the fixes, the
average speed sa,j of a flight fa on the link ej of its path can
be computed by averaging the length Lj of ej over the flight
duration T aj on ej:

sa,j =
Lj
T aj

(2)

Note that we are identifying critical links for the k th time
period Tk (from t0k to t1k ), therefore the required weight wj
on link ej is the normalized average flight speed of all flights
passing ej during Tk , instead of simply normalizing the aver-
age flight speed of all flights passing ej. This means that for
flight fa, only the part lka,j on ej, that has been flown during
Tk , will be considered, so we cannot simply take the mean
of the average flight speed sa,j of all flights on link ej. From
the available traffic data, it is not able to obtain the exact time
line of flight fa when it is on ej during Tk . Therefore, to reduce
the bias, we assume that the flight fa is flying on ej with the
constant speed sa,j. Then, given the entry time ta,jen and exit
time ta,jex of fa, the flight duration T ka,j of fa on ej during Tk can
be determined:

T ka,j = min{ta,jex , t
1
k } − max{t

a,j
en , t

0
k } (3)

Then, lka,j can be estimated as Lj weighted by the proportion
of T ka,j to Tk :

lka,j =
Lj × T ka,j

Tk
(4)

The average speed skj on link ej during Tk can be calculated
by averaging the sum of flight distances of all the flights on
ej over the according sum of flight duration:

skj =

∑F
a=1 l

k
a,j∑F

a=1 T
k
a,j

(5)

where F is the total number of flights passing link ej dur-
ing Tk .
Finally, the weight wj on link ej during the given time

period Tk is determined by normalizing the average speed skj
with the daily maximum speed sjmax on link ej:

wj =
skj

sjmax
(6)

In this way, the weight on link ej is determined, which will
be a number between 0 and 1.

C. CRITICAL LINKS DETECTION
To measure how critical an edge of a network is, we adopt
two methods from the viewpoint of network theory. The first
method is to make use of the edge centrality metric. The
second method is based upon network percolation theory.

1) CENTRALITY Method
Centrality is a class of straightforwardmetrics for quantifying
the importance of a network’s components. For a given air-
way network, we use Eq. 1 to calculate the centrality for each
link. Note that there exist a couple of edge centrality metrics
in the literature. In this work, only the betweenness centrality
metric is adopted. The main reason is that the betweenness
centrality is involved with the shortest paths in a network
which is more appealing to airway networks.

After getting the centralities of the edges, we then rank
the edges based on their centralities. Edges with the highest
centralities are regarded as critical links. Specifically, the top
K are taken as the critical links. In the experiments, we set
K = 10. Note that K cannot be too large as it would not be
possible for an airway network to have toomany critical links.
Also, K cannot be too small as the detection results need to
compare in the subsequent analysis with what is detected by
using the percolation theory.

2) PERCOLATION BASED METHOD
Percolation theory has been widely applied to investigate the
structural properties of diverse complex networks, includ-
ing transportation networks. For example, the authors [14]
introduced percolation theory to detect critical links in urban
traffic networks. Percolation theory uses statistical physics
principles and graph theory to analyse changes in the struc-
ture of a complex network subject to perturbations. The
percolation threshold pc signifies the transition point of a
given network, thus, shedding light on probing its critical
sub-structures.

3) CRITICAL THRESHOLD IDENTIFICATION
Inspired by network percolation theory, we carry out an
experimental study on a given airway network. Note that the
lower weight of a link means that the current traveling speed
on the link is more degenerated than the best daily flight
speed on this link. Therefore, these lower-weight links can be
regarded as failed links which can potentially slow down the
flights and induce congestion. By incrementally closing these
lowweight links, we will observe the links whose closure will
lead to a transition of the airway network from the phase of
connected to the phase of disconnected.

Note that an airway link Ej is characterized by the
weight wj. Therefore, for a given threshold of q ∈ [0, 1],
the link Ej can be classified into two categories: functional
when wj ≥ q and dysfunctional when wj < q. This can be
represented as:

Ej =

{
1, wj ≥ q
0, wj < q

(7)
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FIGURE 2. Percolation process on the SEAN. (a) The relative sizes of LCC1 and LCC2 are shown as a function of q. The sudden
decrease of the size of LCC1 and the increase of the size of LCC2 indicates that, at the percolation threshold qc , LCC1 is broken into
several isolated clusters because of the closure of some links. Therefore, the network transits from a largely connected phase to a
disconnected phase at qc . The LCC1 of the SEAN (b) at and (c) after the critical threshold qc with respect to the percolation process.
(d) The critical links with respect to the critical threshold qc . Each node number represents a unique node in the network.

As the value of q increases, more low-weight links are
closed, whichmakes the network sparser. Note that theweight
on a link refers to the normalized average flight speed on
that link. It indicates that as q increases, links with low
flight speeds are closed, and links with higher flight speeds
remain active. In this way, a functional airway network can
be constructed for a given q value according to the traffic
dynamics of the original airway network.

As q increases, the original network will be disintegrated
into several isolated clusters because of the closure of some
low speed links. Therefore, the size of the largest cluster
decreases, and the second-largest cluster reaches a maximum
at the percolation threshold qc which is the transition to the
disconnected phase from the connected phase of an airway
network, as shown in Fig. 2a. The y-axis of Fig. 2a refers
to the fraction of the size of the largest connected component
(LCC1) or the second-largest connected component (LCC2),
which is a value between 0 and 1.

As an indicator of the robustness characteristics of net-
work connectivity [41], the percolation threshold qc in this
percolation process quantifies the organization efficiency of

real air traffic. Flights can travel to most nodes in the air-
way network (the largest connected component of airway
network) with normalized speed below qc, while flights will
be trapped in small isolated clusters when they fly with
normalized speed above qc. Hence, qc measures effectively
the maximum normalized speed with which flights can travel
over a large part of the airway network, which reflects the
global efficiency of air traffic from a network perspective.

4) CRITICAL LINKS IDENTIFICATION
At the critical threshold qc, LCC1 of an airway network
exists, and LCC2 is relatively small in size. As reflected in
Fig. 2a, when more links are further removed from LCC1,
then LCC1 will break down into small pieces. As a conse-
quence, the size of LCC2 grows. Fig. 2b further takes SEAN
as an example to better show this point.

Fig. 2b displays the structure of LCC1 of a weighted SEAN
at the critical threshold qc with respect to the percolation the-
ory. In Fig. 2, LCC1 fragments into pieces after qc due to the
removal of the critical links. Fig. 2d shows the critical links.
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The critical links are identified as follows:

Ec = {e ∈ E | we < qc + δ} (8)

in which δ is the interval for the variation of variable
q, q ∈ [0, 1].

D. CRITICAL LINKS DETERMINATION
For each snapshot Gti of the constructed spatial-temporal
networks, there are two sets of detected critical links, one
yielded by centrality metric and the other one by percolation
theory. Note that edge betweenness centrality helps to iden-
tify links that act as the traffic pivots with which shortest paths
frequently pass through, while percolation theory identifies
links that act as the bridges whose failures will decrease the
network’s structural integrity significantly. Links identified
by both percolation theory and betweenness centrality can
meet the requirements of critical links defined in this paper,
i.e., pivot links contributing to shortest flight paths and bridge
links contributing to structural integrity. Therefore, we take
the overlapped links of the two link sets, which are identi-
fied respectively by betweenness centrality and percolation
theory, as the final critical links E tic of Gti .
The critical links E tic are identified for time period ti.

Note that the critical links will evolve over time following
different traffic situations. This critical link determination
process will dynamically provide critical links for different
periods. By observing the changes of critical links, temporal
distribution of the critical links can be obtained. We further
merge E tic across the time horizon to get the critical links for
the original airway networkG. By doing so, a holistic view of
the spatial distribution of the critical links for a given airway
network can be achieved.

V. EXPERIMENTAL STUDY
A. NETWORK MODELLING
The above section describes the proposed method for critical
links detection in an airway network with given flight track
data. To check the efficacy of the proposed method, in this
section, we carry out a case study on the SEAN. SEAN sits
on the juncture of six neighboring FIRs and covers south
China sea airspace, where most of the air traffic from China
converges towards South-East Asia. Despite its small size,
it has features of various airspace, e.g., radar, procedural,
and oceanic. Moreover, SEAN has complex traffic struc-
tures comprising the confluence of en-route air traffic from
neighboring airspace, climbing traffic from the terminals,
descending traffic to the terminals. The complexity in the
traffic structure and the high traffic demand are likely to
induce air traffic congestion during peak hours, making it
significant to detect critical links in such an airway network.
The network structure of SEAN is shown by blue lines in
Fig. 3a. The black dashes represent the sector boundaries of
Singapore FIR.

The SEAN shown in Fig. 3a consists of 118 nodes and
174 links. In the experiments, one-month (1st Dec. 2018 to
31st Dec. 2018) en-route flight track data provided by the

FIGURE 3. The network structure of (a) SEAN with spatial information.
The black dashes represent the sector boundaries of Singapore FIR, and
the green nodes represent the waypoints whose names are shown in red
letters and (b) the weighted SEAN with the weights being the normalized
average flight speed on the links.

Civil Aviation Authority of Singapore is used. December is
the peak season for air transportation due to the increas-
ing travel demand during the holiday. During this period,
the high traffic demand provides the advantage and possi-
bility to reveal the critical links in airway networks which
significantly affect the network’s performance in terms of
structural integrity, functionality, etc. The tested one-month
data records the information of 44215 flights, including flight
fixes and the time passing those fixes.

Based on the one-month flight track data, we further con-
struct the weighted spatial-temporal airway networks. Note
that the distributions of the critical links may change over
time. Therefore, the spatial-temporal airway networks are
constructed over time for different time slots. Fig. 3b displays
a snapshot of the weighted spatial-temporal airway networks
for SEAN during a 30-minute time slot.

B. CRITICAL LINK DETECTION
To study the evolution of critical links overtime under dif-
ferent traffic situations, spatial-temporal networks are con-
structed for different time slots characterizing the evolution
of traffic situations. Moreover, the length of the time slots
chosen may influence the critical links detection outcome.
Therefore, in the experiments, the weighted spatial-temporal
airway networks are constructed with different time scales.

In this study, we respectively set the time scales to be
15minutes, 30minutes, 45minutes, and 60minutes, resulting
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FIGURE 4. The number of critical links detected from 1st Dec. 2018 to 31st Dec. 2018 using the percolation theory applied to the
spatial-temporal SEAN with different time scales. The average number of critical links detected for each snapshot under 15 minutes,
30 minutes, 45 minutes and 60 minutes are 1.9543, 2.5673, 2.8697 and 3.1116 respectively.

in four sets of spatial-temporal networks. The reason for
adopting the four time scales between 15 to 60 minutes is that
‘‘15-minute’’ and ‘‘60-minute’’ (1 hour) are the commonly
used horizons for evaluation of controllers’ workload and
air traffic planning purpose [42]–[45]. For example, in the
MAP (Monitor Alert Parameter) model, the airspace capacity
is computed on a 15-minute basis [46]. For the one-month
en-route flight track data from 1st Dec. 2018 to 31st Dec.
2018, there will be 2976, 1488, 992, 744 weighted networks
constructed over time when the time scales are set as 15 min-
utes, 30 minutes, 45 minutes and 60 minutes, respectively.
Then the critical links Will be detected from each set of the
networks using both percolation theory and edge betweenness
centrality metric.

1) VARIATIONS OF THE NUMBER OF CRITICAL LINKS
Fig. 4 visualizes the temporal distribution of the number
of critical links detected by using network percolation the-
ory. In the percolation studies, we set the interval δ for the
variation of variable q, q ∈ [0, 1], to be δ = 0.001. The
curves in Fig. 4 show that the number of detected critical
links varies over time. However, the maximum number does
not exceed 18, while the average number of critical links
detected for each snapshot under 15 minutes, 30 minutes,
45 minutes and 60 minutes are 1.9543, 2.5673, 2.8697 and
3.1116, respectively.

It can be observed from Fig. 4 that as the length of the
time slot for constructing the temporal networks increases
from 15 minutes to 30 minutes, 45 minutes, and 60 minutes,
there is also a slight increase in the number of the critical
links identified. The possible reason could be that the fluctu-
ations in the traffic situation on some links and the influence
of a single link over the network percolation process are
neutralized with the increase of the time span for network
construction.

Moreover, we can observe from Fig. 4, especially from
Fig. 4(a), that the number of identified critical links seems
to change cyclically daily. The troughs in the curve usually
appear from 18:00 UTC to 23:00 UTC, especially around
21:00 UTC. From 23:00 UTC to the following 18:00 UTC,
some peaks in the identified critical links show up. The reason
for such a phenomenon is likely to be hub airport nature of
Singapore Changi airport. This oscillatory behaviour of the
number of identified critical links is due to hub-nature of
Singapore Changi Airport. An overview of the hourly level of
activity of Singapore Changi Airport reveals distinct patterns
related to its connectivity. Changi airport acting as a hub (the
airport as an intermediary location) has several noticeable
surges of activity during the day. Surges at hub airports are
often characterized by several inbound flights arriving within
a time-frame, and about 2 hours later, a surge of outbound
departures can be observed. For most hub airports, there is a
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FIGURE 5. Critical links detected using the betweenness centrality metric (left column) and percolation theory
(right column) when applied to the spatial-temporal networks that are formed under different time scales (i.e.,
15 minutes, 30 minutes, 45 minutes and 60 minutes). The link thickness is proportional to their frequencies being
identified as critical links over time.

peak of activity around 7 AM and another peak around 7 PM,
which mostly corresponds to short-haul flights and prefer-
ences for passengers to depart in the morning and return in
the evening.

As explained in Section IV-C1, for the centrality metric,
we choose the top 10 (K = 10) links with the highest
centrality values to be the critical links of each weighted
network. The main reason for choosing K = 10 in this

experiment is that the number of the critical links detected
using the percolation theory is usually less than 10 (as shown
in Fig. 4). Note that K cannot be too large as critical airway
network links are in theminority.Meanwhile,K cannot be too
small as the detection results need to be compared with what
is detected using the percolation theory. As a consequence,
K = 10 is a suitable value for this experiment. For different
airway networks, the suitable choices of K could vary. The
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parameter K needs to be tuned based on the merits of the
situation.

2) SPATIAL DISTRIBUTION OF THE DETECTED
CRITICAL LINKS
For different network snapshots, the detected critical links
could be unique. Therefore the spatial distributions of the
detected links are further compared. Specifically, for each
critical links detection metric, i.e., network percolation and
edge betweenness, the critical links detection results in each
weighted network are integrated by counting up the fre-
quencies of each link being detected as critical in all time
slots. Fig. 5 presents the overall spatial distribution of the
critical links in SEAN that are detected using the between-
ness centrality metric and percolation theory respectively.
In Fig. 5, the critical links detected by betweenness centrality
are marked in purple, while the ones detected by percolation
theory are marked in red. The thickness of each critical link in
the figure is proportional to the frequency of being identified
as critical.

Fig. 5 shows that the frequencies of the critical links
detected by using the centrality metric are relatively higher
than that of percolation theory. The reason is that there are ten
critical links for each network snapshot when the centrality
metric is of concern. While using percolation theory, the
average number of critical links detected for each snapshot
is 2 to 3. Whichever method is used, Fig. 5 demonstrates
that only a small portion of the detected critical links have
relatively high frequencies.

Fig. 5 presents the detected critical links that vary in num-
bers and detection frequencies for the time slot for construct-
ing the corresponding spatial-temporal weighted networks.
It can be observed that as the time scale of network snap-
shots increases, the frequency of the detected critical links
decreases (thickness of the red/purple links reduces). The
main reason is that when the time scale increases, fewer net-
work snapshots will be constructed based on the one-month
traffic data. A short time slot captures the air traffic within
a short time window, thus providing a microscopic view to
investigate the network dynamics. A long time slot gauges
the air traffic over a long period, providing a macroscopic
view of the network dynamics. There is no need to fix the
time slot when constructing the temporal networks. As a
result, a decision-maker can choose a proper time granularity
concerning a specific task and purpose.

The above experiments mainly demonstrate overall com-
parisons between the spatial distributions of the critical links
detected by the two network metrics as it is difficult to com-
pare the structural difference at each period. In what follows,
we present the critical link determination results.

C. CRITICAL LINK DETERMINATION
1) NUMBER OF DETERMINED CRITICAL LINKS
At each time period, we determine the critical links for the
corresponding network snapshot as the overlapped links of

the two critical link sets that are detected respectively using
the two network metrics. The distribution of the number of
final critical links identified for the network snapshots is
shown in Fig. 6.

FIGURE 6. The distribution of the number of final critical links
determined from 1st Dec. 2018 to 31st Dec. 2018 in the spatial-temporal
SEAN modelled with different time scales, i.e., 15 minutes, 30 minutes,
45 minutes and 60 minutes. The X-axis represents the number of critical
links identified, while the Y-axis shows the corresponding frequency.

By comparing Figs. 4 and 6 we can notice that the number
of critical links determined for each network snapshot reaches
a reasonable level (between 1 to 5) after overlapping the
critical links determined using network percolation metric
and edge betweenness centrality. We can also observe from
Fig. 6 that, multiple critical links exist under some time slots,
while most of the time, only one critical link is identified.

2) TEMPORAL DISTRIBUTION OF DETERMINED
CRITICAL LINKS
The proposed network approach can detect the critical links in
a given airway network both spatially and temporally. Fig. 7
demonstrates the temporal distribution of the determined
critical links in the SEAN. In Fig. 7, the X-axis represents
the link ID of the 174 links in the SEAN, while the Y-axis
represents the time. More specifically, the X-axis view of
Fig. 7 shows the exact links out of the 174 links that have
been detected as critical for a given time horizon, while the
Y-axis view of Fig. 7 presents the criticality evolution (critical
or non-critical) of a specific link over time. The black block
(ID, time) illustrates that the link with the corresponding ID
on the X-axis has been identified as a critical link at the
corresponding time on the Y-axis.

It can be observed from Fig. 7 that there exist four com-
mon links which are frequently being identified as critical.
These links are (identified by entry-exit waypoints) as fol-
lows: ‘‘MABAL – VISAT’’, ‘‘RAXIM – VMR’’, ‘‘KILOT –
OTLON’’, and ‘‘KILOT – LIPRO’’ (marked with red arrows
and their corresponding names).
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FIGURE 7. Critical links identified over time under different time scales (i.e., 15 minutes (a), 30 minutes (b), 45 minutes (c) and 60 minutes (d))
in modeling the spatial-temporal networks. The variable on X-axis, ranging from 1-174, represents the 174 links in SEAN, while the variable on
Y-axis represents the time from 1st Dec. 2018 to 31st Dec. 2018. When a link (whose coordinate is x on the X-axis) is identified as critical during
a time period (whose coordinate is y on the Y-axis), the corresponding area of the coordinate (x, y) will be marked as a black block.

3) SPATIAL DISTRIBUTION OF DETERMINED CRITICAL LINKS
Fig. 8 visualizes the spatial distributions of the final deter-
mined critical links in the SEAN. The red links are the
determined critical links, and the thickness of the links is
proportional to their frequencies.

We can see from Fig. 8 that the majority of the critical
links are located in the sector highlighted in purple. This
sector is the most loaded in the airspace covered by SEAN,
within which traffic complexity and density are distinctly
higher than other sectors [47]. Also, it can be observed that
as the time scale of network snapshots increases, the num-
ber of detected critical links together with their frequencies
decreases (thickness of the red links reduces). Two reasons
are attributable to this phenomenon. First, fewer network
snapshots will be constructed based on the one-month traf-
fic data when the time scale becomes larger. Therefore, the
frequencies decrease as there are fewer network observa-
tions. Second, each spatial-temporal network snapshot is con-
structed based on the traffic for a given time period. If the time
scale for constructing the weighted networks becomes larger,
then the weights on the airway links do not distinguish from
each other, resulting in homogeneous network observations.
Consequently, both the centrality metric and the percolation

theory will not work for a homogeneous network as each link
in the network acts importantly the same as others do.

D. VALIDATION ON THE IDENTIFIED CRITICAL LINKS
The above experiments have demonstrated the case study on
the critical links detection in the SEAN using the suggested
network theories. In this section, we validate the criticality of
the detected critical links from three perspectives.

1) AIR TRAFFIC VOLUME PERSPECTIVE
One can see fromFig. 6 that themaximumnumber of detected
critical links in the SEAN is 5. Note that there are a total
number of 44215 flights passing through the SEAN in Dec.
2018. The ratio of flights passing each of the five critical
links, appearing with the highest frequency under different
time scales, over the total number of flights is presented in
Table 1.
Note that the four links marked in bold in Table 1 are

the commonly identified critical links under different time
scales. It can be observed from Table 1 that the four links
have high relative usages by flight as the ratios of being
transited through by flights are large. If anyone of the four
links is blocked due to weather or airspace restriction, the
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FIGURE 8. Spatial distributions of the critical links in SEAN. The red links are the determined critical links, and the thickness of the links is
proportional to their frequencies.

TABLE 1. Ratio of flights (r ) on each of the 5 high frequency links being detected as critical links under different time scales.

corresponding portion of flights as recorded in Table 1 will
be directly affected. For example, if the link ‘‘MABAL –
VISAT’’ is blocked, 10.68% of the total flights will therefore
be affected, and air traffic control operations such as flight
re-routing, speed control, vectoring, etc., would be required.

2) AIRSPACE DESIGN PERSPECTIVE
Jet routes are equipped with ground-based navigation bea-
cons such as VOR/DME stations. A VOR/DME beacon emits
radio signals to provide surveillance information (range and
bearing) for flights to navigate through the sky [48], [49].
VOR/DME stations serve as important navigational aids con-
necting all significant traffic flow sources [50]. Fig. 9 presents

a snapshot of the aeronautical chart of SEAN in which the
four high-frequency critical links are annotated.

It can be seen from Fig. 9 that the three links ‘‘MABAL –
VISAT’’ (on airway M758), ‘‘KILOT – LIPRO’’ and
‘‘KILOT – OTLON’’ (on airway M761) lie on airways
(radio signals) radiated from PEKAN VOR/DME, which
pilots and controllers will primarily choose for easy use
of navigation. Moreover, links ‘‘KILOT – LIPRO’’ and
‘‘KILOT – OTLON’’ are on airway M761 between the out-
bound radio of two VOR/DMEs (PEKAN VOR/DME and
KUCHING VOR/DME). This airway serves the heavy traf-
fic between Kuala Lumpur (in west Malaysia) and Kuch-
ing (in East Malaysia) [51]. Link ‘‘MABAL – VISAT’’
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FIGURE 9. Geographical positions of critical links 1 - ‘‘MABAL – VISAT’’, 2 - ‘‘KILOT – OTLON’’, 3 - ‘‘KILOT – LIPRO’’ and 4 - ‘‘RAXIM – VMR’’. The picture is
excerpted from the website of SkyVector [52].

is on the airway from PEKAN VOR/DME to waypoint
‘‘LUSMO’’, the metering point for flights entering sec-
tor 5 in Singapore airspace fly to Indonesia, Philippines,
East Malaysia, and Japan.Waypoints ‘‘MABAL’’, ‘‘VISAT’’,
‘‘OTLON’’, ‘‘KILOT’’, and ‘‘LIPRO’’ are the crossing
points for airways radiated from MERSING VOR/DME and
PEKAN VOR/DME, which serves major air traffic flows
from airports in Singapore and Malaysia. Link ‘‘RAXIM –
VMR’’ caters to the heavy traffic flow between Singapore
and China. Waypoint ‘‘VMR’’ is at MERSING VOR/DME,
which is a crucial metering point for flights from/to Singapore
airports. Additionally, apart from the four links, the rest of
the seven links listed in Table 1 (‘‘LUSMO – OPULA’’,
‘‘LUSMO – TERIX’’, and ‘‘AKOMA – VMR’’), are all
located on airways radiated from VOR/DMEs.

3) OPERATIONAL PERSPECTIVE
This section presents the validation of the criticality of the
identified links from an operational perspective, considering
the feedback from operational experts. The detection results
are validated from an operational perspective, including
i) spatial view based on airspace and traffic flow structures,
and ii) temporal view based on real traffic scenarios.

a: SPATIAL VIEW BASED ON AIRSPACE AND AIR TRAFFIC
FLOW STRUCTURES
Table 2 summarizes the characteristic information of the four
critical links ‘‘MABAL – VISAT’’, ‘‘KILOT – OTLON’’,
‘‘KILOT – LIPRO’’ and ‘‘RAXIM – VMR’’. SMEs use this
information to analyse the spatial criticality of the identified
critical links. In the following paragraphs, the analysis of each
of the four links will be illustrated one by one.

b: SPATIAL CRITICALITY OF LINK ‘‘MABAL – VISAT’’
Airway link ‘‘MABAL – VISAT’’ is located on Air Traffic
Service (ATS) route M758, which is a bidirectional airway.
It accommodates high traffic volumes as the ratio of flights

in SEAN transiting through ‘‘MABAL – VISAT’’ is 10.68%.
Given the short length of the link, which is 41 nautical miles
(nm), ‘‘MABAL – VISAT’’ possesses a high traffic density
while the peak number of aircraft transiting through the link
is 6 ∼ 7 per 15 minutes derived from the traffic data.
Table 2 lists the Entry – Exit waypoints, in SEAN, of flights

transiting through ‘‘MABAL – VISAT’’. The right-heading
arrow indicates that the flights are transiting in the direction
presented in the table header, i.e., ‘‘MABAL – VISAT’’, and
vice versa. The corresponding flight paths, connecting these
Entry – Exit pairs of flights transiting in the direction of
‘‘VISAT – MABAL’’, are highlighted by green dashes in
Fig. 10, while paths in the direction of ‘‘MABAL – VISAT’’
are highlighted by green dashes in Fig. 11. It can be seen from
Fig. 10 that flights flying outbound of Singapore FIR and
taking the three major ATS routes, namely, L625, N884, and
M758, will transit through the link in ‘‘VISAT – MABAL’’
direction. The ATS route of M758 facilitates the smooth
flow of heavy air traffic between Peninsular Malaysia and
East Malaysia, Brunei [53]. Air traffic on ATS route M758
handles approximately 742 movements a week in 2016 [53].
The unidirectional ATS routes N884 and L625 cater to the
main traffic flow flying eastbound to the Philippines, far east
(Japan), USA, etc [51]. Fig. 11 shows that inbound flights,
from Peninsular Malaysia, Brunei, Philippines and far east
via ATS routes M767 (unidirectional), M758 (bidirectional),
merge to route M758 and transit through link ‘‘MABAL –
VISAT’’ to the west. From this point of view, the critical link
‘‘MABAL–VISAT’’ serves as a pivot to spread the eastbound
flights in SEAN to the north-east world and caters to west-
bound flights entering SEAN from the north-east world.

The criticality of link ‘‘MABAL – VISAT’’ not only
depends on its high traffic density and its presence on the
major ATS routeM758, but also depends on its position in the
airspace. Link ‘‘MABAL – VISAT’’ is located in the busiest
sector in the airspace covered by SEAN, with the highest
traffic load and complexity. The trunk route M758 intersects
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TABLE 2. Characteristic information of critical links ‘‘MABAL – VISAT’’, ‘‘KILOT – OTLON’’, ‘‘KILOT – LIPRO’’ and ‘‘RAXIM – VMR’’. The right-heading arrow
‘‘→’’ represents that the information is for flights transiting in the same direction as presented in the table header, e.g., from ‘‘MABAL’’ to ‘‘VISAT’’, and vice
versa. ‘‘Entry - Exit in SEAN’’ denotes the entry waypoint and exit waypoint in SEAN of flights transiting through the corresponding critical link, which are
visualized with the corresponding flight path in Figs. 10 and 11.

with the major ATS routes M771 and N892, which cater
for flights to and from the north (China, Vietnam, Thailand,
etc.) [47], [53], at the waypoints ‘‘VISAT’’ and ‘‘MABAL’’
respectively. Therefore, managing the confluence of the ATS
route M771 and N892 against the South China Sea air traffic
flow on ATS routes M758 is a demanding task and puts
pressure on link ‘‘MABAL – VISAT’’ due to the complexity
exacerbated by the high density of crossing air traffic [54].
2) Spatial criticality of link ‘‘LIPRO – KILOT’’ and

‘‘KILOT – OTLON’’: Airway links ‘‘LIPRO – KILOT’’ and
‘‘KILOT – OTLON’’ are on ATS route M761 (bidirectional
airway). The two links handle 5.68%of flights in SEAN. Both
of them have a short length, 32nm and 21nm respectively, and
handle 4∼ 5 flights per 15 minutes. The traffic density on the
two links reaches a relatively high level, considering the short
lengths of the two links, leading to a short space of time for
reaction.

‘‘LIPRO – KILOT’’ and ‘‘KILOT – OTLON’’ locate on
M761, which is a trunk route for air traffic in east – west
direction. Table 2 presents the Entry – Exit waypoints in
SEAN of flights transiting through links ‘‘LIPRO – KILOT’’
and ‘‘KILOT – OTLON’’. The right-heading arrow indicates
that the flights are transiting in the westbound direction of

‘‘LIPRO – KILOT’’ and ‘‘KILOT – OTLON’’, and vice
versa. The corresponding flight paths connecting the listed
Entry – Exit pairs are highlighted by red dashes in Fig. 10
(for eastbound flights) and Fig. 11 (for westbound flights).
It can be observed from Fig. 10 that eastbound flights tran-
sit through ‘‘OTLON – KILOT – LIPRO’’ on ATS route
M761 and spread to ATS route M761, M646 and N875,
which accommodates the major flows of air traffic between
east Malaysia and Peninsular Malaysia, Brunei, Philippine,
Indonesia, etc [53]. Similarly, from Fig. 11 we can see that
westbound flights enter Singapore FIR through ATS routes
M646 and N875. Flights then merge to ATS route M761 and
fly to the west through links ‘‘LIPRO – KILOT – OTLON’’.

Similar to link ‘‘MABAL – VISAT’’, besides their high
traffic density and crucial position, links ‘‘LIPRO – KILOT’’
and ‘‘KILOT – OTLON’’ are located within the highly uti-
lized sector (the sector highlighted in purple in Fig. 8).
Additionally, ATS route M761 crosses ATS route M771 and
N892, which handle major traffic flows to and from the
north in SEAN [47], [53], at waypoints ‘‘OTLON’’ and
‘‘KILOT’’ respectively. Traffic flow on ATS route M761
crosses north-eastbound traffic flow on ATS route N884 at
waypoint ‘‘LIPRO’’. The high density of crossing traffic and
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FIGURE 10. Routes of flights transiting through airway links identified through entry-exit waypoints as: ‘‘VISAT →

MABAL’’ (green dashes), ‘‘OTLON → KILOT → LIPRO’’ (red dashes) and ‘‘VMR → RAXIM’’ (purple dashes).

the short space of time for reaction due to the short lengths
of the two links have increased the pressure on handling the
high volume of air traffic on links ‘‘LIPRO – KILOT’’ and
‘‘KILOT – OTLON’’, which makes the two links critical in
SEAN.

c: SPATIAL CRITICALITY OF LINK ‘‘RAXIM – VMR’’:
Link ‘‘RAXIM – VMR’’ is on the unidirectional ATS route
M771 which accommodates outbound traffic flows heading
to the north. Therefore, only flights from south to north in
SEAN will transit through it, and there will be no flights
on ‘‘RAXIM – VMR’’ in the opposite direction, i.e., north
to south. It is a highly utilized link through which around
5.69% flights in SEANwill transit. The length of ‘‘RAXIM –
VMR’’ is 47nm, and the peak number of flights on ‘‘RAXIM
– VMR’’ is normally 4 ∼ 5 per 15 minutes.
Link ‘‘RAXIM – VMR’’ has an essential position in

SEAN. By referring to Fig. 9, it can be seen that waypoint
‘‘VMR’’ is located at MERSING VOR/DME, which is a cru-
cial beacon point for aircraft flying in/out of Singapore. The
majority of the northbound traffic flow in SEAN will transit
through ‘‘RAXIM – VMR’’. The Entry – Exit waypoints in
SEAN, of flights transiting through link ‘‘RAXIM – VMR’’,
are shown in Table 2. The corresponding flight paths connect-
ing the Entry – Exit pairs are highlighted by purple dashes in
Fig. 10. Combining Fig. 10 and Table 2, it can be observed
that three major traffic flows will converge at ‘‘VMR’’ and
head to the north via link ‘‘RAXIM – VMR’’ on route M771:
(1) northbound flights taking off from Singapore, transiting

through waypoints ‘‘PU’’, ‘‘VTK’’ and heading to ‘‘VMR’’,
(2) northbound traffic flow from Johor Bahru (in Malaysia),
(3) northbound traffic flow from Jakarta FIR via ATS routes
G579 (one of the busiest international routes in this region)
whose destination is beyond Singapore. The pressure of han-
dling the confluence of traffic at ‘‘VMR’’ and accommodat-
ing the northbound flights to transit onto ATS route M771 in
the first place adds to the criticality ‘‘RAXIM – VMR’’.

The convergence of different types of traffic contributes to
the criticality of link ‘‘RAXIM – VMR’’. Departure flights
from Singapore and Johor Bahru, which are still in their phase
of climbing to the cruise level, will need to step climb on
link ‘‘RAXIM – VMR’’ due to en-route traffic from Jakarta.
Moreover, traffic on link ‘‘RAXIM – VMR’’ enters the bus-
iest sector in Singapore FIR at ‘‘RAXIM’’ and immediately
crosses the west-east direction traffic on ATS route M761,
which leads to a potential area of conflict at ‘‘RAXIM’’ and
affects the smoothness of traffic flow on ‘‘RAXIM – VMR’’.

In summary, all of the four links accommodate a high
volume of air traffic flow in SEAN. Traffic flows on ATS
routes where the four links are located constitute a significant
part of traffic flows within SEAN [53]. The four links serve
a high traffic density due to their short lengths and the heavy
traffic demands. The four links are inside or connecting to the
heavily utilized sector, i.e., the sector highlighted in Fig. 8,
withinwhich trunk routes in different directions intersect with
each other. The four links lie on the trunk ATS routes, and
their waypoints are the intersection points of different trunk
links. Considering the above factors, emergencies, such as
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FIGURE 11. Routes of flights transiting through airway links identified through entry-exit waypoint as: ‘‘MABAL →

VISAT’’ (green dashes), ‘‘LIPRO → KILOT → OTLON’’ (red dashes).

system failure, will pose significant inefficiency challenges
on these links. Moreover, if an aircraft within the link has
an emergency, e.g., pressurization problem, the aircraft needs
to descent as soon as possible. Considering the high traffic
density and complexity on those links and the short time for
reaction, the controllers must anticipate and solve such issues
immediately.

d: TEMPORAL VIEW BASED ON REAL-TIME TRAFFIC
SCENARIOS
The above analyses manifest the criticality of the critical links
from a spatial view. Tomanifest the efficacy of the critical link
identification results from a temporal perspective, we have
visualized the real-time flight movements with flight infor-
mation (callsign, aircraft type, speed, flight level), as shown
in Fig. 12. Two layers of flight traffic are shown in this figure
as an example. Blue Dots represents aircraft in the airspace.
The corresponding critical links identified under these traffic
scenarios are marked in red and change dynamically over
time.

This visualization will allow it to observe the traffic situa-
tions under different periods and validate the real-time critical
link identification results dynamically. Here in this paper,
two examples of air traffic scenarios and the corresponding
critical links identified are shown.

As shown in Fig. 13a, at UTC time 01-Dec-2018 03:12:00,
‘‘MABAL – VISAT’’ (marked in red) is identified as a
critical link. This time is 11:12:00 local time of Singapore.
At this time, as shown in the figure, a high volume of

flights transit through link ‘‘MABAL – VISAT’’ on ATS
route M758, from both eastbound and westbound. Mean-
while, many north-east direction flights are flying along ATS
route M771 and crossing traffic flow on M758 at waypoint
‘‘VISAT’’. This situation leads to a potential area of conflict
at ‘‘VISAT’’. On the rest of the network, either the traffic
density is not high or the pressure of handling crossing traffic
is low, making link ‘‘MABAL – VISAT’’ critical at this
period.

As shown in Fig. 13b, ‘‘RAXIM – VMR’’ is identified as
a critical link (marked in red) at UTC 01-Dec-2018 05:41:00.
UTC 05:41 is between 13:00 and 14:00 local time of Singa-
pore. At this time, more east-west bound flights are transiting
through ATS routes M758 and M761, which can also be
observed from Fig. 13b. Meanwhile, many flights transiting
from Singapore to MERSING (‘‘VMR’’) are flying in north-
north-east direction via ATS route M771. Traffic flow on
M771 enters the sector filled with heavy traffic at way-
point ‘‘RAXIM’’, which has a high density of flights at this
time, and immediately crosses the east-west direction traffic
flow on M761. This situation puts potential conflict pressure
at ‘‘RAXIM’’. Moreover, departure flights on ‘‘RAXIM –
VMR’’ will need to step climb to the cruise level due to the
crossing traffic on M761. This also adds to traffic complex-
ity on the link ‘‘RAXIM – VMR’’. The above facts make
‘‘RAXIM – VMR’’ a critical link at this moment compared
to other links.

The above analyses from the perspective of traffic vol-
umes, aeronautical charts, and the operational perspective
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FIGURE 12. Real-time visualization and simulation of air traffic data for SMEs’ analysis. The corresponding critical links identified under the traffic
scenario are marked as red segments. Only two flight levels, out of eleven, and the corresponding air traffic is illustrated in this figure. The critical link
identified evolves over time in accordance with the changes in air traffic.

FIGURE 13. Examples of traffic scenarios under which ‘‘MABAL – VISAT’’ or ‘‘RAXIM – VMR’’ is identified as a critical link. The critical links are
marked in red. Each blue dot represents one flight in SEAN.

manifest that the proposed method is effective in identifying
critical airway links and can dynamically identify criti-
cal links over time in accordance with changing traffic
conditions.

VI. CONCLUSION
Note that identifying critical links in an airway network can
assist with air traffic flowmanagement, flight scheduling, and
resource allocation. This paper proposed complex network
models to detect critical links in a given airway network
dynamically. In order to quantify how critical a link of an

airway network is, two metrics were introduced, i.e., edge
betweenness centrality (identify links act as the traffic pivots
with which shortest paths frequently pass through) and per-
colation theory (identify links that act as the bridges whose
failures will decrease the network’s structural integrity signif-
icantly). As the critical links of an airway network can vary
over time, spatial-temporal airway networkswere constructed
based on flight track data. Then the two network metrics were
individually applied to each network snapshot for critical
link detection, and their results were spatially intersected to
determine the final critical links.
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The proposed methodology is generic in the sense that it
can be applied to any air traffic network given the sufficient
data on air traffic. However, critical links detection in some air
traffic networks might be challenging. For example, in Euro-
pean airspace, air traffic has significant vectoring, while in
Chinese airspace, air traffic usually adheres to flight plans
in en-route airspace. The proposed method was applied on
SEANwith one-month flight track data. The detection results
showed that the critical links in SEAN vary over time. The
majority of the links were concentrated in the sector that
witnessed heavy transition traffic in the airspace covered by
SEAN. Some of the critical links appeared with a high fre-
quency and amongst which the four airway links ‘‘MABAL –
VISAT’’, ‘‘KILOT – OTLON’’, ‘‘KILOT – LIPRO’’, and
‘‘RAXIM – VMR’’ distinguished themselves from the rest.

Furthermore, we noticed that the four critical links belong
to airways connecting two navigation aids (VOR/DME) or
connecting one navigation aid (VOR/DME) to an impor-
tant metering point. Observations from aeronautical charts
showed that waypoints ‘‘MABAL’’, ‘‘VISAT’’, ‘‘OTLON’’,
‘‘KILOT’’, ‘‘LIPRO’’ and ‘‘RAXIM’’ are the crossing points
of airways on the outbound radial of three navigation aids
(PEKAN VOR/DME, KUCHING VOR/DME and MERS-
ING VOR/DME), while the waypoint ‘‘VMR’’ is a metering
fix. These observations manifest that the detected critical
links based on the proposed method have operational signif-
icance. Further operational analysis by controllers validates
the operational criticality of the detected critical links from
both spatial and temporal views.

It is expected that the proposed method, which is based on
complex network theory, can help identify dynamic airway
links that are operationally critical as identified by SMEs.
Moreover, considering the temporal nature of the proposed
method, with good traffic flow prediction tools in the future,
this method can be adopted to predict critical links in air-
way networks, which can help allocate resources in the
airspace better and assist controllers in real-time air traffic
management.

During the outbreak of COVID-19, the air traffic demand
almost came to a standstill. Many problems caused by the
increasing traffic demand disappeared due to this slump in
air transportation. However, air transportation is recovering
step by step as many travels restrictions are lifted. Upon
its recovery, the proposed method will contribute to critical
links identification in airway networks and assist with ATFM
measures handling the increasing demand. Once a link is
identified as critical for a given time period, ATFMmeasures
can be applied in advance to prevent the potential failure
of the critical link to reduce its impact on the flow of air
traffic. At the strategic planning and pre-tactical planning
stages of ATFM, by examining the forthcoming demand and
assessing the traffic pressure on the critical links (such as the
aforementioned four critical links), measures can be taken to
balance the traffic pressure and operational efficiency on the
critical links such as arranging with the Air Navigation Ser-
vice Providers (ANSPs) to provide adequate capacity on the

critical links at the required time, optimizing air traffic flows
to reduce the traffic pressure on the critical links, scheduling
or rescheduling flights as appropriate to avoid the critical
links, and deciding the need for tactical ATFM measures on
the critical links. For tactical ATFM operations, traffic re-
routing and flight level allocation can be applied according
to the changing traffic situation and the corresponding critical
links to ensure the smooth flow of air traffic through the air
traffic network.
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