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ABSTRACT In recent years, with rapid progress in the development of quantum technologies, quantum
machine learning has attracted a lot of interest. In particular, a family of hybrid quantum-classical neural
networks, consisting of classical and quantum elements, has been massively explored for the purpose of
improving the performance of classical neural networks. In this paper, we propose a novel hybrid quantum-
classical algorithm called quantum dilated convolutional neural networks (QDCNNs). Our method extends
the concept of dilated convolution, which has been widely applied in modern deep learning algorithms,
to the context of hybrid neural networks. The proposed QDCNNSs are able to capture larger context during
the quantum convolution process while reducing the computational cost. We perform empirical experiments
on MNIST and Fashion-MNIST datasets for the task of image recognition and demonstrate that QDCNN
models generally enjoy better performances in terms of both accuracy and computation efficiency compared
to existing quantum convolutional neural networks (QCNNSs).

INDEX TERMS Quantum-classical neural networks, quantum dilated convolution, parameterized quantum

circuits.

I. INTRODUCTION

A. BACKGROUND

Convolutional neural networks (CNNs), proposed by
Yann LeCun ez al. [1] in 1989, are one of the most pow-
erful algorithms in the context of deep learning. The main
advantage of CNNss is that they use multiple feature extrac-
tion stages to automatically and accurately learn important
features from the data without any human supervision. Due
to this advantage, CNNs have been tremendously successful
in a broad array of high-level computer vision problems,
including image recognition [2]-[5], object detection [6]—[8],
and image segmentation [9]-[11]. In recent years, with fur-
ther developments in deep learning, CNNs have also demon-
strated promising performances in other machine learning
areas such as time series forecasting [12], [13], speech recog-
nition [14], and recommendation systems [15].

Parallelly, with recent achievements in quantum technolo-
gies (e.g. noisy intermediate-scale quantum (NISQ) pro-
cessors are currently available), the domain of quantum
machine learning has attracted growing concerns and trig-
gered an enormous amount of work. Quantum machine learn-
ing is a research area with the purpose of utilizing quantum
mechanical effects such as superposition and entanglement
to improve the performance of machine learning algorithms.
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Even though quantum machine learning is a new discipline,
it has witnessed a number of successful quantum extensions
to classical machine learning problems, including support
vector machines [16], clustering [17], [18], and principal
component analysis (PCA) [19].

Among quantum machine learning algorithms, quantum
convolutional neural networks (QCNNSs), also known as
hybrid quantum-classical convolutional neural networks, are
a family of variational quantum algorithms that have recently
become a very active research field. The central idea of
QCNNss is to construct a quantum convolutional layer within
neural networks based on parameterized quantum circuits
to estimate complex kernel functions in high dimensional
Hilbert space. Inspired by CNNs, Liu ef al. [20] proposed the
first QCNN model and implemented it for image recognition.
Afterwards, the QCNN model was investigated further in
various work [21]-[26]. Recently, it has been demonstrated
in [27] that QCNN models can also achieve promising results
in speech recognition.

B. COMPUTATIONAL PROBLEM OF QCNN

Despite these successes, QCNNs suffer from computational
bottlenecks, which make it time-consuming to train them.
First, quantum operations applied on n-qubit quantum cir-
cuits require unitary matrices of size 2" x 2" which will
scale exponentially as the size of quantum circuits. More-
over, the calculation of gradients, due to the parameter-shift
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rule [28], [29], results in more quantum circuit executions,
when QCNNS are trained on a real quantum device. As an
example, a quantum filter with p trainable parameters will
add 2p more quantum circuit executions for each training
sample to compute the required gradients. Although this
problem can be mitigated when QCNNs are implemented
on quantum simulators that support more efficient gradient
computation methods such as backpropagation [30], [31]
and adjoint differentiation method [32], it is inevitable for
QCNNSs to face another challenge. In CNNss, a convolutional
layer, due to local connectivity, performs a large amount of
element-wise matrix multiplication operations. For example,
an output 100 x 120 feature map of a convolutional layer is
obtained from 100 x 120 = 12, 000 multiplication opera-
tions. The computational cost will increase significantly with
the feature map size. Fortunately, this computational issue
in CNNs can be handled by using vectorization techniques
[33], [34]. QCNNS, as the counterparts of CNNs, have the
same problem. However, unlike CNNs, most of current quan-
tum devices, including quantum hardware and quantum sim-
ulators, do not support vectorization. Despite the availability
of more mature quantum devices in the NISQ era, executing
a large number of quantum circuits would be impractical in
general.

C. PREVIOUS WORKS

A few works have been done to investigate how to reduce the
runtime complexity of QCNN:Ss. In the first family of works,
a small number of qubits required for the quantum circuit is
achieved by using classical data preprocessing techniques to
reduce the dimension of the input features fed into the quan-
tum (convolutional) layer. For instance, Pramanik et al. [35]
employ PCA to reduce the VGG-16 features for the varia-
tional quantum classifier (VQC), while Hur et al. [36] adopt
autoencoding (AutoEnc) for the dimensionality reduction.
Nevertheless, the performance of the model trained in this
manner is likely to be compromised by the limited expressive
power of the reduced features, as shown in [35]. The second
family of works focuses on how to efficiently encode classical
data into quantum states. Schuld and Killoran [37] propose
and implement the amplitude encoding for variational quan-
tum circuits, which is explored further in [38] for Flexible
Representation of Quantum Images (FRQI). This type of
encoding method is efficient in terms of the required qubits
for data encoding but it relies on very deep quantum circuits
which are unpractical on NISQ devices. In a different direc-
tion, some recent researchers [26], [39], [40] propose angle
encoding (also referred to as qubit encoding) and its variants
(e.g. dense angle encoding) which use a constant quantum
circuit depth for state preparation. This encoding scheme
requires one qubit to encode one or a limited number of com-
ponents of the input feature vector and thus is not efficient for
high-dimensional input features from a resource perspective.
To trade off these two encoding methods mentioned above,
Hur et al. [36] further develop a hybrid encoding approach
which requires fewer number of qubits than the angle encod-
ing and uses a shallower quantum circuit depth than the
amplitude encoding. Moreover, Henderson et al. [22] employ

VOLUME 10, 2022

a threshold-based encoding technique to reduce the input-
state space and make it possible to obtain the output feature
map through a look-up table during the quantum convolu-
tion process without needing to execute the same quantum
circuit repeatedly on image segments. This method is easy
to implement, but it is infeasible on real quantum devices,
as mentioned in [22].

D. OUR WORK
Having reviewed all these challenges and developments,
in this work, we propose a novel hybrid quantum-classical
architecture which we will call quantum dilated convolu-
tional neural network (QDCNN). Our approach, motivated
by the dilated convolution in deep learning, is an extension
of the architectures presented in [20] and [22], and helps
reduce the computational cost of QCNNSs in a different way
compared to the aforementioned approaches. Dilated con-
volution, also known as atrous convolution, was originally
developed for efficiently computing the undecimated discrete
wavelet transform [41]. In recent years, dilated convolution
has attracted more and more attention, and is widely used
in semantic segmentation [11], [42]-[46]. Following these
successes, dilated convolution has also been adopted for a
broader set of tasks, such as object localization [47], time
series forecasting [12], [13], and sound classification [48].
The advantage of dilated convolution is that it allows for
effectively expanding the field of view of filters to capture
larger context without increasing the number of parameters
or the computational complexity. By virtue of dilated con-
volution, the proposed QDCNNs can generally improve the
computational efficiency of existing QCNNs while achieving
the better task performance.
In summary, the contributions of our work are
« We propose a novel architecture of quantum convolu-
tional neural network based on quantum dilated convo-
lution operation. To the best of our knowledge, our work
is the first attempt to combine the concept of dilated
convolution with variational quantum circuits.
e« We conduct experiments using MNIST and Fashin-
MNIST datasets and demonstrate the superior perfor-
mance of QDCNN models over QCNN models.

Il. MATERIALS AND METHODS

A. PRELIMINARIES

1) CONVOLUTION OPERATION

The convolutional layer, which performs an operation called
a “convolution®, plays a central role in the CNNs. In the
context of convolutional networks, a convolution is a linear
operation that involves the multiplication of a set of weights
with the input. For a convolution operation, a kernel or filter
is defined as a feature extractor which is a two-dimensional
(2-D) array of learnable weights. A filter is applied to a filter-
size patch of the input image called receptive field and a dot
product is performed between the pixels within the receptive
field and the weight values in the filter. Afterwards, the filter
shifts to the next patch according to a step size called stride,
and repeats the above process until it has swept across the
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entire image. The final output from the series of dot products
between the filter weights and the values underneath the filter
is called a feature map. Let us denote the output feature map
by y and the input image by x. In the 2-D convolution process,
the feature map y is obtained by applying a filter k to the input
image x:

Misjl =" kg, 11 xli+q,j+1] e
q 1

where i and j are location indices of y. The output feature map,
due to the convolution operation, usually has lower spatial
resolution than the input image. This reduction in dimensions
can be avoided by employing zero padding technique, namely
adding a border of pixels with value zero around the edges of
the input image before the application of a filter. A hyper-
parameter called padding can be defined to determine how
many zero values to add to the border of the image. Generally,
the spatial resolution o,, and oy, of the resulting feature map,
extracted from an i,, X i, input image by an m x n kernel, can
be calculated as:

[y — 2
0W:<W)+l ()

ih—n+?2
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where p and s represent the padding and stride respectively.

2) DILATED CONVOLUTION

Dilated convolution is a type of convolution that expands the
kernel by inserting holes (i.e. points with weight of zero)
between the consecutive kernel elements. In simple terms,
dilated convolution is just a convolution applied to the input
with defined gaps. Compared to standard convolution, dilated
convolution introduces an extra hyperparameter called dila-
tion rate that determines the stride with which the input
pixels are sampled. According to the definition of dilated
convolution, » — 1 zero values are inserted between two
consecutive filter values, if the dilation rate is denoted by r.
In this spirit, (1) needs to be reformulated as follows:

Wi jl=Y_> klg.ll-xli+q-rj+1-r] (4
q I

in the context of dilated convolution. It can be seen from (4)
that dilated convolution is able to capture a larger receptive
field without introducing more learnable parameters com-
pared to standard convolution with the same kernel size.
Moreover, for dilated convolution, we also need to rewrite (2)
and (3) as:

0W:<iw—m—(m—1)(r—1)—i—2p)+1 5)
s
o = (ih—n—(n—1)(r—1)+2p>_i_1

N

Q)

which indicate that dilated convolution generally results in a
feature map of a smaller size compared to standard convo-
lution for the same set of hyperparameters. It is worth noting
that the standard convolution can be regarded as a special case
of dilated convolution with dilation rate r = 1.
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3) QUANTUM CONVOLUTION

In contrast to classical convolution, quantum convolution is
a new type of convolution based on quantum circuits and it
generally consists of three modules:

e ENCODING MODULE. 1In this module, classical data
are encoded into a quantum state which is further
processed in the quantum convolutional circuit. There
exist various encoding methods such as angle encoding,
amplitude encoding and basis encoding. A summary
of them can be found in the literature [49]. Among
these methods, angle encoding is the most commonly
used encoding approach. In this encoding scheme, the
classical input is treated as the rotation angle of a single-
qubit rotation gate (e.g. an RY rotation gate). For exam-
ple, a classical variable or feature a can be encoded by
RY (a) which is applied on some initial state (e.g. vacuum
state |0)). In this sense, we can say that the classical
information a is encoded into the initial state of a qubit.
This type of angle encoding is called one variable/qubit
encoding. This approach requires n qubits to encode n
input variables. To reduce the required qubits, we can
also encode multiple variables by sequential rotations
applied on a single qubit. For example, input variables
ai, ap, and a3 can be encoded using RX(ap), RY (ay),
and RZ(a3) rotation gates applied successively on a
single qubit. This angle encoding is called multiple vari-
ables/qubit encoding or dense angle encoding. In this
paper, we focus on one variable/qubit encoding method.
Let us denote by E(x) the encoding operator where x
is the input vector. Then the encoded quantum state is
obtained by:

|x) = E(x)|0). @)

It is worth noting that E(x) usually contains the
Hadamard gate which transforms the initial state into a
uniform superposition state.

o ENTANGLEMENT MODULE. In this module, a clus-
ter of single- and multi-qubit gates are applied to the
encoded quantum state obtained from the previous mod-
ule. Multi-qubit gates are usually CNOT gates and para-
metric controlled rotation gates (e.g. CRZ(0) where 6 is
a trainable parameter), and they are used to generate cor-
related quantum states, namely entangled states. Single-
qubit gates are mainly parametric rotation gates. This
combination of single- and multi-qubit gates is referred
to as a parameterized layer in the quantum convolution
and is designed to extract task-specific features. This
parameterized layer is usually repeated multiple times to
extend the feature space. If we denote all unitary opera-
tions in the entanglement module by U (0) for simplicity,
the output quantum state will be:

lx,0) = UO)lx). ®)

o DECODING MODULE. At this stage, certain local
observable A®"™ (e.g. Pauli Z operator 0. ®™) is measured
in the final quantum state |x, ) from the entanglement
module, where m is equal to or smaller than the total
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number of qubits 7 in the quantum system. The expecta-
tion value of the chosen observable A®™ can be obtained
through repeated measurements:

f@x,0) = (x,0|A%"|x, 0) ©)

So the purpose of this layer is to extract a classical output
vector f(x, 0) by using the mapping from the quantum
state to a classical vector:

M |x,0) = f(x,0). (10)

This classical vector f(x, #) can be used as the input
features for the subsequent layer in the QCNN.

B. QDCNN

The proposed QDCNN is designed in the same fashion as
QCNNSs described in literatures [20], [22]. Our model inte-
grates quantum layers with classical layers and the quantum
circuit ansatz can be placed anywhere in the model (e.g. at the
beginning of the network, at intermediate layers in the
network).

The key difference between our method and existing
QCNNs is that the dilated convolution is employed for
the quantum convolutional layer. So the quantum layer in
QDCNN:E is called quantum dilated convolutional (QDC)
layer. An example of a QDC layer is illustrated in Fig. 1.
Due to the mechanism of dilated convolution, the quantum
kernel in our model generally covers larger image patches
(i.e. receptive fields). For example, a 2 x 2 quantum dilated
convolution with a dilation rate of 3 has a receptive field
of 4 x 4 whereas the standard quantum convolution with the
same kernel size has a receptive field of only 2 x 2. It is
noteworthy that even though the quantum dilated convolution
is able to expand the receptive field the number of data points
that are fed into the quantum convolution circuit is the same
as the one for the standard quantum convolution. This means
that the quantum dilated convolution does not require more
qubits than the standard quantum convolution with the same
kernel size.

Our QDCNN model has mainly two advantages. Firstly,
the QDC layer in our model, thanks to the enlarged receptive
field, requires less number of times that the quantum kernel
slides across the image (if there is no padding and the stride
is the same), compared to the existing QCNN models. This
can be understood by comparing (2) and (3) with (5) and (6)
respectively. Therefore, using the QDC layer helps reduce the
number of quantum circuit executions during the quantum
convolution process. In the NISQ era, long training time is
one of the biggest challenges facing the QCNN models. This
difficulty stems mainly from the large number of quantum
circuit executions from the quantum layers. In the quantum
feature mapping process, due to the probabilistic character-
istics, quantum measurement is usually performed multiple
times (e.g. 1024) to get expectation values of some observ-
ables which can be considered as the extracted quantum
feature maps. So how to reduce the number of quantum circuit
executions plays a crucial role in mitigating the long-running-
time problem of QCNNs. Our proposed quantum dilation is
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a powerful tool to explicitly control the amount of quantum
circuit executions in the quantum layer.

The second advantage of our model is that it can improve
the performance (e.g. classification accuracy) of the existing
QCNN models. Due to the expanded receptive field, the QDC
layer in our model generally reduces the spatial resolution of
the resulting feature maps. However, these feature maps are
extracted from larger receptive fields of the image and hence
contain long-range context which plays an essential role in
many machine learning tasks such as image recognition and
image segmentation.

Ill. EXPERIMENTS

In this section, we conduct two experiments to evaluate the
performance of our proposed QDCNN model and compare
it with the existing QCNN model. In Experiment A and
Experiment B, we construct quantum convolutional models
with non-trainable and trainable quantum filters, respectively.

A. EXPERIMENT SETTINGS

1) DATASETS

We choose the image benchmark MNIST and Fashion-
MNIST datasets [50], [51] for our experiments. The MNIST
dataset contains 10 different classes of handwritten digits
from ‘0’ to ‘9’, while the Fashion-MNIST dataset is a collec-
tion of 10 different shapes of t-shirts, dresses, shoes, etc. Both
of these datasets have 60,000 training samples, and 10,000
test samples of 28 x 28 gray scale pixel images. Due to
the expensive training and validation, we pick two subsets of
the entire MNIST and Fashion-MNIST datasets, respectively,
both of which consist of 1,000 balanced training samples and
200 balanced testing samples.

2) TESTED MODELS
In this research, we consider two types of models:

e ODCNN Model. We employ the architecture of the most
basic convolution-inspired hybrid quantum-classical
neural network. Our QDCNN model consists of one
QDC layer with one filter and one fully-connected layer
with 10 neurons. The kernel size and stride for the
QDC layer is selected as 2 x 2 and 2 respectively
without specification. The quantum circuit ansatz of the
QDC layer is designed as follows. The 1 variable/qubit
encoding scheme is adopted to encode the input image.
Specifically, 2 x 2 pixels are encoded into a 4-qubit state
using RY rotation gates. Note that, these 2 x 2 pixels are
not adjacent to each other in the input image, due to the
quantum dilated convolution. The resulting 4-qubit state
is further transformed by a following random parame-
terized quantum circuit which might create the entan-
glement. The decoding method follows the same spirit
of [52], in which each expectation value is mapped to a
different channel of a single output pixel. Consequently,
even though there is only one filter, the quantum layer
can transform the input 2-D image into four feature
maps. This type of quantum layer might benefit the
model performance as it allows for correlation among
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FIGURE 1. An example of a quantum dilated convolutional layer (QDC) with kernel size = 2 x 2 and dilation rate = 2. In contrast to standard quantum
convolution, dilated convolution is applied to the input with defined gaps (one gap in this example) to enlarge the receptive field. Encoding,
entanglement, and decoding modules for the QDC layer are highlighted with green, purple, and yellow colors respectively.

channels of the output feature maps. In both cases of
MNIST and Fashion-MNIST datasets, the QDC layer
extracts from the 28 x 28 input image a feature tensor of
size 13 x 13 x 4, which is then transformed to 10 output
probabilities by the fully-connected layer with softmax
activation. To evaluate how the dilation rate impacts the
model performance, we consider two QDCNN models
with dilation rate r = 2 and r = 3, and refer to them as
ODCNN_r2 and QDCNN_r3 respectively for the rest of
the paper.

e OQCNN Model. We select the standard QCNN model as
our benchmark model. The QCNN model follows the
same structure of our QDCNN model, with the only
difference being that it uses a standard quantum kernel
rather than a dilated one.

The random quantum circuit in each of these models consists
of two 4-qubit random layers, each of which has four non-
trainable or trainable parameters. For a fair comparison, all of
these random circuits share the same architecture generated
by the same random seed.

3) TRAINING SETUP

In Experiment A, after applying the non-trainable quantum
filter to transform the original image data into feature maps,
we use a mini-batch of 32 and Adam optimizer with a
learning rate of 0.01 to train each model for 30 epochs.
In Experiment B, due to the computational cost of training
parametric quantum circuits involved in the trainable quan-
tum filter, we reduce the batch size to four and train all
models for 20 epochs with other hyperparameters remaining
unchanged.

4) EXPERIMENTAL ENVIRONMENT

Experiments are conducted on the local computer with a
6-core CPU (2.2 GHz) by using PennyLane [53], Qulacs [54],
and PyTorch [55]. PennyLane is an open source python-
based framework that enables the automatic differentiation
for hybrid quantum-classical computations. It is compatible
with mainstream machine learning frameworks such as Ten-
sorFlow [56] and PyTorch, and it has a large plugin ecosystem
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which offers access to numerous quantum devices (i.e. simu-
lators and hardware) from different vendors including IBM,
Google, Microsoft, Rigetti, and QunaSys. In Experiment A,
we perform the quantum processing of the original image
data by using the Qulacs simulator [57] which is a high-
performance C++ quantum simulator and made available
through the community contributed PennyLane-Qulacs plu-
gin [58]. In Experiment B, considering the large amount
of quantum circuit executions required in the scheme of
parameter-shift rule, we train all hybrid models by using
instead the built-in Pennylane simulator default.qubit which
supports the back-propagation method for the PyTorch
interface.

B. RESULTS

As demonstrated in Table 1 and Table 2, our proposed
QDCNN models exhibit significant performance benefits
over the QCNN model in terms of run-time efficiency.
More specifically, QDCNN models in Experiment A and
B speed up the model training process by up to 15.24%
and 18.42% respectively, compared with the QCNN model
(QDCNN_r2 and QDCNN_r3 have similar training time
because their QDC layers output feature maps of the same
size in both experiments). These speedups result from the
reduced number of quantum circuit executions, as discussed
in the subsection II-B. Take Experiment A as an example.
In this experiment, 13 x 13 quantum circuits need to be exe-
cuted for both the QDC layers with dilation rate = 2 and dila-
tion rate = 3 while 14 x 14 quantum circuits for the standard
quantum convolutional layer. This means that QDCNN_r2
and QDCNN_r3 require 27 fewer quantum circuit execu-
tions per image than QCNN models. Compared with Experi-
ment A, it generally takes a much longer time to train hybrid
models in Experiment B, even though the quantum filter in
each of them has only eight trainable parameters coming
from the random circuit. This is mainly due to the fact that
PennyLane does not support vectorization for quantum circuit
executions. Nevertheless, quantum dilated convolution can
still help reduce the training time significantly in this case.
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Furthermore, it can also be seen from Table 1 and Table 2
that our QDCNN models generally enjoy higher recognition
accuracy than the QCNN model. In particular, QDCNN_r3
achieves the best performance with regard to both validation
loss and accuracy across all tasks. In light of the QDC layer
with a dilation rate of 3, QDCNN_r3 provides up to 31.74%
lower validation loss and up to 3% higher validation accuracy,
compared with the QCNN model. This observed model per-
formance boost stems mainly from the contextual information
at larger scales captured by the QDC layer.

TABLE 1. Results of Experiment A on MNIST and Fashion-MNIST
datasets, reported for three hybrid-classical neural network models with
non-trainable quantum filters. oDCNN_r2 and ODCNN_r3 are hybrid
models with one QDC layer with dilation rater =2 and r = 3,
respectively. 0cNN represents the hybrid model with one standard
quantum convolutional layer or equivalently QDC layer with dilation rate
r=1.

Dataset Method Testacc  Testloss  Running time
QCNN 88.00% 0.4389 624.648s
MNIST ODCNN_r2  88.50% 0.3858 529.472s
ODCNN_r3  91.00% 0.3466 530.270s
QCNN 78.50% 0.6319 610.978s
Fashion-MNIST QDCNN_r2  80.00% 0.6354 526.060s
ODCNN_r3  81.00% 0.6031 525.182s

TABLE 2. Results of Experiment B on MNIST and Fashion-MNIST datasets,
reported for three hybrid-classical neural network models with trainable
quantum filters.

Dataset Method Testacc  Testloss  Running time
QCNN 86.50% 0.5341 7.420h
MNIST QODCNN_r2  86.50% 0.5315 6.436h
ODCNN_r3  89.50% 0.3646 6.053h
QCNN 79.50% 0.8923 7.443h
Fashion-MNIST QDCNN_r2 77.00% 1.1038 6.222h
ODCNN_r3  80.50% 0.8837 6.372h

IV. DISCUSSION
The results in the previous section suggest that the proposed
QDCNN model can not only help overcome the compu-
tational bottleneck of the QCNN model but also achieve
the better model performance, which is consistent with
our expectations. To reduce the computational overhead of
QCNN models, most of the existing studies focus on either
classical data preprocessing or reducing quantum circuit
complexity (e.g. width, depth). However, our work is a depar-
ture from these approaches and we pursue a more efficient
way of applying quantum circuits to process the input data.
In contrast to [35] and [36], our method does not rely on
feature dimensionality reduction and thus makes use of all
the information of the original data to maintain the model
performance. Moreover, our model does not require complex
data encoding techniques (e.g. hybrid encoding proposed
in [36]) and the simple 1 variable/qubit encoding is sufficient.
Both of these two differences stem from the use of quantum
dilated convolution in our model. The computational cost of
quantum convolution can be controlled by choosing appro-
priate hyperparameters (e.g. kernel size and dilation rate) of
the QDC layer.

In spite of the series of results achieved in this work, some
limitations still need to be resolved in the future research.
Firstly, we study the QDCNN model only for the task of
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image recognition. Classical dilated convolution has success-
ful applications in many other machine learning tasks such
as image segmentation, speech recognition, and time series
forecasting. Thus, quantum dilated convolution should also
be further explored in these areas. Secondly, our experiments
are conducted with quantum simulators. It would be interest-
ing to implement the QDCNN model on real (noisy) quan-
tum computers and compare hardware results with simulator
results.

V. CONCLUSION

In this work, we propose a novel quantum machine learning
model, which adopts the idea of dilated convolution in deep
learning to the quantum neural network. We show through
empirical evidence that the proposed QDCNN model out-
performs the recent QCNN method in terms of computation
time and recognition accuracy. In particular, we find that
the quantum dilated convolution with a larger dilation rate
generally contributes to a better model performance. Dilated
convolution has been extensively studied in the area of deep
learning, but little work has been done to explore it in the
context of quantum machine learning. Our work constitutes a
first step in this direction. With the promising results on both
MNIST and Fashion-MNIST datasets, our QDCNN approach
deserves further investigation in the future.
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