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ABSTRACT In the present research work, we designed a hybrid stochastic numerical solver to investigate
nonlinear singular two-point boundary value problemswithNeumann andRobin boundary conditions arising
in various physical models. In this method, we hybridized Harris Hawks Optimizer with Interior Point
Algorithm named HHO-IPA. We construct artificial neural networks (ANNs) model for the problem, and
this model is tuned with the proposed scheme. This scheme overcomes the singular behavior of problems.
The accuracy and applicability of the method are illustrated by finding absolute errors in the solution.
The outcomes are compared with the results present in the literature to demonstrate the effectiveness and
robustness of the scheme by considering four different nonlinear singular boundary value problems. Further,
the convergence of the scheme is proved by performing computational complexity analysis. Moreover, the
graphical overview of statistical analysis is added to our investigation to elaborate further on the scheme’s
stability, accuracy, and consistency.

INDEX TERMS Harris Hawk’s optimizer, nonlinearity, singular boundary value problems, artificial
neural networks, statistical analysis, interior point method, ordinary differential equations, error estimation,
heuristics, bio-inspired algorithms.

I. INTRODUCTION
The class of nonlinear singular differential equations per-
forms a vital role in many fields of science and technology.
The mathematical modeling of real-life problems arises in
several physics branches, specifically astrophysics, thermo-
dynamics, physical chemistry, nuclear technology, atomic
energy, and engineering. For example, the thermal explo-
sion [1]–[3] and heat conduction [4], are modeled in the
form of singular boundary value problems. Many nonlin-
ear problems are modeled in the form of boundary value
problems based on given boundary conditions. The boundary
conditions used to model real-life problems are ordinarily
Neumann boundary conditions, mixed boundary conditions,
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and Dirichlet boundary conditions. The most physically and
reasonable choice for the modeling of real-world problems is
Neumann boundary conditions [5].We consider the following
general class of nonlinear singular, two-point boundary value
problem (BVP):

(p(r)f ′(r))′ = p(r)g(r, f (r)), 0 < r ≤ 1 (1)

subject to the following Robin and Neumann boundary
conditions:

f ′(0) = 0, µf (1)+ ηf (1)′ = ρ (2)

where µ ≥ 0, η ≥ 0 and ρ ≥ 0 are finite real constants and g
is a nonlinear term.

If p(r) = r and the non-linear term g of the following type:

g(r, f (r)) = −kef (r) (3)

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 21979

https://orcid.org/0000-0002-4040-6211
https://orcid.org/0000-0002-5463-4581
https://orcid.org/0000-0002-7703-9793


J. Guo et al.: Novel Neuroevolutionary Paradigm for Solving Strongly Nonlinear SBVPs in Physiology

where k is real constant, then equation (1) represents isother-
mal explosion [1], [6], [7].

If p(r) = r and the nonlinear term g of the following form:

g(r, f (r)) = ef (r) (4)

then equation (1) represents equilibrium of thermal explosion
in cylindrical vessel [1], [3].

If p(r) = r and the nonlinear term g of the following form:

g(r, f (r)) = −f 5(r) (5)

then equation (1) arising in the study of equilibrium of
isothermal gas sphere [1], [2], [8].

If p(r) = r2 and the nonlinear term g of the following form:

g(r, f ) =
c1f (r)

f (r)+ c2
, (6)

where c1 and c2 are real constant.
Then equation (1) represent steady-state oxygen diffusion

in a spherical cell [2], [9]–[11].
The numerical solution of nonlinear singular boundary

value problems (SBVPs) of ordinary differential equations
is a difficult assignment due to the singular behavior of the
problem at the origin. As almost every real word problem
is modeled in the form of nonlinear SBVPs [12] and the
analytical solutions of most of the problems are not available,
to handle this type of problem researchers make contact
with approximation theory. The recent literature proved that
various researchers proposed numerous approximation meth-
ods to tackled SBVPs numerically and analytically like the
finite difference method (FDM) [1], the monotonic iterative
method of Bessel functions [12], [13], an improved itera-
tive technique [14], finite-element method (FEM), monotonic
iterative scheme containing the expansion ofc eigenfunc-
tion [15], differential quadrature method [16], modified
adomian decomposition method (MADM) [17], collocation
method [18], Borel–Laplace transformation technique [19],
Adomian decomposition method (ADM) [20], variational
iteration method (VIM) [21], approximate power series
solution method [22] and homotopy perturbation method
(HPM) [23] etc.

The algorithm like VIM [21], ADM [20], MADM [17]
and HPM [11] provide solution of an under consideration
problem in the form of series. The convergence of the series
solution obtained by approximation techniques is not guaran-
teed. In 2017 Biswal and Raoul proposed an algorithm [11]
based on the combination of an integral equation formalism
and optimal homotopy analysis method for the solution of
problem (1) by replacing g(r) subjected to boundary condi-
tions in (2). In addition, the analysis of different approxi-
mation solution methodologies, like VIM [21], ADM [20],
or MADM [17] shows that these algorithms required the
undetermined coefficients. At every iteration of approxima-
tion, it needs to solve a transcendental or an algebraic equa-
tion. The solution of transcendental or an algebraic equation
at each iteration is a time-consuming process, and as a result,
the computational complexity of the algorithm increase.

The advanced adomian decomposition method (AADM) is
a numerical method that is developed based on a numerical
technique named Adomian decomposition method proposed
by Adomian [24]. Themain reason for designing AADM is to
deal with nonlinear problems without considering unrealistic
norms like discretization and linearization and improve the
convergence as the author claimed in [25]. But to achieve this
goal, the computational complexity of the algorithm increase.
In addition, the Advance adomian decomposition method
needs the solution of adomian polynomial at each iteration
which is also a time-consuming task.

Some other modifications are made to improve the rate
of convergence and accuracy of adomian decomposition
method (ADM) Adomian [24] and named it as modified
adomian decompositionmethod (MADM) [26]. The adomian
decomposition method is modified to overcome the singular
behavior of initial and boundary value problems at x = 0. For
this, the author introduced the Laplace operator into ADM,
which caused the algorithm more complicated. In addition,
adomian decomposition methods provide a small region of
convergence [27].

In the list of numerical solvers, the compact finite
difference method (CFDM) is a more favorable numerical
technique for solving problems like hyperbolic problems,
linear and nonlinear boundary, and initial value problems.
The compact finite difference method is also utilized for the
approximation of singular boundary value problem [28]. The
compact finite difference method is used for the approxi-
mations of finite-difference. These approximations are more
ideal when their dissipative error and dispersive error are
compared with explicit algorithms.

But a disadvantage of the compact finite difference algo-
rithm is that it needs the solution of the system of a diagonal
matrix for the derivatives at all grid points or the calculation
of interpolations.

Most of the real-life problems are nonlinear and contain
singularity [27]. To remove the singularity of the problem,
researchers decompose the domain of the problem into two
subdomains. The singular behavior of the problem in the first
subdomain is removed with the application of the decompo-
sition method based on the integral operator. The resulting
system is dealt with cubic B-spline collocation method [29],
which increases the computational complexity of the algo-
rithm. The Cubic B-spline collocation method also needs the
solution of a matrix.

From the above discussion, we conclude that the
MDM-CBC method has a small region for convergence due
to the involvement of the decomposition method, which may
cause the divergence of the algorithm. Moreover, to remove
the singularity of the problem, MDM-CBC decomposes the
given interval into two subintervals that modify the original
problem.

The disadvantages related to the convergence of the
series solution and computational complexity of the above
listed numerical approximation algorithms motivated us to
develop a stochastic algorithm based on artificial neural
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FIGURE 1. Architecture of artificial neural networks.

networks (ANNs) for the numerical treatment of the problem
given in equation (1) subjected to two different kinds of
boundary conditions given in (2). Besides, the perturbation
algorithms depend on small parameters, but the proposed
scheme does not require any small parameter present in the
given problem. Also, it does not require any prior informa-
tion about the derivatives of the differential equations. The
proposed stochastic algorithm provides a set of optimized
weights for a given problem with easily computable compo-
nents and provides a solution in the form of convergent series.
The advantage of our designed scheme over the numerical
method listed above is that it approximates the probability of
getting optimal solutions. Furthermore, our designed scheme
has less computational complexity.

The proposed algorithm is developed based on a minimiz-
ing function of mean square error in the differential equa-
tion together with mean square error in boundary conditions
called fitness function to get the optimal solution of a given
problem. The elementary structure of our proposed scheme
is quite simple, which comprises of three parts, in the var-
ied first part of the method, we designed ANNs model for
under consideration SBVP, in the second part, a global search
algorithm is applied to get the global optimal solution and in
last part of the proposed scheme a local search technique is

used to tune the optimal results obtained from global search
algorithm finely.

The main goal is to develop a soft computing algorithm to
analyze the singular boundary value problem. We hybridized
a global search optimizer, namely Harris Hawks Optimizer
(HHO), through a local search paradigm called Interior Point
Algorithm (IPA) and labeled this hybrid scheme asHHO-IPA.
Our proposed hybrid optimizer globally tunes the unknown
parameter of the ANNs model by global search algorithm
HHO. The best weights of HHO are finely trained through
local search optimizer IPA.

The accuracy and efficiency of our designed technique are
demonstrated by considering four singular boundary value
problems examined by the different researchers using numer-
ical techniques. The comparison of numerical outcomes of
our designed technique is made with some existing results
in the literature. This comparison of results proves that our
designed technique provides a much better solution than the
semi-numerical techniques.

The outcomes of HHO-IPA are also compared with an
advanced artificial intelligence-based algorithm named Slime
Mould Algorithm (SMA). Slime Mould Algorithm is a
bio-inspired algorithm and was first introduced by Shimin Li
and Huiling Chen in 2020. Slime mold algorithm mimic

VOLUME 10, 2022 21981



J. Guo et al.: Novel Neuroevolutionary Paradigm for Solving Strongly Nonlinear SBVPs in Physiology

morphological changes and foraging behavior of slime mold
Physarum polycephalum [30].

The rest of the paper is structured as, in Section 2, the
designed hybrid algorithm HHO-IPA is discussed in detail.
The modeling of ANNs for a given problem and the for-
mulation of the fitness function is reported in Section 3.
The accuracy and efficiency of the proposed algorithm are
narrated in Section 4 by considering four different problems.
Section 5 consists of our conclusion about this research.

II. HARRIS HAWKS OPTIMIZER
Harris Hawks Optimizer (HHO) is a nature-inspired,
gradient-free optimization, population-based algorithm.
HHO was first familiarized by Ali Asghar Heidari in 2019 in
his uniquework in the class of intelligent computing [31]. The
exploration and exploitation phases of Harris’ Hawks Opti-
mizer is modeled on the basis of the cooperative behaviors,
exploring a prey, surprise pounce and chasing style of hawks.
HHO can be implemented to optimization problem with
proper formulation. Different phases of HHO are described
briefly in later subsections and shown in figure 2.

FIGURE 2. Different phases of Harris Hawks Optimizer.

A. EXPLORATION PHASE
In exploration phase of HHO, hawks track and spot the prey.
The position of hawks is the candidate solution. In HHO,
hawks randomly perch on the basis of two main strategies.
In the first strategy, hawks perch on the basis of location of
prey and other group members following the condition q <
0.5while in later strategy the hawks perch on random position
(tall trees) following the condition q ≥ 0.5. Themathematical
modeling of both strategies are given in equation (7).

X (t + 1) =


Xrand (t)− r1 |Xrand (t)− 2r2X (t)| q ≥ 0.5
(Xrabbit (t)− Xm(t))
−r3(LB+ r4(UB− LB)) q < 0.5

(7)

whereX (t+1) in the above equation represents the location of
hawks in iteration t ,Xm,Xrand (t),X (t) andXrabbit (t) represent
average position of hawks, randomly selected hawk, position
vector of hawks and location of prey (rabbit) respectively.UB
and LB represent the upper and lower bounds while q, r1, r2,
r3 and r4 are random numbers between (0,1). The average
position Xm of hawks in above equation (7) is calculated
through equation (8) given below:

Xm(t) =
1
N

N∑
i=1

Xi(t) (8)

where t is current iteration while N and Xi(t) in equation (8)
represent the total number of Harris’ hawks and the position
of hawk respectively.

B. TRANSITION FROM EXPLORATION PHASE TO
EXPLOITATION PHASE
The HHO has ability to transfer to exploitation from explo-
ration. The change of HHO among various exploitative
behaviors depend upon the escaping energy of the rabbit
(prey). Due to the escaping behavior the escaping energy of
rabbit significantly decrease which are model as following:

E = 2E0(1−
t
T
) (9)

where maximum number of iterations are represented by T .
E0 and E in above equation indicate initial state of prey’s
energy and its escaping energy respectively.

C. EXPLOITATION PHASE
In exploitation phase, the hawks try to catch the detected
prey while the prey attempt to escape. Four possible strate-
gies of hawks occurs due to the chasing style of hawks and
escaping style of prey. Which are modeled in the following
subsections.

1) SOFT BESIEGE
This strategy occur when the prey has enough energy |E| ≥
0.5 to escape and r ≥ 0.5. The mathematical modelling of
this behavior is given as:

X (t + 1) = 1X (t)− E |JXrabbit (t)− X (t)| (10)

1X (t) = Xrabbit (t)− X (t) (11)

where J = 2(1− r5) indicate the strength of random jump of
rabbit, r5 is random number inside the interval (0,1), the value
of J randomly vary in iteration t and 1X (t) is difference of
current position in iteration t and position of rabbit.

2) HARD BESIEGE
This strategy occur when the prey so tired and has not enough
energy |E| < 0.5 to escape and r ≥ 0.5. The mathematical
modelling of this behavior is given as:

X (t + 1) = Xrabbit (t)− E |1X (t)| (12)
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3) SOFT BESIEGE WITH PROGRESSIVE RAPID DIVES
This strategy occur when the prey has still enough energy
|E| ≥ 0.5 to escape but r < 0.5. This indicate that the prey
can successfully escape and hence the Levy flight concept
introduced to model this behavior:

Y = Xrabbit (t)− E |JXrabbit (t)− X (t)| (13)

Z = Y + S × LF(D) (14)

where D indicate the problem’s dimension, S is a random
victor of size 1 × D and LF is Levy flight function given as
following:

LF(x) = 0.01×
u×σ

|v|
1
β

, σ =

 0(1+ β)× sin(πβ2 )

0( 1+β2 )× β × 2(
β−1
2 ))

 1
β

(15)

where β is a default constant of value 1.5. u and v are random
numbers in (0 1). In soft besiege the locations of hawks can
be update using equation (16).

X (t + 1) =

{
Y if F(Y ) < F(X (t))
Z if F(Z ) < F(X (t))

(16)

where Y and Z victors can be evaluate using equations.(13)
and (14).

4) HARD BESIEGE WITH PROGRESSIVE RAPID DIVES
This strategy occur when the prey has not enough energy
|E| < 0.5 to escape but r < 0.5. In this case, the hawks
attempt to decrease the distance of their average position with
the escaping prey. This situation is modeled as:

X (t + 1) =

{
Y if F(Y ) < F(X (t))
Z if F(Z ) < F(X (t))

(17)

where Y and Z victors can be evaluate using the following
new rules in equations (18) and (19).

Y = Xrabbit (t)− E |JXrabbit (t)− Xm(t)| (18)

Z = Y + S × LF(D) (19)

where Xm(t) is calculated by using equation (8).

III. ARTIFICIAL NEURAL NETWORK
The solution of complex multivariate non-linear relationships
motivate the researchers to design an intelligent system. They
utilized the architecture of the human brain to designed these
intelligent system. In the way of development of intelligent
systems, Warren McCullough and Walter Pitts publish his
mathematical model of neural networks (NN) [32].

Neural network is the set of neurons. A networkwhich con-
sist of artificial neurons is known as artificial neural network
(ANN) [33] or biological neurons called biological neural
network [34]. ANNs use the computational or mathematical
model which is used for processing available information is
an interconnected set/group/collection of artificial neurons,
in other words artificial neural networks are utilize to model

the complex relationship among the input and output data.
The strength of artificial neural networks is utilized by vari-
ous scientists to get the solution of different real-life problems
[35] based on artificial intelligence (AI) models.

The construction of ANN model is based on the human
brain’s layout which are modeled through artificial neurons.
These networks emulate the human brain layout [36]but they
use a reduced group of biological neural network.

The structure of ANNs consist of three or more layers,
where these layers are interconnected through connections.
The first layer is the input layer which is some time called
receptor that receive information in the form of text, num-
bers etc. The neurons of input layer calculate the weighted
sum of all input data and send this weighted sum to the
hidden layer(neural zero layer). The hidden layer is core of
neural system, which receives data from input layer in the
form of weighted sum and produce the output through an
activation function. Activation function is sometime called
transfer function [37], due to the property of transferring
data from hidden layer to output layer. The selection of
activation function has a great impact on the capability and
performance of neural networks [38]. Generally an activation
function is a nonlinear function [39], [40] or orthogonal poly-
nomials [41]. Hyperbolic tangent function, logistic activation
function, binary step function [37], [42], [43], Hermite poly-
nomials [44], Legendre polynomials [45], Chebyshev poly-
nomials [46] etc., are some examples of activation functions.
These activation functions decide whether send data to output
layer or not. The output layer (results layer) is the final layer
of ANNs which generate the final result. The structure of
artificial neural network is depicted in figure (3).

IV. PROPOSED SCHEME
The class of evolutionary algorithms (EAs) [47] play a
vital role in the solution of real-world problems [39] in
different research areas like chemistry [48], machine learn-
ing [49], finance [50], mechanics, economics, optics, biology,
geophysics, biochemistry, etc. Stochastic optimizers are cur-
rently widely applied as global search optimization method-
ologies. These algorithmsmimic biological or social behavior
or nature, that’s why these are known as nature-inspired
algorithms, Grey Wolf optimizer (GWO) [51], Whale Opti-
misation Algorithm (WOA) [52], Harris Hawks Optimizer
(HHO) [31], etc., are some common examples of nature-
inspired algorithms. Nature-inspired algorithms are almost
population-based approaches that learn from the set or group
of data.

The hybridization of algorithms is a trend of 21st century.
Hybridization improves the ability and capability of algo-
rithms such as accuracy, convergence, computational speed,
etc. In a hybrid scheme, the advantages of each algorithm
are combined to overcome the disadvantages of each algo-
rithm. Hybridization is fallen into different kinds: one of
these is qualified as sequential hybridization [53]. In this
kind of hybridization, a set of algorithms implement one
after another. In other words, in sequential hybridization,
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FIGURE 3. Architecture of artificial neural network.

the outputs of one algorithm are used as input of another algo-
rithm. These algorithms are also categorized as sequential
hybrid meta-heuristics [54].

The popularity of hybrid algorithms increases because
of their better performance when dealing with imprecision,
uncertainty, vagueness, nonlinearity, and singularity, etc.
The advantage/importance of hybrid evolutionary approaches
increase when finding the global optimal value in complex
and, vast search domains and especially when the gradient
information of the problem is not available. From an appli-
cation point of view, these algorithms are relatively simple
and the concepts are easy to understand. The parameters
of these algorithms are reasonably flexible, in other words,
parameters can be variate for better performance of the algo-
rithm. Besides, the implementation of hybrid meta-heuristic
algorithms is easy and straightforward.

A. PROBLEM FORMULATION BASED ON ARTIFICIAL
NEURAL NETWORKS
The concept of Artificial Neural Networks (ANNs) was
initiated by a United States logician in the area of compu-
tational neuroscience Walter Pitts and an American cyber-
netician and neurophysiologist Warren McCulloch through
his computational model [32] in 1943. This model provides a
way to divide research into two branches: the first approach
concentrated on the biological process while the second
one focused on the applications of neural networks (NNs)
to artificial intelligence (AI). The artificial neural network
is the component of a soft computing system that simu-
lates the human brain layout. In other words, the artificial

neural network is the foundation of artificial intelligence.
The subject of artificial neural networks has great atten-
tion of researchers in the community of machine learning
due to the capability and ability to solve challenging prob-
lems, particularly the practical applications of ANNs in the
area of industry, medical diagnosis, personal communication,
speech recognition, encompassing finance, object recogni-
tion, education and image processing, etc. Artificial neural
networks are more interesting in computational mathematics
and approximation theory due to their ability to successfully
approximate the solution of almost every kind of differential
equations (ordinary and partial differential equations), arbi-
trary functions, and system of differential equations such as
appearing in chemistry, engineering, mechanics and biotech-
nology. Recently many articles from several kinds of research
are published on this topic. Most of the researchers consid-
ered meta-heuristic and heuristic schemes which are based
on artificial intelligence. These artificial intelligence-based
algorithms are applied to governing equations and their
boundary conditions in a unified search zone.

In this work, we employ ANNs formulation in the form of
continuous mapping for solving 2nd order singular boundary
value problems. The nth order derivatives of these networks
are formulated as:

f̂ (r) =
m∑
i=1

αiζ (βir + γi),

f̂ ′(r) =
m∑
i=1

αiζ
′(βir + γi),
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FIGURE 4. Architecture of Harris Hawks Optimizer.

f̂ ′′(r) =
m∑
i=1

αiζ
′′(βir + γi),

· · · · · · · · ·

· · · · · · · · ·

· · · · · · · · ·

f̂ (n)(r) =
m∑
i=1

αiζ
(n)(βir + γi), (20)

in above Equation (20), the real valued vectors given as:
α = [α1, α2, α3, . . . , αm], β = [β1, β2, β3, . . . βm] and γ =
[γ1, γ2, γ3, . . . , γm] which represent the bounded ranges. The
networks listed in above equation (20) are activated through

log-sigmoid function ζ (r) = 1/(1 + e−r ) and the updated
form of derivatives of the log-sigmoid function are listed
below in Equations (21):

f̂ (r) =
m∑
i=1

αi

(
1

1+ e−(βi(r)+γi)

)
,

f̂ ′(r) =
m∑
i=1

αiβi

(
e−(βi(r)+γi)

(1+ e−(βi(r)+γi))2

)
,

f̂ ′′(r) =
m∑
i=1

αiβ
2
i

(
2e−2(βir+γi)

(1+ e−(βir+γi))3
−

e−(βir+γi)

(1+ e−(βir+γi))2

)
.

(21)
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FIGURE 5. Architecture of interior point algorithm.

The nonlinear singular boundary value problem in Equa-
tion (1) can be formulated in the form of mathematical
model by using a suitable arrangement of artificial neural
networks listed in Equations (20) or (21). Artificial neural
networks architecture for SBVPs are graphically presented
in Figure (1).

1) FITNESS FUNCTION
Afitness function is operated to summarise designed solution
for achieving the set desired aims. The fitness functions for
singular boundary value problem in Equations (1)-(2) guide
simulations towards optimal design solutions. It is formulated
in the form of square of residual errors (mean square errors)
as minimization objective function as following:

Min ε = ε1 + ε2 (22)

In above Equation (22), ε1 represent mean square error in
singular boundary value problem (1)-(2) which can be written
as:

ε1 =
1
N

M∑
m=1

(
p(r)f̂ ′′m + p(r)

′ f̂ ′m − p(r)g(r, f̂ )
)2
,

for N =
1
h
, (23)

where

f̂m = f̂ (rm), f̂ ′m = f̂ ′(rm),

f̂ ′′m = f̂ ′′(rm), rm = mh,

and h is the step size.
While mean square error in boundary conditions of given

problem is represented by ε2 and formulated as:

ε2 =
1
2
((f̂ ′0 − 0)2 + (µf̂1 + ηf̂ ′1 − ρ)

2)

f̂ ′0 = f̂ ′(0), f̂1 = f̂ (1), f̂ ′1 = f̂ (1)′. (24)

The unknown parameters w = [α, β, γ ] of artificial neural
networks model for getting the solution of singular boundary
value problem are trained by using proposed hybrid scheme
HHO-IPA. The parameters are trained until the fitness value
of SBVPs approximately equal to zero. The solution of
SBVPs, in this case near the exact solution. i.e., ε → 0 then
f̂ (r)→ f (r).

B. HYBRID SCHEME HHO-IPA
We provide a detailed description of our proposed hybrid soft
computing algorithm HHO-IPA for the investigation of non-
linear singular boundary value problems arising in physiol-
ogy. Generally, our soft computing scheme is narrated in two
stages, in the first stage of HHO-IPAwemodel the SBVPs (1)
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TABLE 1. Settings of essential parameters for global search algorithm ‘‘Harris Hawks Optimizer.’’

TABLE 2. Settings of essential parameters for ‘‘fmincon’’ program for execution of local search algorithm ‘‘interior point algorithm.’’

TABLE 3. Pseudo code of proposed hybrid soft computing technique HHO-IPA.

in the form of fitness function based on ANNs, while the
unknown parameters of ANNs model, detail steps of learn-
ing methodology and setting of the essential parameter are
presented for proposed hybrid scheme of ‘‘Harris Hawks
Optimizer’’ and ‘‘Interior Point Algorithm’’ is presented in
a later stage.

Harris Hawks Optimizer (HHO) is a nature-inspired
population-based algorithm. HHO was first familiarized by
Ali Asghar Heidari in 2019 in his unique work in the class of

intelligent computing [31]. The main inspiration of Harris’
Hawks Optimizer is the cooperative behaviors and chasing
style of hawks. It is considered one of the most intelligent
birds.

Harris HawksOptimizer can solve constraint, unconstraint,
linear, nonlinear, singular boundary value problems (BVP),
and initial value problems (IVPs) arising in different fields of
science and engineering. The systematic flowchart of HHO
is given in Figure (4). Harris Hawks Optimizer finds near
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best candidate solution of under consideration problem in
a given domain of the problem because of its better global
search capability. This global search capability of HHO
is boosted through Interior Point Algorithm (IPA). IPA is
an individual-based algorithm that follows a single path to
approach the results. The global best results of HHO are
considered as starting point of IPA to get the solution rather
quickly. The graphical representation of the Interior point
method is in Figure (5). Different kinds of problems are
effectively solved in optimization theory with the help of IPA,
like hyperbolicity cone problems [55] the approximation of
parameters of discrete-time infective disease model [56] and
nonlinear non-convex programming [57]. The accuracy and
convergence of the outcomes toward the exact solutions of
the problems inspired us to implement IPA for the solution
of nonlinear singular boundary value problems of the second
order with Robin and Neumann boundary conditions.

We proposed a new soft computing scheme by combining
the global search capability of HHO and the local search
strength of IPA namely HHO-IPA. The working procedure
of the hybrid scheme is demonstrated in Table (3) in the form
of pseudo-code.

HHO-IPA is implemented to train the unknown parameters
of the artificial neural networks model for the solution of
SBVPs. The global search of HHO-IPA is performed by using
MATLAB script file on the other hand we use Matlab’s built-
in function ‘‘fmincon’’ routine algorithm ‘‘interior-point’’ for
IPA.

C. ERRORS ESTIMATION
The accuracy of our proposed algorithm is tested by calculat-
ing absolute errors in our solution. These absolute errors are
compared with some existing in the literature. The absolute
error is represented by en(r) and given as:

en(r) = |f (r)− f̂ (r)|, (25)

here n represent is the number of solution points and f̂ (r)
is the solution approximated through the designed method
while f (r) in the above equation is an exact solution of the
problem at the corresponding point.

V. NUMERICAL EXPERIMENTATION
This section of the paper composes four different kinds
of real-life nonlinear, singular boundary value problems.
The comparison of experimental outcomes of the designed
scheme is made with some existing solutions in the literature
to demonstrate the accuracy, applicability, and efficiency of
the designed technique. The solutions are given in the form
of tables and also illustrated graphically.
Example 1: Consider the singular boundary value problem

emerges in the isothermal explosions:

(rf ′(r))′ = −kref (r), (26)

subjected to boundary conditions

f ′(0) = 0, f (1) = 0. (27)

The problem (26) – (27) corresponds to (1) – (2) with
p(r) = r , g(r, f ) = −kef (r), µ = 1, η = 0 and ρ = 0. Exact
solution for this problem found in the literature is given as:

f (r) = 2ln
(

c+ 1
cr2 + 1

)
,

where

c =
(8− 2k)±

√
(8− 2k)2 − 4k2

2k
.

The problem in Equation (26) is singular ordinary differential
equation subjected to boundary conditions (27) form a non-
linear, singular boundary value problem (SBVP). We solve
problem (26) – (27) using the proposed HHO-IPA by using
ANNs model with in given interval [0 1] by considering the
step size h = 0.1. The setting of essential parameter are
tabulated in Tables (1) and (2). The formulation of fitness
function (FF) (22) for given problem is below:

ε =
1
N

N∑
m=1

(
r f̂ ′′m + f̂

′
m + kre

f̂ (r)
)2

+
1
2

((
f̂ ′0 − 0

)2
+

(
f̂1 − 0

)2)
(28)

The formulated fitness function (28) is tuned by using
HHO-IPA and a set of optimized weights is obtained with
the fitness value of 2.1165E − 14. This set of optimized
weights is used for the derivation of solution. These weights
are plotted in Figure (8a) in the form of bar graph and given
in Equation (29).

The solution obtained by using HHO-IPA is plotted in
Figure (6) to make comparison with exact solution of the
problem. The Figure (6) elucidated that our obtained solution
has strong agreement with exact solution of the problem.

f̂P1

=



−2.4437
1+ e−(0.8139 r−1.7018)

+
−0.0517

1+ e−(2.7373 r−6.6069)

+
−0.3931

1+ e−(−1.7127 r−1.3277)
+

−0.7008
1+ e−(−1.4116 r−3.5158)

+
−0.6344

1+ e−(−1.5508 r−0.2983)
+

1.9485
1+ e−(−0.8134 r+0.7198)

+
−0.8558

1+ e−(−1.6453 r−2.2241)
+

−2.1013
1+ e−(1.1560 r−6.5078)

+
−0.8568

1+ e−(−0.9503r−2.1156)
+

−0.5059
1+ e−(−0.5330 r−1.9114)

(29)

The solutions obtained for singular boundary value prob-
lem given in Equation (26) subjected to boundary condi-
tions in (27) are cross examined by getting the absolute
errors in our solution. The absolute errors are calculated
by using Equation (25). To prove accuracy of HHO-IPA
these absolute errors are compared with some existing in
the literature for the same problem. The absolute errors are
presented in Table (4) along with some existing absolute
errors obtained by the modified decomposition method and
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FIGURE 6. The comparison of solution and absolute error in the solution obtained by proposed scheme for the problem arising in the study of
isothermal explosions.

TABLE 4. Absolute errors in the solution obtained by proposed scheme together with some existing for problem arising in the study of isothermal
explosions.

cubic B-spline collocation (MDM-CBC) [29], modified Ado-
mian decomposition method (MADM) [26] and advanced
Adomian decomposition method (AADM) [25]. Table (4)
confirms that the magnitude of errors in HHO-IPA solution
is two orders lesser than the magnitude of errors of AADM.
The accuracy of 10−08 to 10−11 achieved by our proposed
scheme based on hundred independent runs. The comparison
of errors proved that our proposed algorithm is efficient and
accurate as compare to advanced Adomian decomposition
method described in [25]. For instance, the logarithmic plot
of the absolute errors obtained from the designed scheme are
depicted in Figure (6b) in terms of Minimum absolute error,
Mean absolute error andMaximum absolute error. The plot of
absolute errors shows that it increases in the direction of the
singular point and maximum at point of singularity i.e. r = 0,
and the error decrease away from the point of singularity

and minimum at point of singularity i.e. r = 1 of the
problem.
Example 2: Consider the problem appears in the investiga-

tion of thermal explosion of gas in cylindrical container. This
is a nonlinear boundary value with a singularity [1]–[3]:

(rf ′(r))′ = ref (r), (30)

with boundary conditions

f ′(0) = 0, f (1) = 0. (31)

The problem (30) – (31) corresponds to (1) – (2) with
p(r) = r , g(r, f ) = ef (r), µ = 1, η = 0 and ρ = 0. Exact
solution for this problem found in the literature is given as:

f (r) = 2ln
(
d + 1
dr2 + 1

)
,
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FIGURE 7. The comparison of solution and absolute error in the solution obtained by proposed scheme for the problem arising in the study of thermal
explosion of gas in cylindrical container.

where

d = −5+ 2
√
6.

The problem given in Equation (30) is singular ordinary
differential equation subjected to boundary conditions in (31)
form a nonlinear, singular boundary value problem (SBVP).
We solve problem (30) – (31) using the proposed HHO-IPA
by using ANNs model with in the interval of [0 1] by taking
step size of 0.1. The setting of essential parameter are tabu-
lated in Tables (1) and (2). The given fitness function (FF) in
Equation (22) is formulated for this problem as below:

ε =
1
N

N∑
m=1

(
r f̂ ′′m + f̂

′
m − re

f̂ (r)
)2

+
1
2

((
f̂ ′0 − 0

)2
+

(
f̂1 − 0

)2)
(32)

The formulated fitness function (32) is tuned by using
proposed hybrid algorithm HHO-IPA and the set of finely
optimized weights is obtained with the fitness value of
1.9727E − 12. This set of optimized weights are used
for the derivation of solution. These weights are plot-
ted in Figure (8b) in the form of bar graph and given in
Equation (33).

f̂P2

=



3.8861
1+ e−(1.5919 r−4.3661)

+
1.6522

1+ e−(−0.0174 r+2.7873)

+
0.0219

1+ e−(2.8563 r−2.8834)
+

−0.4920
1+ e−(0.9093 r+0.1006)

+
−1.5942

1+ e−(−2.1492 r−1.2629)
+

−1.4897
1+ e−(−1.1747 r−0.3817)

+
1.6173

1+ e−(0.7165 r−0.7052)
+

2.6435
1+ e−(−1.9170 r−1.2597)

+
2.5831

1+ e−(−0.6077 r−0.6791)
+

−2.6078
1+ e−(0.7486 r+5.1744)

(33)

The solution obtained by using HHO-IPA is plotted in
Figure (7a) together with the true solution of the problem.
Which is evident that our obtained solution has strong agree-
ment with exact solution of the problem.

The solutions obtained for singular boundary value prob-
lem given in Equation (30) subjected to boundary conditions
in (31) are cross examined by getting the absolute errors
in our solution. The absolute errors are calculated by using
Equation (25). To prove accuracy of HHO-IPA these absolute
errors are comparedwith some existing in the literature for the
same problem. The absolute errors of the problem are listed
in Table (5) together with the existing absolute errors attained
by finite difference method of order four (4th-FDM) [1] and
compact finite difference method (CFDM) [28]. The com-
parison between our designed scheme and compact finite
difference method (CFDM) proved that HHO-IPA is highly
accurate. Table (5) confirms that the errors in HHO-IPA solu-
tion is smaller in magnitude than the CFDM [28]. Further-
more, the absolute error for m = 16, in HHO-IPA solution is
3.8619E−08, however, for m = 16 CFDM reduced absolute
error about 5.3227E − 07. The accuracy of 10−08 to 10−10

achieved by our proposed scheme based on hundred indepen-
dent runs. For instance, the logarithmic plot of the absolute
errors accomplished by our designed scheme are depicted
in Figure (7b) in form of Minimum absolute error, Mean
absolute error and Maximum absolute error. The graphs of
absolute errors proved that the error is maximum at point iof
singularity i.e. r = 0 and little increases towards the point
of singular point of singularity while the error decrease away
from the point of singularity of the problem and minimum at
i.e. r = 1.
Example 3: Consider the problem arising in the study

of equilibrium of isothermal gas sphere form a nonlinear
boundary value problem:

(r2f ′(r))′ = −r2f 5(r), (34)
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FIGURE 8. The set of trained weights for the unknown parameters of ANNs model for the problem emerges in the study of: (a) Isothermal
explosions (b) Thermal explosion of gas in cylindrical container.

TABLE 5. Absolute errors in the solution obtained by proposed scheme
together with some existing for problem arising in the study of thermal
explosion of gas in cylindrical container.

subjected to boundary conditions

f ′(0) = 0, f (1) =

√
3
4
. (35)

The problem (34) – (35) corresponds to (1) – (2) with

p(r) = r2, g(r, f ) = −f 5(r), µ = 1, η = 0 and ρ =
√

3
4 .

Exact solution for this problem is given as:

f (r) =

√
3

3+ r2

The system in Equation (34) form a singular ordinary
differential equation subjected to boundary conditions (35)
form a nonlinear, singular boundary value problem (SBVP).
We solve problem (34) – (35) using the proposed HHO-IPA
by using ANNs model with in the interval [0 1] by taking
step size h = 0.1. The setting of essential parameter are

tabulated in Tables (1) and (2). The fitness function (FF) given
in Equation (22) for this problem is constructed as:

ε =
1
N

N∑
m=1

(
r2 f̂ ′′m + 2r f̂ ′m + r

2 f̂ 5(r)
)2

+
1
2

(f̂ ′0 − 0
)2
+

(
f̂1 −

√
3
4

)2
 (36)

The formulated fitness function (36) is tuned by using
HHO-IPA and a set of optimized weights is obtained with the
fitness value of 2.4045E − 13. This set of optimized weights
are used for the derivation of solution. These weights are
plotted in Figure (11a) in the form of bar graph and given
in Equation (37).

f̂P3

=



0.6225
1+ e−(−1.2394 r−0.4822)

+
0.5051

1+ e−(−0.1259 r+0.3036)

+
1.2411

1+ e−(−0.2885 r−0.3305)
+

−0.0242
1+ e−(0.8264 r+2.4998)

+
0.3273

1+ e−(−0.5566 r+2.4040)
+

0.3166
1+ e−(−0.2858 r+3.3263)

+
0.0644

1+ e−(−0.6161 r+0.4396)
+

−1.0152
1+ e−(−2.0167 r+1.0621)

+
−0.1052

1+ e−(−3.9905 r+4.9455)
+

−0.1614
1+ e−(2.7049 r−1.1122)

(37)
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The solutions obtained for singular boundary value prob-
lem given in Equation (34) subjected to boundary condi-
tions in (35) are plotted in Figure (9a) along with the true
solution of the problem. The results of our proposed algo-
rithm are cross examined by getting the absolute errors in
our solution. The absolute errors are calculated by using
Equation (25). To prove accuracy of HHO-IPA these abso-
lute errors are compared with some existing in the literature
for the same problem. The absolute errors are presented in
Table (6) along with the existing absolute errors obtained by
the advanced Adomian decomposition method (AADM) [25]
and He’s variational iteration method (HVIM) [58]. Table (6)
confirms that the errors in HHO-IPA solution is smaller in
magnitude than the AADM [25]. The accuracy of 10−06 to
10−08 achieved by our proposed scheme based on hundred
independent runs. The comparison proved that HHO-IPA
is highly accurate than advanced Adomian decomposition
method (AADM) [25] and He’s variational iteration method
(HVIM) [58]. For instance, the logarithmic plot of the abso-
lute errors obtained by the designed scheme are depicted in
Figure (9b) in the terms of Minimum absolute error, Mean
absolute error and Maximum absolute error. Which proved
that the errors are little increases towards the point of sin-
gularity and maximum at point of singularity i.e. r = 0,
and the error decrease away from the point of singularity and
minimum at i.e. r = 1 of the problem.
Example 4: Consider the chemistry problem arising in the

study of steady-state oxygen diffusion in a spherical cell
which forms a nonlinear singular boundary value problem:

(r2f ′(r))′ = r2
c1f (r)

f (r)+ c2
(38)

subjected to boundary conditions:

f ′(0) = 0, νf (1)+ f ′(1) = ν (39)

with c1 > 0, c2 > 0 and ν > 0. Here, ν, c1 and c2 are the
permeability of cell membrane, Michaeli’s constant and the
rate of maximum reaction respectively. Michaeli’s constant
shows the half-saturation concentration. In above system, the
radial distance of spherical cell is represented by r while f
shows the oxygen concentration. This problem have no exact
solution in the literature

The problem in equations (38) and (39) corresponds to (1)
and (2) with p(r) = r2, g(r, f ) = c1f (r)

f (r)+c2
, µ = ν, η = 1 and

ρ = ν. We solve problem (20) –(20) using the proposed
method for the values parameters c1 = 0.76129, c2 =
0.03119 and ν = 5.
The problem in Equation (38) is also a singular ordinary

differential equation subjected to the boundary conditions
in (39) form a nonlinear, singular boundary value problem
(SBVP). We solve problem (38) – (39) using the proposed
HHO-IPA by using ANNs model with in the solution domain
[0 1] by taking the step size of 0.1. The setting of essential
parameter are tabulated in Tables (1) and (2). The fitness
function (FF) (22) is formulated for this nonlinear singular

boundary value problem as following:

ε =
1
N

N∑
m=1

(
r2 f̂ ′′m + 2r f̂ ′m − r

2 c1f (r)
f (r)+ c2

)2

+
1
2

((
f̂ ′0 − 0

)2
+

(
vf̂1 + f̂ ′1 − v

)2)
(40)

where c1 = 0.76129, c2 = 0.03119 and ν = 5.
The formulated fitness function (40) is tuned by using

proposed paradigm namely HHO-IPA, which achieved the
fitness of 1.1080E − 12 and provide us a set of finely
optimized weights. This set of optimized weights are used
for the derivation of solution. These weights are plotted
in Figure (11b) in the form of bar graph and given in
Equation (41).

f̂P4

=



1.2297
1+ e−(0.0921 r+1.2521)

+
0.7327

1+ e−(0.2921 r+0.4506)

+
0.4381

1+ e−(0.2665 r−0.3466)
+

0.5975
1+ e−(−0.5185 r−1.8852)

+
−0.0646

1+ e−(1.8077 r+0.0708)
+

−0.0533
1+ e−(−0.6677 r+0.3339)

+
−1.8355

1+ e−(−1.0745 r+3.1089)
+

2.0651
1+ e−(−1.1057 r−2.3761)

+
0.4174

1+ e−(0.3859 r+0.8609)
+

0.5836
1+ e−(0.3459 r+2.0493)

(41)

The solutions obtained for singular boundary value
problem given in Equation (38) subjected to boundary
conditions in (39) are tabulated in Table (7) together
with some existing solutions approximated by the com-
pact finite difference method (CFDM) [28], advanced Ado-
mian decomposition method (AADM) [25], differential
transform method (DTM) [16], quartic B-spline collocation
method (QBSCM) [59] and improved decomposition method
(IDM) [20]. The designed scheme is highly accurate when
compared to the advanced Adomian decomposition method
(AADM) [25]. The solutions of HHO-IPA are presented in
Figure (10a) by considering radial distance r among the
solution range of [0,1] by considering the step size of 0.1,
i.e., rε[0, 1]. Moreover, the approximate solutions obtained
by our HHO-IPA for c1 = 0.76129, c2 = 0.03119 and
ν = 5 and numerical solution obtained by advance ado-
mian decomposition method are depicted in Figure (10a).
The solution graph of the problem shows that the oxygen
concentration f is monotonically increasing.

The solutions obtained for singular boundary value prob-
lem given in Equation (38) subjected to boundary conditions
in (39) are cross examined by getting the absolute errors
in our solution. The absolute errors are calculated by using
Equation (25). For instance, the absolute errors achieved
by the designed scheme are plotted on logarithmic scale in
Figure (10b) in form of Minimum absolute error, Mean abso-
lute error andMaximum absolute error. The graph of absolute
errors shows that the it is little increases in the direction of the
point of singularity but at that point (singular point) i.e. r = 0,
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FIGURE 9. The comparison of solution and absolute error in the solution obtained by proposed scheme for the problem arising in the study
of equilibrium of isothermal gas sphere.

FIGURE 10. The comparison of solution and absolute error in the solution obtained by proposed scheme for the problem arising in the study of
steady-state oxygen diffusion in a spherical cell.

the absolute error is dramatically falls to zero and the error
decrease away from the point of singularity and minimum at
i.e. r = 1.

VI. STATISTICAL ANALYSIS
This section of the paper consist the comparative study of
our results obtained through proposed algorithm HHO-IPA.
The performance ofHHO-IPA is proved through performance
indicators to proved the accuracy, consistency, efficiency and
reliability of our soft computing scheme. The results obtained
from HHO-IPA are analyzed through indices like Fitness
(FIT), Mean Absolute Deviation (MAD), Theil’s inequality
coefficient (TIC), Error in Nash–Sutcliffe Efficiency (ENSE)
and Root Mean Square Error (RMSE). These indicators pro-
vide confirmation of the accuracy, consistency, efficiency and
reliability of our soft computing scheme. The mathematical

formulation of FIT, MAD, ENSE, RMSE and TIC for sin-
gular boundary value problems arising in physiology are
listed in equations (22), (42), (43), (44), (45) respectively as
following:

MAD =
1
N

N∑
m=1

(
|f̂ (rm)− f (rm)|

)
, (42)

RMSE =

√√√√ 1
N

N∑
m=1

(
f̂ (rm)− f (rm)

)2
, (43)

ENSE = |1− NSE| (44)

where

NSE = 1−

( ∑N
m=1(f̂ (rm)− f (rm))

2∑N
m=1(f (rm)−

1
N

∑N
m=1(f (rm)))2

)
,

VOLUME 10, 2022 21993



J. Guo et al.: Novel Neuroevolutionary Paradigm for Solving Strongly Nonlinear SBVPs in Physiology

TABLE 6. Absolute errors in the solution obtained by proposed scheme together with some existing for problem arising in the study of equilibrium of
isothermal gas sphere.

FIGURE 11. The set of trained weights for the unknown parameters of ANNs model for the problem emerges in the study of: (a)
Equilibrium of isothermal gas sphere (b) Steady-state oxygen diffusion in a spherical cell.

TIC =

√
1
N

∑N
m=1(f̂ (rm)− f (rm))2√

1
N

∑N
m=1(f̂ (rm)2 +

√
1
N

∑N
m=1(f (rm))2

, (45)

in above equations f̂ (rm) represents the results of HHO-IPA
while f (rm) are numerical/exact solution of under consid-
eration problem. The total number of solution points and
the number of current solution point is represented by the
parameter N and m respectively.

The statistical observation of the results of HHO-IPA
for hundred independent runs are performed through

performance indicators FIT, MAD, RMSE, ENSE and TIC.
The results of performance indicators FIT, MAD, RMSE,
ENSE and TIC for example-1 and example-2 are graphically
illustrated in the form of histogram with normal distribu-
tion in Figures (12), (14), (16), (18) and (20) respectively
while the graphs for example-3 and example-4 are shown
respectively in Figures (13), (15), (17), (19) and (21). All the
outcomes tabulated in the term of Mean and standard devia-
tion (STD) in table (8). In addition to prove the consistency
and stability of proposed scheme the results of performance
indicators are plotted on semi-log scale in the form of bar
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TABLE 7. The solution obtained by proposed scheme together with the some existing solutions of the problem arising in the study of steady-state oxygen
diffusion in a spherical cell.

FIGURE 12. The graphical illustration of the outcomes of fitness values for hundred runs of (a) Example-1 (b) Example-2.

FIGURE 13. The graphical illustration of the outcomes of fitness values for hundred runs of (a) Example-3 (b) Example-4.

graph in term of Best, Mean and worst result for example-1,
example-2, example-3 and example-4 respectively in
Figures (22a), (22b), (23a) and (23b).

This performance measurement is further extend by
finding the values of global performance indices like
global Fitness (GbFIT), global mean absolute deviation
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FIGURE 14. The graphical illustration of the outcomes of MAD for hundred runs of (a) Example-1 (b) Example-2.

FIGURE 15. The graphical illustration of the outcomes of MAD for hundred runs of (a) Example-3 (b) Example-4.

FIGURE 16. The graphical illustration of the outcomes of RMSE for hundred runs of (a) Example-1 (b) Example-2.

(GbMAD), global root mean square error (GbRMSE), global
error in nash–sutcliffe efficiency (GbENSE) and global
Theil’s inequality coefficient (GbTIC). The mathematical

formulation of GbFIT, GbMAD, GbENSE, GbRMSE and
GbTIC for singular boundary value problems arising in phys-
iology are listed in equations (46), (47), (48), (49) and (50),
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FIGURE 17. The graphical illustration of the outcomes of RMSE for hundred runs of (a) Example-3 (b) Example-4.

FIGURE 18. The graphical illustration of the outcomes of ENSE for hundred runs of (a) Example-1 (b) Example-2.

respectively as following:

GbFIT =
1
Rn

Rn∑
n=1

(εn), (46)

GbMAD =
1
Rn

Rn∑
n=1

(
1
N

N∑
m=1

(
|f̂ (rm)− f (rm)|

))
, (47)

GbRMSE =
1
Rn

Rn∑
n=1


√√√√ 1
N

N∑
m=1

(
f̂ (rm)− f (rm)

)2, (48)

GbENSE =
1
Rn

Rn∑
n=1

(|1− NSE|) (49)

where

NSE = 1−

( ∑N
m=1(f̂ (rm)− f (rm))

2∑N
m=1(f (rm)−

1
N

∑N
m=1(f (rm)))2

)
,

GbTIC =
1
Rn

Rn∑
n=1

×


√

1
N

∑N
m=1(f̂ (rm)− f (rm))2√

1
N

∑N
m=1(f̂ (rm)2 +

√
1
N

∑N
m=1(f (rm))2

,
(50)

in above listed equations, Rn represents total numbers of
executed runs, n is current number of run, m is the current
solution point, εn is objective value of nth experiment and
N is shows the total solution points of the problem. The
term f̂ (rm) in the above systems represent the approximate
solution obtained by using HHO-IPA while the term f (rm) is
exact/standard solution of the given problem.

The results of global performance indicators obtained by
considering input between rε[0, 1] by taking the step size
of 0.1. In present case the values of parameters Rn and N
are taken 100 and 11 respectively. The results of global
performance indicators, i.e., GbTIC, GbRMSE, GbMAD,
GbENSE and GbFIT are tabulated in table (9) in the form
of standard deviation (STD) and Mean. Additionally it is
clear from the table that the global performance indicators
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FIGURE 19. The graphical illustration of the outcomes of ENSE for hundred runs of (a) Example-3 (b) Example-4.

FIGURE 20. The graphical illustration of the outcomes of TIC for hundred runs of (a) Example-1 (b) Example-2.

FIGURE 21. The graphical illustration of the outcomes of TIC for hundred runs of (a) Example-3 (b) Example-4.

has less values, which proved the consistency and accuracy
of proposed algorithm for the solution of nonlinear singular
boundary value problem considered in this research article.

The consistency of proposed algorithm is further analyzed
by performing the computational complexity analysis (CCA)
test of the results. CCA is implemented for the results
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TABLE 8. The results of convergence complexity for designed scheme on the basis of performance indices for four different problems considered in this
research.

FIGURE 22. The statistical analysis of performance indices of the problem in: (a) Example-1 (b) Example-2.

FIGURE 23. The statistical analysis of performance indices of the problem in: (a) Example-3 (b) Example-4.

obtained from hundred independent runs of the designed
technique. The experimental results of CCA are based on
population creation, function evaluation and average time
consumed by our algorithm for the training of unknown
factors of designed model of artificial neural networks. The
outcomes are tabulated in table (10) in the terms of mean
and standard deviation (STD) for all problem. Table (10)
shows that the values of population creation for problem-1,

problem-2, problem-3 and problem-4 are about 1943, 1856,
1674 and 1745 respectively, the number of function evalua-
tions are 102145, 100547, 111004 and 114037 for problem-1,
problem-2, problem-3 and problem-4 respectively and the
mean consumed time for the training of unknown factors
of designed model of artificial neural networks is about 53,
52, 53 and 55 for problem-1, problem-2, problem-3 and
problem-4 respectively.

VOLUME 10, 2022 21999



J. Guo et al.: Novel Neuroevolutionary Paradigm for Solving Strongly Nonlinear SBVPs in Physiology

TABLE 9. The results of convergence complexity for designed scheme on the basis of global performance indices for four different problems considered
in this research.

TABLE 10. The results of computational complexity analysis for four different problems considered in this research.

The computational work like evaluations, calculation
and plotting of graphs for this research paper are per-
formed by using HP Laptop model AMD A4-4300 APU
with Radeon(TM). The key specification are HD Graphics,
installed memory 7.20 GB (usable) RAM, CPU@2.50 GHz,
64 bit operating system, ×64 based Processor, in ˙2021
Microsoft corporation Windows 10r professional edition
running R2015a version of MATLAB.

VII. CONCLUSION
In this research, we have developed an intelligent soft
computing technique, namely, the HHO-IPA algorithm.
To validate the efficiency and application of our algorithm,
we have analyzed a problem involving nonlinear and singular
differential equations that have applications in physiology.
Four different problems are considered in this paper. Our
experimental outcome shows that artificial neural networks
based HHO-IPA procedure is capable of solving nonlinear
and singular differential equations modeling real-life issues.
Below, we present key advances/ contributions in this paper,
• We have constructed a generalized series solution using
feed-forward artificial neural networks architecture.

• An error function is suggested for the problem
considered in this paper. We have developed a hybrid
optimization technique by combining Harris Hawks
Optimizer and Interior Point Algorithm to minimize the
error function.

• The detailed steps of our proposed scheme are presented
in the table (3).

• From tables (4) and (6), it is obvious that our approach
improves the quality of the solution.

• From table (5), it is clear that by increasing the total
number of solution points, the quality of the solution is
improved by our designed scheme.

• Table (7) evident that the solution obtained by our
approach is much better than other methods in the lit-
erature.

• Performance indicators are used to show the quality of
solutions, efficiency, and reliability of our algorithm.
We have calculated values of FIT, MAD, RMSE, ENSE,
TIC, GbFIT, GbMAD, GbRMSE, GbENSE and GbTIC,
see tables (8) and (9).

• Computational complexity is measured through statis-
tical values, success rates, population sizes, function
evaluations, and time taken (see tables (10).

It is established that the neural networks-based HHO-IPA
algorithm is a strong candidate as a solver for problems
involving singularity and nonlinearity.
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