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ABSTRACT This paper is concerned with the finite time annular domain robust stability (FTADRS)
analysis and controller design for T-S fuzzy positive systems with interval uncertainties. The concept of
finite time annular domain stability is first introduced for positive systems. Based on this and using the
copositive Lyapunov function approach, some sufficient conditions for FTADRS are derived. Subsequently,
the finite time annular domain robust controller is designed via the linear programming technique. Finally,
two numerical examples and an application example are employed to show the effectiveness of our results.

INDEX TERMS Finite-time annular domain robust stability, T-S fuzzy positive systems, interval uncertain-
ties, copositive Lyapunov function, linear programming.

I. INTRODUCTION
Positive systems, whose states always remain in the nonneg-
ative orthant if its initial states and inputs are nonnegative,
find wide applications in real-world life such as the pest
natural enemy system based on the Lotka-Volterra model [1],
the DC-DC buck converter [2], and the immune-tumor sys-
tem [3]. As a result, positive systems have attracted con-
siderable attentions in recent years, and many significant
results have been reported in the literatures. Tomention a few,
stability problems were discussed in [4]–[7], the controller
design issues were considered in [8]–[10], and the filtering
problem was addressed in [11], [12]. It should be noted
that the existing researches on positive systems are mainly
concerned with the case of linear systems. Actually, most of
positive systems possess more or less some nonlinear charac-
teristics. For example, the energy converter system [2] and the
tumor-immune system [3] do belong to the scope of nonlinear
positive systems. Besides, in the real world, most of positive
systems contain uncertainties, hence robustness issues should
be concerned in the system analysis and synthesis.

In order to guarantee that system states do not exceed a
specific upper limit in finite time, the concept of finite time
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stability (FTS) is proposed, and many important results have
been reported [13]–[17]. However, in some special cases,
it requires that system states do not only exceed a specific
upper bound, but also do not fall below a specific lower
bound in finite time. For example, it is always needed to take
multiple medical measures for diabetes patients to keep their
blood sugar levels within a safe range(i.e., 70-180 mg/dL)
[18], [19]. If the blood glucose concentration is not in this
range, it will lead to a series of serious complications and even
death. To characterize the above dynamic behavior, a new
FTS concept is proposed by Yan [20], which requires the
states to be maintained in a given region with both upper and
lower bounds in finite time. Such the new FTS concept is
also referred to as the finite time annular domain stability
(FTADS). Unlike the traditional FTS, the lower bound of
system states is also constrained to a specific level in the def-
inition of FTADS. Hence, new constraints need to be added
to ensure that the system states do not fall below the lower
bound, which often leads to difficulty in FTADS analysis and
control synthesis. The concept of FTADS was first proposed
for stochastic systems, and now it has been extended to
several types of dynamic systems, such as stochastic Markov
jump systems [21], [22], stochastic systems with Wiener and
Poisson noises [23], [24], impulsive switched systems [25]
and networked switched systems [26]. In fact, FTADS is
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also of great research significance for positive systems. For
example, in the above-mentioned glucose-regulatory system,
the blood sugar levels of diabetes patients are positive and
must be maintained between 70-180 mg/dL [18], [19], and in
the blood circulation system, the systolic blood pressure of
a normal person is positive and must be maintained between
90-130mmHg. However, to the best of our knowledge, there
is no result on the FTADS analysis and control synthesis
of positive systems. So, it is desirable to further extend the
concept of FTADS to positive systems. It should be noted that
in the design of controllers, in order to ensure the positivity of
closed-loop systems, new constraints need to be added. This
will make it more difficult to deal with the nonlinear terms.
Besides, nonlinear and uncertainty factors are also considered
in system model, which make the traditional FTADS analysis
approaches cannot be directly applied. Hence, developing
new methods on the FTADS analysis and control synthesis
of nonlinear positive uncertain systems is imperative, which
motivates us to conduct this work.

Note that the T-S fuzzymodel is a powerful tool to approxi-
mate complex nonlinear systems, and T-S fuzzy model-based
methods have been widely used to analyze kinds of nonlinear
systems, see, e.g., [27]–[30] and the references therein. As a
result, the T-S model has also been employed to investigate
nonlinear positive systems, and some significant results have
been obtained, see for example, [31]–[40]. Among them,
asymptotic/exponential stability/stabilization issues are the
main concerns, e.g., [31]–[38], and only a few works consid-
ered the FTS issue, e.g., [39], [40]. Therefore, numerous suc-
cessful applications of T-S fuzzy model-based methodology
motivate us to employ the T-S model as a vehicle to analyze
the FTADS of nonlinear positive systems.

In this paper, a new concept of FTADS is proposed for pos-
itive systems, and the FTADRS analysis and controller design
for T-S fuzzy positive systems with interval uncertainties are
respectively considered. The main contributions of the paper
are highlighted as follows: 1) Different from the previous
works on FTADS [20]–[26], the positivity of the system is
considered, i.e., system states are always constrained in the
nonnegative orthant. Besides, model uncertainty and nonlin-
ear characteristics are also considered. Hence, the system
model in this paper is more complex than [20]–[26]. 2) For
positive systems, a new definition of FTADS is proposed.
Compared with the traditional FTS definition of positive
systems in [15], the lower bound of system states is fully
considered in the new definition. Hence, our definition in
this paper is more comprehensive. 3) By using copositive
Lyapunov functions, the FTADS condition is established for
T-S fuzzy positive systems with interval uncertainties. More-
over, the stabilization condition by state feedback controller
is obtained. When the lower bound is 0 (i.e., ξ1 = ξ3 = 0),
the obtained conditions reduce to the traditional FTS form.
Hence, our method is more general than those in [15].

The rest of this paper is organized as follows: Section II
introduces some definitions and preliminaries. A sufficient
condition of FTADRS is given in Section III. Section IV is

devoted to state feedback controllers design. Two numerical
examples and an application example are given in Section V.
Section VI is the conclusion of this paper.
Notations: 1 denotes a column vector with all 1 elements.

A ∈M: all elements of matrix A are nonnegative except its
diagonal elements. A � 0 (A � 0): all elements of matrix
or vector A are nonnegative (positive). b = dae: b is an
integer and satisfies that a ≤ b < a + 1. The ‘‘w.r.t.’’ is
an abbreviation of ‘‘with respect to’’.

II. PRELIMINARIES AND PROBLEM FORMULATION
Consider the following T-S fuzzy system with interval
uncertainties:

Rule i : IF ϑ1(t) is Mi1, ϑ2(t) is Mi2 and · · · and ϑl(t) is
Mil , THEN

ẋ(t) = Aix(t)+ Biu(t), (1)

where x(t) ∈ Rn is the state of the system; u(t) ∈ Rs is the
input of the system; ϑi(t) are the known premise variables
and Mij (i = 1, 2, · · · , r, r is the number of model rules, j =
1, 2, · · · , l, l is the number of premise variables) is fuzzy set,
respectively. Ai ∈ Rn×n, Bi ∈ Rn×s are uncertain system
matrices, but with known bounds, i.e.,

Ai � Ai � Ai, (2)

Bi � Bi � Bi, (3)

where Ai,Bi and Ai,Bi are the upper and lower bound matri-
ces of Ai,Bi. By fuzzy blending, we can obtain the following
overall T-S fuzzy model:

ẋ(t) =
r∑
i=1

hi(ϑ(t))(Aix(t)+ Biu(t)), (4)

where ϑT (t) = [ϑ1(t), ϑ2(t), . . . , ϑp(t)]; hi(ϑ(t)) are the
membership functions with satisfying

hi(ϑ(t)) ≥ 0,
r∑
i=1

hi(ϑ(t)) = 1. (5)

Definition 1 [41]: System (4) is positive if, for any input
u(t) � 0 and x0 � 0, x(t) � 0 holds for all t > 0.
Lemma 1 [42]: System (4) is said to be positive, if Ai are

M matrices and Bi � 0.
Lemma 2: System (4) is said to be positive, if Ai are M

matrices and Bi � 0.
proof: Since Ai are M matrices, its off-diagonal elements

are all nonnegative. In view of Ai � Ai, it can be check that
all off-diagonal elements of Ai are nonnegative, i.e., Ai are
M matrices. Inequality (3) implies that Bi � Bi � 0. Hence,
by Lemma 1, system (4) is positive. �
Lemma 3 [43]: If there is a constant$ > 0 and a matrix

A satisfying A+$ I � 0, then A ∈M.
Definition 2: For given positive scalars ξ1, ξ2, ξ3, ξ4,T

with ξ2 > ξ4 > ξ3 > ξ1 ≥ 0, and a vectorR � 0, if

ξ3 ≤ xT0 R ≤ ξ4 ⇒ ξ1 < xT (t)R < ξ2, ∀t ∈ [0,T ],

then positive system (4) is FTADS w.r.t. (ξ1, ξ2, ξ3, ξ4,T ,R).
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Remark 1: The FTADS concept is originally developed for
linear stochastic systems by Yan et al. in [20]. Definition 2 is
a natural extension of the original FTADS and implies that
the trajectory of xT (t)R starting from [ξ3, ξ4] cannot escape
[ξ1, ξ2]. Different from previous definition of FTADS, the non-
negative characteristics of states are fully taken into account
in Definition 2 and the selection ofR changes from matrix to
vector. Based on this new definition, the copositive Lyapunov
function can be selected and the conditions of FTADS analy-
sis and controller design in the form of linear programming
are obtained, which can be solved by the linear programming
technique.
Remark 2: It should be noted that Definition 2 reduces

to the traditional FTS form associated with positive systems
when ξ1 = ξ3 = 0, see, e.g., [15]. Hence, our Definition 2
is more flexible than the traditional FTS, and thus can poten-
tially derive more general results.
Lemma 4 [20]: If there exist a nonnegative function g(t)

and nonnegative constants a, b such that

g(t) ≤ a+ b

∫ t

0
g(s)ds, ∀t ∈ [0,T ]

holds, then

g(t) ≤ aebt , ∀t ∈ [0,T ].

Lemma 5 [20]: If there exist a nonnegative function g(t)
and nonnegative constants a, b such that

g(t) ≥ a+ b

∫ t

0
g(s)ds, ∀t ∈ [0,T ]

holds, then

g(t) ≥ aebt , ∀t ∈ [0,T ].

III. FINITE-TIME ANNULAR DOMAIN ROBUST
STABILITY ANALYSIS
In this section, a sufficient condition is given to test the
FTADRS of positive system (4) when u(t) = 0.
Theorem 1: For constants α > 0, β ≥ 0, ξ2 > ξ4 > ξ3 ≥

ξ1 ≥ 0, and a vector R � 0 with ξ4 ≥ xT0 R ≥ ξ3, if there
exist a vector P � 0 and positive constants ω1, ω2 such that

A
T
i P − αP ≺ 0, (6)

βP − ATi P ≺ 0, (7)

ω1R− P ≺ 0, (8)

P − ω2R ≺ 0, (9)

ξ4ω2 − ξ2ω1e−αT < 0, (10)

ξ1ω2− ξ3ω1 < 0, (11)

hold, then system (4) is FTADRS w.r.t. (ξ1, ξ2, ξ3, ξ4,T ,R).
Proof:We use two steps to prove Theorem 1.
Step 1: xT0 R ≤ ξ4 ⇒ xT (t)R < ξ2.
Consider the following copositive Lyapunov function:

V (x(t)) = xT (t)P, P � 0. (12)

By (6), we can obtain

V̇ (x(t))− αV (x(t)) = xT (t)
r∑
i=1

hi(ϑ(t))ATi P

−αxT (t)P

= xT (t)
r∑
i=1

hi(ϑ(t))(ATi P − αP)

≤ xT (t)
r∑
i=1

hi(ϑ(t))(A
T
i P − αP)

< 0. (13)

Multiplying both sides of (13) by e−αt and integrating from
0 to t , one has

V (x(t)) < V (x(0))+ α
∫ t

0
V (x(s))ds

By Lemma 4, we have:

V (x(t)) < V (x(0))eαt , ∀t ∈ [0,T ]. (14)

Considering (8) and (9), one has

ω1xT (t)R < xT (t)P < ω2xT (t)R, ∀t ∈ [0,T ]. (15)

By (12) and (15), the following inequality holds:

V (x(0))eαt = xT0 Pe
αt < ω2xT0 Re

αT (16)

Considering (14)-(16), we have

xT (t)R <
ω2

ω1
xT0 Re

αT

and
ω2

ω1
ξ4eαT < ξ2, ∀t ∈ [0,T ]. (17)

Then, by the fact of xT0 R ≤ ξ4, one has xT (t)R < ξ2,
∀t ∈ [0,T ].
Step 2: ξ3 ≤ xT0 R⇒ ξ1 < xT (t)R.
By (7), we have

V̇ (x(t))− βV (x(t)) = xT (t)
r∑
i=1

hi(ϑ(t))ATi P

−βxT (t)P

= xT (t)
r∑
i=1

hi(ϑ(t))(ATi P − βP)

≥ xT (t)
r∑
i=1

hi(ϑ(t))(ATi P − βP)

> 0. (18)

Multiplying both sides of (18) by e−βt and integrating from
0 to t , one has

V (x(t)) > V (x(0))+ β
∫ t

0
V (x(s))ds. (19)

According to Lemma 5, we can obtain:

V (x(t)) > V (x(0))eβt . (20)
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By (12) and (15), one has

V (x(0))eβt = xT0 Pe
βt > ω1xT0 R. (21)

Considering (11) (15) (20) and (21), we have

ξ1 < ξ3
ω1

ω2

and

xT0 R
ω1

ω2
< xT (t)R, ∀t ∈ [0,T ]. (22)

Then, by the fact of xT0 R ≥ ξ3, one has xT (t)R > ξ1,
∀t ∈ [0,T ].
Hence, combining the above two steps, we obtain that

ξ3 ≤ xT0 R ≤ ξ4 ⇒ ξ1 < xT (t)R < ξ2, ∀t ∈ [0,T ].

By Definition 2, system (4) is FTADRS w.r.t. (ξ1, ξ2, ξ3,
ξ4,T ,R). �
Remark 3: It should be noted that the values of α and β

may have an effect on the feasibility of the FTADRS criterion
(i.e., Theorem 1). Therefore, the values of α and β must be
appropriately selected. Considering (2) and (6)-(7), we have
βP ≺ ATi P ≺ A

T
i P ≺ αP . Then, by (10) and (11), 0 ≤ β <

α < 1
T ln

ξ2ξ3
ξ1ξ4

is obtain. In other words, the values of α and β

are always limited in [0, 1
T ln

ξ2ξ3
ξ1ξ4

).
Remark 4: To calculate a more accurate feasible range of

α and β, a grid search algorithm is designed as shown in
Figure 1. In Figure 1, α1 and β1 are the initial values of α
and β, and they can be set as zeros. l1 and l2 are the given
step sizes. n and m are the maximum numbers of iterations

respectively for α and β, and they can be set as n = d
ln ξ2ξ3
ξ1ξ4
Tl1
e

and m = d
ln ξ2ξ3
ξ1ξ4
Tl2
e according to Remark 3.

When Ai and Bi are known matrices (i.e., without con-
sidering uncertainties), Theorem 1 reduces to the following
corollary.
Corollary 1: For constants α > 0, β ≥ 0, β ≥ 0, ξ2 >

ξ4 > ξ3 ≥ ξ1 ≥ 0, and a vectorR � 0 with ξ4 ≥ xT0 R ≥ ξ3,
if there exist a vector P � 0 and positive constants ω1, ω2
such that (8)-(11) and the following inequalities hold:

ATi P − αP ≺ 0, (23)

βP − ATi P ≺ 0, (24)

then system (4) is FTADS w.r.t. (ξ1, ξ2, ξ3, ξ4,T ,R).
Proof: Letting Ai = Ai, inequalities (6) and (7) immedi-

ately reduce to (23) and (24). �
Especially in the absence of uncertainties and ξ1 = ξ3 = 0,

Theorem 1 reduces to the traditional FTS criterion, i.e., the
following Corollary 2.
Corollary 2: For positive constants α, ξ2 > ξ4 > 0, and

a vector R � 0 with ξ4 ≥ xT0 R, if there exist a vector P �
0 and positive constants ω1, ω2 such that (8)-(10) and (23)
hold, then system (4) is FTS w.r.t. (ξ2, ξ4,T ,R).
Proof: Letting Ai = Ai and referring to the proof process

of Step 1 in Theorem 1, we get that

xT0 R ≤ ξ4 ⇒ xT (t)R < ξ2, ∀t ∈ [0,T ].

Then, positive system (4) is FTS w.r.t. (ξ2, ξ4,T ,R) �

FIGURE 1. An algorithm to obtain the feasible region of α and β.

IV. CONTROLLER DESIGN
In this section, based on the above stability result, a state
feedback controller is designed for positive system (4).

Consider the following state feedback controller:

u(t) =
r∑
j=1

hj(ϑ(t))Kjx(t),

where Kj ∈ Rs×n. Then, the closed-loop system is obtained
as follow:

ẋ(t) =
r∑
i=1

r∑
j=1

hi(ϑ(t))hj(ϑ(t))(Ai + BiKj)x(t), (25)

The controller gain matrices Kj can be obtained by the
following theorem.
Theorem 2: For constants α > 0, β ≥ 0, ξ2 > ξ4 >

ξ3 ≥ ξ1 ≥ 0, and a vector R � 0 with ξ4 ≥ xT0 R ≥ ξ3,
if there exist positive constants ω1, ω2, h, vectors P � 0, Oij,
Nij and matrices Qj � 0 such that (8)-(11) and the following
inequalities hold:

A
T
i P − αP + Oij ≺ 0, (26)

βP − ATi P − Nij ≺ 0, (27)
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QTj B
T
i − Oij1

TBTj � 0, (28)

Nij1TBTj − Q
T
j B

T
i � 0, (29)

(1TBTj P)Ai + BiQj + hI � 0, (30)

then closed-loop system (25) is positive and FTADRS w.r.t.
(ξ1, ξ2, ξ3, ξ4,T ,R).
In this case, the controller gain matrices can be obtained

as:

Kj =
Qj

1TBTj P
. (31)

Proof: Considering (30), we have

Ai + BiKj +
h

1TBTj P
I � 0. (32)

Then, by Lemma 3, Ai + BiKj areM matrices. With the fact
that Qj � 0, we obtain

Ai + BiKj � Ai + BiKj.

Hence, by Lemma 2, it is easy to prove that system (25) is
positive.

It follows from (28) and (29) that

KT
j B

T
i P � Oij (33)

and

KT
j B

T
i P � Nij. (34)

By (33) and (34), one has

Nij � KT
j B

T
i P � Oij. (35)

Inequalities (26) (27) and (35) imply that

(Ai + BiKj)TP − αP � A
T
i P − αP + Oij ≺ 0 (36)

and

βP − (Ai + BiKj)TP � βP − ATi P − Nij ≺ 0. (37)

By (36) and (37), one has V̇ (x(t)) − αV (x(t)) < 0 and
V̇ (x(t))−βV (x(t)) > 0. Then, according to the proof process
of (13) - (17) and (18) - (22) in Theorem 1, we can obtain that

ξ3 ≤ xT0 R ≤ ξ4 ⇒ ξ1 < xT (t)R < ξ2, ∀t ∈ [0,T ].

By Definition 2, the closed-loop system (25) is FTADRS
w.r.t. (ξ1, ξ2, ξ3, ξ4,T ,R). �
Remark 5: In Theorem 2, we assume that Qj � 0, which

leads to the designed controller Kj � 0. If this assumption is
not satisfied, inequalities (30)-(35) are not necessarily true,
which will bring great difficulties to the controller design
for the closed-loop system (25). It should be noted that if
the uncertainties are not considered, this assumption can be
removed, see e.g., Corollary 3. The controller design problem
of symbolic indefinite Qj has not been solved and needs
further research.

Especially in the absence of uncertainties, Theorem 2
reduces to the following form.

FIGURE 2. The xT (t)R of open loop system in Example 1.

Corollary 3: For constants α > 0, β ≥ 0, ξ2 > ξ4 > ξ3 ≥

ξ1 ≥ 0, and a vector R � 0 with ξ4 ≥ xT0 R ≥ ξ3, if there
exist positive constants ω1, ω2, h, vectors P � 0, Oij, Nij and
matrices Qj such that (8)-(11) and the following inequalities
hold:

ATi P − αP + Oij ≺ 0, (38)

βP − ATi P − Nij ≺ 0, (39)

QTj B
T
i − Oij1

TBTj � 0, (40)

Nij1TBTj − Q
T
j B

T
i � 0, (41)

(1TBTj P)Ai + BiQj + hI � 0, (42)

then closed-loop system (25) is positive and FTADS w.r.t.
(ξ1, ξ2, ξ3, ξ4,T ,R).
In this case, controller gain matrices can be obtained as:

Kj =
Qj

1TBTj P
. (43)

Proof; Letting Ai = Ai and Bi = Bi, inequalities (26)-(30)
reduce to (38)-(42). Then, Corollary 3 can be obtained by
Theorem 2. �
In particular, in the absence of uncertainties and ξ1 = ξ3 =

0, Theorem 2 reduces to the following corollary.
Corollary 4: For positive constants α, ξ2 > ξ4 > 0, and a

vectorR � 0 with ξ4 ≥ xT0 R, if there exist positive constants
ω1, ω2, h, vectors P � 0, Oij and matrices Qj such that
(8)-(10) (38) (40) and (42) hold, then closed-loop system (25)
is positive and FTS w.r.t. (ξ2, ξ4,T ,R).
In this case, Kj can also be obtained by (43).
Proof: Letting Ai = Ai, Bi = Bi and referring to (32),

we obtain that the closed-loop system (25) is positive.
By (33) and (36), we have V̇ (x(t))− αV (x(t)) < 0. Then,

similar to the proof process of Step 1 in Theorem 1, the
closed-loop system (25) is FTS w.r.t. (ξ2, ξ4,T ,R). �

V. EXAMPLES
In this section, we use two numerical examples and an appli-
cation example to illustrate the above results.
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FIGURE 3. A feasible region of α and β in Example 1.

A. EXAMPLE 1
Consider system (4) with

A1 =
[
−1.2 2.8
1.3 −0.7

]
, A2 =

[
−1.3 2.5
1 −0.8

]
,

A1 =
[
−1.2 3
1.3 −0.6

]
, A2 =

[
−1 2.5
1 −0.7

]
,

h1(ϑ(t)) = 1− cos2x1(t), h2(ϑ(t)) = cos2x1(t). (44)

By Lemma 2, it is easy to prove that system (44) is positive.
Given ξ1 = 5, ξ2 = 30, ξ3 = 9, ξ4 = 11,T = 0.8, R =
[1, 2]T and x0 = [4, 3]T , then we obtain the trajectory of
xT (t)R, as shown in Figure 2. From Figure 2, we can find
that the xT (t)R of system (Ai) is not lower than ξ1 and the
xT (t)R of system (Ai) is not higher than ξ2. Hence, positive
system (44) is FTADRS w.r.t. (5, 30, 9, 11, 0.8, [1, 2]T ).

By using the algorithm in Figure 1, we obtain a feasible
region of α and β, as shown in Figure 3. According to the
region, selecting α = 1.1, β = 0.2 and solving inequalities
(6)-(11), we obtain ω1 = 82.0003 > 0, ω2 = 92.7252 > 0
andP = [92.7185, 164.0176]T � 0. This coincides with the
simulation result.

B. EXAMPLE 2
Consider system (4) with

A1 =
[
−1.2 2.9
1.3 −0.7

]
, A2 =

[
−1.2 2.4
1 −0.8

]
,

A1 =
[
−1.2 3
1.3 −0.6

]
, A2 =

[
−1 2.5
1 −0.7

]
,

B1 =
[
1.4
0.8

]
, B2 =

[
0.85
0.3

]
,

B1 =
[
1.5
0.8

]
, B2 =

[
1
0.4

]
,

h1(ϑ(t)) = 1− cos2x1(t), h2(ϑ(t)) = cos2x1(t). (45)

By Lemma 2, it is easy to prove that system (45) is positive.
Let ξ1 = 5, ξ2 = 50, ξ3 = 9.5, ξ4 = 12,T = 2,R =
[1.3, 2.4]T and x0 = [3.5, 2.5]T . The trajectory of xT (t)R

FIGURE 4. The xT (t)R of open loop system in Example 2.

for system (45) with open loop is shown in Figure 4. From
Figure 4, we can see that system (45) is not FTADRS w.r.t.
(5, 50, 9.5, 12, , 2, [1.3, 2.4]T ). Next, we design a FTADRS
controller for system (45).

By the algorithm in Figure 1, we obtain a feasible region of
α and β, as shown in Figure 5. Choosing α = 0.6, β = 0.1
and solving (8)-(11) and (26)-(30), we get

P =
[
94.3293
166.8417

]
, Q1 =

[
−56.9199 − 100.2082

]
,

Q2 =
[
−31.3406− 51.3405

]
, ω1 = 65.2718,

ω2 = 78.1349.

Then, the controller gain matrices are obtained as:

K1 =
Q1

1TBT1P
=
[
−0.2144 −0.3774

]
,

K2 =
Q2

1TBT2P
=
[
−0.2407 −0.3942

]
. (46)

By Lemma 2, it can be easily verified that the closed-
loop system is positive. Figure 6 shows the trajectory of
xT (t)R for (45) under the designed controller (46), from
which we can see that the closed-loop system is FTADRS
w.r.t. (5, 50, 9.5, 12, 2, [2.3, 2.4]T ).

C. EXAMPLE 3
Consider the following pest-natural enemy system based on
the Lotka-Volterra model [1]:{

ẋ1(t) = x1(t)(ρ1 − ρ2x2(t))+ u(t),
ẋ2(t) = x2(t)(ρ3x1(t)− ρ4),

(47)

where x1(t) and x2(t) are the population densities of insect
pest and natural enemy. ρ1, ρ2, ρ3 and ρ4 are all positive
parameters, and one may refer to [1] for more details.

For the convenience of stability analysis and controller
design, we establish a T-S fuzzy model for system (47).
Let premise variable ϑ(t) , x2(t), and define xT (t) ,
[x1(t), x2(t)], ϑmax , max{x2(t)} and ϑmin , min{x2(t)}.
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FIGURE 5. The feasible region of α and β in Example 2.

FIGURE 6. The xT (t)R of closed-loop system under state feedback
controller in Example 2.

Then, system (47) can be approximated by a T-S model with
three rules:

IF ϑ(t) is ϑmin, THEN

ẋ(t) = A1x(t)+ B1u(t).

IF ϑ(t) is ϑmax+ϑmin2 , THEN

ẋ(t) = A2x(t)+ B2u(t),

IF ϑ(t) is ϑmax , THEN

ẋ(t) = A3x(t)+ B3u(t),

where

A1 =
[
ρ1 − ρ2ϑmin 0
ρ3ϑmin −ρ4

]
,

A2 =
[
ρ1 − ρ2

ϑmax+ϑmin
2 0

ρ3
ϑmax+ϑmin

2 −ρ4

]
,

A3 =
[
ρ1 − ρ2ϑmax 0
ρ3ϑmax −ρ4

]
,

Bi =
[
1
0

]
, i = 1, 2, 3.

FIGURE 7. The xT (t)R of open loop system (47) in Example 3.

Selecting the following membership functions: h1(ϑ(t)) =
max{1− 2

ϑmax+ϑmin
x2(t), 0}, h3(ϑ(t)) = max{ 2

ϑmax+ϑmin
x2(t)−

1, 0}, h2(ϑ(t)) = 1−h1(ϑ(t))−h3(ϑ(t)), the overall T-S fuzzy
model can be written as:

ẋ(t) =
3∑
i=1

hi(ϑ(t))(Aix(t)+ Biu(t)). (48)

Let ρ1 = 4.9, ρ2 = 1.9, ρ3 = 0.11, ρ4 = 0.21, ϑmin = 0,
ϑmax = 10 and x0 = [1, 2]T . By Lemma 1, it is easy to
prove that system (48) is positive. We assume that the desired
population density of insect pest is x1(t) < 5,∀t ∈ [0, 2]. For
the convenience of simulation, let ξ2 = 5, ξ4 = 1.5,T = 2
and R = [1, τ ]T , where τ is a positive number and small
enough. Hence, the population density of insect pest can
be denoted by xT (t)R since xT (t)R ≈ x1(t). Given τ =
0.000001, the trajectory of xT (t)R for (48) can be obtained,
as shown in Figure 7. From Figure 7, we can find that the
population density of insect pest is not within the desired
range. Next, we design a FTS controller for system (48) to
control the population density of insect pest to satisfy that
x1(t) < 5,∀t ∈ [0, 2]. Selecting α = 0.4 and solving
Corollary 4, we get

P =
[
6.7261
0.00001

]
, Q1 = Q2 = Q3 =

[
−147.4021 0

]
,

ω1 = 6.6882, ω2 = 9.9649.

Then, the controller gain matrices are obtained as:

K1 = K2 = K3 =
Q1

1TBT1P
=
[
−21.9151 0

]
.

By Lemma 1, it is easy to prove that the closed-loop system
is positive. The evolution of insect pest population density
under the designed controller is shown in Figure 8. From
Figure 8, we can find that the population density of insect
pest is effectively controlled within the desired range by the
designed controller.
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FIGURE 8. The population density curve of insect pest under the designed
controller in Example 3.

VI. CONCLUSION
In this study, the problems of FTADRS analysis and controller
design for T-S fuzzy positive systems with interval uncertain-
ties have been investigated. The concept of FTADS has been
introduced for positive systems for the first time. Based on
this, the FTADRS analysis for uncertain T-S fuzzy positive
systems has been addressed by using the copositive Lyapunov
function method. Moreover, the state feedback controller has
been designed, which can guarantee the closed-loop systems
to be positive and FTADRS. At the end, several examples
have illustrated the effectiveness of the proposed results.
In the future work, FTADRS analysis for positive systems
with time delays and external disturbanceswill be considered.
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