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ABSTRACT Recently, the demand for small cell base stations (SBSs) has been exploding to accommodate
the explosive increase in mobile data traffic. In ultra-dense small cell networks (UDSCNs), because the
spatial and temporal traffic distributions are significantly disproportionate, the efficient management of the
energy consumption of SBSs is crucial. Therefore, we herein propose a multi-agent distributed Q-learning
algorithm that maximizes energy efficiency (EE) while minimizing the number of outage users. Through
intensive simulations, we demonstrate that the proposed algorithm outperforms conventional algorithms in
terms of EE and the number of outage users. Even though the proposed reinforcement learning algorithm has
significantly lower computational complexity than the centralized approach, it is shown that it can converge
to the optimal solution.

INDEX TERMS Multi-agent Q-learning, spatial traffic distribution, energy efficiency, user outage, ultra-
dense small cell network.

I. INTRODUCTION
The massive amount of data traffic generated by the many
different types of mobile services has led to a rapid increase in
the number of base stations (BSs) deployed within the same
network region [1]–[3]. This gradually accelerates network
densification [4]–[6]. In addition, cellular networks have
tended to use a higher frequency (e.g., a frequency in the
terahertz range), which decreases the cell radius because of
the larger attenuation of transmit power and requires more
BSs to be deployed in the same network area [4], [5]. This net-
work densification has resulted in the proliferation of ultra-
dense small-cell networks (UDSCNs). In UDSCNs, because
the average inter-site distance between small cell BSs (SBSs)
and users has been decreasing considerably, the link quality
can be improved. However, thismay cause severe interference
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between neighboring SBSs and vastly increase the energy
consumption of the entire network [7]. In this regard, it is
worth noting that 80% of the energy in mobile networks is
consumed by radio access networks (RANs), and most of
the energy in current cellular networks is consumed by BSs,
which is approximately 58% of the total power consump-
tion [8], [9]. Therefore, in UDSCNs, maximizing the energy
efficiency (EE) of SBSs is one of the most critical research
challenges facing next-generation communication networks.

Recently, many researchers have been actively conducting
research on minimizing the network energy consumption
of UDSCNs. In [10], the impact of the idle-mode opera-
tion of BSs, transmit power control, user density, and user
distribution on network energy efficiency was considered
to find potential gains and limitations of ultra-dense net-
works (UDNs). The authors of [11] proposed a joint opti-
mization framework for energy-efficient switching on/off
strategy and user association policy for UDNs with partial
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conventional BSs. In addition, an energy-aware user asso-
ciation and power allocation algorithm was proposed for
ultra-dense networks with energy-harvesting BSs based on
millimeter waves (mmWaves), in [12].

Moreover, various techniques have been proposed to effec-
tively utilize radio resources based on Q-learning in UDN
environments. In [13], a Q-learning based solution for a
small-scale cooperative coded caching system was proposed
to maximize the long-term expected cumulative traffic load
served by SBSs without accessing macro cell BSs (MBSs).
The authors of [14] proposed a Q-learning based dynamic
load adjustment algorithm to reduce energy consumption and
adjust the traffic load. It has been proven that the algorithm
can save energy consumption compared to the existing on/off
algorithm and other conventional algorithms. Furthermore,
a Q-learning based downlink transmit power control algo-
rithmwas proposed in [15]. A transfer learning method called
hotbooting was applied to accelerate the learning speed and
reduce the energy consumption based on the estimated user
density without any information about the network and chan-
nel model of the other small cells.

The traffic generated by actual UDSCNs is geographically
disproportionate. According to [16], half of the network sites
carry only 15% of the total traffic, whereas 5% of the sites
carry 20% of the traffic. Therefore, the network operator
should efficiently manage and control network energy con-
sumption by considering the dynamics of the spatial net-
work traffic. Many studies have been conducted to improve
these spatial and temporal traffic dynamics. In [17], the
authors presented a load balancing scheme based on deep-
reinforcement learning (DRL) to solve global and local traf-
fic variations in irregular dense small cell networks. The
authors of [18] proposed unmanned aerial vehicle (UAV)-
assisted cell-edge mobile user offloading in non-uniform het-
erogeneous cellular networks. Here, cell-edge mobile users
are periodically scheduled between coordinated ground base
stations and flying UAVs. In addition, [19] solved the user
association problem using resource and handover manage-
ment based on the deep deterministic policy gradient (DDPG)
method for mmWave networks. They showed that intelligent
load-balancing handover could effectively associate users
in the case of a high-load situation. In [20], the authors
proposed cluster-based resource allocation and user asso-
ciation via efficient co-channel interference management
in mmWave dense femtocell networks. This study altered
the binary optimization problem into a continuous problem
using deductive penalty functions and solved it by computing
the difference of two convex functions. Furthermore, the
authors of [21] proposed a load-aware cell selection scheme
for multi-connectivity in intra-frequency 5G ultra-dense net-
works to efficiently utilize available idle resources and reduce
the probability of radio link failure.

Previous methods using optimization and deep reinforce-
ment learning frameworks are computationally extremely
complex and require intensive iteration. In particular, because
tabular Q-learning does not exploit deep neural networks for

functional approximation, it can significantly reduce the com-
putational overhead caused when performing neural network
training in the conventional approaches. This motivated us
to propose a SBS control algorithm based on multi-agent
distributed Q-learning to maximize the EE while simultane-
ously minimizing the number of outage users in UDSCNs.
The proposed algorithm, which considers the spatial traffic
dynamics, can efficiently control the transmit power of SBSs
based on multi-agent Q-learning. The main contributions of
this study are as follows.

• Two types of network dynamics are considered for
proposing a reinforcement learning algorithm that max-
imizes EE in UDSCNs: uniform/non-uniform spatial
traffic distributions and random user mobility.

• Regardless of uneven spatial traffic distribution and
unpredictable user movements, we demonstrate that the
proposed multi-agent Q-learning algorithm can con-
verge to the optimal solution obtained by exhaustive
search.

• Even in ultra-dense network environments, the proposed
algorithm outperforms the conventional algorithm in
terms of EE and the number of outage users. However,
achieving these two objectives may not be feasible in a
conventional optimization framework.

• The proposed algorithm can significantly reduce the
computational complexity by allowing the agent to con-
sider only its own state.

The remainder of this paper is organized as follows: In
Section II, the system model of the proposed algorithm is
presented. The proposed multi-agent Q-learning algorithm
for maximizing EE while minimizing the number of outage
users is proposed in Section III. Section IV presents the effec-
tiveness of the proposed algorithm verified through intensive
simulations with respect to the EE and the number of outage
users. Finally, conclusions are presented in Section V.

II. SYSTEM MODEL
Herein, we describe the system model for the proposed algo-
rithm and the assumptions used in this study. Consider a
downlink communication for UDSCNs configured with sev-
eral MBSs (M), SBSs (N), and users (U), as shown in Fig. 1.
The MBSs are considered as interferers in this network and
the SBSs adjust their transmit power to maximize the system
performance.

A. SINR CALCULATION
The channel quality of users received from SBSs is measured
by the reference signal received power (RSRP), which is
commonly used as a channel quality metric between users
and BSs in cellular networks. RSRP between user i and SBS
j (Pr (i, j)) is expressed as Pr (i, j) =

Pt (j)
d(i,j)ρ , where Pt (j) is the

transmit power of SBS j, d(i, j) is the distance between user i
and SBS j, and ρ is the path loss exponent in UDSCNs. Using
Pr (i, j), the signal-to-interference-plus-noise ratio (SINR) of
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FIGURE 1. System model of proposed multi-agent distributed Q-learning framework maximizing EE while minimizing number of
outage users in UDSCNs.

user i for SBS j can be calculated as

γ (i, j) =
Pr (i, j)∑

n6=j,n∈N Pr (i, n)+
∑

m∈M Pr (i,m)+ σ 2
i

, (1)

where σ 2
i is the thermal noise power. As mentioned before,

all other SBSs, except the serving SBS and MBSs, are con-
sidered as interferers. When γ (i, j) < γth,∀j ∈ N, user i
is considered as an outage user. Here, γth denotes the SINR
outage threshold.

B. EE CALCULATION CONSIDERING SBS POWER
CONSUMPTION
From equation (1), the achievable data rate of user i for SBS
j (ζ (i, j)) can be obtained as

ζ (i, j) =
1
|U(j)|

·Wj · log2(1+ γ (i, j)), (2)

Here, Wj is the system bandwidth of SBS j and |U(j)| is
the number of users associated with SBS j, and using equa-
tion (2), the EE of SBS j (ξ (j)) can be calculated as

ξ (j) =

∑
i∈U(j) ζ (i, j)

Ptot (j)
, (3)

where Ptot (j) is the total power consumption of SBS j, which
can be represented as

Ptot (j) = Pc(j)+ Pp(j)+
1
δ
· Pt (j), (4)

FIGURE 2. Network deployment with uniform and non-uniform spatial
traffic distribution when |M| = 3, |N| = 6, and |U| = 36.

Here, δ is the power amplifier efficiency, and Pc(j), Pp(j),
and Pt (j) are the fixed circuit power consumption, radio
frequency (RF) power amplifier power consumption, and
transmit power consumption, respectively. In particular, Pp(j)
describes the power consumption according to the variation
in the cell load. Accordingly, Pp(j) can be obtained as

Pp(j) = Ppa ×
|U(j)|
κ

, (5)

where κ is the maximum number of users supportable per RF
power amplifier and Ppa is the power consumed by each RF
power amplifier.
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Algorithm 1 Proposed Multi-Agent Q-Learning Algorithm for Maximizing EE in UDSCNs
1: Initialize: Place |M|MBSs, |N| SBSs, and |U| users in network, and initialize Q-tables of all agents
2: for τ = 1 : τmax do
3: Calculate ε(τ ) = εinit × (1− εinit)

τ
χ×|A| .

4: for i = 1 : |U| do
5: Move the position of user i corresponding to the random walk model with vi(τ ) and θi(τ ).
6: end for
7: for t = 1 : tmax do
8: for j = 1 : |N| do
9: Chooses action of agent j (aj(t)) according to the decayed epsilon greedy policy with ε(τ ).

10: aj(t) =

{
random action, with ε(τ ),
argmaxa∈A(Qj(sj(t), a)),with 1− ε(τ ).

11: end for
12: for i = 1 : |U| do
13: Calculate SINR of user i for its serving SBS (γ (i, j)) and achievable data rate of user i for SBS j (ζ (i, j)).
14: if γ (i, n) < γth,∀n ∈ N then
15: Uout = Uout + 1
16: else
17: |U(j)| = |U(j)| + 1
18: end if
19: end for
20: for j = 1 : |N| do
21: Calculate ξ (j) by using ζ (i, j).
22: end for
23: Calculate R(s(t + 1), a(t)) and update Q-values for all agents using equation (10).
24: end for
25: end for

C. USER MOBILITY MODEL
We apply a random walk model to emulate users’ unpre-
dictable movements [22]. At each episode, the position of
each user is altered according to the random walk model. The
speed of user i at episode τ (vi(τ )) is randomly determined
within [0, vmax]. In addition, the moving direction of user
i (θi(τ )) is randomly chosen within [0, 2π ]. Consequently,
user i moves with the velocity vector (vi(τ )) at episode τ as
follows:

vi(τ ) = {vi(τ ) cos θi(τ ), vi(τ ) sin θi(τ )}. (6)

D. SPATIAL TRAFFIC DISTRIBUTION IN UDSCN
An important characteristic of actual UDSCNs is the geo-
graphically disproportionate network traffic. Accordingly,
we assume that a non-uniform spatial traffic distribution is
generated according to the constraints described in [16]. This
spatial traffic distribution is based on real-world measure-
ments. From [16], half of the network cells carry only 15%
of the total network traffic, whereas 5% of the cells carry
20% of the traffic. Unfortunately, spatial traffic growth would
be expected to increase most in cells that already have high
loads. For instance, Figs. 2a and 2b show the network deploy-
ment results considering uniform and non-uniform spatial
traffic distributions for the 3 MBSs, 6 SBSs, and 36 users.
The vertical axis denotes relative traffic density in each cell.

Specifically, when |U(i)| =
|U|
|N|

, we assumed the traffic

density of SBS i as 0.5. Also, this value was used as a criterion
for determining the traffic density of other SBSs.

III. PROPOSED MULTI-AGENT Q-LEARNING ALGORITHM
FOR MAXIMIZING EE IN UDSCN
We herein propose an EE maximization algorithm based on
multi-agent Q-learning for UDSCNs with small cell clus-
ters, as shown in Fig. 1. In our multi-agent distributed
reinforcement framework, agents, states, actions, a reward,
a Q-function, and a policy are defined as follows.

A. AGENT
Consider that each SBS is an agent of the proposed
multi-agent reinforcement learning framework in UDSCNs.
In a centralized reinforcement framework, a single agent can
manage all state information of the SBSs, but it generates a
large amount of overhead as a result of the computational
complexity. Thus, we consider a multi-agent distributed
Q-learning framework.

B. STATE
In this study, the agent does not share its state information
with other agents. Thus, each agent considers only its transmit
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power. The state of the agent can be defined as

S = {Pmin
t,N : 1Pt : P

max
t,N }, (7)

where Pmin
t,N and Pmax

t,N are the minimum and maximum trans-
mit power of the SBS, respectively. In addition, the1Pt is the
step size of the power increases. Here, {a:b:c} represents a set
of values from a to c with a step size of b.

C. ACTION
To maximize the EE of UDSCNs, the agent can choose one
of three actions (A): ‘‘transmit power up (1Pt )’’, ‘‘transmit
power down (1Pt )’’, and ‘‘keep current transmit power (10)’’
as follows:

A = {−1Pt ,10,1Pt }, (8)

D. REWARD
Assume that each agent shares its reward information with
each other agent to maximize the EE of the entire net-
work. In addition, because minimizing the number of outage
users is essential when maximizing the EE, we design an
outage-aware reward in the proposed reinforcement frame-
work. Accordingly, the reward of agent j (Rcj ) is represented
as

Rcj = e−
Uout
|U| ×

∑
n∈N

ξ (n), (9)

where |U| and Uout are the total number of users and the
number of outage users in the entire network, respectively.

E. Q-FUNCTION UPDATE
A Q-function is a state-action value function that externally
implies a value to the action in a specific state of the agent,
and internally implies the expected reward when the action is
performed. In other words, it describes the benefit of an agent
performing a particular action in a state with a specific policy.
In this study, the Q-function (Qj(sj(t), aj(t))) is expressed as:

Qj(sj(t), aj(t)) = (1−α) · Qj(sj(t), aj(t))+ α · [Rj(sj(t+1),

×aj(t))+ η ·max
a′j∈A

Qj(sj(t + 1), a′j)], (10)

Here, α is the learning rate and η is a discount factor.

F. POLICY
We adopt the decayed ε-greedy policy for extensive explo-
ration in early episodes [23], [24]. According to ε(τ ), each
agent chooses a random action with a probability of ε(τ ),
and the optimal action with a probability of 1− ε(τ ). As the
number of episodes increases, the value of ε(τ ) decreases;
therefore, in the latter part of the learning, the agent exploits
more than it explores. ε(τ ) can be described as

ε(τ ) = εinit × (1− εinit)
τ

χ×|A| , (11)

where εinit is the initial epsilon value, χ is the decay param-
eter, and |A| is the size of the action set of each agent. The
detailed operational procedure of the proposed multi-agent
distributed Q-learning algorithm is described in Algorithm 1.

TABLE 1. Simulation parameters.

IV. SIMULATION RESULTS AND DISCUSSION
A. SIMULATION ENVIRONMENTS
We considered two types of network deployments: [3 MBSs,
6 SBSs, 36 users] and [5 MBSs, 100 SBSs, 600 users].
To obtain the results, we performed 1, 000 episodes where
each episode involved 3, 000 iterations. The simulation
parameters are listed in Table 1. In addition, we compared
the performance of the proposed algorithm with several
benchmark algorithms: ‘‘Reward-Optimal,’’ ‘‘No TPC,’’ ‘‘A-
TPC,’’ ‘‘Random Action,’’ ‘‘Centralized QL,’’ and ‘‘Dis-
tributed QL’’. Details of these conventional algorithms are as
follows:

• Reward-Optimal: The reward-optimal solution is
obtained using the exhaustive search algorithm. This
algorithm enumerates and checks all possible states of
the agents. In the case of complicated network environ-
ments, it is difficult to obtain a reward-optimal solution
owing to its high computational complexity.

• No Transmit Power Control (No TPC): None of the
agents control their transmit power. That is, each agent
always sends its signal using maximum transmit power.

• Adaptive Transmit Power Control (A-TPC): The
transmit power of each agent is calculated by the number
of associated users. In this study, user association was
determined bymeasuring the SINR in the initial network
deployment.

• Random Action: This algorithm randomly chooses an
action in each episode. We can use the random action
algorithm to roughly prove that the proposed algo-
rithm to the optimal solution because the exhaustive
search-based optimal solution cannot be obtained in
simulation scenarios with extremely high computational
complexity.

• EE Maximization based on Centralized Q-Learning
(C-QL): This algorithm is based on Q-learning and con-
siders the overall state information of the agents. How-
ever, because all possible cases explorable by the agent
should be considered, the size of the Q-table increases
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TABLE 2. Computational complexity analysis of conventional and proposed algorithms.

FIGURE 3. Accumulated average reward vs. episode when |M| = 3, |N| = 6, and |U| = 36 with uniform spatial traffic distribution.

FIGURE 4. Accumulated average reward vs. episode when |M| = 3, |N| = 6, and |U| = 36 with non-uniform spatial traffic distribution.

exponentially according to the number of agents and the
sizes of the state and action sets. Because of its com-
plexity, we cannot apply this algorithm to complicated
network environments.

• EE Maximization based on Distributed Q-learning
(D-QL): The basic operation of this algorithm is almost
similar to that of the proposed algorithm. However, the
only difference is that reward sharing is not considered in
this distributed Q-learning algorithm. That is, each agent
only considers its own reward before choosing the action
to perform. Hence, the reward (Rdj ) can be described as

Rdj = e−
Uout(j)
|U(j)| × ξ (j), (12)

where |U(j)| and Uout(j) are the number of users associ-
ated with SBS j and the number of outage users of SBS
j, respectively.

The computational complexity of the reward-optimal
algorithm, centralized Q-learning algorithm, distributed
Q-learning algorithm, and the proposed algorithm are

summarized in Table 2. Because the reward-optimal and
centralized Q-learning algorithms are designed to consider all
cases that could occur in networks, their computational com-
plexity is significantly larger than that of other algorithms.
The proposed multi-agent distributed Q-learning algorithm
can greatly reduce the computational complexity by allowing
the agent to consider only its own state.

B. RESULTS AND DISCUSSION
Figs. 3a–3c show the accumulated average rewards based on
the progress of the episode for each algorithm when |M| = 3,
|N| = 6, and |U| = 36 under a network deployment with a uni-
form spatial traffic distribution, as shown in Fig. 2a. Here, the
users were randomly distributed within 100m of each SBS.
Furthermore, the results in Figs. 3a, 3b, and 3c were obtained
for vmax = 0 m/s, 0.01 m/s, and 0.1 m/s, respectively. The
results in these figures show that the proposed algorithm
converges to the optimal solution even if the user’s mobility
increases. Because A-TPC controls the transmit power of
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FIGURE 5. Network deployment with uniform spatial traffic distribution, accumulated EE vs. episode, and number of outage users vs. episode when
|M| = 5, |N| = 100, |U| = 600, and vmax = 0.01 m/s.

FIGURE 6. Network deployment with non-uniform spatial traffic distribution, accumulated EE vs. episode, and number of outage users vs. episode
when |M| = 5, |N| = 100, |U| = 600, and vmax = 0.01 m/s.

each SBS according to the initial association results, A-TPC
delivers performance results superior to those of the No TPC
algorithm. In the case of the centralized Q-learning algo-
rithm, because this algorithm needs to consider the states and
reward information of all the SBSs, the convergence speed
of this algorithm is relatively slow compared to that of the
proposed algorithm. In addition, each agent in the distributed
Q-learning algorithm tries to maximize its reward without
considering the status and rewards of other agents. As a result,
the transmit power of each agent gradually increases to reach
the maximum power, and the result finally converges to that
of the No TPC algorithm.

Figs. 4a–4c demonstrate that the proposed algorithm can
converge to the optimal solution even for a network deploy-
ment with a non-uniform spatial traffic distribution, as shown
in Fig. 2b. Similar to the results for the uniform traffic distri-
bution, our proposed algorithm outperforms the conventional
algorithms with respect to the accumulated average reward
regardless of the increase in user mobility. The overall per-
formance behavior is clearly similar to the case of uniform

spatial traffic distribution, but the accumulated reward value
is relatively smaller than that of the uniform distribution
owing to the regionally biased traffic. Moreover, as learning
progressed, the length of the error bars gradually became
shorter, which shows that the learning progressed well.

To prove the operational flexibility of the proposed
multi-agent distributed Q-learning algorithm, we considered
ultra-dense network environments. Figs. 5a and 6a show
the network deployment results considering uniform and
non-uniform spatial traffic distributions when |M| = 5, |N|
= 100, and |U| = 600. Here, users were randomly distributed
within 150m of the SBS and were moving in correspondence
to the random walk mobility model with vmax = 0.01 m/s.
Figs. 5b and 5c show the accumulated average EE and the
average number of outage users based on the progress of
the episode for each algorithm under the network deploy-
ment with the uniform spatial traffic distribution in Fig. 5a.
In addition, Figs. 6b and 6c show the accumulated average
EE and the average number of outage users based on the
progress of the episode for each algorithm under the network
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TABLE 3. Comparison of the fairness of SBSs in conventional and proposed algorithms.

FIGURE 7. Reward vs. episode in proposed algorithm obtained under network deployment with non-uniform spatial traffic distribution when |M| = 3,
|N| = 6, and |U| = 36.

deployment with the non-uniform spatial traffic distribution
in Fig. 6a. Even in ultra-dense network environments, the
proposed algorithm outperforms the conventional algorithms
in terms of the accumulated EE and number of outage users.
Because of the extremely high computational complexity of
the reward-optimal and centralized Q-learning algorithms,
these algorithms did not produce results in this simulation
scenario. However, the error bars of the proposed algorithm
and the random action algorithm provide a rough indication
that the proposed algorithm converges to the optimal solution.
Furthermore, in the case of non-uniform spatial traffic dis-
tribution, distributed Q-learning yields several outage users
because this algorithm only considers its state and reward.
However, we can show that the average number of outage
users of the proposed algorithm converges to zero.

Table 3 compares the fairness of EE between SBSs for each
algorithm once learning is complete. We used Jain’s fairness
index to obtain the fairness results [25]. Jain’s fairness index
can be represented as

ϑ =
(
∑N

j=1 ξ (j))
2

|N| ·
∑N

j=1 ξ (j)2
, (13)

With the No TPC, A-TPC, and distributed QL methods,
because all SBSs transmit at almost maximum power, the
difference in the energy efficiency between SBSs is smaller
than that in other algorithms. As a result, these algorithms
produce superior SBS fairness results compared to the
reward-optimal, random action, centralizedQL, and proposed

algorithms. Moreover, as expected, the SBS fairness results
for the uniform spatial traffic distribution are larger than
those for the non-uniform spatial traffic distribution. As the
learning progresses, the SBSs with higher traffic density use
relatively larger transmit power than those with lower traffic
density. Consequently, the EE results for each SBS could be
gradually different, and accordingly, the SBS fairness in the
non-uniform traffic distribution becomes smaller than that in
the uniform traffic distribution.

To show the performance behavior against delayed learn-
ing information, we obtained Figs. 7a and 7b under net-
work deploymentwith non-uniform spatial traffic distribution
when |M| = 3, |N| = 6, and |U| = 36. In Fig. 7a, while
training the Q-values of each agent, we assumed vmax as
0.1 m/s. However, in the test environments, the users moved
to larger vmax values to reflect the effect of the delayed
learning information. Similarly, in Fig. 7b, while training the
Q-values of each agent, we assumed vmax as 0.2 m/s. Also,
the tests were performed against larger vmax values. It can
be seen that the greater the difference in vmax between the
learning environment and the test environment, the larger the
performance degradation. In addition, in the case of Fig. 7a,
since vmax is smaller than that in Fig. 7b, it has a chance to
perform learning for more diverse positions. As a result, the
performance degradation might be smaller.

Fig. 7c shows how 1Pt affects the system perfor-
mance. To obtain this figure, we set Pmax

t as 5W, and the
reward-optimal solution is obtained using the exhaustive
search algorithm under 1Pt = 0.5W. When 1Pt = 0.01W,
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because the action set size of each agent becomes too large,
it needs to take a long time to achieve the optimal solution.
In contrast, when 1Pt = 2.5W, the agent rarely finds the
optimal solution because its action set size is too small.
Therefore, network operators should determine 1Pt very
carefully considering the network environment and spatial
traffic distribution.

V. CONCLUSION
In this paper, we proposed a SBS power control algorithm
based on multi-agent distributed Q-learning to maximize
the network EE while reducing the number of outage users
in UDSCNs. To consider practical network environments,
we utilized uniform and non-uniform spatial traffic dis-
tributions based on real-world measurements. Even in the
non-uniform distribution, we showed that the proposed algo-
rithm converges well to the optimal solution obtained by the
exhaustive search algorithm. In addition, to demonstrate the
performance in ultra-dense network environments, we con-
sidered 100 SBSs and 600 users in a network with five
small cell clusters. In this network environment, we demon-
strated that the proposed algorithm outperforms conventional
algorithms such as random action, No TPC, A-TPC, and
distributed Q-learning algorithms regardless of the increase
in user mobility. Furthermore, by allowing the agent to con-
sider only its own state, the computational complexity of the
proposed algorithm can be significantly reduced compared to
that of the centralized Q-learning algorithm.
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