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ABSTRACT This paper proposes a new multi-kernel learning ensemble algorithm, called Ada-L1MKL-
WSVR, which can be regarded as an extension of multi-kernel learning (MKL) and weighted support
vector regression (WSVR). The first novelty is to add the L1 norm of the weights of the combined kernel
function to the objective function of WSVR, which is used to adaptively select the optimal base models
and their parameters. In addition, an accelerated method based on fast iterative shrinkage thresholding
algorithm (FISTA) is developed to solve the weights of the combined kernel function. The second novelty
is to propose an integrated learning framework based on AdaBoost, named Ada-L1MKL-WSVR. In this
framework, we integrate FISTA into AdaBoost. At each iteration, we optimize the weights of the combined
kernel function and update the weights of the training samples at the same time. Then an ensemble regression
function of a set of regression functions is output. Finally, two groups of the experiments are designed to
verify the performance of our algorithm. On the first group of the experiments including eight datasets from
UCI machine learning repository, the MAEs and RMSEs of Ada-L1MKL-WSVR are reduced by 11.14%
and 9.08% on average, respectively. Furthermore, on the second group of the experiments including the
COVID-19 epidemic datasets from eight countries, the MAEs and RMSEs of Ada-L1MKL-WSVR are
reduced by 31.19% and 29.98% on average, respectively.

INDEX TERMS Support vector regression, multi-kernel learning, AdaBoost, ensemble algorithm,
regression prediction.

I. INTRODUCTION
Support vector machine (SVM) [1], [2] is an algorithm based
on supervised learning mode, which can be used for data
classification, model recognition and regression analysis.
It has a strong mathematical foundation and theoretical
support. SVMs can effectively solve the problems of small
samples, nonlinearity, overfitting and local minima, and have
been successfully applied in various fields, including text
classification [3], image classification [4], bioinformatics [5]
and medical diagnosis [6]. Support vector regression (SVR)
is an important application of SVMs, which introduces an
ε-insensitive loss function in SVM to adapt to the regression
problem [7]. In order to achieve nonlinear regression, SVR
uses a kernel function to map the sample set to the feature
space. SVR has many advantages in solving small sample,
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nonlinear and high dimensional pattern recognition, and
has been widely applied to practical problems, including
traffic velocity prediction [8], conductivity prediction [9],
spatial prediction of landslide susceptibility [10], and stock
price forecasting [11]. However, for the samples containing
heterogeneous information, uneven distribution and irregu-
larity, the traditional SVR using single-kernel mapping is not
necessarily suitable for sample processing. Therefore, a lot of
work has been applied to multi-kernel learning (MKL) [12],
which is a more flexible kernel-based learning method.
Using MKL instead of the traditional single-kernel learning
can greatly improve the interpretability and generalization
performance of the model [13].

MKL is the process of obtaining the weights of
the combined kernel function. There are many effective
learning methods for solving this problem. For example,
Rakotomamonjy et al. [14] proposed a valid MKL method to
select the kernel functions, in which the kernel functions are
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set to be a linear combination of multiple basic kernel func-
tions. Cao et al. [15] proposed multi-kernel feature selection
based on the L2,1 norm, called L2,1MKFS, and an proximal
optimization algorithm is designed for efficient learning the
model. To solve highly complex issues of convex quadratic
programming in SVR, a novel two-phase MKL-SVR based
on linear programming (MK-LP-SVR) was proposed by
Zhang et al. [16], and used for feature sparsification and
forecasting.

Moreover, some studies have tried to assign different
weights to training samples in SVM or SVR to solve
the problem of heteroscedasticity in training samples.
Ada-SVR-R, proposed by Gao et al. [17], used a so-called
classification-type loss to increase and decrease the weights
of misclassified samples and correctly classified samples,
respectively. Tao et al. [18] developed a modification of
AdaBoost, which was a self-adaptive cost technique for
SVM. Elatter et al. [19] combined locally weighted regres-
sion (LWR) and SVR (LWSVR) to build a load forecasting
model, in which a weighted distance algorithm based
on Mahalanobis distance was proposed to optimize the
bandwidth of the weighting function. Xu et al. [20] proposed
a weighted twin SVR, that brought different penalties to
the samples according to their different locations. In addi-
tion, some algorithms were designed so that the weights
of each training sample were added as scaling factors
of the slack variable in the objective function of SVR
[21]–[23]. However, the above algorithms were only
improved in one aspect, and few scholars have considered
both the adaptive selection of the kernel function and the
updation of the weights of the training samples in the
framework of SVR.

Inspired by the existing literature, we propose a new
multi-kernel ensemble algorithm based on the L1 norm and
weighted support vector regression (WSVR) with AdaBoost,
namely, Ada-L1MKL-WSVR. First, to adaptively choose
the optimal combined kernel function, L1MKL-SVR is
proposed. Moreover, we design an accelerated method to
solve the weights of the combined kernel function with
the L1 norm. Then, we introduce FISTA into AdaBoost
to correct the weights of the training samples, and a new
multi-kernel ensemble algorithm is proposed. In this method,
the optimization of the weights of the combined kernel
function and the updation of the weights of the training
samples are both considered. Finally, the subregressor of each
iteration is integrated into a strong robust regressor. There
are extensive experiments have been performed to validate
the performances of Ada-L1MKL-WSVR. The numerical
results are provided to demonstrate the competitiveness of the
algorithm proposed in this paper

The remainder of this article is arranged as follows.
In Section 2, we review some pertinent basic results toWSVR
and Ada-SVR-R. The details of L1MKL-SVR and Ada-
L1MKL-WSVR are presented in Section 3. Section 4 dis-
cusses our simulations and empirical studies, including
dataset descriptions, parameter settings, and a comparative

analysis of five different algorithms. Finally, some conclu-
sions are drawn in Section 5.

II. RELATED WORK
A. WEIGHTED SUPPORT VECTOR REGRESSION
In SVR, there is a basic assumption that the samples come
from the same distribution, that is, the random error items
should have the same variance, independent or uncorrelated.
However, it is often not satisfactory if we use the standard
SVR to establish the model when there is heteroscedasticity
in a regression problem. To solve this problem, Sun et al. [28]
proposed the so-called WSVR, which introduced the appro-
priate weights to adjust the role of the training samples in
SVR. In what follows, we briefly introduces the basic idea of
WSVR. More details can be found in [28].

Let {(x1, y1), . . . , (xi, yi), . . . , (xN , yN )} be the training
samples, where x = (x1, x2, · · · , xN ) with xi ∈ Rm, i =
1, 2, . . . ,N and y = (y1, y2, · · · , yN ) with yi ∈ R, i =
1, 2, . . . ,N are the input of the training samples and the
target values, respectively. The purpose of WSVR is to find a
regression function f (x) to precisely estimate ywhen given an
input x. To make f (x) available, the standard WSVR can be
transformed into the following convex optimization problem:

min
w,b,ξ,ξ∗

1
2
‖w‖2 + C

N∑
i=1

λi
(
ξi + ξ

∗
i
)

s.t.


〈w, φ(xi)〉 + b− yi ≤ ε + ξi, i = 1, . . . ,N
yi − 〈w, φ(xi)〉 − b ≤ ε + ξ∗i , i = 1, . . . ,N
ξi, ξ

∗
i ≥ 0, i = 1, . . . ,N

(1)

where C is the penalty coefficient, λ = (λ1, λ2, . . . , λN ) are
the weights of the training samples, ξ = (ξ1, ξ2, · · · , ξN )
and ξ∗ = (ξ∗1 , ξ

∗

2 , · · · , ξ
∗
N ) are the slack variables, b is the

intercept term, ε is the fitting error, and φ(·) is the map
function, which maps the training samples space to a Hilbert
space <. It should be pointed out that WSVR reduces to the
standard SVR if λi = 1 with i = 1, · · · ,N . Particularly, the
weight λi is set as the reciprocal of the variance of the error
term δ2i , i.e., λi =

1
δ2i
, i = 1, 2, . . . ,N in [28].

The Lagrange dual optimization problem associated with
the problem (1) is given by

max−
1
2

N∑
i,j=1

(αi − α∗i )(αj − α
∗
j )
〈
φ(xi), φ(xj)

〉
+

N∑
i.j=1

(αi − α∗i )yi − ε
N∑

i,j=1

(αi + α∗i )

s.t.


l∑
i=1

(αi − α∗i ) = 0

0 ≤ αi, α∗i ≤ λiC, i = 1, . . . ,N
(2)

where α∗ and α are the Lagrange multipliers.
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It is well-known that the regression function can be
expressed in the following way

f (x) =
N∑
i=1

(α∗ − α)K (x, xi)+ b (3)

where K (x, xi) = 〈φ(x), φ(xi)〉 represents the kernel
function.

B. ADA-SVR-R
In practical research, the variance of the error term σi(i =
1, . . . ,N ) in WSVR is usually unknown and needs to be
determined according to the actual situation. To overcome
this difficulty, Gao et al. [17] proposed an integrated algo-
rithm based on AdaBoost, namely Ada-SVR-R, which can
directly appiled to the regression problem by introducing
the classification-type loss. At each iteration of WSVR,
SVR receives the training samples and produces a regression
function by training. Then the weights of the training samples
are updated by calculating regression errors based on the
classification-type loss. This process is repeated until errort
is larger than 0.5. Finally, the final regression function F(x),
i.e.,

F(x) =

T∑
t=1

αt ft (x)

T∑
t=1

αt

(4)

is obtained.
The so-called Ada-SVR-R [17] is given below.

III. METHODOLOGY
In this section, we fisrt introduce the key idea of
L1MKL-SVR, which is the basis of our algorithm, then we
provide the details of L1MKL-WSVR and Ada-L1MKL-
WSVR, respectively.

A. L1 MULTI-KERNEL LEARNING SUPPORT VECTOR
REGRESSION
MKL [14], [29] is one of the most important research topic
in kernel machine learning. MKL selects two or more kernel
functions as the optimal kernel function from the set of
basic kernel functions, and assigns the weight to each kernel
function. The combined kernel function constructed by MKL
takes into account the characteristics of each constituent
kernel function, which improves the accuracy of the model
to a certain extent. Unlike a single kernel function, such as
SVR, MKL assumes that the input of the training samples
xi(i = 1, . . . ,N ) can be mapped to S different Hilbert spaces
<, xi→ φs(xi)(s = 1, . . . , S), with S mapping functions, and
the purpose of MKL is to learn the optimal combined kernel
function, which is used to instead of a single kernel function
to obtain better prediction effects.

It is well-known that the weights of the combined kernel
function obtained by using the L1 norm is sparse, and it can
reduce redundancy and increase the operation efficiency of

Algorithm 1 Ada-SVR-R
Input:

Training samples: {(xi, yi)}Ni=1
Setting the parameters of SVR
Threshold: ε > 0

Output:
Final ensemble regression function: F(x)

1: Initialize the weights of the training samples: wti =
1/N , i = 1, 2, . . . ,N

2: for t = 1, 2, . . . ,T do
3: Set the distribution of the weights of the training

samples as: λti =
wti
N∑
i=1

wti

, i = 1, 2, . . . ,N

4: Call SVR, providing it with the distribution λti , and
obtain a regression function ft (x)

5: Calculate the weighted classification-type loss of ft (x):

errort =
n∑
i=1
λti [|yi − ft (xi)| > ε]

6: if errort > 1
2 then

7: Set T = t − 1, break.
8: end if
9: Set base learner’s weight: αt = 1

2 ln
(
1−errort
errort

)
10: Update the weights of the training samples:

wt+1i = wti ×
{
exp(−αt ), if |yi − ft (xi)| < ε

exp(+αt ), if |yi − ft (xi)| ≥ ε
11: end for
12: return F(x)

model. Therefore, we introduces the L1 norm of the weights
of the combined kernel function into the objective function
of SVR, namely L1MKL-SVR, which can be expressed as
the following optimization problem, i.e.,

min
w,D,b,ξ,ξ∗

1
2

( S∑
s=1

‖ws‖

)2
+ C

N∑
i=1

(
ξi + ξ

∗
i
)
+ γ ‖D‖1

s.t.



S∑
s=1
〈ws,
√
dsφs(xi)〉 + b−yi≤ε + ξi, i = 1, . . . ,N

yi −
S∑
s=1
〈ws,
√
dsφs(xi)〉 − b≤ε + ξ∗i , i =1, . . . ,N

ξi, ξ
∗
i ≥ 0, i = 1, . . . ,N

ds ≥ 0, s = 1, . . . , S
(5)

where γ is the regularization parameter andD = (d1, . . . , dS )
are the weights of the combined kernel function with ds(s =
1, . . . , S) being the weight of the kernel function Ks(x, xi) =
〈φs(x), φs(xi)〉. The optimization problem (5) is nonconvex
due to the products of ds and ws, and it can be resolved by
applying the variable transformation w′s =

√
dsws as in [14],

[30], [31]. This yields the following optimization problem,
i.e.,

min
w′,D,b,ξ,ξ∗

1
2

S∑
s=1

∥∥w′s∥∥2
ds
+ C

N∑
i=1

(
ξi + ξ

∗
i
)
+ γ ‖D‖1
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s.t.



S∑
s=1
〈w′s, φs(xi)〉 + b− yi ≤ ε + ξi, i = 1, . . . ,N

yi −
S∑
s=1
〈w′s, φs(xi)〉 − b ≤ ε + ξ

∗
i , i = 1, . . . ,N

ξi, ξ
∗
i ≥ 0, i = 1, . . . ,N

ds ≥ 0, s = 1, . . . , S
(6)

Similar to the WSVR case, the regression function can be
defined by solving the Lagrange dual optimization problem
of the optimization problem (6).

B. L1 MULTI-KERNEL LEARNING WEIGHTED SUPPORT
VECTOR REGRESSION WITH AdaBoost
To learn the weights of the training samples and the
combined kernel function simultaneously, we introduce the
weights λ of the training samples into L1MKL-SVR, namely
L1MKL-WSVR, which can be expressed as the following
optimization problem, i.e.,

min
w′,D,b,ξ,ξ∗

1
2

S∑
s=1

∥∥w′s∥∥2
ds
+ C

N∑
i=1

λi
(
ξi + ξ

∗
i
)
+ γ ‖D‖1

s.t.



S∑
s=1
〈w′s, φs(xi)〉 + b− yi ≤ ε + ξi, i = 1, . . . ,N

yi −
S∑
s=1
〈w′s, φs(xi)〉 − b ≤ ε + ξ

∗
i , i = 1, . . . ,N

ξi, ξ
∗
i ≥ 0, i = 1, . . . ,N

ds ≥ 0, s = 1, . . . , S
(7)

One can easily verify that if λi = 1 (i = 1, 2, . . . ,N ),
L1MKL-WSVR degenerates to L1MKL-SVR. Furthermore,
the optimization problem (7) can be regarded as the
composite objective optimization problem, i.e.,

min
D≥0

Z (D) = M (D)+ γ ‖D‖1 (8)

where

M (D) =
1
2

S∑
s=1

‖w′s‖
2

d̃s
+ C

N∑
i=1

λi

(
ξ̃i + ξ̃

∗
i

)
(9)

and (w̃′, b̃, ξ̃ , ξ̃∗) is an optimal solution of the following
optimization problem, i.e.,

min
w′,b,ξ,ξ∗

1
2

S∑
s=1

‖w′s‖
2

ds
+ C

N∑
i=1

λi
(
ξi + ξ

∗
i
)

s.t.



S∑
s=1
〈w′s, φs(xi)〉 + b− yi ≤ ε + ξi,

yi −
S∑
s=1
〈w′s, φs(xi)〉 − b ≤ ε + ξ

∗
i ,

ξi, ξ
∗
i ≥ 0, i = 1, . . . ,N

ds ≥ 0, s = 1, . . . , S

(10)

In addition, for the given weights D,M (D) can be directly
obtained by solving the classicalWSVR in (1), which is given
by

M (D) = −
1
2

N∑
i=1

N∑
j=1

(α̂∗i − α̂i)(α̂
∗
j − α̂j)

S∑
s=1

dsKs(xi, xj)

−

N∑
i=1

[
(ε − yi)α̂∗i + (ε + yi)α̂i

]
(11)

It should be noted that the optimization problem (8)
has the composite structure, where M (D) is convex and
differentiable, while ‖D‖1 is a nondifferentiable convex
function on the feasible domain. To solve the composite
objective optimization problem, the common idea is to
use the concept of the proximal gradient proposed by
Nesterov [25]–[27]. The quadratic function is used to
approximate the objective function, and the proximal gradient
method is used to solve the new optimization problem. In this
work, FISTA is designed to optimize D [24]. By using the
quadratic approximation, we can obtain the proximal operator
of the objective function Z (D) at point D, i.e.,

QL(D,D(t−1)) = M (D(t−1))+ 〈D− D(t−1),∇M (D(t−1))〉

+
L(t−1)

2
‖D− D(t−1)

‖
2
+ γ ‖D‖1 (12)

where

∇M (D(t−1)) =
[
∇M

(
d (t−1)1

)
, . . . ,∇M

(
d (t−1)S

)]
(13)

with

∇M
(
d (t−1)s

)
= −

1
2

N∑
i=1

N∑
j=1

(α̂∗i − α̂i)(α̂
∗
j − α̂j)Ks(xi, xj)

(14)

After ignoring the constant term, we can obtain the unique
minimum of (12), i.e.,

D(t)
= PL(D(t−1))

= argmin
D

{
1
2

∥∥∥D− U t−1
∥∥∥2 + γ

L(t−1)
‖D‖1

}
(15)

with

U t−1
= D(t−1)

−
1

L(t−1)
∇M (D(t−1))

=

[
u(t−1)1 , . . . , u(t−1)s , . . . , u(t−1)S

]
(16)

where D is the iteratively updated by FISTA, PL(D(t−1))
represents a proximal operator, and L(t−1) is the step size
of the internal gradient used to control the convergence rate,
which is in the form of a linear search. Meanwhile, to speed
up the convergence of the system (15), the proximal operator
PL(H (t+1)) is used as the beginning of the current iteration,
in which H (t+1) is a linear combination of two previous
iterations D(t) and D(t−1), i.e.,

H (t+1)
= D(t)

+
k (t) − 1
k (t+1)

(D(t)
− D(t−1)) (17)
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where k (t) is an auxiliary sequence, whose iteration formula
is given by

k (t+1) =
1+

√
1+ 4(k (t))2

2
(18)

Due to the separability of the L1 norm, i.e., D =

(d1, . . . , dS ), we can update each weight ds by solving the
following one-dimensional problem, that is

d (t)s =
(
u(t−1)s −

γ

L(t−1)

)
+

sgn
(
u(t−1)s

)
, s = 1, . . . , S (19)

In addition, a projection operator P is introduced to assure
that each weight d (t)s is nonnegative (ds ≥ 0), i.e.,

P(d (t)s ) = max
(
0, d (t)s

)
(20)

The updation of the weights D of the combined kernel
function by FISTA is given in Algorithm 2. It follows
from the optimization problem (8) is a convex problem
that its global optimum solution can be obtained. Moreover,
Algorithm 2 minimizes the substitution function in each
iteration to ensure that the original objective function
iteratively decreases, and finally the global optimization
of the convergence domain problem is achieved. The
theoretical proof [24] that the convergence rate of such
an algorithm is guaranteed to be O(1/t2). By optimiz-
ing D, we can learn the relative importance between the
different kernel functions and perform parameter estimation
at the same time. The final regression function obtained
from

f (x) =
N∑
i=1

(α̂∗ − α̂)
S∑
s=1

d̂sKs(x, xi)+ b. (21)

To simultaneously update the weights of the training
samples, we embed Algorithm 2 as a hyper parameter
optimization method into Algorithm 1. This yields the
so-called Ada-L1MKL-WSVR, which is a new boosting
algorithm for regression. Furthermore, it is also an integrated
algorithm composed of several regression functions, which is
followed in Algorithm 3.

As Algorithm 3 shows, Ada-L1MKL-SVR mainly per-
forms two tasks at each iteration, including the adaptive
selection of the optimal combined kernel function and the
updation of the weights of the training samples. Firstly,
MKL-SVR trains a set of the training samples to obtain the
corresponding regression function. Secondly, the regression
errors are calculated based on the classification-type loss.
Thirdly, the weights of each training subset are recalcu-
lated according to the regression errors. Next, the weight
distribution is used to resample the regression samples to
form a new training subset. After that, according to the new
training subset, the weights of the combined kernel function
D are calculated by using Algorithm 2. Finally, the regression
functions obtained from each iteration are combined as the
final regression function.

There are two contributions from the boosting iteration
in Algorithm 3. The first contribution is to skillfully add

Algorithm 2 Optimize D Based on FISTA
Input:

Training samples: {(xi, yi)}Ni=1, L
(0)
= l(l ≥ 1), η = 2,

k (1) = 1, λ = (λ1, . . . , λN ), C , ε, γ and tol
Output:

The weights of the combined kernel function: D̂
1: Initialize D(0)

= (d (0)1 , . . . , d (0)S ) = (1/S, . . . , 1/S)
2: H (1)

= D(0)

3: for t = 1 to . . . do
4: Calculate M (H (t)) by using WSVR in (1) and
∇M (D(t−1)) according to (14)

5: Find the smallest nonnegative integers it such that
Z
(
pL̄(t) (H

(t))
)
≤ QL̄(t)

(
PL̄(t) (H

(t)),H (t)
)
, where

L̄(t) = ηitL(t−1)

6: Set L(t) = ηitL(t−1)

7: D(t)
= P

(
PL(t) (H

(t))
)

8: k (t+1) = 1+
√

1+4(k (t))2

2
9: H (t+1)

= D(t)
+

k (t)−1
k (t+1)

(D(t)
− D(t−1))

10: if max(|D(t)
− D(t−1)

|) < tol then
11: D̂ = D(t), break
12: end if
13: end for
14: return D̂

the L1 norm of the weights D to the objective function of
WSVR, and an accelerated method based on FISTA is used
to optimize the weights D. The second contribution is to
embed FISTA into AdaBoost, that is, during each iteration,
the weights D and the weights λ are optimized and updated,
respectively.

The algorithm finally obtains a regression function,
which can be regarded as a separating planes ensem-
ble in the weighted average composed of N optimal
separated planes with αt as the confidence of the t-th
optimal separation plane. The final regression function is
the results of the weighted votes of the multiple regres-
sion functions with a prediction accuracy of more than
50%. Without ignoring the normal samples, the algorithm
strengthens the training of the abnormal samples to ensure
the robustness, that is, the detection of the abnormal
samples.

IV. EXPERIMENTAL RESULTS AND ANALYSES
Without causing ambiguity in the context, the predic-
tion model based on Algorithm 3 is still written as
Ada-L1MKL-SVR in this section. In order to test the per-
formance of the proposed Ada-L1MKL-WSVR, We design
two groups of the experiments, and compare with four regres-
sion models (SVR [7], EGWO-SVR [33], MKL-SVR [8],
Ada-SVR-R [17]). The first group of the experiments consists
of eight datasets from UCI machine learning repository [32],
and the COVID-19 epidemic dataset from eight countries are
used in the second group of the experiments.
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Algorithm 3 Ada-L1MKL-WSVR
Input:

Training samples {(xi, yi)}Ni=1, L
(0)
= l(l ≥ 1), η = 2,

k (1) = 1, C , ε, γ and tol
Output:

Final ensemble regression function: F(x)
1: Initialize D(0)

= (d (0)1 , . . . , d (0)S ) = (1/S, . . . , 1/S)
2: Initialize the weights of the training samples: wti =

1/N , i = 1, 2, . . . ,N
3: H (1)

= D(0)

4: for t = 1 to . . . do
5: Set the distribution of the weights of the training

samples as: λti =
wti
N∑
i=1

wti

, i = 1, 2, . . . ,N

6: CallMKL-SVR, provide it with the distribution λti , and
obtain a regression function ft (x)

7: Calculate the weighted classification-type loss of ft (x):

errort =
n∑
i=1
λti [|yi − ft (xi)| > ε]

8: if errort > 1
2 then

9: αt = 0
10: else
11: αt =

1
2 ln

(
1−errort
errort

)
12: end if
13: Update the weights of the training samples:

wt+1i = wti ×
{
exp(−αt ), if |yi − ft (xi)| < ε

exp(+αt ), if |yi − ft (xi)| ≥ ε
14: Calculate M (H (t)) by using WSVR in (1) and

∇M (D(t−1)) according to (14)
15: Find the smallest nonnegative integers it such that

Z
(
pL̄(t) (H

(t))
)
≤ QL̄(t)

(
PL̄(t) (H

(t)),H (t)
)
, where

L̄(t) = ηitL(t−1)

16: Set L(t) = ηitL(t−1)

17: D(t)
= P

(
PL(t) (H

(t))
)

18: k (t+1) = 1+
√

1+4(k (t))2

2
19: H (t+1)

= D(t)
+

k (t)−1
k (t+1)

(D(t)
− D(t−1))

20: if max(|D(t)
− D(t−1)

|) < tol then
21: D̂ = D(t), break
22: end if
23: end for

24: return F(x) =

T∑
t=1

αt ft (x)

T∑
t=1

αt

A. PERFORMANCE CRITERIA
The criteria of mean absolute error (MAE) and root mean
square error (RMSE) [34] are employed to validate the
effectiveness of the models in this paper.

The representations of MAE and RMSE are defined by

MAE =
1
N

N∑
i=1

|F(xi)− y(xi)| (22)

TABLE 1. Intervals of the parameters.

TABLE 2. UCI dataset statistics.

and

RMSE =
1
N

√√√√ N∑
i=1

(F(xi)− y(xi))2 (23)

respectively. Here N is the total number of the samples, and
F(xi) and y(i) denote the predicted and real values of the t-th
sample, respectively.

It is well-known that MAE is the mean value used to
measure the absolute error between the predicted and real
values, and RMSE represents the square root of the predicted
error, which canmeasure the dispersion of the predicted error.
In each group of the experiments, the smaller the MAE and
RMSE, the better the performance of the model is.

B. DATA PREPROCESSING AND PARAMETERS SETTINGS
It is well-known that SVRs produce better models when the
data are normalized, all data should be normalized or stan-
dardized before the prediction. In this paper, we preprocess
the raw data in each group of the experiments by using min-
max normalization, i.e.,

x∗ij =
xij −min

i
(xij)

max
i
(xij)−min

i
(xij)

(24)

where xij represents the j-th value of the i-th attribute, max
i
(xij)

and min
i
(xij) represent the maximum and minimum values of

the i-th attribute, respectively.
As is known to all, the reasonable selection of the kernel

function and its parameters can improve the prediction ability.
The commonly used kernel functions include the Gaussian
kernel function and polynomial kernel function [35], i.e.,

K (x, xi) = exp
(
−
‖x− xi‖2

σ 2

)
(25)
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TABLE 3. Experimental result on Experiment I.

and

K (x, xi) = (〈x, xi〉 + 1)d (26)

where σ represents the width of the Gaussian kernel function,
which controls the complexity of the distribution of the
feature subspace, and d represents the order of the polynomial
kernel function.

In this paper, the Gaussian kernel function and polynomial
kernel function are selected to combine the multi-kernel func-
tions. The multi-kernel function is composed of 13 different
basic kernel functions including 10 Gaussian kernel functions

and 3 polynomial kernel functions with different parameters.
In addition, we use the grid search approach to adjust hyper
parameters, and the values of all hyper parameters settings
are shown in Table 1.

C. EXPERIMENT I
In this subsection, we test the accuracy of L1MKL-SVR
and Ada-L1MKL-WSVR based on the first group of the
experiments. Each dataset is divided into the training set
(60%), the validation set (20%) and the testing set (20%) by
using train_test_split() function in Python 3.7.2. The training
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TABLE 4. COVID-19 dataset statistics.

TABLE 5. Experimental result on Experiment II.

set is used to train the models, the validation set is used to
adjust hyper parameters, and the testing set is used to detect
the generalization ability of models. All the experiments are
repeated 10 times to demonstrate the robustness of the model
(The parameter ‘‘random_state’’ in train_test_split() function
is set to integers from 0 to 9 in Python 3.7.2).

The descriptive information of these datasets are presented
in Table 2, and the experimental results of Experiment I are
showed in Table 3.

As the results demonstrated in Table 3, Ada-L1MKL-
WSVR achieves the best prediction on most datasets against
the rest of the models. In particular, the performance of
Ada-L1MKL-WSVR is superior to other models on Pyrim
data, where the MAE and RMSE are 0.059 ± 0.005 and
0.079 ± 0.019, which are reduced by 20.38% and 11.28%
on average. Taking the Triazines data as an example, Ada-
L1MKL-WSVR has the best regression effect with the MAE
and RMSE of 0.097±0.012 and 0.130±0.020, respectively,

down 0.49% and 3.64% over the second-best model, i.e.,
L1MKL-SVR,while the regression effect of SVR is theworst.
In the Boston-housing and Forestfires data, the MAE of Ada-
L1MKL-WSVR is slightly larger than that of L1MKL-SVR,
while the variance of the MAE is less than that of L1MKL-
SVR, and their performances are better than those of SVR and
Ada-SVR-R. In the Wine Quality data, one can easily verify
that Ada-L1MKL-WSVR and L1MKL-SVR obtain the best
MAE and RMSE, respectively, and there is little difference
between them. Both of them are significantly better than that
of other models.

In addition, by analyzing the experimental results of SVR,
EGWO-SVR and Ada-SVR-R, we can see that the integrated
SVRs is superior to SVR. This is due to the fact that
Ada-SVR-R trains many times by changing the weighted
distribution of the training samples, so as to achieve the
effect of multi-kernel learning and increase the integral
performance. In general, the two proposed models have
smaller MAEs and RMSEs than those of other models,
which shows that L1MKL-SVR can adaptively select the
optimal combined kernel function and its parameter. Due
to the advantages of AdaBoost, Ada-L1MKL-WSVR can
effectively adjust the weights of the training samples and
the integrate multiple weak regressions. In the face of
the abnormal dataset, it can obtain more robust regression
performance than that of L1MKL-SVR.

In terms of time complexity, the most efficiency and the
least efficiency are SVR and EGWO-SVR. Compared with
SVR, EGWO-SVR has higher prediction accuracy, but it
needs to constantly update iteration, so the time complexity
is high. In addition, our model has higher time complexity
than the majority of the comparative models. The time
complexity is negatively correlated with the regularization
parameter γ . The smaller the regularization parameter, the
higher the time complexity is. On the contrary, the larger the
regularization parameter, the lower the time complexity is.
This is a shortcoming of our model.

D. EXPERIMENT II
In this subsection, we use the COVID-19 epidemic dataset
of eight countries to further verify the performance of our
model. Table 4 lists the cumulative confirmed cases and
deaths in these eight countries, as well as the first and last
reporting periods [39].
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In this subsection, we use Ada-L1MKL-WSVR instead of
SVR. Furthermore, we take the data before April 17, 2020 as
the training samples to predict and analyze the existing cases
of the eight countries from April 28, 2020 to May 17, 2020.
The NCDTRM [38] and INCDTGM [39] are used as the
comparative models in this experiment.

As shown in Table 5, in addition to Canada, the proposed
model has the different degrees of the improvement compared
with NCDTRM and INCDTRM. Especially in Spain, Italy
and France, the prediction results of ourmodel is significantly
improved compared with the best-second model, where the
MAE andRMSE are 3639.88, 1598.04, 3349.91 and 4186.15,
1191.01, 3949.64, respectively. The MAEs and RMSEs of
our model in eight countries are reduced by 31.19% and
29.98%on average, respectively. This shows the effectiveness
of our model in introducing multi-kernel learning and
ensemble algorithm. On the whole, Ada-L1MKL-WSVR can
effectively improve the regression accuracies in prediction of
the COVID-19 epidemic than the rest of the models.

V. CONCLUSION
In this paper, a new multi-kernel learning ensemble algo-
rithm, i.e., Ada-L1MKL-WSVR, is presented based on the
L1 norm and WSVR with AdaBoost. The L1 norm of
the weights of the combined kernel function is added to
the objective function of WSVR, which can effectively
select the optimal combined kernel function and its related
parameters. Furthermore, we embed FISTA into AdaBoost,
rather than a simple combination or the single model.
In each iteration, the algorithm simultaneously optimizes
and updates the weights D of the combined kernel function
and the weights λ of the training samples. Finally, the
multiple weakness regressors are integrated into a robust
regressor. The numerical experiments are desired to com-
pare the effectiveness and reliability of the algorithm in
this paper. However, our algorithm has the higher time
complexity than that of some other existing algorithms.
In addition, the hyper parameters of our algorithm need to
be preseted, and forecasting efficiency change with the hyper
parameters.

For future works, it is intended (i) to choose the
appropriate initial hyper parameters for the better prediction
results, and (ii) to look in some advanced optimization
algorithm to improve the computational efficiency of
Ada-L1MKL-WSVR.
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