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ABSTRACT In this paper, a fully decentralized local energy market based on peer-to-peer(P2P) trading
is proposed for small-scale prosumers. In the proposed market, the prosumers are classified as buyers
and sellers and can bilaterally engage in energy trading (P2P) with each other. The buyer prosumers are
equipped with electrical storage and can participate in a demand response (DR) program while protecting
their privacy. In addition to bilateral negotiating with the local sellers, these players can compensate for
their energy deficiency from the upstream market as the retail market at hours without local generation.
In this paper, the retail market price is assumed uncertain. Robust optimization is applied to model this
uncertainty in the buyer prosumers model. The proposed decentralized robust optimization guarantees the
solution’s existence for each realization of uncertainty components. Furthermore, it performs optimization
to realize the hard worse case from uncertainty components. A fully decentralized approach known as the
fast alternating direction method of multipliers (FADMM) is employed to solve the proposed decentralized
robust problem. The proposed approach does not require third-party involvement as a supervisory node nor
disclose the players’ private information. Numerical studies were carried out on a small distribution system
with several prosumers. The numerical results suggested the operationality and applicability of the proposed
decentralized robust framework and the decentralized solving method.

INDEX TERMS Peer-to-peer energy transactions, robust decentralized optimization, demand response
program, fast alternating direction method of multipliers, prosumer.

NOMENCLATURE
A. Indices: Definition
i, j, t, k Sellers/buyers/time/iteration index
‖.‖22 (.)2

B. Parameters
αi, βi, γi Cost function parameters for seller i

( /kWh2, /kWh , )
ωj, δj Utility function parameters for buyer j

( /kWh, /kWh2)
Djt Consumer j demand at time t (kW)
xmaxit , xminit Maximum/minimum generation of

seller i at time t (kW)

The associate editor coordinating the review of this manuscript and

approving it for publication was Sergio Consoli .

DRmax, −DRmax Maximum/minimum percent of
participatory energy in demand
response

ηch, ηdch Charging/discharging efficiency of the
electrical energy storage.

Emaxj , Eminj Maximum/minimum of energy stored
in electrical energy storage (kWh)

ych,maxj , ydch,maxj Maximum of charging/discharging
power of electrical energy storage
system (kW).

0 Uncertainty budget of retail market
price

ρ Penalty factor
λ̄Rt Forecasted retail market price at

time t ( /kWh).
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λ
R,max
t , λ

R,min
t Maximum/minimum of retail market price

λ̂Rt The constant fluctuation of retail market
price

1λ Uncertainty set for retail market price.
C. Variables
yjit The quantity of energy bought by the

buyer j from seller i at time t
ygjt Energy purchased from the grid (retail

market) by buyer j at time t
yjt Total energy purchased by buyer j at time t
ychjt , y

dch
jt Charging/discharging power of electrical

energy storage (kW)
yDRjt Energy participated in demand response

program by consumer j at time t
Ejt Energy stored in the electrical energy

storage at time t (kWh)
bchjt , b

dch
jt Binary variable used for definition of

charging/discharging condition.
xijt The quantity of energy sold by the seller i

to buyer j at time t
xit Total energy sold by seller i at time t
λijt Energy price traded between seller i

and buyer j at time t
D. Acronyms
P2P Peer-to-Peer
DR Demand Response
FADMM Fast Alternating Direction Method of

Multipliers
DERs Distributed Energy Sources
RCI Relaxed Consensus Innovation
KKT Karush Kuhn Tucker

I. INTRODUCTION
Following a century of relative stability in the electri-
cal industry, the wide deployment of distributed energy
sources (DERs) along with recent advancements in computa-
tions and communication technologies have transformed the
nature of energy consumption, trade, and utilization. Passive
consumers are now converted into active consumers with load
management and generation capability, and a novel concept
known as prosumer is formed [1]. With the introduction
of prosumers followed by novel energy distribution mod-
els, including peer-to-peer (P2P) sharing, the power system
has evolved from its traditional hierarchical structure into a
decentralized model. With these changes, the conventional
electricity markets have transformed into prosumer-centric
markets [2] in which the prosumers can engage in local
energy trading tomanage their energymore effectively. In this
trade, the prosumers sell their surplus energy to other pro-
sumers with energy deficiency [3]. They can also trade energy
with the upstream market as the retail market to achieve
maximum economic benefits [4]. Furthermore, the prosumers
can participate in demand response (DR) programs without
relying on a supervisory entity. Some prosumers can be

equipped with electrical storage to meet a portion of their
24-hour demand. These prosumers can charge their storage
at periods with low electricity prices and supply a portion of
their load at high electricity price periods by discharging their
batteries. Studies have shown the retail market price to be a
function ofwholesalemarket price [5]. Therefore, uncertainty
in retail market price can be a principal challenge for these
new players in achieving maximum economic benefit from
participation in this market (retail market).

Another challenge faced by the P2P market is its clearing
method. Market clearing methods can differ based on each
market’s structure, players’ behaviors, particular rules, and
assumptions. The centralized approach is a method of clear-
ing these markets requiring aggregation and integration of all
players’ information [6], [7]. For this reason, the protection
of players’ privacy is not possible in these methods. A vari-
ety of distributed methods, including primal-dual gradient
method [8]–[10], alternating direction method of multipli-
ers [11]–[13], the fast alternating direction method of mul-
tipliers (FADMM) [14], [15], consensus-based methods [16],
[17], and decentralized Ant-Colony optimization [18] have
been utilized to clear these markets. Among them, ADMM
has been widely employed in distributed optimization. Some
studies do not apply this method in a fully decentralized
manner by considering a supervisory node as a coordinator
for players [12], [19], [20]. However, no supervisory node
is utilized in other studies, rendering it a fully decentralized
method [21].

A. RELATED WORKS
Recently, numerous studies have concentrated on mar-
ket design for P2P energy trading. For the purpose of
this study, the literature review is carried out from three
aspects: with/without considering prosumers with storage,
with/without prosumers participation in DR program, and
with/without considering uncertainty in the upstream market
price.

The authors in [10] have proposed a fully decentralized
P2P market and cleared it using a decentralized primal-dual
gradient approach. In the proposed model, all players of a
local distribution network negotiate with each other and reach
an agreement over price and energy amount. However, In [22]
has developed a P2P market model for transmission systems
and employed the primal-dual gradient method to clear the
designed market, which is not fully decentralized. in the
presented model, the sellers act as price-maker players that
cannot choose their energy peers. In a fully decentralized P2P
market, all individual players negotiate and agree on the price
and the amount of transactional power. It should be noted
that the primal-dual gradient method is not a comprehensive
method for clearing the P2P market because it is only appli-
cable to convex models [23]. Authors in [24] encourage the
large producers with fossil fuel, the intermediary providers,
the consumers with flexible load, and the renewable sources
in the power grid to participate in P2P transactions via a
bilateral contract network. The authors in [25] have designed
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a fully decentralized and hierarchical P2P energy tradingmar-
ket for prosumers of a community in which shiftable home
appliances and home battery storage systems are utilized to
facilitate P2P energy transactions. Multi-bilateral economic
dispatch as a novel P2P market is developed in [16]. Authors
have applied a relaxed consensus innovation (RCI) approach
to clear their proposedmarket. P2P energy transaction for vir-
tual power plants as prosumers under blockchain technology
is presented in [26]. Authors provided (encoded) the essential
infrastructure for P2P transactions between virtual power
plants using smart contracts. Stable-matching algorithm as a
low-voltage distribution system operator is suggested in [27]
to determine the shortest electric route between the local
energy market players. After specifying the closest peers, the
authors cleared the proposed market using continuous double
auction. P2P trading for a virtual power plant as a community
is proposed in [28] using the Ethereum Blockchain Platform.
To avoid security concerns and peers’ cost minimization, the
proposed market has been cleared using an auction mecha-
nism in the blockchain platform and smart contracts in the
form of irreversible contracts. In [18], a short-term P2P
energy market with the pool-structured and parallel auction
for small-scale prosumers with blockchain technology has
been designed and cleared using decentralized ant-colony
optimization. Authors in [29] have sought optimal routing
to prevent lines congestion in P2P energy transactions in a
distribution network with thousands of peers. They utilized
a slime mold-inspired meta-heuristic optimization algorithm
for a P2Pmarket. Authors in [30] proposed an energy agent to
improve energy trading among consumers and the electricity
grid. The proposed agent updates the optimal demand and
dynamic price for energy transactions in the proposedmarket.
An operational model for P2P energy trading among a group
of electric vehicles (EVs) in a charge station and a com-
mercial entity equipped with solar generation is presented
in [31]. The authors applied dynamic pricing for EVs based
on the stored energy price in this model. This pricing model
enhances the profit of EV owners and increases the share of
charge stations in P2P energy markets. In [32], a model of
energy transaction is proposed for the members of an energy
community in which the flexible buyers can trade energy
with other members of their community and participate in
the wholesale market with the aid of a community manager.
Authors in [33] developed a novel model using blockchain
technology for prosumers’ P2P transactions of energy-backed
tokens. A novel concept called demurrage is utilized in the
proposed model to avoid energy token accumulation. A novel
decentralized market in the presence of prosumers and active
retailers in their locality is presented in [34]. The authors
applied a primal-dual sub-gradient method to clear the pre-
sented market.

Given the performed studies in Table 1, the following study
gap is evident:
• Fully decentralized P2P market model: some of the
proposed models in studies are not fully decentralized

P2P, and all players do not negotiate with each other
separately and bilaterally.

• Direct and dynamic energy transaction of local play-
ers with the upstream network: in some of the pro-
posed models, the prosumers can only participate in the
local transactions or cannot directly choose the upstream
market as an energy peer. By imposing restrictions on
price to discourage the prosumers from participating
in the upstream market, these studies hamper the play-
ers’ ability to participate and transact energy with the
upstream network and exploit its benefits.

• Participation in DR program: Some studies do not
consider prosumers’ participation in DR programs as
virtual peers. In others, the proposedmodels are not fully
decentralized, and the prosumers’ privacy is not pro-
tected. In other words, the prosumers do not participate
in the DR program, and an operator as a supervisory
node decides on prosumers’ participation in the DR
program.

• Considering uncertainty in upstream market price:
neglecting uncertainty in upstream market price is one
of the major study gaps in most studies related to P2P
energy transactions because it significantly impacts the
actual scheduling of prosumers. By considering a more
realistic market behavior, the proposed model can show
more robustness in the face of uncertainties as a stochas-
tic event.

• Fully decentralized P2P market clearing with a fully
decentralized approach: Some studies have employed
the centralized or not fully decentralized approaches
in addition to mentioned gaps. Nevertheless, given
the nature of the proposed problem, a decentralized
approach should be applied to clear this market.

B. NOVELTIES AND CONTRIBUTIONS
This paper develops a novel market for fully decentralized
P2P energy transactions among prosumers in a small distri-
bution network. Prosumers are classified into two groups of
buyer and seller, based on their net consumption and gener-
ation. Buyer prosumers are equipped with electrical storage
green. They can also participate in the price-based demand
response program without third-party operator involvement.
Given that the seller prosumers do not have surplus genera-
tion at all hours, the buyer prosumers purchase their demand
deficiency from the upstream network as the retail market.
Since the retail market price is a function of the whole-
sale market price, it involves uncertainty. Thus, the buyers
should consider this uncertainty in their scheduling. Robust
optimization is applied in this paper to model uncertainty in
retail market price in buyers’ models. The proposed market
is cleared using a fully decentralized FADMM approach. The
presented approach neglects the coordinator node and offers
a higher convergence rate compared to conventional ADMM.

Hence, the contributions of this paper are summarized as
follows in terms of the P2P fully-decentralized market model,
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direct and dynamic energy transactions of local players with
the upstream market, participation in demand response pro-
gram, considering the uncertainty of the upstream market
price, clearing the fully decentralized P2P market with a fully
decentralized approach:

• A fully decentralized P2P energy market is designed and
modeled in the presence of a demand response program
for small-scale prosumers equipped with storage. The
prosumer with supply shortage can satisfy this defi-
ciency from the retail market as an energy peer.

• The uncertainty in upstream market price in buyer pro-
sumers model is modeled using robust optimization;
thus, the novel proposed model of these players shows
robustness against price variations.

• A fully decentralized FADMM approach is employed to
clear the proposed market in the presence of demand
response programs and uncertainty in retail market
price. The proposed approach does not require the pri-
vate information of prosumers and guarantees a feasible
and global solution for all individual local players.

C. PAPER ORGANIZATION
The remainder of this paper is organized as follows:

Section II: this section presents the commercial platform
of P2P energy in two subsections of the proposed market’s
concept and mathematical design.

Section III: in this section, the numerical studies of the
proposed market are carried out for two case studies, and the
simulation results are analyzed.

Section IV: the conclusions are provided in this section.

II. PEER-TO-PEER ENERGY TRADING FRAMEWORK
A. DESCRIPTION OF STRUCTURE, ASSUMPTIONS, AND
CONCEPT OF THE ENERGY TRADING FRAMEWORK
Prosumers are smart agents with the dual capability of
generation and consumption. If their net consumption and
generation are positive, they sell their excess power to the
network (upstreammarket). Conversely, if their net consump-
tion and generation are negative, they supply their energy
shortage from the network. For this reason, these agents
are divided into two groups of producers and consumers
in the proposed market structure, and they are assumed to
play a fixed role during the scheduling period. It is also
presumed that the prosumers with buyer roles are equipped
with electrical storage, participate in price-based demand
response programs, and manage their flexible demand. From
a time aspect, the proposed market is considered a day-
ahead market. With the market’s time structure, players, and
assumptions being defined, the proposed market platform is
structured as follows:

According to Figure 1, the sellers update their price bids
(λijt ) by receiving demand signals from the buyers (yjit ) and
determine their generation level (xit ) and sale amount to
local buyers (xijt ) based on this price. Then, they announce
the specified price bids (λijt ) and sale amount (xijt ) to the

FIGURE 1. Trading framework.

buyers. After receiving the price signal and sale amount from
the local sellers (λijt ) and price signal of the retail market
(λRt ) as the day-ahead market, the local buyers determine
their total required demand (yjt ), demand amount from local
sellers (yjit ), participation level in DR program (yDRjt ) and
charge/discharge level of their storage (ydchjt , y

ch
jt ). The buyers

then announce the amount of demand to the local sellers
(yjit ). This process continues until the stopping criterion of
the proposed decentralized algorithm is satisfied. One major
concern in bilateral energy transactions (P2P) is a privacy
breach. In the proposed market, the players’ privacy is main-
tained from two aspects. First, it prevents the disclosure of
important operation information and sensitive commercial
information because the price and amount of trading power
is the only information they exchange with each other. From
the second aspect, the prosumers’ participation in the DR
program is executed without the operator (controller node)
involvement. Considering these interactions, the proposed
market presents a fully decentralized bilateral energy market
for P2P interaction between prosumers.

B. MATHEMATICAL DESIGN OF THE PROPOSED MARKET
Amarket withN prosumers divided into two classes ofNB =

{1, . . . ,NB} local buyers and NS = {1, . . . ,NS} local sellers
is proposed such thatNB∩ NS = ∅. Assuming this condition
means that the role of each prosumer is fixed and not changed
during the scheduling period.

1) BUYER AND SELLER OPTIMIZATION MODEL
The local buyers seek to maximize their welfare through
optimal participation in the local and retail market. These
players can participate in the price-based DR program with-
out relying on a central entity. Further, they are equipped
with electrical storage for their optimal energy management.
Relations (1) to (11) describe the objective function and
constraints related to the buyers.

max
yj

WBj =
T∑
t=1

U (yjt)− NS∑
i=1

λijtyjit − λRt y
g
jt

 (1)

s.t

U
(
yjt
)
=


ωjyjt − δjyjt2 yjt <

ωj

2δj
ωj

2

2δj
yjt ≥

ωj

2δj

(2)
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TABLE 1. Comparison of conducted studies regarding P2P transactions.

yjt =
NS∑
i=1

yjit + y
g
jt + y

dch
jt − y

ch
jt − y

DR
jt (3)

NS∑
i=1

yjit + y
g
jt + y

dch
jt = ychjt + Djt + y

DR
jt (4)

−DRmaxDjt ≤ yDRjt ≤ DR
maxDjt (5)

T∑
t=1

yDRjt = 0 (6)

Ejt = Ejt−1 + ηchychjt −
ydchjt

ηdch
(7)

0 ≤ ychjt ≤ b
ch
jt y

ch,max
j (8)

0 ≤ ydchjt ≤ b
dch
jt ydch,maxj (9)

Eminj ≤ Ejt ≤ Emaxj (10)

bchjt + b
dch
jt ≤ 1

yjit , ychjt , y
dch
jt ,Ejt ≥ 0

bchjt , b
dch
jt ∈ {0 1}

yDRjt is free (11)

Relation (1) shows the objective function of buyer j. The first
term in this expression is a utility function. The common form
of the utility function has three important properties. First,
lack of energy consumption is equal to a zero utility function
U j(0) = 0, meaning that not consuming energy will bear no
advantage for the buyers. Second, it is a non-descending func-
tion U ′j (yj) ≥ 0 meaning that the consumers, when possible,
are inclined to consume more energy until they reach their
highest consumption level. Third, the utility function is con-
sidered a concave function U ′′j (yj) ≤ 0 meaning that the con-
sumers’ satisfaction level can gradually saturate. Each player
is an independent decision-maker whose energy demand can
vary based on price and weather conditions. Furthermore,
the energy demand depends on consumer type (industrial,
commercial, and residential). For instance, residential and

industrial prosumers respond differently to the same price.
The different responses of different prosumers to various
price scenarios can be modeled using utility functions from
microeconomics [35]. Different choices of utility functions
such as quadratic and logarithmic functions can model the
behavior of different prosumers [36]. Given the nature of
players, a quadratic function was applied in this paper to
model the players’ response to price variations (according to
relation (2)). This means that these prosumers can determine
their demand level based on the energy price. Moreover, the
total energy demand of buyer j is expressed in relation (3).
The second term in buyers’ objective function is the energy
purchase cost from the local sellers (local market), while the
third term represents the energy purchase cost from the local
market. Relation (4) displays the electrical power balance for
buyer j at time t. Each buyer can participate concurrently
in both local energy market (yjit ) and retail market (ygjt ) to

supply and manage its demand at time t (Djt ). In addition,
the buyers alter their demand level (load shift) during the

scheduling period via participation in DR programs (yDRjt )
as a virtual generation unit and optimal storage manage-
ment (ychjt , y

dch
jt ). The restrictions related to DR participa-

tion are expressed in relations (5)-(6). Relation (5) impose
a constraint on the participation level in the DR program,
while relation (6) ensures that load shedding will not occur
during the scheduling period. The equality and inequality
constraints on buyer j’s electrical storage are provided in
relations (7)-(11). Relation (7) yields the storage energy level
per hour. The constraints on charge and discharge of electrical
storage are presented in relations (8) and (9). Relation (10)
constrains the energy amount stored in the storage. At each
hour, the storage can be operated in either charge (bchjt = 1)
or discharge mode (bdchjt = 1) as shown in relation (11).

The local sellers can negotiate with individual local buy-
ers in a P2P fashion and reach an agreement over the
price(different marginal price) and amount of transactional
energy. Relations (12)-(15) describe the objective func-
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tion (welfare) and generation constraints related to the seller i.

max
xi

WS i =
T∑
t=1

 NB∑
j=1

λijtxijt − C (xit)

 (12)

s.t

xit =
NB∑
j=1

xijt (13)

xminit ≤ xit ≤ x
max
it (14)

C (xit) = αix2it + βixit + γi
x ijt ≥ 0 (15)

The first term of the objective function in relation (12)
represents the profit achieved from selling power to the local
consumers, and the second term is the cost function of power
generation(according to relation (15) [37]). Relation (13)
gives the sum of energy sold to all local peers. Further-
more, the generated power of this seller is constrained via
relation (14).

2) MATHEMATICAL MODELING OF THE OPTIMIZATION
PROBLEM
The proposed problem aims to maximize the social welfare
of local players (prosumers). Thus, the objective function is
obtained from the sum of the objective functions of sellers
and buyers provided in relations (1)-(15).

max
x,y

NS∑
i=1

WS i +
NB∑
j=1

WBj

 (16)

s.t

xijt = yjit : λijt
Equations (2)− (11) and (12)− (15) (17)

The optimization problems of local sellers and buyers are
related using relation (17), which is known as a coupled con-
straint in optimization problems. This relation is considered
a market-clearing condition and states that the amount of
energy purchased by buyer j should equal the amount sold
by seller i at each time interval. The dual of this constraint
(λijt ) shows the energy transaction price between the buyer
and seller.

3) UNCERTAINTY MODELING
The time of schedule realization for the proposed market of
this paper is 24 hours ahead; thus, a time difference exists
between schedule and its realization. This time difference
causes uncertainty in some input data of this schedule. One
output of this schedule is the amount of power purchase from
the retail market as the upstream market whose clearing price
(retail market) depends on the wholesale market. Given that
the day-before market (wholesale) is not still cleared, thus the
purchase price from the retail market is unknown for local
buyers and has uncertainty. One of the statistical methods
to overcome these uncertainties is robust optimization. This
method becomes more effective by assuming only a linear

range of uncertain parameter variations. The scenario-based
stochastic method will be more effective if more historical
information on parameter variation is available to draw its
probability distribution function. Assuming that limited infor-
mation exists about the variation range of the retail market
price (which is the function of the wholesale market), this
paper employs the robust optimization method to model the
uncertainty of this parameter under the uncertainty set 1 in
the local buyers’ model. This uncertainty set is considered
polyhedral, which is presented in more detail in [38].
Uncertainty set 1 for the retail market price can be deter-

mined as follows:

1λ =

{
λ̃Rt ∈ R

+
: 0λ ≤

∑
λ̃Rt∑
λ̄Rt
≤ 0̄λ∀t,

λ̃Rt ∈
[
λ
R,min
t , λ

R,max
t

] }
(18)

The variation range of retail market price lies between λR,maxt
as the upper bound and λR,mint as the lower bound. These
upper and lower bounds are applied by uncertainty budgeting
(0) on retail market price, and this constraint is determined
by 0λ and 0λ to control conservatism for 1λ.

The uncertain parameter (̃λ
R
t ) is located in the objective

function of the buyer model; thus, the objective function can
be regarded as a constraint.

max
yj

WBj = zj (19)

s.t

zj +
T∑
t=1

λ̃Rt y
g
jt ≤

T∑
t=1

U
(
yjt
)
−

T∑
t=1

NS∑
i=1

λityjit

Equations (2)− (11) (20)

By doing this, the local buyer j’s model is modified into
a hard worse case model called the max-min method. The
uncertainty set1λ for parameter λ̃Rt can be rewritten into the
following relation:

λ̃Rt = λ
R
t + ξjt λ̂

R
t ξjt ∈ [−1 1] (21)

In this relation, λ
R
t represents the nominal value, λ̂Rt the

constant fluctuation and ξjt the stochastic variable for the
retail market price under uncertainty λ̃Rt . Thus, relation (20)
takes the following form:

zj +
T∑
t=1

λ
R
t y

g
jt +

T∑
t=1

ξjt λ̂
R
t y

g
jt

≤

T∑
t=1

U
(
yjt
)
−

T∑
t=1

NS∑
i=1

λijtyjit (22)

Considering the hard worse case, we will have:

zj +
T∑
t=1

λ
R
t y

g
jt +max

ξjt

T∑
t=1

ξjt λ̂
R
t y

g
jt

≤

T∑
t=1

U
(
yjt
)
−

T∑
t=1

NS∑
i=1

λijtyjit (23)
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Deviation in the upper bounds of the range indicates the
realization of the worst-case uncertainty. In this relation, the
robust counterpart maxξjt

∑T
t=1 ξjt λ̂

R
t y

g
jt in the uncertainty set

1λ needs to be obtained. The detailed proof of this equiva-
lence which is found using second-order conic programming,
is provided in Ref [39], [40]. Therefore, considering the
uncertainty in retail market price, the local buyer problem is
achieved as follows:

max
yj

WBj = zj (24)

s.t

zj +
T∑
t=1

λ
R
t y

g
jt + βj0j +

T∑
t=1

$jt

≤

T∑
t=1

U
(
yjt
)
−

T∑
t=1

NS∑
i=1

λijtyjit (25)

$jt + βj ≥ λ̂
R
t y

g
jt (26)

$jt ≥ 0

Equations (2)− (11) (27)

4) THE PROPOSED DECENTRALIZED ENERGY
MARKET-CLEARING ALGORITHM
The optimization problem presented in relations (16)-(17)
can be solved in a centralized manner. The centralized
approach requires a supervisory node as a central controller.
This supervisory node needs to access all operational and
commercial information of prosumers. Trusting a supervisory
node with players’ confidential information contributes to the
risk of players’ privacy breaches and information disclosure.
Thus, to avoid this issue, this paper has presented a decen-
tralized FADMM algorithm to solve the proposed problem
in a fully-decentralized manner needless of a supervisory
node. In the proposed decentralized FADMM, each prosumer
solves its optimization problemwithminimum (insignificant)
information received from other prosumers. The optimiza-
tion problem is decomposed into several secondary sub-
problems based on the dual decomposition principle [13].
In this decomposition, the coupled constraint (17) is relaxed,
and its dual is taken as price. In this case, each player solves
its optimization problem as a secondary problem in a decen-
tralized manner.

By writing reinforced Lagrangian of the presented opti-
mization problem in (16)-(17), the following relation will be
achieved:

L =
NS∑
i=1

WS i +
NB∑
j=1

WBj + µg (x, y)

+ λijt
(
xijt − yjit

)
− ρ

∥∥xijt − yjit∥∥22 (28)

This relation employs Lagrangian multiplier µ for non-
coupled constraints in buyer and seller problems (g(x, y))
to avoid excessive complexity. λijt is the dual of the cou-
pled constraint in buyer and seller problems. The standard
Lagrangian is valid for a fully-convex problem that does not

exhibit many sudden variations. To overcome these limita-
tions, reinforced Lagrangian in the form of relation (28) is
utilized that ensures the problem convergence and robustness
by adding the term (ρ

∥∥xijt − yjit∥∥22). In this expression, ρ is a
positive number called the penalty parameter. By writing the
original buyer and seller problems based on the reinforced
Lagrangian, we’ll have:

max
xi

WS i =
T∑
t=1

( NB∑
j=1

λijtxijt − C (xit)

− 0.5ρ
∥∥xijt − yjit∥∥22)

s.t

Equations (13)− (15) (29)

yjit in the seller problem and xijt in the buyer problem are
taken as pre-determined parameters.

max
yj

WBj = zj (30)

s.t

zj +
T∑
t=1

λ
R
t y

g
jt + βj0j +

T∑
t=1

$jt ≤

T∑
t=1

U
(
yjt
)

−

T∑
t=1

NS∑
i=1

λijtyjit −
T∑
t=1

NS∑
i=1

0.5ρ
∥∥xijt − yjit∥∥22

(31)

$jt + βj ≥ λ̂
R
t y

g
jt (32)

$jt ≥ 0

Equations (2)− (11) (33)

Under these circumstances, all original variables of both
buyer and seller problems need to be computed from the cor-
responding sub-problem based on the gradient ascentmethod.
The problem’s dual variable is updated using the iterative
method:

xk+1i = argmin
x
L(xi, ykjit , λ

k
ijt ) (34)

yk+1j = argmin
y
L(xk+1ijt , y

j
, λkijt ) (35)

λk+1ijt = λ
k
ijt − ρ(x

k+1
ijt − y

k+1
jit ) (36)

To speed up the convergence rate of conventional ADMM,
the dual variable (relation (36)) update is changed as
follows [15]:

λ̃kijt = λ
k
ijt − ρ(x

k+1
ijt − y

k+1
jit ) (37)

µk+1 =
1+

√
1+ 4(µk )2

2
(38)

αk+1 =
µk − 1
µk+1

(39)

λk+1ijt = λ̃
k
ijt − α

k+1(λkijt − λ
k−1
ijt ) (40)

In these relations, µ0
= 1 is assumed. The stopping criterion

for the proposed algorithm is defined as follows. In these
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FIGURE 2. The predicted production and consumption of the local players
and the nominal price of the retail market.

relations, ε is a small positive number.∣∣∣λk+1ijt − λ
k
ijt

∣∣∣ ≤ ε (41)

III. SIMULATION
This section elaborates on the results of simulation to ver-
ify the operationality of the proposed decentralized mar-
ket model and the applicability of its solving method. All
numerical simulations were executed by the general algebraic
modeling system (GAMS) on a PC with Intel(R) Core(TM)
i3-2330M CPU 2.20 GHz 6 GB RAM. It should be noted that
the results of the centralized approach are utilized as a bench-
mark to evaluate the optimality of the proposed decentralized
method. a PC with.

A. TEST PLATFORM
The numerical studies are carried out on a small residential
distribution network comprised of three households (buyer)
and four households with small-scale production (seller)
using a one-day data of Pecan Street [41]. The average
New York wholesale market price [41] is used for nominal
price values of the retail market (λ

R
t ). Figure 2 depicts the

predicted demand and production profiles and the nominal
price of the retail market. The private parameters of the sellers
and buyers are taken from [42]. The stopping criterion and the
step size (ρ) of the FADMM algorithm are taken as 0.001 and
0.05, respectively.

Two case studies are carried out in this paper:

• Case study 1: P2P energy transaction among prosumers
without considering uncertainty in the retail market price
(definite scheduling)

• Case study 2: P2P energy transaction among prosumers
with considering uncertainty in the retail market price
(robust scheduling)

B. CASE STUDY 1
In this case study, P2P energy transactions among prosumers
are evaluated. According to the proposed model, the buyer
prosumers can purchase energy from the retail market. In this
case study, the buyer prosumers do not consider the uncer-
tainty of the retail market price in their optimization model.
Regarding the problem dimensions and for easy analysis of
the obtained results, the energy transaction between seller 1
with all buyers at 8 a.m., energy transaction between seller 2
with all buyers at 12 o’clock, energy transaction between
seller 3 with all buyers at 16:00, and energy transaction
between seller 4 with all buyers for 8 p.m. are shown in
Figure 3. This figure verifies the convergence of the proposed
decentralized approach for bilateral trading between each
local buyer and seller. From this figure, energy transaction
differs between sellers and buyers at different hours meaning
that each player adopts different strategies for various hours
to maximize its welfare. This freedom of action is indicative
of the dynamics and competitiveness of the proposed market.

As mentioned before, the buyers are equipped with energy
storages (batteries) to increase their welfare. The buyers sup-
ply a portion of their load from storages when the retail
market price is high and charge their batteries at hours with
the low retail market price. As mentioned before, the buyers
are equipped with energy storage (batteries) to increase their
welfare. The buyers supply a portion of their load from stor-
age when the retail market price is high and charge their bat-
teries at hours with the low retail market price. Figure 4 plots
the variations in charge and discharge of buyers’ electrical
storage and the retail market nominal price variation curve.
From this figure, from 1-4 and 10-15 o’clock, when the retail
market price is low, the buyers, in addition to supplying a por-
tion of their hourly demand, charge their batteries to increase
their welfare. Contrarily, from 5-9 and 17-21 o’clock, they
satisfy their demand by using their batteries rather than pur-
chasing from the market due to high retail market prices.
Table 2 presents the total welfare of local players, total energy
transactions in the local market, and total energy purchase
from the retail market. According to Figure 2, since the local
generation is not available at all scheduling hours, the local
consumers meet their demand by purchasing power from
the local market and optimize their demand supplying cost
through storage and participation in DR programs without
relying on a supervisory node. Furthermore, the presented
results in Table 2 suggest that the objective function value
(global optimal) and total traded power of the decentralized
approach corroborates that of the centralized approach.

The scalability of heuristic algorithms is a function of
two major factors: computation time and iteration number.
Notably, the computation time of the algorithm depends
on the system specifications, including CPU and RAM.
FADMM scalability is tested for a large number of pro-
sumers. Table 3 presents how the number of prosumers
affects the computation time and the number of iterations
required for FADMM convergence. The results suggest that
the FADMM’s computation time and the number of iterations
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FIGURE 3. The convergence of the proposed approach for P2P energy transactions between prosumers at different hours in case study 1.

FIGURE 4. The variation plot of charge and discharge of the buyer’s electrical energy storage and the price variation curve.

are a function of the players’ number. This paper assumes that
all players in the proposed market are connected. Given that
a fully-connected communication network exists among all
players, each player can negotiate with all other market play-
ers. Thus, according to Table 3, the algorithm’s computation
time increases significantly with the number of players. For

future studies, segmentationmethods can be used to solve this
problem.

C. CASE STUDY 2
This case study considers the P2P energy transaction among
prosumers considering uncertainty in upstream market price
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FIGURE 5. The convergence of the proposed approach for P2P energy transactions between prosumers at different hours in case study 2.

TABLE 2. Comparing the results of the proposed approach with the centralized method for case study 1.

FIGURE 6. Evaluation of P2P energy transaction between local players in
case study 2.

(retail market). As presented in the modeling section, a robust
optimization method is applied to overcome this uncertainty.

TABLE 3. The effect of increased players’ number on computation time
and number of iterations required for FADMM convergence.

Compared to the previous case study, the demand costs are
expected to increase for local buyers (prosumers), which
leads to their welfare reduction. The amount of these undesir-
able variations depends on the deviation from the retail mar-
ket’s predicted price and the determination of local buyers’
robust budget (0). In this case study, the price deviation from
the nominal value equals 10%, and 0 is taken as 1. Thus,
expectedly the local buyers’ behavior in purchasing power
from the retail market changes so that the buyer fulfils its
demand from the retail market with increased conservatism,
maximum participation in the DR program, and maximum
usage of its storage sources.

For this case study, similar to the first one, for easy anal-
ysis of the obtained results, the energy transaction between
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FIGURE 7. The power balance of the local buyers, the nominal price of the retail market, and the average price of the local transactions.

TABLE 4. Comparing the local players’ welfare in P2P trading with and without considering the retail market price uncertainty.

seller 1 with all buyers at 8 a.m., energy transaction between
seller 2 with all buyers at 12 o’clock, the energy transac-
tion between seller 3 with all buyers at 16 o’clock, and
energy transaction between seller 4 with all buyers at 8 p.m.
are shown in Figure 5. Due to uncertainty in retail market
price, during hours with abundant local generation (such as
12 o’clock), the buyers purchase more power from the local
sellers than the first case study to reduce their demand supply-
ing costs. Figure 6 illustrates inmore detail the amount of P2P
energy transactions between local buyers during the 24-hour
scheduling period. From this figure, all local buyers engage
in energy transactions with local sellers during periods with
abundant local generation. Rather than purchasing energy
from the upstream market, they transact energy with each
other without a supervisory entity as a coordinator node. The
amount of energy purchase by each buyer is different. Buyer
3 performs the highest and buyer 1 the lowest purchase from
this market. Figure 7 exhibits the electrical power balance
for local buyers, the retail market’s nominal price, and the
average price of local transactions. Based on this figure, from
1-5 and 23-24 o’clock, due to the lower nominal price of the
retail market and lack of local generation, the buyers charge
their storage, participate in a DR program and satisfy their
demand from the retail market. In other words, they shift a

portion of their flexible demand to these hours. From 10 a.m.
until 7 p.m. that the local generation is abundant, the buyers
procure a large portion of their demand through P2P transac-
tions with local sellers. In this period, the P2P transactions
price is lower than the nominal price of the retail market
owing to abundant local generation, and these prices have
similar behavior to the nominal price of the retail market,
meaning that the local market transaction prices follow the
nominal price of the retail market. According to Figure 7,
from 6 to 10 a.m. and 6 to 9 p.m., when the nominal price of
the retail market is high, the buyers use their storage to fulfil
their demand. Additionally, by participating in the demand
response program, they shift a portion of their demand to the
hours with low retail market nominal prices to minimize their
demand supplying cost and maximize their welfare.

Table 4 compares the welfare results of individual local
players with and without considering uncertainty in the retail
market price. As is evident, variations in the players’ welfare
level occur by considering uncertainty in retail market price.
By increased power selling to local players due to the rise
in retail market price, the sellers’ welfare has increased by
0.3 percent while the buyers’ welfare has been reduced by
2 percent. Notably, their demand supplying cost has increased
by 2 percent compared to case study 1. In general, by
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FIGURE 8. The effect of budget and uncertainty percent and robustness
of the optimal solution of buyers.

considering uncertainty in retail market price (with budget-
ing equal to 1 and 10 percent deviation) which is a source
of demand supply of the local consumers, the total wel-
fare decreases by 1.4. The results of this table suggest that
budgeting and deviation percent of the retail market price
can significantly impact buyers’ welfare and, consequently,
the total welfare. Figure 8 depicts the effect of variations
in uncertainty budgeting and retail market price deviation
percent on buyers’ total welfare. The deviation in electricity
market price ranges from 5 to 30 percent, and the robust
uncertainty budget of the retail market price is considered to
vary from 0 = 5 to 0 = 10. As shown by this figure, the
demand supplying cost of buyers is growing by taking into
account a high level of robustness which proves that the local
buyers’ welfare reduces by increasing the robustness of the
optimal scheduling.

IV. CONCLUSION
This paper designed and implemented a fully-decentralized
P2P energy market for small-scale prosumers. The numerical
studies show that the prosumers can freely trade energy in
the proposed market without relying on a supervisory entity.
They can use their storage as much as 21 percent of the
total consuming load during the scheduling period. These
players can participate in demand response programs, and
their welfare resulting from free participation without third-
party involvement increases to over 12 percent. They can
also participate freely in the retail market and supply more
than 53 percent of their load from this market as an energy
peer. Although considering robust optimization to model the
price uncertainty of this market negatively affects the profit of
these players by more than 1.4 percent, it provides a realistic
perspective for the active consumers to schedule their partici-
pation in this market. By considering budgeting and deviation
percentage of different retail market prices, the proposed
decentralized robust optimizationwas demonstrated to ensure
the feasibility of the solution existence for each realization
of uncertainty components while optimizing hard, worst-
case scenario realization of uncertainty components. The case
studies further suggested that the fast alternating direction
method of multipliers (FADMM) for market-clearing can
maximize the market players’ welfare while ensuring less

information exchange and privacy protection. However, the
solutions obtained by the proposed approach have a 0.03 per-
cent distance compared to the centralized approach. Thus, the
proposed approach achieves the optimal global solution sim-
ilar to the centralized method. Based on the proposed model
of this paper, the authors offer the following suggestions for
future research:

1) Using other statistical methods like the fuzzy and
stochastic methods to overcome the uncertainties in the
proposedmodel, including the uncertainties in the retail
market price and active consumers’ load

2) Using artificial intelligence-based methods, including
machine learning to forecast the active consumer’s load
and the upstream market price

3) Applying the proposed model for large-scale con-
sumers such as commercial and industrial consumers

4) Considering electric vehicles and their associated
uncertainty in active consumers’ model

5) Using the segmentation methods instead of considering
the fully-connected communication network between
prosumers to reduce the computation time and itera-
tions number required for FADMM convergence

6) Considering renewable sources and their associated
uncertainty in active sellers’ model

7) Considering change the role of prosumers between
buyer and seller during the scheduling period
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