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ABSTRACT Quick and accurate acquisition of tree height (TH) and diameter at breast height (DBH) plays
a very important role in forestry surveys. These parameters can be collected rapidly and accurately with
LiDAR. In this paper, an accurate tree parameters extraction method with combining the use of Unmanned
Aerial Vehicle Laser Scanning (UAVLS) to extract TH and Terrestrial Laser Scanning (TLS) to extract DBH
was proposed. To verify the applicability of this method, this paper collected LiDAR data in the Laohugou
forest area (a natural forest) and Saihanba forest area (an artificial forest), Hebei Province, China. For
the extraction of TH, both forest areas had overestimated. The coefficient of determination R2 of TH in
Laohugou forest area was 0.9458 and the root mean square error (RMSE) was 0.7 m, while in Saihanba
forest area R2 was 0.95 and the RMSE was 0.65 m. A method based on point density analysis was proposed
to automatically extract DBH. First, the data by TLS was normalized and made four-centimeter slices at
1.3 m. Then, branches, weeds and outliers were eliminated using an improved K-means algorithm. Finally,
point density analysis was performed on all sections, and threshold values were set to automatically complete
the extraction of DBH. The automatic DBH extraction by this paper proposed method was consistent with
the actual measurements, and the mean intersection over union (MIOU) reached 89%. The R2 of DBH in
the Laohugou forest area was 0.9941 and the RMSE was 0.65 cm; the R2 of DBH in the Saihanba forest
area was 0.99 and the RMSE was 0.43 cm. These results confirm that the accurate extraction of DBH in two
forest areas with different growth conditions and different tree species.

INDEX TERMS LiDAR, forestry, point cloud, parameter extraction.

I. INTRODUCTION
The increase in population, the burning of fossil fuels, and
deforestation of forest resources have caused an excess of
carbon dioxide in the atmosphere, intensifying the problem
of global warming [1]–[3]. Quick and effective access to
various types of ecological information can provide theoreti-
cal basis and scientific guidance for policymakers to formu-
late policies for sustainable development, alleviating climate
warming, and maintaining the balance of the ecosystem.
Forests are an important part of the natural ecosystem. Forests
mainly absorb carbon dioxide from the atmosphere, regu-
late the carbon-water balance, and play an important role in
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mitigating global warming and balance ecosystems [4]. Tree
height (TH) and diameter at breast height (DBH) are one of
themost important attributes in forest resource surveys. These
two parameters and other tree parameters (tree species, crown
width, etc.) are often used to predict forest storage capacity
and carbon sequestration capacity [5], [6]. Therefore, fast and
accurate acquisition of forestry parameter is of great signifi-
cance to forestry resource assessment and management.

Traditionally, forestry resource surveys based on field
visits to measure trees, which were characterized by low
efficiency and heavy workloads [6], [7]. Forestry resource
surveys of virgin forests also present harsh environments
and a high risk of injury. In recent 20 years, remote sensing
technology has become one of the important means to obtain
information on the structure, change and distribution of forest
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resources by virtue of its rapid, accurate, and non-destructive
acquisition of tree data at multiple spatial scales [8]. LiDAR
technology is an emerging active remote sensing technology
that acquires information by emitting laser beams and receiv-
ing echo signals. LiDAR technology can be used to rapidly
obtain accurate three-dimensional information of objects and
has been widely used in forestry resource surveys. According
to the platform involved, LiDAR technology mainly can be
divided into Spaceborne Laser Scanning (SLS), Airborne
Laser Scanning (ALS), and Terrestrial Laser Scanning (TLS).
SLS is mainly used for global or regional forestry resource
surveys. Due to the low point density, the accuracy of SLS
data collection is low [9], [10]. ALS is divided into Manned
Aerial Vehicle Laser Scanning (MAVLS) and Unmanned
Aerial Vehicle Laser Scanning (UAVLS).

ALS emit a laser to the top of the forest canopy
and collect its echoes to obtain vertical forest parameters,
such as crown width, TH, and canopy structure [11]–[14].
Miłosz Mielcarek et al. [15] used the point cloud to extract
TH from ALS data. The experimental result showed that the
RMSE of extraction TH was 1.25m. Giannetti F et al. [16]
used ALS data to extract the height of individual trees in the
Mediterranean region. The experimental results showed that
the coefficient of determination R2 was 0.97. However, due to
the occlusion between the trees, lasers have poor penetration
of the trunk and branches under the canopy. As a result,
the laser echo can only be partially retrieved, resulting in
incomplete or largely inaccurate extracted forestry param-
eters [17], [18]. In addition, for forest areas with a high
tree density, mutual sheltering between trees also reduces
the visibility from above the canopy. Experiments showed
that ALS is not suitable for below canopy forest param-
eter extraction [19]. The forest point cloud data collected
by Dalla Corte et al. based on high-density ALS instruments
(1400 points/m2) had a higher point density. Due to the far-
ther scanning distance, the points density was still relatively
low compared with the density provided by TLS. Therefore,
ALS is not as suitable for extracting DBH as it is for TH. ALS
is more suitable for the extraction of tree parameters in forests
with low tree density or during the leaf-off period [20].

TLS is installed on the ground closer to the trees and return
a denser forest point cloud (Greater than 10000 points/m2),
which can be used to extract DBH, height under branches,
biomass, and leaf area index [21]–[23]. Reference [16]
showed that using TLS data to extract DBH and the coeffi-
cient of determination R2 was greater than 0.99. Conto et al.
used the Hough transform to extract DBH from TLS data.
The RMSE was 2.15 cm and the deviation was 1.09 cm [24].
Lindberg E et al. [25] used TLS data to extract the DBH of a
single tree. Experimental results showed that the RMSE of
DBH extracted using TLS data was 3.8 cm. In the forest,
TLS cannot obtain the top point of each tree because of the
spacing between each tree is small, whichmakes the visibility
poor [26]. In addition, restricted by the scanning Angle, TLS
cannot accurately obtain the information of the upper tree

crown, which leads to the underestimation of the extracted
TH compared with the measured TH [27]. Liu et al. [28]
used TLS to estimate the height of trees. The RMSE of TH
was 1.23m. The experimental results that the extracted TH
was underestimation compared to the measured TH. TLS is
not suitable for extracting TH in forest areas with high tree
density. TLS is only suitable for TH extraction in the open
area with good visibility effect [4].

In summary, obtaining high-precision forestry parameter
requires combining the data collection from ALS and TLS
[19], [29], [30]. Compared with MAVLS, UAVLS has the
following advantages: (1) When equipped with the same type
of LiDAR, the flying speed and altitude of the UAV are lower
than that of a MAV. Therefore, the density of points scanned
by UAVLS is greater than that of MAVLS; (2) Flexible and
lightweight to carry; (3) Low flight cost and manufacturing
cost. This article describes the extraction of TH based on the
UAVLS and DBH based on TLS. In this paper, a method
based on point density analysis was proposed to automatically
extract DBH. First, two collected point cloud datasets are
registered, so that the data are all in the same coordinate
system. Then, the data obtained by UAVLS is divided into
each individual tree and extracted the TH. With the proposed
method, rather than segmenting the complete point cloud
obtained by TLS into each individual tree, the TLS data at the
breast height is sliced. All points of the slice are subdivided
by the point density analysis method, and then the DBH is
obtained. Finally, the estimated data are compared to field
measurements to verify the accuracy of the approach.

II. MATERIALS AND METHODS
A. STUDY AREA
The first study area (Figure 1) in this paper is located in the
Laohugou forest area (115◦28′0.3144′′ E, 40◦59′13.4016′′ N)
in Zhangjiakou City, Hebei Province, China. Laohugou is a
natural forest area with a complex environment and topogra-
phy, with uneven tree growth (Figure 2). The average slope is
about 30◦ and the average altitude is 1750 m. A rectangular
sample plot of 100 m×100 m was selected as the research
area. The plot is composed of two trees species, white birch
(70 %) and larch (30 %). Tree growth is complex and uneven
in size. The second study area (Figure 1) is located in the
Saihanba forest area (117◦23’50.4204′′ E, 42◦22’0.4044 N)
in Chengde City, Hebei Province, China. Saihanba is an arti-
ficial plantation forest farm with relatively flat terrain and an
average elevation of about 1700 m (Figure 3). A 40 m×40 m
mixed forest rectangular plot, mainly composed of larch and
white birch was selected as the research area.

We did not measure the TH and DBH of all the trees in
the two forest areas because limited by the labor cost of
field measurement. The sample plot area in Laohugou forest
area is 1 hectare and the natural growth of trees is relatively
complicated (due to natural growth and no artificial planning,
the growth structure of natural forest trees is not as regular as
the artificial forest), We cut a 25m×25m sample plot from the
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FIGURE 1. The location map of the study area.

FIGURE 2. Environment of Laohugou forest area.

Laohugou forest area and measured the TH and DBH of all
trees in this sample plot (8 trees of larch and 13 trees of white
birch). Due to artificial planting interference, the growth
status of the same tree species is regular, and the change
between each tree is small.Wemeasured tree height andDBH
of all trees (10 trees of larch and 10 trees of white birch)
in 20m×20m sample plot that divided from Saihanba forest
area. TH was measured by the Laser rangefinder (the model
is DELIXI ELXCTRIC and the measuring accuracy is 0.1m)
andDBHwasmeasured by the Tree diametermeasuring ruler.
This is also the most commonly used measurement tool for
measuring these two kinds of parameters in forestry.

FIGURE 3. Environment of Saihanba forest area.

B. DATA COLLECTION
1) UAVLS DATA
The UAVLS data was collected by Beijing SureStar R-Fans-
16 LiDAR. The UAV set the strip width to 200 m to obtain
a larger range of sample data. The flying altitude was set
to 80 m to obtain fine point cloud data while ensuring flight
safety. Other parameter settings are shown in Table 1.

TABLE 1. UAV LiDAR parameters settings.

2) TLS DATA
Due to the large differences in the environments and the
growth of trees between the two plots, different ground-based
LiDAR instruments were used for data collection. In the
Laohugou forest area, we used an instrument with higher
scanning point density (Faro F350). The refined scan pre-
pared the data for the subsequent extraction parameter. Due
to the large forest area of the sample plot and the severe
occlusion between trees, we needed to obtain the full-view
point cloud of the tree trunk to extract the DBH. Therefore, a
total of 38 stations (Figure 4-a) were set up for the plot scan.
The distance between every adjacent station was 15-20 m.
Other parameter settings are shown in Table 2.

TABLE 2. Faro such as instrument parameters setting.
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FIGURE 4. TLS instrument erection site map: (a) Laohugou forest area; (b) Saihanba forest area.

TABLE 3. Riegl VZ-1000 such as instrument parameters setting.

For the Saihanba forest area, we used the Riegl VZ-1000
with relatively fast scanning speed was used for data collec-
tion. A total of 20 stations (Figure 4-b) were set up for the
mixed forest plots and the distance between each station was
15-22 m. Other parameter settings are shown in Table 3.

C. DATA PREPROCESSING
1) POINT CLOUD REGISTRATION
The two sets of UAVLS data were collected under the same
coordinate system and fused. The point cloud data collected
in this way are relatively dense, which is convenient for
parameter extraction. For the point cloud data obtained by
Faro F350 Terrestrial LiDAR, we used FARO RevEng Cap-
ture to search for the target ball with the same location in
two adjacent stations for stitching the data; the average error
was 0.0073m. For the data obtained from the Riegl VZ-1000,
RiScan Pro was used to search the target slices of the same
name at adjacent stations. The number of search target slices
with the same name in two adjacent stations should be at
least three. The point cloud attachment was carried out ac-
cording to the target slices of the same name at two adja-
cent stations; the average error after splicing was 0.007 m.
In this way, the point cloud data of all stations were in the

same coordinate system. The TLS data and the USVLS data
were coarsely registered using human-computer interaction.
The details were as follows: (1) We used Global Positioning
System (GPS) receivers to measure the boundary of each plot
(the Laohugou plot obtains the position of each pillar point;
the Saihanba plot obtains the position of the small flag inter-
section); (2) We used the CloudCompare software to match
the boundary information in the TLS data with the boundary
position information collected by theGPS receiver (Figure 5).
And then the Iterative Closest Point (ICP) algorithm [20] was
used for fine registration to ensure that the TLS data and the
UAVLS data were in the same coordinate system (Figure 6).
The UAVLS data and TLS data accurate fusion can ensure
that the extracted TH and DBH automatically match the same
tree based on location.

FIGURE 5. The boundary position information of the sample plot was
collected by the GPS receiver.

2) NOISEL REMOVAL
LiDAR data is affected by the external environment and
working mechanism, which produces noise and outliers in
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FIGURE 6. TLS and UAVLS data fusion.

the collected data. These noise points cause errors in the
extraction of forestry parameter. Therefore, the data needs to
be denoised before extracting the structural parameter. The
gradient filter algorithm [31] was used for denoising because
the point cloud density obtained by UAVLS was relatively
low. The point cloud density obtained by TLS was relatively
large and the scan data was relatively fine, causing outliers
and noise points to be scattered, so a statistical filtering
algorithm [32] was used for denoising.

3) GROUND POINT SEPARATION
During LiDAR data collection, weeds, low shrubs, and
ground are also scanned. These objects are collectively called
ground points. The existence of ground points affects the
accuracy of canopy parameters extraction, so they need to
be separated. In this study, we separated the ground points
using the Cloth Simulation Filter (CSF) [33]. The algorithm
is based on the idea of using a cloth falling under grav-
ity to obtain a physical representation of the terrain. This
method has fewer parameters and faster separation than other
methods.

4) SINGLE TREE SEGMENTATION
There aremany researchmethods for single tree segmentation
from LiDAR data [34]–[37], and most of them are classi-
fied into either canopy height model (CHM) or point cloud
algorithms. The CHM-based method mainly uses the existing
image segmentation technology and region growth technol-
ogy to generate a raster image on the surface of the LiDAR
data and then extract every single tree. Based on the idea
of point cloud clustering single-tree segmentation, the three-
dimensional point cloud data is segmented directly, limiting
information loss. To increase the accuracy of the single tree
segmentation, we used two segmentation methods (based on
CHM and point cloud) to extract individual trees separately.
The point cloud data of every single tree segmented by these
twomethods were compared. The single tree point cloud with
complete segmentation was selected to represent the point
cloud of this tree. We used a human-computer interaction
method (trees with cross crowns or under-divided single trees
need to be manually divided) to correct unsatisfactory tree
segmentations.

D. RESEARCH METHODS
In this research, we combinedUAVLS and TLS data to extract
forestry parameter with higher accuracy. UAVLS data was
used to extract TH, while TLS data was used to extract
DBH. The method proposed in this paper can obtain higher
TH extraction accuracy and automatic extraction of DBH.
The workflow of this process is shown in Figure 7. We pre-
processed the acquired UAVLS and TLS data to generate
the DEM and then used it to normalize the combined point
cloud. We segmented the forest point cloud data obtained by
UAVLS into individual trees. The TH was extracted from
the segmented single tree point cloud data. We sliced the
data obtained by TLS at the height of the breast diameter.
Then, our proposed point density analysis method was used
to automatically extract the DBH. The DBH of the TLS data
was no longer required for single tree segmentation.

1) TH CALCULATION
In forestry, TH is defined as the vertical distance from the
highest point of the tree to the ground. Because the data was
normalized before dividing the UAVLS data, the lowest point
of all point cloud data is the height Z equal to 0. After the
single tree division, we obtained the highest point Zimax and
lowest point Zimin of each tree from the UAVLS data to extract
the height of a single tree. The formula for tree height Hi is
as follows:

Hi = Zimax − Zimin (1)

where i represents the tree number.

2) DBH EXTRACTION MODEL
For the extraction of DBH, this paper did not perform a single
tree segmentation on the TLS data for three reasons: First, the
point density of TLS is relatively high, the amount of data is
much larger than that of UAVLS, and the segmentation speed
is slow when single tree segmentation is performed; Second,
the distribution of point density obtained by multi-site cloud
scanning for each tree trunk is not uniform, which affects
the results of single tree segmentation and DBH extraction;
Third, we only need to obtain the section at a height of
1.3 m from the ground for the extraction of the DBH and the
subsequent measurement. Therefore, we cut the TLS data at
a height of 1.3 m from the ground by 4 cm and extracted the
DBH by segmenting the slice (Figure 8-a).

In this paper, an improved K-means algorithm was intro-
duced to further eliminate noise points and outliers. The
K-means algorithm is a clustering algorithm based on the
Euclidean distance. Points closer to the seed point are more
likely to belong to the same type. The seed points in the
traditional K-means algorithm are randomly generated. Since
the seed points are irregularly distributed, the point used to
calculate DBHwill be clustered within the range of other seed
points. Therefore, the grid projection was used to calculate
the number of projection points within each grid. The points
where the DBH is cut are relatively concentrated and the seed
points are generated in areas with higher point density, and
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FIGURE 7. Workflow of forest parameter extraction.

thus they will be located around the DBH. We calculated
the point density U in each grid, then set the point density
threshold V, and the number of U greater than V as the K
value. The seed point set was asM, and the various sub-points
as m:

M = {m1,m2,m3 · · ·mk} (2)

We used the maximum stem diameter to limit the growth
area of each seed point to realize the unsupervised clustering
of points, and roughly eliminate outliers and noise points
caused by slicing (Figure 8-b). Those branch point clouds that
are difficult to be eliminated, which are processed by manual
editing (Figure 9). Next, every single DBH will be extracted
and measured. Finally, the point density analysis method was
used to extract the DBH, following these steps:

(1) The point cloud data was performed point density
analysis after removing the outliers, and calculated the point
density formula around each raster pixel (grid):

P =
N
S

(3)

where P is the density, N is the total number of points, and S
is the pixel area;

(2) We extracted the denser area as the grid area where the
stems were located;

(3) The extracted grid area was collected for point sets, and
the collection of adjacent points was extracted from the top
to the bottom or from the left to the right. We constructed

polygons based on the extracted points, starting the search
downward in boundary order with a node as the starting
point, connecting the next node to form an external polygon,
establishing a topological relationship, and then determining
whether each polygon contained or connected to obtain a
vector graphic;

(4) The obtained vector polygon was used to find its center
of gravity to replace the position of the polygon and then the
position of the tree DBH. The formula is as follows:

x =

∑n−1
i=2 (x1 + xi + xi+1)

 x1 y1 1
xi yi 1
xi+1 yi+1 1


3

∑n−1
i=2

 x1 y1 1
xi yi 1
xi+1 yi+1 1

 (4)

y =

∑n−1
i=2 (y1 + yi + yi+1)

 x1 y1 1
xi yi 1
xi+1 yi+1 1


3

∑n−1
i=2

 x1 y1 1
xi yi 1
xi+1 yi+1 1

 (5)

where xi and yi are divided into the coordinates of the vertices
of the polygon, n is the total number of vertices, i is a lower
bound on the number of vertices.
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FIGURE 8. DBH slices of a sample of the data: (a) the original slice point cloud; (b) the improved k-means algorithm was used to eliminate the slice
point cloud after outliers; (c) tree trunk point cloud slice extraction; (d) fitting diagram of DBH.

FIGURE 9. Tree trunk point cloud slicing: (a) the original slice point cloud; (b) the point cloud slices after denoising.

(5) We searched for the closest point according to the
determined point of DBH using the formula:

dmin =
√
(mp − mp+1)2 + (np − np+1)2 (6)

where (m, n) is the position of each stem center; dmin is the
shortest distance between DBH.

(6) The DBH of each stem was extracted (Figure 8-c).

3) DBH CALCULATION
The extracted DBH data were projected on the x-y plane
so that there were some discrete points on the plane. These
discrete points show a top view, which is the best observation
angle for the DBH. Therefore, the discrete points were fitted
to find the DBH. We then eliminated the large discrete points
with larger influence to ensure more accurate fitting accuracy.

First, we roughly estimated the position of the center of each
stem, finding the average x- and y- value among all the points,
according to:

xm =

∑n
i=1 xi
n

(7)

ym =

∑n
i=1 yi
n

(8)

di =
√
(xm − xi)

2
+ (ym − yi)

2 (9)

The point (xm, ym) was used as the center to find the distance
di from each discrete point to this point. We used box plots to
distribute the discrete data to calculate the quartiles of the di
set, calculated as follows:

Q1 =
(n+ 1)

4
(10)
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Q2 =
(n+ 1)

2
(11)

Q3 =
3(n+ 1)

4
(12)

We sorted di from small to large, and took the discrete points
between positions Q1 and Q3 as the fitting data, which elim-
inated the influence of gross error points on the fitting.

After that, we used a general and classic least squares
method for fitting [38]. The circle was defined as follows:

(x − xc)2 + (y− yc)2 = R2 (13)

To fit a circle with least-squares, we minimize the sum of
squares of the distance, as:

Dmin =
∑

(
√

(xi − xc)2 + (yi − yc)2 − R)
2

(14)

where xi and yi represent the coordinates of any point on the
fitted circle, xc and ycrepresent the center of the circle, and R
represents the radius (Figure 8-d).

4) STATISTICAL ANALYSIS
To evaluate the accuracy of the TH and DBH obtained by
the LiDAR data against manual measurements, we used the
coefficient of determination (R2), the RMSE, and the mean
absolute error (MAE). R2 was calculated as:

R2 = 1−

∑n
i=1 (Pi − Qi)2∑n

i=1 (Pi − Qmean)2
(15)

where n represents the number of verification samples, Pi is
the estimated value, Qi is the measured value, and Qmean is
the measured average value. The RMSE was calculated as:

RMSE =

√
1
n

∑n

i=1
(Pi − Qi)2 (16)

The MAE was calculated as:

MAE =
1
n

∑n

i=1
|Pi − Qi| (17)

The smaller the RMSE and MAE and the larger the R2,
the better the extraction effect and the higher the accuracy.
We used this method to evaluate the extraction accuracy of
TH and DBH in each experimental plot. We used the mean
intersection over union (MIOU) to evaluate the segmentation
accuracy of the DBH from the slice point cloud, calculated as
follows:

MIOU =
1
k

∑k

i=1

TP
FN + FP+ TP

(18)

where k represents the number of trees, and TP represents the
points predicted to be the real trunk point cloud. FP represents
the point of segmentation error. TN represents that the real
trunk points were predicted incorrectly.

5) METHOD IMPLEMENTATION ENVIRONMENT
This paper analyzed the use of CloudCompare software
to preprocess LiDAR data. Using C++ and Python pro-
gramming language to achieve single tree segmentation,
TH extraction, improvedK-means algorithm, automatic DBH
segmentation and DBH extraction.

III. RESULTS
A. TH MEASUREMENT
To verify the accuracy of TH extraction, we compared
the ground measured TH with the extracted TH. For the
Laohugou forest plot, the TH obtained by LiDAR ranged
from 6.8 to 14.72 m and the average TH was 11.47 m.
The manually-measured TH was between 6.5 and 14.7 m
and the average TH was 11 m (Figure 10). The extracted
average TH was 0.47 m higher than the measured average
TH. The maximum error between the measured TH and
the extracted TH was 1.2 m. There is a strong relationship
between the manually-measured TH and the extracted TH
(Table 4). We extracted the TH of larch and white birch
respectively, and compared the extracted TH with the ground
measured TH (Table 5). Both of the extracted average TH
were higher than the ground measured TH (Figure 10). For
the Saihanba forest plot, the extracted average TH was 0.6 m
higher than the measured average TH. The maximum error
between themanuallymeasured TH and the extracted THwas
1.172 m. The quartiles of the extracted TH were all higher
than the measured data, and the extracted TH were overall
higher (Figure 10). The average and maximum error of white
birch TH extraction were larger than those of larch, which
were 0.64 and 1.172 m, respectively (Table 6 and Figure 10).
Through the above experimental analysis, whether in the
natural growing forest or in the artificial planted forest,
we used theUAVLS data to extract the THwith relatively high
accuracy.

TABLE 4. Accuracy assessment of TH.

TABLE 5. Laohugou study area.

TABLE 6. Saihanba study area.

We analyzed the extracted TH of white birch and larch
on two plots. The average error of larch TH extraction was
0.11m lower than that of white birch. The R2 of larchwas bet-
ter than the white birch of R2 (Figure 11-a and Figure 11-b).
This was mainly due to not accurate measurement the top
of tree. The top of the larch tree was pointed, and the apex
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FIGURE 10. (a) Box plot of TH in Laohugou plot; (b) Box plot of larch TH in Laohugou plot; (c) Box plot of white birch TH in Laohugou plot; (d) Box
plot of TH in Saihanba plot; (e) Box plot of larch TH in Saihanba plot; (f) Box plot of white birch TH in Saihanba.

of the tree was easy to be measured by the laser spot. The
top of white birch was fluffy, which was prone to deviation
when obtaining the apex of the tree (Figure 12). Whether

it was white birch or larch, the average TH extracted was
higher than the TH ground measured (Figure 11-c). On the
one hand, when the TH was actually measured, the highest
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FIGURE 11. The relationship between the extracted and the measured parameters of TH at two forest plots: (a) Scatterplot of extracted vs
measured larch TH; (b) Scatterplot of extracted vs measured white birch TH; (c) Distribution intervals of TH extraction and ground measurement
for different species (LETH: The extracted TH of larch; LMTH: The ground measured TH of larch; BETH: The extracted TH of white birch; BMTH: The
ground measured TH of white birch).

point of the tree cannot be obtained due to the occlusion
between the canopy, which causes the actual measurement
error. On the other hand, the parameter settings of ground
point filtering and UAVLS data height normalization will
also affect the accuracy of the extraction TH. The ground
points were not completely separated, and the DEM result
generated according to the ground points was lower. After
that, the generated DEM was used to normalize the UAVLS
data, which causes the CHM result greater than the true value,
and then the extracted TH was on the high side.

B. DBH EXTRACTION
Our method of extracting the DBH was to slice 4 cm thick
layers of points at the height of 1.3 m. After that, the whole

slice was automatically divided into the DBH. The number
and completeness of the slice point cloud at the height of
breast diameter were extracted by means of human-computer
interaction as a benchmark. In the Laohugou forest area,
our extraction method over-segmented the data. We used
MIOU to evaluate the segmentation accuracy of the tree trunk
point cloud slices in each forest sample plot. We measured
21 trees in the Laohugou forest area and extracted 23 tree
trunk slice point clouds. The MIOU extracted by our method
from the point cloud section of the trunk in Laohugou forest
area was 0.86. In the Saihanba forest area, the extraction
accuracy of our method reached 100%. In the Saihanba forest
area, we manually measured 20 trees and extracted 20 tree
trunk slice point clouds. The MIOU extracted from the
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FIGURE 12. The tree top of white birch (a) and larch (b).

tree trunk point cloud slices in the Saihanba forest area
was 0.92(Figure 13).

FIGURE 13. Extracted tree trunk section MIOU.

C. DBH MEASUREMENT
This paper compared the extracted DBH with the mea-
sured DBH to evaluate the accuracy of DBH extraction.
In the Laohugou forest area, the extracted DBH ranged from
6.38 to 29.41 cm, and the average DBH was 17.4 cm. The
range of measured DBHwas 6.36 to 30.1 cm, with an average
length of 17.52 cm (Figure 14). The extracted average DBH
was 0.12 cm short than the measured average DBH. The
maximum error between the measured and extracted DBH
was 1.23 cm. For the Laohugou forest plot, the extractedDBH
was similar to the measured DBH, indicating that our method
was effective (Table 7). This shows that the fitting was excel-
lent and the measured DBH were highly correlated with the
extracted DBH (Table 7). For larch and white birch, the
average error of DBH extracted by our method were 0.56 cm
and 0.59 cm, respectively (Table 8). The range of DBH
extracted at Saihanba forest area was 19.7 to 31.84 cm and the

average length of DBHwas 26 cm. The DBH of the Saihanba
forest area sample obtained by manual measurement ranged
from 18.9 to 31.97 cm and the average length was 26.1 cm
(Figure 14). The maximum error between the extracted DBH
and the measured DBH was 0.79 cm. The measured DBH
of the Saihanba forest plot were similar to the median of
the extracted DBH, reflecting the overall closeness between
the measured DBH and the extracted DBH, indicating the
feasibility of the DBH extraction method (Figure 14). The
extracted and measured DBH of the Saihanba forest plot
were also linearly fitted, which further reflected the closeness
between the extracted and the measured DBH (Table 7). Our
DBH extraction method was, therefore, extremely effective
and accurate. The average error of the DBH of the two species
of larch and white birch were similar, 0.34 cm and 0.41cm,
respectively (Table 9). The DBH extracted from the point
cloud and the ground measured DBH of each tree species
reached a very high degree of linear fit (R2 > 0.95) (Table 9).

TABLE 7. Accuracy assessment of DBH.

TABLE 8. Laohugou study area.

TABLE 9. Saihanba study area.

In this study, DBH of two different tree species from
two plots were extracted separately. The statistical test con-
firmed that there was no statistically significant difference
between DBH measured from the field and TLS data. The
linear regression indicated a high R2 of 0.9965 for larch
(Figure 15-a). The linear regression indicated a high R2 of
0.9931 for white birch (Figure 15-b). Using the TLS data
to extracted DBH had minor over and underestimation com-
pared with individual tree stem measurements (Figure 15-c).
The extraction accuracy of white birch DBH was slightly
lower than that of larch. The maximum error of white birch
was 1.23 cm. The error mainly came from two aspects. First,
compared with the larch trunk, the white birch trunk had a
certain degree of curvature, and the bark was relatively soft
and swollen. After the trunk was sliced, it was difficult to
fit due to the shape of the slice. Second, when using TLS
to obtain data, it was blocked by understory vegetation and
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FIGURE 14. (a) Box plot of DBH in Laohugou plot; (b) Box plot of larch DBH in Laohugou plot; (c) Box plot of white birch DBH in Laohugou plot;
(d) Box plot of DBH in Saihanba plot; (e) Box plot of larch DBH in Saihanba plot; (f) Box plot of white birch DBH in Saihanba.

tree trunks, making the data missing. It was more difficult
to fit DBH of the missing slices. The automatic extraction
and fitting method of DBH proposed by us was suitable for

accurate extraction of DBH of different forest areas (natural
forest and artificial forest) and different tree species (larch
and white birch).

21088 VOLUME 10, 2022



J. Chen et al.: Extraction of Forestry Parameters Based on Multi-Platform LiDAR

FIGURE 15. The relationship between the extracted and the measured parameters of DBH at two forest plots: (a) Scatterplot of extracted vs
measured larch DBH; (b) Scatterplot of extracted vs measured white birch DBH; (c) Distribution intervals of DBH extraction and ground
measurement for different species (LEDBH: The extracted DBH of larch; LMDBH: The ground measured DBH of larch; BEDBH: The extracted DBH of
white birch; BMDBH: The ground measured DBH of white birch).

IV. DISCUSSION
The combination of ALS and TLS can extract high-precision
forestry parameters from different platforms. Bazezew et al.
used ALS and TLS to accurately estimate the above-ground
biomass of tropical forests in Malaysia. Experimental results
showed that the RMSE of upper canopy TH was 3.24 m
(20.18%), the RMSE of low canopy THwas 1.45 m (14.77%)
and the RMSE of tree trunk DBH is 1.30 cm (6.52%) [29].
Ye et al. improved the stem mapping and DBHmethod based
on TLS data. The experimental results showed that the least-
squares ellipse fitting method is more suitable for the estima-
tion of DBH. Compared with other methods, the estimation
accuracy of DBH of this method was improved, with the

RMSE of 1.14 cm [30]. Wu et al. [19] used a combination
of ALS and TLS to manage fruit tree structure, number of
trees, diseases, fertilization, etc. Because of ALS’s limitations
in measuring branches and canopy structure from above the
canopy, this technology always underestimates the canopy
volume compared to field measurements. Although the above
studies obtain forestry parameters from LiDAR on different
platforms, they had the disadvantages of complex extraction
of forestry parameters, low accuracy, and single test area.

This paper used TLS and UAVLS data to extract DBH
and TH in two forest areas. To overcome interference factors
such as tree occlusion that affect the accuracy of the extrac-
tion, the two data collection platforms can complement each

VOLUME 10, 2022 21089



J. Chen et al.: Extraction of Forestry Parameters Based on Multi-Platform LiDAR

other’s deficiencies. For complex natural forests, we only
need to select the instrument erection site when the data is
obtained by TLS, and perform data splicing after the data is
scanned. After that, the DBH is automatically extracted by
the point density analysis algorithm proposed in this paper.
However, the manually measured DBH needs to be measured
at the position of each tree, which increases labor costs.
Although there were many researches using LiDAR for forest
parameter extraction, as far as we know, there were not much
studies on the combination of UAVLS and TLS for high-
precision tree structure parameter extraction in natural forests
and artificial forest. The UAV LiDAR acquisition platform is
easy to carry, its hardwaremanufacturing and data acquisition
costs are low, and it can be widely promoted. At present,
some scholars used UAV high-density LiDAR for forestry
parameter extraction research [39], [40]. However, in com-
plex natural forest areas and dense forest areas, it is difficult
for the laser to penetrate into the lower canopy completely.
And it is impossible to completely extract the parameters
of the trees in the lower canopy. The backpack-type LiDAR
(fast data collection speed) is also used to collect data from
the lower canopy (applicable to artificial forest areas), there
are still two shortcomings in data collection in natural forest
areas: (1) Laser spot density and ranging (100 m) lower
than the TLS; (2) When collecting data, workers need to
travel through the entire forest area, which consumes a lot
of physical strength. For some locations in the natural forest
area cannot be reached or dangerous, the backpack LiDAR
cannot get the complete data of the area.

In the process of collecting data, we discovered the follow-
ing problems that affect data quality.When acquiring UAVLS
data, we believe that the design of flight altitude, flight speed,
and route planning will all affect the data quality. When using
TLS to acquire data, the choice of station location of the
instrument directly affects the integrity of data acquisition.
Although two different types of TLS (phased: Faro F350;
pulsed: Riegl VZ-1000) were used to acquire ground point
cloud data, the average distance we set up adjacent instrument
stations was around 20 m and this distance was well below
the maximum TLS range. The Faro F350 and Riegl VZ-1000
have a measuring precision of 1 mm and 5 mm respectively.
The measurement precision errors of both instruments meet
the requirements of this paper for measuring point cloud data
accuracy. The selection of points with the common in the
forest area will affect the fusion of UAVLS data and TLS data.
We evaluated the accuracy of the extracted TH and DBHwith
manual measurements and found that the overall accuracy of
TH is relatively high and that the extracted DBH is close to
the measured DBH.

UAVLS obtains forestry data from the top to the bottom
of the canopy, which can comprehensively capture the upper
portion of each tree, accurately locating the position of each
tree and avoiding the problems arising from tree occlusion.
We also found that the TH extracted from the Laohugou
forest plot (natural growth forest area) and the Saihanba forest
plot (artificial planting forest area) were both larger than the

FIGURE 16. Over-segmentation of the tree trunk point cloud slice.

field measurement. We concluded that the TH error mainly
derived from two aspects. First, TH was manually measured
with a laser rangefinder that obtained the top and bottom
of the tree. Due to the occlusion within canopies, the laser
rangefinder was unable to obtain the exact treetops. This
caused the manually-measured TH to be too small. Second,
in forest plots, the method of measuring TH by felling trees
is unrealistic. Sibona et al. [41] measured the TH of felled
trees in the field and found that they were lower than the
TH extracted from LiDAR data. Stereńczak et al. [42] also
pointed out that there are errors in field measurements of
TH. This also further demonstrated that the extracted TH
is higher than the field measured TH. Research by Thomas
Hilker et al. [43] showed that the average TH extracted by
ALSwas higher than othermeasurementmethods. In addition
to the above-mentioned factors that affect the accuracy of
the LiDAR data, the noise points of the LiDAR data, the
parameter settings during the single tree segmentation, the
influence of the canopy and the terrain are also important
factors that affect the accuracy [44]–[46]. We also analyzed
the extracted TH of different tree species in the two plots.
The extraction accuracy of larch was slightly higher than that
of white birch. The main reason was that the outlines of the
trees were great different, and the treetop of the larch tree
was easier to obtain than the white birch. In addition, the
crown shape of white birch is fluffy. Pseudo-treetop may be
extracted when performing single tree segmentation, result-
ing in single tree point cloud over-segmentation and inability
to extract TH accurately.

We used the data collected by TLS to extract the DBH.
In earlier studies, it was necessary to segment all the trees
in the entire study area [30], [47], [48]. Due to the large
amount of TLS points, low efficiency and high computational
costs may occur when single tree segmentation is performed.
In response to the above problems, some studies proposed
to slice the data to overcome the need to perform single
tree segmentation [28]. We also sliced all the trees and seg-
mented each tree by automatically extracting DBH. In the
Laohugou forest area, the slices of the tree trunk point cloud
at DBH were over-segmented. We analyzed three sources of
error. First, the tree trunk point cloud scan was incomplete
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FIGURE 17. DBH with incomplete data fitting.

due to mutual occlusion between trees. Because the sliced
point cloud data was incomplete, it was divided into two or
more parts during the extraction (Figure 16). Second, when
we used the improved K-means algorithm to eliminate the
branch points, the parameter setting was too large to eliminate
the tree trunk point cloud, resulting in incomplete slices.
Third, the parameter settings of point density analysis and
grid grading also affected the extraction of trunk point cloud
slices. The number of point cloud slices at DBH extracted
from the Saihanba forest area was the same as the number of
measured trees. The point cloud data collected was complete
in this forest area led to high extraction accuracy. In the
Saihanba forest area, the trees grow regularly and the trunks
are straight, which is also an important reason for the high
extraction accuracy. The error of the point cloud trunk slice
segmentation at the DBH of the two forest areas was caused
by the too large parameter setting of the improved K-means
algorithm in the process of eliminating branch points and
outliers.

The DBH extracted from the Laohugou forest plot and
the Saihanba forest plot were close to the measured DBH
and highly accurate. The accuracy of the DBH extracted
from the Laohugou forest area was lower than that of the
Saihanba forest area. This is because there were abnormal
values in the DBH extracted from the Laohugou forest plot,
and these abnormal parameter values had a greater impact on
the accuracy of the overall DBH extraction. There were three
main reasons for the error. First, the Laohugou forest area is a
natural forest area with a complex terrain environment. When
the instrument was set up, the trees blocked each other and
some parts of the stems could not be scanned. Due to the large
area of the sample plot, there was a phenomenon of blindness

when setting up the instrument. A large number of laser spots
were returned on the side of the tree close to the scanning
position. On the opposite side, it was difficult to receive
the returned laser spot. For these trees, the resulting stem
points were incomplete and there were missing data, so there
was a large error in the extracted DBH (Figure 17). Second,
the trunks were irregular and contorted, which affected the
accuracy of DBH extraction. Third, due to the tree species,
the outer surface of the trunk was irregular, resulting in
inconsistencies between the measured DBH and the DBH
extracted by point cloud fitting. The method proposed in this
paper was used to extract the DBH of white birch and larch.
The experimental results show that the accuracy of the DBH
extraction of the both trees was very high. For the difference
in the accuracy of the DBH of the both trees, we analyzed
that it was caused by the lack of data and the tree’s own
characteristics (trunk and bark). The method of fitting the
parameter of DBH through slices can follow four approaches:
circle fitting [28], [51], Hough transform [52], [53], cylinder
fitting [54]–[56], and ellipse fitting [30], [50], [57]. In this
paper, the DBH was extracted using the circle fitting method.
We also compared the result with the accuracy of cylindrical
fitting, ellipse fitting and Hough transform (Figure 18). The
accuracy of cylindrical fitting was close to that of circle fitting
when point cloud slices were thick. The error of using ellipse
fitting was larger because the shape of these tree diameter
slices was quite different from the ellipse. As the thickness of
tree diameter slices increases, the number of noise points pro-
jected onto the image increases, which reduces the accuracy
of Hough transform extraction. The reason why the accuracy
of the method in this paper was better than other methods was
that we used the improved K-means algorithm to eliminate
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FIGURE 18. Precision comparison of DBH fitting methods.

some error points and outliers. In addition, the selection of
DBH fitting method should refer to the shape of tree diameter
slices. Fitting the DBH to incompletely sliced point cloud
data is a challenge and there is no effective way yet to reduce
this error.

V. CONCLUSION
This paper used UAVLS and TLS to collect forest data to
extract TH and DBH and presented an automatic extraction
algorithm of DBH, which streamlined the extraction process
of DBH and increased its accuracy. The point cloud data
obtained by UAVLS was performed single tree segmentation
to extract the TH, which avoided errors in retrieving the
highest tree tops. We sliced the point cloud data obtained by
TLS at breast height. The point density analysis algorithm and
the least square method were used to automatically extract
and fit the DBH of the slice point cloud data. The RMSE
of TH extracted from Laohugou forest area and Saihanba
forest area were 0.7 m and 0.65 m respectively. The R2 of
two forest areas were greater than 0.94. The MIOU extracted
from the slice point cloud of the stem in the two forest areas
was 0.89. For the extraction of DBH from Laohugou forest
area and Saihanba forest area, the RMSE were 0.65 cm and
0.43 cm respectively and the R2 were greater than 0.99.
The method proposed in this paper also extracts the height
and DBH of different tree species in two forest areas. The
extraction accuracy of parameters of the two types of trees
was very close. Therefore, the method in this paper was also

suitable for the extraction of TH and DBH of different tree
species. The proposed forest parameters extraction method
takes full advantage of different LiDAR instruments to collect
data, maximize the accuracy of parameters extraction and
provides the impetus for new forestry resource investigation
approaches. In the future, we will work on the extraction of
parameters for many different types of trees.
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