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ABSTRACT In this paper, a new bio-inspired metaheuristic algorithm called Tasmanian Devil
Optimization (TDO) is designed that mimics Tasmanian devil behavior in nature. The fundamental
inspiration used in TDO is simulation of the feeding behavior of the Tasmanian devil, who has two
strategies: attacking live prey or feeding on carrions of dead animals. The proposed TDO is described, then
its mathematical modeling is presented. TDO performance in optimization is tested on a set of twenty-
three standard objective functions. Unimodal benchmark functions have analyzed the TDO exploitation
capability, while high-dimensional multimodal and fixed-exploitation multimodal benchmark functions have
challenged the TDO exploration capability. The optimization results indicate the high ability of the proposed
TDO in exploration and exploitation and create a proper balance between these two indicators to effectively
solve optimization problems. Eight well-known metaheuristic algorithms are employed to analyze the quality
of the obtained results from TDO. The simulation results show that the proposed TDO, with its strong
performance, has a higher capability than the eight competitor algorithms and is much more competitive.
For further analysis, TDO is tested in optimizing four engineering design problems. Implementation results
show that TDO has an effective performance in solving real-world applications.

INDEX TERMS Bio-inspired, exploitation, exploration, feeding, optimization, optimization algorithm,

Tasmanian devil.

I. INTRODUCTION

Optimization is the process of determining the best solution
among several candidate solutions for a problem with respect
to its constraints. Advances in science and technology have
led to the emergence of new and complex optimization
problems as well as more details in existing optimization
problems [1]. Many of these problems have features such as
unknown search space, discrete search space, non-derivative
objective functions, high dimensions, and non-convexity.
This has led to the failure of traditional methods and math-
ematical analysis to effectively solve real-world optimization
problems [2]. Hence, researchers and scientists tend to
introduce new optimization solving methods called meta-
heuristic algorithms that can solve optimization problems
without the need for derivative information, based on random
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searcher agents and using random operators. Metaheuristic
algorithms have become more popular than classical methods
because of their advantages such as easy comprehension, easy
implementation, good performance, ability to avoid local
optimization, and application to optimization problems in
various sciences [3].

Two important features in the search and solution finding
process in metaheuristic algorithms are exploration and
exploitation. Exploration is the concept of global search
in the problem-solving space to analyze different areas of
the search space and not get caught in the optimal local
areas, while exploitation is the concept of locally search in
the neighborhood of the obtained solution to find a better
solution [4]. Metaheuristic algorithms to have acceptable
performance in solving optimization problems, must have
a good balance between exploration and exploitation [5].
Metaheuristic algorithms are able to identify the optimal
area based on the exploration phase and then converge
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towards the global optimal solution based on the exploitation
phase.

Due to the random nature of the search process in
metaheuristic algorithms, the solution they provide may not
be the same as the global optimal. For this reason, the
solution obtained from metaheuristic algorithms is called
quasi-optimal solution [6]. The performance of metaheuris-
tic algorithms is different due to their randomness and
different nature in the search process. Thus, metaheuris-
tic algorithms may offer different solutions in solving
a given optimization problem [7]. This has led to the
design of numerous metaheuristic algorithms by researchers
to provide better quasi-optimal solutions to optimization
problems.

Metaheuristic algorithms are stochastic optimization
problem-solving methods that have been inspired by various
natural phenomena, the laws of physics, biological sciences,
the rules of the game, and other evolutionary phenomena.
These algorithms first generate candidate solutions according
to the constraints of the problem. Then, they improve
these candidate solutions based on the algorithm update
steps in an iterative-based process. The main difference
between metaheuristic algorithms is in the same process of
improving candidate solutions during algorithm iterations.
Metaheuristic algorithms in a general category based
on main inspiration can be divided into four groups:
evolutionary-based, swarm-based, physics-based, and game-
based algorithms.

Applying the biological sciences alongside the theory of
natural selection and Darwin’s theory of evolution have
inspired the design of evolutionary-based algorithms. Genetic
Algorithm (GA) [8] and Differential Evolution (DE) [9] can
be considered as the most famous evolutionary algorithms.
In the design of GA and DE, the random operators of
selection, crossover, and mutation play a key role in updating
the algorithm population. The mechanism of the human
immune system in the face of disease has been a fundamental
inspiration in the development of the Artificial Immune
System (AIS) algorithm [10].

The natural behaviors of various species of animals,
birds, aquatic animals, and other living things have paved
the way for the development of swarm-based algorithms.
Particle Swarm Optimization (PSO) [11] and Ant Colony
Optimization (ACO) [12] are among the most familiar and
widely used swarm-based algorithms. PSO has employed
the natural behavior of swarm movement of birds or
fish. ACO has modeled the natural behavior of ants in
identifying the shortest path. The animals’ strategy in hunting
their prey in nature represents an optimization process.
Simulations of these natural behaviors have been employed
in the design of metaheuristics such as Whale Optimiza-
tion Algorithm (WOA [13], Marine Predators Algorithm
(MPA) [14], and Grey Wolf Optimization (GWO) [15].
Search behaviors of animals with access to food sources
have led to the introduction of metaheuristics such as
Artificial Bee Colony (ABC) [16] and Tunicate Swarm
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Algorithm (TSA) [17]. Some other swarm-based algorithms
are Red Fox Optimization Algorithm (RFOA) [18], Raccoon
Optimization Algorithm (ROA) [19], Crow Search Algorithm
(CSA) [20], Teaching-Learning Based Optimization (TLBO)
[21], and Grasshopper Optimization Algorithm (GOA) [22].

Modeling of various laws in physics and physical phe-
nomena has been considered in the introduction of physics-
based algorithms. Simulated Annealing (SA) algorithm is one
of the most prominent physical algorithms that is inspired
in metal melting operations by the process of melting
and cooling materials [23]. The simulation of Newton’s
laws of motion with the use of physical forces has been
effective in the development of optimizers. Gravitational
Search Algorithm (GSA) [24] using gravitational force,
Spring Search Algorithm (SSA) [25] using elastic force,
and Momentum Search Algorithm (MSA) using momentum
have been designed. Physical phenomena are the source
of inspiration in the design of metaheuristics, such as
Water Cycle Algorithm (WCA) [26] according to the water
cycle phenomenon, Small-World Optimization Algorithm
(SWOA) [27] according to the mechanism of small-world
phenomenon, and Black Hole (BH) [28] according to observ-
able fact of black hole phenomena. Some other physics-
based algorithms are Nuclear Reaction Optimization (NRO)
[29], Multi- Verse Optimizer (M VO) [30], Artificial Chemical
Reaction Optimization Algorithm (ACROA) [31], Optics
Inspired Optimization (OIO) [32], Equilibrium Optimizer
(EO) [33], Atom Search Optimization (ASO) [34], and
Electromagnetic Field Optimization (EFO) [35].

Simulation of rules and behavior of players in different
games has led to the design of game-based algorithms.
Football Game Based Optimization (FGBO) [36] and Vol-
leyball Premier Ligue (VPL) [37] algorithms are game-
based metaheuristics developed based on the simulation of
club competitions during a sports season. The behavior
of players in collecting points and winning based on the
throwing mechanism is modeled on the design of Ring Toss
Game Based Optimizer (RTGBO) [38] and Darts Game
Optimizer (DGO [39].

The major research question in all studies of metaheuristic
algorithms is whether, given the various algorithms that
have been developed, there is still a need to introduce
new algorithms. The No Free Lunch (NFL) theorem [40]
answers this question that the strong performance of an
algorithm in solving a set of optimization problems provides
no guarantee of optimal performance in other problems.
Therefore, the superiority of a particular algorithm in solving
all optimization problems is hypothesis rejected. The NFL
theorem provides a research path for scientists to design
new metaheuristic algorithms to solve optimization problems
more effectively. The NFL theorem motivated the authors of
this paper to come up with a new metaheuristic algorithm to
effectively solve optimization problems.

What is evident from all studies of literature review and
its obtained best knowledge is that Tasmanian devil behavior
simulation has not been employed in the design of any
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metaheuristic algorithm. However, the natural behavior of the

Tasmanian devil during feeding represents an optimization

process in achieving the main purpose of this animal, i.e.,

food source. This research gap prompted the authors to design

a new optimizer by simulating the Tasmanian devil feeding

strategy, which is discussed in the next section.

This paper introduces a new optimization algorithm called
Tasmanian Devil Optimization (TDO) that can be applied to
solve various science optimization problems. The scientific
contribution of this research can be expressed as follows:

1. The novelty of this paper is in the design of the new TDO
optimizer based on the simulation of the Tasmanian devil’s
natural behavior.

2. The fundamental inspiration of TDO is the Tasmanian
devil feeding mechanism in two strategies of live prey
hunting and carnivore eating.

3. The various stages of TDO are described and mathemati-
cally modeled.

4. TDO is evaluated by solving twenty-three benchmark
functions including unimodal, high-dimensional multi-
modal, and fixed-dimensional multimodal types.

5. TDO is used to solve four engineering design problems to
evaluate its performance in real-world problems.

6. To analyze the capability of the proposed algorithm, the
optimization results obtained from TDO are compared
with eight well-known algorithms.

In the following, the paper is organized in such a
way that in Section 2, the proposed TDO algorithm is
introduced and modeled. Simulation studies and results are
presented in Section 3. The capability of TDO in optimizing
engineering design problems is analyzed in Section IV.
Finally, in Section 5, conclusions and several research
suggestions are presented.

Il. TASMANIAN DEVIL OPTIMIZATION

In this section, the proposed metaheuristic Tasmanian Devil
Optimization (TDO) is introduced and its mathematical
modeling is presented.

A. INSPIRATION AND BEHAVIOR OF TAMANIAN DEVIL
The Tasmanian devil is a carnivorous and marsupial wild
animal belonging to the family Dasyuridae that lives in the
island state of Tasmania. A photo of the Tasmanian devil
is shown in Figure 1. Tasmanian devils are opportunistic
animals, and although they are able to hunt prey, they feed
on carrion if present [41]. Tasmanian devil has two strategies
for feeding. In the first strategy, if Tasmanian devil finds a
carrion, it feeds on it. In the second strategy, it hunts and feeds
on prey by attacking it.

The modeling of this Tasmanian devil feeding mechanism
is used in the TDO design.

B. MATHEMATICAL MODELLING

In this subsection, the process and how to simulate the natural
behavior of Tasmanian demons during feeding is described to
design an optimizer.
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FIGURE 1. Tasmanian devil (take from Wikimedia Commons - Tasmanian
Devil (33295981294)).

The optimization process is how to achieve the optimal
solution for an optimization issue. The analogy of this process
in the life and behaviors of the Tasmanian devil is like
access to food. In fact, just as in the optimization process,
the goal is to find the optimal solution, in the Tasmanian
devil’s nutritional process, the goal is to find the food source.
Two important principles in the optimization process are
exploration in the comprehensive search the problem-solving
space and exploitation in approaching the optimal solution.
The Tasmanian devil’s search behavior in finding food
sources in different spaces, in fact, indicates the exploration
index in the optimization process in order to identify the
optimal area of search space. On the other hand, the chasing
process between the Tasmanian devil and the prey that occurs
in a limited area is similar to the exploitation index in the local
search with the aim of converging to the optimal solution.
This means that mathematical modeling of Tasmanian devil
strategies to reach the food source is prone to designing
an optimizer to achieve optimal solutions to optimization
problems.

1) INITIALIZATION

The proposed TDO is a population-based stochastic algo-
rithm whose searcher agents are Tasmanian devils. The initial
population of these agents is generated randomly based
on the constraints of the problem. Population members of
TDO, who are searchers of problem-solving space, suggest
candidate values for problem variables based on their position
in the search space. So mathematically, each member of a
population is a vector with the number of elements equal to
the number of problem variables. As a result, the set of TDO
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members can be modeled using a matrix in (1).

X X110t X1 ottt XLm
X=X = X1 - Xij 0 Xim ,
XN 1y som AN AN AN
(D

were X is the population of Tasmanian devils, X; is the ith
candidate solution while x; ; is its candidate value for the jth
variable, N is the number of searching Tasmanian devils, and
m is the number of variables of given problems.

The objective function of problem can be computed by
placing each of the candidate solutions in the values of the
variables of the objective function. As a result, the values
obtained for the objective function are modeled using a vector
in (2).

Fi F(Xy)
F=|F; =| F(Xy) , )
Fy Jys FXN) Jys

where F is the vector of values of the objective function
and F; is the value of the objective function obtained by the
ith candidate solution. The analysis of the values obtained
for the objective function shows the quality of the candidate
solutions. The candidate solution that leads to the calculation
of the best value for the objective function is considered
the best member of the population. The best member of the
population is updated based on new values in each iteration.

The population updating process in TDO is modeled on
two Tasmanian devil feeding strategies. It is possible for
any Tasmanian devil to eat carrion or feed on prey hunting.
In TDO, it is assumed that the probability of choosing any of
these strategies is equal to 50%. According to this concept,
in each iteration of the TDO, each Tasmanian devil is updated
based on only one of these two strategies.

2) STRATEGY 1: FEEDING BY EATING CARRION
(EXPLORATION PHASE)

Sometimes the Tasmanian devil prefers to feed on carrion
in the area instead of hunting. There are other predatory
animals living around the Tasmanian Devil, which hunt large
prey and are unable to eat it all. Additionally, these animals
may not be able to eat sufficiently from their prey until
the Tasmanian devil arrives. In these cases, the Tasmanian
devil prefers to feed on these carrions. Tasmanian devil
behavior in scanning the habitat area to find carrion is
similar to the algorithm search process in problem-solving
space. This Tasmanian devil strategy actually demonstrates
the power of TDO exploration in scanning different areas
of the search space to identify the original optimal area.

19602

The concepts expressed in the Tasmanian devil strategy of
eating carcasses are mathematically modeled using (3) to (5).
In the TDO design, for each Tasmanian devil, the position
of other population members in the search space is assumed
to be carrion locations. Random selection of one of these
situations is simulated in (3) so that the k’th population
member is selected as the target carrion for the i'th Tasmanian
devil. Therefore, £ must be chosen randomly from 1 to N
while the opposite is i.

Ci=Xe, i=12....,N, ke{l,2,....Nk#i}, 3

where C; is the selected carrion by ith Tasmanian devil.

Based on the selected carrion, a new position is calculated
for the Tasmanian devil in the search space. In the Tasmanian
devil motion simulation in this strategy, if the objective
function value of the carrion is better, the Tasmanian devil
moves toward that carrion, otherwise it moves away from that
carrion. This Tasmanian devil movement strategy is simulated
in (4). In the last step of the first strategy, after calculating the
new position for Tasmanian devil, this position is accepted
if the value of the objective function is better in this new
position otherwise, Tasmanian devil remains in its previous
position. This update step is modeled in (5).

new,s1 _ | Xij+r-(cij—1-xij), Fc <Fi @)
" Xij+r - (xij—cij), otherwise,
Xinew,Sl’ Finew,Sl < Fi;
Xi = . (5)
X;, otherwise,

Here, Xl.”ew’s1 is the new status of the ith Tasmanian devil

w,S1

based on the first strategy, xlnj is its value for the jth

variable, F' ew:ST s its objective function value, F¢, is its

objective function value of selected carrion, r is a random
number in interval [0, 1], and I is a random number which
can be 1 or 2.

3) STRATEGY 2: FEEDING BY EATING PREY

(EXPLOITATION PHASE)

The Tasmanian Devil’s second feeding strategy is to hunt
and eat prey. Tasmanian devil behavior during the attack has
two stages. In the first stage, by scanning the area, it selects
the prey and attacks it. Then, in the second stage, after
approaching the prey, it chases it to stop it and start eating.
The modeling of the first stage is similar to the modeling
of the first strategy, i.e., the selection of the carcass.
Therefore, the first stage of prey selection and attack it
is modeled using (6) to (8). In the second strategy, when
updating the i'th Tasmanian devil, the position of other
population members is assumed as preys location. The k’th
population member is randomly selected as prey, while k is a
natural random number between 1 to N and opposite i. The
prey selection process is simulated in (6).

Pi=Xy, i=12,...,N, ke{l,2,...,Nlk#i}, (6)
Here, P; is the selected prey by the ith Tasmanian devil.
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After determining the prey position, a new position is
calculated for the Tasmanian devil. In calculating this new
position, if the objective function value of the selected prey
is better, the Tasmanian devil moves towards it, otherwise
it moves away from that position. Modeling of this process
is presented in (7). The new position calculated for the
Tasmanian devil replaces the previous position if it improves
the value of the target function. This step of the second
strategy is modeled in (8).

LHewS2 _ Xij+r-pij—1I-xij), Fp, <Fj )
" Xij+r-(Xij—pij) otherwise,
Xl‘new,SZ’ F;iew,SZ < Fi;
Xi = . (®)
Xi otherwise,

Here, Xi"ew’s2 is the new status of //th Tasmanian based on

the second strategy, x5

ij
F"52 is its objective function value, and Fp, is its objective

function value of selected prey.

The main difference between this strategy and the first
strategy is the second stage and the simulation of prey
chasing. The chase of prey in the vicinity of the attack site is
similar to the local search of the search space. This Tasmanian
devil behavior actually demonstrates the TDO’s ability to
exploit to converge to better candidate solutions. In order
to simulate this chase process, the Tasmanian devil follows
the prey in the neighborhood of the attacked place. The prey
chase stage is modeled by the Tasmanian devil using (9) to
(11). At this stage, the Tasmanian devil position is considered
the center of a neighborhood where the prey chasing process
takes place. The radius of this neighborhood indicates the
range that the Tasmanian devil follows the prey, which can
be calculated using (9). Thus, a new position based on the
chasing process in this neighborhood can be calculated for the
Tasmanian devil, which is mathematically simulated in (10).
The new calculated position is acceptable to the Tasmanian
devil if it provides a better value for the objective function
than its previous position. This position update process is
simulated for the Tasmanian devil in (11).

is its value for the jth variable,

t
R = 0.01(1 — 7), 9)
AP = xij+Q@r—1)-R-xij, (10)
Xxnew  pnew _ p.
Xp= 0 L h (11)
Xi otherwise,

where R is the neighborhood radius of the point of attacked
location, ¢ is the iteration counter, 7T is the maximum number
of iterations, X" is the new status of the ith Tasmanian devil
in neighborhood of X, xl”jew is its value for the jth variable, and
F["®" is its objective function value.

4) REPETITIONS PROCESS, FLOWCHART, AND
PSEUDO-CODE OF TDO

When the update of all TDO members is completed, the first
iteration of the algorithm ends. New values are calculated for
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the position of Tasmanian devils and the objective function.
After this, the algorithm enters the next iteration and the
TDO population update process continues until the end of the
algorithm iterations according to equations (3) to (11). TDO
updates and stores the best candidate solution during these
iterations. After the algorithm is fully implemented, TDO
introduces the best candidate solution as the solution to the
problem. The various steps of TDO are presented in flowchart
format in Figure 2 and its pseudocode in Algorithm 1.

C. COMPUTATIONAL COMPLEXITY

This section analyzes the computational complexity of TDO.
The computational complexity of TDO initialization is equal
to O(N - m) where N is the number of members of the
Tasmanian devil population and m is the number of problem
variables. TDO has a problem-solving process in the number
of repetitive T'. The process of updating population members
on their way to the carcass or prey has a computational
complexity equal to O(N -m - T). The prey chasing process in
the second strategy has a computational complexity equal to
O(Ns, -m-T) where N, is the number of Tasmanian demons
who have used the second feeding strategy. Thus, the total
computational complexity of TDO is equal to O(N - m) -
(1 +T)+ (T - Ns2))).

Ill. SIMULATION STUDIES AND DISCUSSION

In this section, simulation studies of TDO performance
in optimization are presented. TDO is employed to solve
twenty-three standard benchmark functions, including seven
unimodal functions, six high-dimensional multimodal func-
tions, and ten fixed-dimensional unimodal functions [42].
The information of these benchmark functions is presented in
the Appendix and in Tables 16 to 18. The performance quality
of TDO is compared with eight well-known metaheuristic
algorithms, TSA, MPA, WOA, GWO, TLBO, GSA, PSO, and
GA. The values of the control parameters of these algorithms
are specified in Table 1.

Each of the competitor algorithms and the proposed
TDO is used in twenty independent executions to optimize
the benchmark functions, while each execution contains
1000 iterations. In presenting the simulation results, “avg”
is the average of the best obtained candidate solutions and
“std” is the standard deviation of these values.

A. EVALUATION OF UNIMODAL TEST FUNCTION (F1-F7)

The selected unimodal functions F1 to F7 have only one main
optimal solution. This feature has made unimodal functions
suitable for evaluating the exploitation ability of optimization
algorithms. The optimization results of F1 to F7 functions
using TDO and eight competitor algorithms are presented
in Table 2. The simulation results show that TDO with
high exploitation power has been able to provide the global
optimal solution for F6. TDO is also the first best optimizer in
solving F1, F2, F3, F4, F5, and F7. The analysis of the results
of this table shows that TDO has been able to provide much
more competitive results compared to the eight competitor
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FIGURE 2. Flowchart of TDO.
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FIGURE 3. (Continued.) Boxplot of performance of TDO and eight competitor algorithms in solving test functions.

algorithms with high exploitation power, which shows the
superiority of TDO.

B. EVALUATION OF HIGH-DIMENSIONAL MULTIMODAL
TEST FUNCTION (F8-F13)

The selected high-dimensional multimodal functions have
a large number of local optimal solutions. Therefore,
optimization algorithms must have high exploration power
in scanning the search space to find the original local
optimization by passing through local optimal solutions.
The implementation results of TDO and eight competitor
algorithms on F8 to F13 functions are reported in Table 3.
What is clear from the analysis of this table is that TDO, with
its high exploration power, has provided the global optimal
for F9 and F11 functions. TDO is also the best optimizer in
solving F8, F10, F12, and F13. The simulation results show
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that TDO with high exploration ability is able to identify the
main optimal area in the search space and has a superior
and competitive performance compared to eight competitor
algorithms.

C. EVALUATION OF FIXED-DIMENSIONAL MULTIMODAL
TEST FUNCTION (F14-F23)

The selected fixed-dimensional multimodal functions have a
small number of variables as well as a small number of local
optimal solutions. These problems challenge the exploration
ability of the optimization algorithms to discover the main
optimal region of search space. The optimization results
obtained from TDO and eight competitor algorithms in F14
to F23 optimization are presented in Table 4. Analysis of the
results of this table shows that TDO with its high exploration
power, has provided the global optimal for F14 and F17. TDO
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Algorithm 1 Pseudo-Code of Proposed TDO Algorithm
Start TDO.
1. Input the optimization problem information.
2. Set the number of iterations (7) and the number of
members of the population (V).
3. Initialization of the position of Tasmanian devils and
evaluation of the objective function.
4.Fort = 1:T
6.Fori = 1:N
8. If Probability < 0.5, Probability = rand
9.  Strategy 1: Feeding by eating carrion
(exploration phase)

10. Select carrion for the ith Tasmanian devil using
Eq. (3).

11. Calculate new status of Tasmanian devil using
Eq. 4).

12. Update the ith Tasmanian devil using (5).

13.  else

14.  Strategy 2: Feeding by eating prey

(exploitation phase)

15. Stage 1: Prey selection and attacking

16. Select prey for the ith Tasmanian devil using (6).

17. Calculate new status of Tasmanian devil using
Eq. (7).

18. Update the ith Tasmanian devil using (8).

19. Stage 2: Prey chasing

20. Update neighborhood radius using (9).

21. Calculate new status of the ith Tasmanian devil in
neighborhood of X; using (10).

22. Update the ith Tasmanian devil using (11).

23.  endif

24. end fori = 1:N

25. Save the best proposed solution so far.

26.end fort = 1:T

27. Output: The best solution obtained by TDO for given

optimization problem.

End TDO.

has outperformed eight competitor algorithms in solving
F15, F16, and F20. Also, the analysis of “avg” and “std”
criteria, indicates the more effective performance of TDO
in optimizing F18, F19, F21, F22, and F23. The simulation
results of F14 to F23 functions show the superiority of TDO
performance in providing optimal solutions compared to
eight competitor algorithms.

The performance of TDO and eight competitor algorithms
in optimizing benchmark functions is presented as a boxplot
in Figure 3.

D. STATISTICAL ANALYSIS

Presentation of simulation results using “avg” and “‘std”
criteria provides valuable information on the ability of
optimization algorithms and their comparison. However, it is
always possible, even with the slightest probability, that the
superiority of one algorithm over another is a chance. In this

VOLUME 10, 2022

TABLE 1. Parameter values for the competitor algorithms.

Algorithm Parameter Value
MPA
Constant number P =05
R is a vector of uniform random
Random vector
numbers from [0, 1].
Fish aggregatin
] BEreBatnG FADs=0.2
devices (FADs)
Binary vector U=0orl
TSA
Pmin and Pmax l, 4
random numbers from the interval
€1,€2,C3
[0,1].
WOA
Convergence

a: Linear reduction from 2 to 0.
parameter (a)

ris a random vector

in [0, 1].
Iis a random number
in [—-1,1].
GWO
Convergence
a: Linear reduction from 2 to 0.
parameter (a)
TLBO
T: teaching factor Tr = round [(1 + rand)]
rand is a random number between
random number
[0,1].
GSA
Alpha, GO, Rnorm,
20,100, 2,1
Rpower
PSO
Topology Fully connected
Cognitive and social
(crc2) =(22)
constant
Inertia weight Linear reduction from 0.9 to 0.1
Velocity limit 10% of dimension range
GA
Type Real coded
Selection Roulette wheel (Proportionate)
Whole arithmetic (Probability =
Crossover 0.8,
a € [-0.5,1.5])
Mutation Gaussian (Probability = 0.05)

regard, a statistical analysis is presented to examine whether
the superiority of TDO has been significant or not against any
of the competitor algorithms in this subsection. To provide
statistical analysis on the performance of TDO and eight
competitor algorithms, Wilcoxon rank sum test [43] has been
used. In this test, a p-value is used to show the significant
superiority of the corresponding algorithm over a competitor
algorithm.
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TABLE 2. Optimization results of TDO and competitor algorithms on unimodal test function.

TDO TSA MPA WOA GWO GSA TLBO GA PSO
Fl avg|2.74x10187 | 771 x 10738 |3.27 x 10721 | 2.17 x 107° | 1.09 x 10758 | 2.0255 x 10717 | 8.33 x 1070 13.2405 1.77 x 1073
std 0 7.00 x 10721 | 4.61 x 1072' | 7.39 x 1072 | 5.14 x 10774 | 1.1369 x 10732 | 4.9436 x 1077 | 4.76 x 107" | 6.43 x 102!
E avgl 7.11x10%° | 8.48 x 107%° | 1.57 x 10712 0.5462 1.29 x 10734 | 23702 x 107® | 7.17 x 1073 2.4794 0.3411
std| 1.58x10%4 | 5,92 x 10741 | 1.42 x 10712 1.73 x 10716 | 1.91 x 107 | 5.1789 x 1024 | 6.69 x 107 |2.23 x 10715 [ 7.44 x 10717
F, avgl 5.15x10% | 1.15 x 1072! 0.0864 1.763 x 1078 | 7.40 x 1071 279.3439 2.75x 1071 1536.8963 589.4920
std| 9.71x10%3 | 6.70 x 102! 0.1444 1.03x 1072 | 5.64 x 10| 1.2075 x 1073 | 2.64 x 103! |6.60 x 10713 | 7.11 x 10713
Fy avgl 2.39x107 | 1.33 x 10723 | 2.60 x 1078 | 2.90 x 1075 | 1.25 x 10714 | 3.2547 x 107 | 9.41 x 10715 2.0942 3.9634
std| 2.85x1078 | 1,15 x 1022 | 9.25 x 107 | 1.21 x 10720 | 1.05 x 102 | 2.0346 x 1024 | 2.11 x 10 |2.23 x 10715 [ 1.98 x 10716
s avg| 22.8329 28.8615 46.049 41.7767 26.8607 36.10695 146.4564 310.4273 50.26245
std| 3.48x1075 | 4.76 x 1073 0.4219 2.54x 10714 0 3.09 x 10714 1.90 x 10714 |2.09 x 10713 | 1.58 x 10714
Fe ave 0 7.10 x 1072 0.3980 1.60 x 107° 0.6423 0 0.4435 14.55 20.2500
std 0 1.12x 1072 0.1914 4.62x10% [6.20x 10717 0 422x1071% |3.17x 10713 1.2564
Fr avgl 9.77x10° | 3.72 x 1074 0.0018 0.0205 0.0008 0.0206 0.0017 5.67 x 1073 0.1134
std| 9.54x102! | 5,09 x 1075 0.0010 1.55x 10718 | 7.27 x 10720 | 2.72x 107 | 3.878 x 1071 | 7.75 x 1071 | 4.34 x 10717
TABLE 3. Optimization results of TDO and competitor algorithms on high-dimensional multimodal test function.
TDO TSA MPA WOA GWO GSA TLBO GA PSO
Fa avg| -8753.4765 | —5740.3388 | —3594.1632 | —1663.9782 | —5885.1172 | —2849.0724 | —7408.6107 | —8184.4142 | —6908.6558
std 6.9870 41.5 811.32651 716.3492 467.5138 264.3516 513.5784 833.2165 625.6248
Fo avg 0 5.70 x 1073 140.1238 4.2011 8.52x 10713 16.2675 10.2485 62.4114 57.0613
std 0 1.46 x 1073 26.3124 436x 10715564 x 10730 3.17x 10715 |5.56 x 10715 | 2.54 x 10714 | 6.35 x 10713
. avg| 4.44x10™" | 9.80 x 10714 | 9.6987 x 1072 0.3293 1.70 x 1074 | 3.56 x 107 0.2757 3.2218 2.1546
std | 1.81x10717 | 4.51 x 10712 6.1325 x 10712 | 1.98 x 10716 | 2.75 x 102% | 3.69 x 10725 | 2.56 x 10715 | 5.16 x 10715 | 7.94 x 10716
. avg 0 1.00 x 1077 0 0.1189 0.0037 3.7375 0.6082 1.2302 0.0462
std 0 7.46 x 1077 0 8.99x 10717 1.26x 10718 [ 2.78 x 10715 | 1.98 x 10710 | 8.44 x 10716 | 3,10 x 107'8
avg| 3.13x10!! 0.0368 0.0851 1.7414 0.0372 0.0362 0.0203 0.047 0.4806
Fi2
std | 1.96x1010 | 1.54 x 102 0.0052 8.13x 1072|434 %1077 6.20x 1078 | 7.75 x 1071? | 4.65 x 10718 | 1.86 x 1071
Fia avg| 1.30x10% 2.9575 0.4901 0.3456 0.5763 0.002 0.3293 1.2085 0.5084
std | 2.06x10-16 | 1.56 x 10712 0.1932 3.25x 10712248 x 10710 426 x 10714 | 2.11 x 10716 | 3.22 x 1079 | 4.96 x 10717

The simulation results obtained from the Wilcoxon rank
sum test are presented in Table 5. What can be deduced from
the analysis of the results of this test is that in cases where
a p-value is less than 0.05, TDO has a significant statistical
superiority over the competitor algorithm.

E. SENSITIVITY ANALYSIS

TDO is able to solve optimization problems in a repetition-
based process based on search space scans by members
of the population of Tasmanian devils. Thus, the number of
population members of Tasmanian devils and the number
of iterations of the algorithm affect the performance of
the TDO. In this subsection, TDO sensitivity analysis to
parameters N and 7 is studied.
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To analyze the sensitivity to the parameter N, the proposed
TDO is employed for the population size of Tasmanian devils
equals to 20, 30, 50, and 100 in solving F1 to F23. The
simulation results of the sensitivity analysis of TDO to the
parameter N are presented in Table 5. TDO convergence
curves in solving these functions and for different values of
N are shown in Figure 4. What can be deduced from the
analysis of the simulation results is that with the increase
in the population of Tasmanian devils, the search power of
TDO has improved and led to a decrease in the values of the
objective functions.

To analyze the sensitivity to the parameter 7', the proposed
TDO algorithm for different values of T equal to 100, 500,
800, and 1000 is implemented on the benchmark functions F1
to F23. The results of TDO sensitivity analysis study under
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TABLE 4. Optimization results of TDO and competitor algorithms on fixed-dimensional multimodal test function.

TDO TSA MPA WOA GWO GSA TLBO GA PSO
o avg| 0.998 1.9923 0.998 0.998 3.7408 3.5913 2.2721 0.9986 2.1735
std 0 2.65x 1077 | 427 x 10716 | 9.43 x 10716 | 6.45 x 1071 | 7.94 x 107'° | 1.98 x 10716 | 1.56 x 107> | 7.94 x 107'¢
avg| 0.0003 0.0004 0.003 0.0049 0.0063 0.0024 0.0033 539 %1072 0.0535
Fis std | 2.27x107¢ | 9.01 x 107* | 4.09 x 10715 | 3.49 x 1078 | 1.16 x 10718 | 2.90 x 1071° | 1.22 x 1077 | 7.07 x 107'® | 3.87 x 107"
Fis avg| -1.03163 —-1.0316 —1.0316 —1.0316 —-1.0316 —-1.0316 —1.0316 —1.0316 —1.0316
std | 1.97x1071¢ | 2.65 x 10716 | 4.46 x 107'¢ | 9.93 x 10716 | 3.97 x 107'¢ | 5.95 x 10716 | 1.43 x 10715 | 7.94 x 107'¢ | 3.47 x 107'¢
Fir avg| 0.3978 0.3991 0.3979 0.4047 0.3978 0.3978 0.3978 0.4369 0.7854
std 0 2.15x 107161 9.12 x 10715 | 2.48 x 10717 | 8.68 x 10717 | 9.93 x 10717 | 7.44 x 10717 | 4.96 x 1077 | 4.96 x 1077
avg 3 3 3 3 3 3 3.0009 4.3592 3
s std | 1.85x1071¢ | 2.65 x 107% | 1.95 x 10715 | 5.69 x 107!% | 2.08 x 10715 | 6.95 x 10716 [ 1.58 x 10715 | 5.95x 10716 | 3.67 x 10713
Fio avg| -3.86278 —3.8066 —3.8627 —3.8627 —3.8621 —3.8627 —3.8609 —3.85434 —3.8627
std | 2.15%10716 | 2.63 x 10715 | 4.24 x 10715 | 3.19 x 10715 | 2.48 x 10715 | 8.34 x 10715 [ 7.34 x 10715 | 9.93 x 10717 | 8.93 x 10713
Fao avg| -3.322 —3.3206 —3.3211 —3.2424 —3.2523 —3.0396 —3.2014 —2.8239 -3.2619
std | 4.20x107¢ | 5.69 x 1071% | 1.14 x 107! | 7.94 x 10716 | 2.18 x 10715 | 2.18 x 107 | 1.78 x 10715 | 3.972 x 1071¢ | 2.97 x 107!¢
), avg| -10.1532 —5.5021 —10.1532 —7.4016 —9.6452 —5.1486 —9.1746 —4.3040 —5.3891
std | 2.19x10716 | 5.46 x 10713 | 2.53 x 1071 | 2.38 x 10711 | 6.55x 10715 | 2.97 x 10716 | 8.53 x 10715 | 1.58 x 10715 | 1.48 x 10713
- avg| -10.4029 —5.0625 —10.4029 —8.8165 —10.4025 —9.0239 —10.0389 —5.1174 —7.6323
std | 3.80x1071¢ | 8.46 x 1074 | 2.81 x 1071 | 6.75 x 10715 | 1.98 x 10715 | 1.64 x 10712 [ 1.52 x 107 | 1.29 x 10715 | 1.58 x 10713
Fan avg| -10.5364 | —10.3613 —10.5364 —10.0003 —10.1302 —8.9045 —9.2905 —6.5621 —6.1648
std | 3.36x10716 | 7.64 x 10712 | 3.98 x 10711 | 9.13 x 10715 | 456 x 1075 | 7.14 x 107 | 1.19x 1071 | 3.87 x 10715 | 2.78 x 1071%

TABLE 5. p-values obtained from Wilcoxon rank sum test.

Functions type

Compared Algorithms /. o dal| High Multimodal | Fixed-Multimodal
TDO vs. MPA 0.015625 0.0625 0.01953125
TDO vs. TSA 0.015625  0.03125 0.00390625
TDO vs. WOA 0015625  0.03125 0.0078125
TDO vs. GWO 0015625  0.03125 0.01171875
TDO vs. TLBO 0.015625  0.03125 0.005859375
TDO vs. GSA 0.03125 0.03125 0.01953125
TDO vs. PSO 0015625  0.03125 0.00390625
TDO vs. GA 0.015625  0.03125 0.001953125

the changes of parameter 7 are reported in Table 6. The
behavior of TDO convergence curves under the influence of
parameter 7 is presented in Figure 5. What is evident from
the simulation results of the sensitivity analysis is that the
increase in values 7 has led the algorithm to converge to better
solutions and reduce the values of the objective functions.

IV. TDO APPLICATION FOR ENGINEERING

DESIGN PROBLEMS

The performance of TDO in real-world applications is
evaluated by optimizing four engineering design optimization
problems including welded beam design, pressure vessel
design, speed reducer design, and tension/compression spring
design.

VOLUME 10, 2022

A. WELDED BEAM DESING OPTIMIZATION PROBLEM
Welded beam design is a minimization problem which its
main purpose is to reduce the fabrication cost of welded
beam [13]. A schematic of this problem is shown in Figure 6.
The optimum values of the design variables and the values
of the objective function using TDO and eight competitor
algorithms are presented in Table 8. TDO provides the best
candidate solution by providing the values of the design vari-
ables equal to (0.205730, 3.470521, 9.036603, 0.205731) and
the corresponding objective function value equal to 1.724901.
The statistical results of the performances of TDO and eight
competitor metaheuristics are presented in Table 9. The
simulation results show that TDO is superior to eight com-
petitor algorithms by providing optimal performance. The
convergence curve behavior of TDO in achieving the optimal
solution for the welded beam design problem is shown
in Figure 7.

B. PRESSURE VESSEL DESING OPTIMIZATION

PROBLEM

Pressure vessel design is a minimization problem whose main
purpose is to reduce the total cost of material, welding, and
forming of a cylindrical vessel [44]. A schematic of this
problem is shown in Figure 8. The implementation results
of TDO and eight competitor algorithms in optimizing the
pressure vessel design problem are presented in Table 10.
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FIGURE 4. Sensitivity analysis of the TDO for the number of population members.

TDO provides the optimal 11 by providing better values for
design variables equal to (0.7780535, 0.3860383, 40.31357,
199.9841) and the corresponding objective function value
equal to 5887.1783. The statistical results obtained from
the implementation of TDO and eight metaheuristics are
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presented in Table 11. The simulation results show the
superiority of TDO in solving the pressure vessel design
problem more effectively than eight competitor algorithms.
The TDO convergence curve to optimize this problem is
shown in Figure 9.

VOLUME 10, 2022



M. Dehghani et al.: Tasmanian Devil Optimization: New Bio-Inspired Optimization Algorithm

IEEE Access

T x10* FI1 g, x10” F2
25 £
¢ s 1
s s
20 Z0
100 100 102 108 % 10° 10" 102 10°
Iterations Iterations
x10%  F5 x10*  F6

Best score obtained
< = N W
Best score obtained

o w

10 10" 100 10°

Iterations Iterations
T F9 T F10
£ 400 £20
e e
§ 200 E 10
E’ 0 E’ 0
10° 10" 10® 10° 10° 10" 10*> 10°
Tterations Iterations
8
E %x10° F13 Ezoo F14
£ 10 =
£ h £
g 5 E]OO
20 Z 0
-] -]

Iterations

F18

Iterations

F17

Best score obtained
< — [§e]
|
Best score obtained
=
o S O

Best score obtained
_
& w )
Best score obtained
_
= [ )

10° 10" 10> 10°

Iterations Iterations

4
E %10 F3 é 0 F4
2 10 2
I\ =
z 0 Z 0
= 10 100 102 100 % 10 10" 10® 10°
Iterations Iterations
T F7 T
£ 150 £ -2000
2 100 S -4000
g 50 2 6000
10° 10" 10> 10° 10° 10" 10> 10°
Tterations Iterations
F11 «10%  F12

Best score obtained
wn
o
= =1
Best score obtained
< wn

Iterations

F16

Best score obtained
e
o (8}
Best score obtained
L = o

Iterations

F20

Best score obtained
. w
=~ tn
| ﬂ
Best score obtained
d My

Iterations Iterations
3 F23
£ 0 Guide:
35 . Maximum number of iterations
£ 1000
e \ e 800
2 -10
E 0 | 2 3 500

Iterations

FIGURE 5. Sensitivity analysis of the TDO for the maximum number of iterations.

C. SPEED REDUCER DESING OPTIMIZATION PROBLEM

Speed reducer design is a minimization problem whose
main purpose is to reduce the weight of the speed
reducer [45], [46]. A schematic of this problem is shown
in Figure 10. The application results of TDO and eight
competitor metaheuristics in optimizing the speed reducer
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design problem are presented in Table 12. TDO has been
able to provide the optimal solution to this problem with the
values of the design variables equal to (3.5, 0.7, 17, 7.3, 7.8,
3.35021, 5.28668) and the corresponding objective function
value equal to 2996.3482. The statistical results of the
implementation of TDO and eight competitor metaheuristics

19611



IEEE Access

M. Dehghani et al.: Tasmanian Devil Optimization: New Bio-Inspired Optimization Algorithm

TABLE 6. Sensitivity analysis of the TDO for the number of population members.

Objective Function

Number of Population Members

20 30 50 100
Fi 3.1x101°1 2.74x1071%7 6.4x 107134 2.6x 1013
F2 5.8x 10100 7.10x 107 2.19x 10 5.47x 10
F3 9.34x 109 5.15x 10" 4.24% 100 8.15x 107
F4 4.88x 10-%2 2.39x 107° 3.65x 10778 5.45%x 1077
Fs 26.38517 22.8323 23.78355 22.6415
Fs 0 0 0 0
F7 0.000374 9.76x 1073 7.47x1073 8.57x 107
Fs -7380.31 -8753.4765 -8808.49 -8984.2
Fo 0 0 0 0
Fio 6.39x 10°13 4.44x 10 5.33x 10-1 4.44x 1071
Fni 0 0 0 0
Fi2 0.000722 3.1302x 10! 2x 10710 4.14x 10712
Fi3 1.20053 1.2988x 108 4.1856x 107 2.8x 1010
Fu4 1.635169 0.998 0.998004 0.998004
Fis 0.00131 0.0003 0.000307 0.000307
Fi6 -1.03163 -1.03163 -1.03163 -1.03163
Fi17 0.397887 0.3978 0.397887 0.397887
Fis 3 3 3 3
Fio -3.86278 -3.86278 -3.86278 -3.86278
Fa0 -3.30991 -3.322 -3.322 -3.322
Fa1 -8.32308 -10.1532 -10.1532 -10.1532
F2 -9.07412 -10.4029 -10.4029 -10.4029
Fa3 -9.34421 -10.5364 -10.5364 -10.5364

TABLE 7. Sensitivity analysis of the TDO for the maximum number of iterations.

Objective Function

Maximum Number of Iterations

100 500 800 1000
F1 1.74x10°14 1.4x107%° 1.8x10°147 2.74x1071%7
) 2.46x1078 6.99x1047 3.18x107° 7.10x 107
Fs3 0.036366 1.49x1023 3.09x104 5.15x 10"
Fa 1.31x10° 1.98%10738 5.34x10 2.39x 10°7°
Fs 28.53298 26.44308 25.16697 22.8323
Fs 0 0 0 0
F7 0.003101 0.000585 0.00044 9.76x 10
Fs -3994.9 -6218.77 -7075.22 -8753.4765
Fo 5.43x10!! 0 0 0
Fio 2.49x10® 6.04x1071° 6.04x10713 4.44% 10713
Fii 8.03x10° 0 0 0
Fi2 0.078086 6.1x107 2.09x10°® 3.1302x 10!
Fi3 1.238462 0.315307 0.117137 1.2988x 1078
Fi4 1.287459 0.998004 0.998004 0.998
Fis 0.000479 0.000308 0.000307 0.0003
Fi6 -1.03163 -1.03163 -1.03163 -1.03163
Fi7 0.397887 0.397887 0.397887 0.3978
Fis 3 3 3 3
F1o -3.86278 -3.86278 -3.86278 -3.86278
F20 -3.316 -3.322 -3.322 -3.322
Fa1 -9.73376 -10.1532 -10.1532 -10.1532
F» -10.0821 -10.4029 -10.4029 -10.4029
Fa23 -10.5364 -10.5364 -10.266 -10.5364
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FIGURE 6. Schematic view of the welded beam design problem.

Objective space

4r \ | — Welded Beam Design

Best score obtained so far
(%)

101 2

10
[teration

FIGURE 7. Convergence analysis of the TDO for the welded beam design
optimization problem.

L

A1) O

FIGURE 8. Schematic view of pressure vessel design problem.

are presented in Table 13. The simulation results show the
superiority of TDO compared to eight competitor algorithms
in minimizing the objective function of this problem.
The TDO convergence curve during achieving the optimal
solution is shown in Figure 11.

D. TENSION/COMPRESSION SPRING DESING
OPTIMIZATION PROBLEM

Tension/compression spring design is a minimization prob-
lem whose main purpose is to reduce the tension/compression
spring weight [13]. A schematic of this problem is shown

VOLUME 10, 2022
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FIGURE 9. Convergence analysis of the TDO for the pressure vessel
design optimization problem.

FIGURE 10. Schematic view of speed reducer design problem.
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FIGURE 11. Convergence analysis of the TDO for the speed reducer
design optimization problem.

=

FIGURE 12. Schematic view of tension/compression spring problem.

in Figure 12. The values obtained for the design variables
and the objective function of this problem are presented in
Table 14. TDO presents the optimal solution to the problem
by providing the values of the design variables equal to
(0.0518001, 0.359375, 11.1509) and the value of the objec-
tive function equal to 0.012671024. The statistical results
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TABLE 8. Comparison results for the welded beam design problem.

Algorithm Optimum Variables Optimum Cost
h / t b
TDO 0.205730 3.470521 9.036603 0.205731 1.724901
TSA 0.205563 3.474846 9.035799 0.205811 1.725661
MPA 0.205678 3.475403 9.036964 0.206229 1.726995
WOA 0.197411 3.315061 10.00000 0.201395 1.820395
GWO 0.205611 3.472103 9.040931 0.205709 1.725472
TLBO 0.204695 3.536291 9.004290 0.210025 1.759173
GSA 0.147098 5.490744 10.00000 0.217725 2.172858
PSO 0.164171 4.032541 10.00000 0.223647 1.873971
GA 0.206487 3.635872 10.00000 0.203249 1.836250

TABLE 9. Statistical results for the welded beam design problem.

Algorithm Best Mean Worst SD Median
TDO 1.724901 1.725211 1.725395 0.0000104 1.725183
TSA 1.725661 1.725828 1.726064 0.000287 1.725787
MPA 1.726995 1.727128 1.727564 0.001157 1.727087
WOA 1.820395 2230310 3.048231 0.324525 2.244663
GWO 1.725472 1.729680 1.741651 0.004866 1.727420
TLBO 1.759173 1.817657 1.873408 0.027543 1.820128
GSA 2.172858 2.544239 3.003657 0.255859 2.495114
PSO 1.873971 2.119240 2.320125 0.034820 2.097048
GA 1.836250 1.363527 2.035247 0.139485 1.9357485

TABLE 10. Comparison results for the pressure vessel design problem.

Algorithm Optimum Variables Optimum Cost
Ts Th R L
TDO 0.7780535 0.3860383 40.31357 199.9841 5887.1783
TSA 0.8303737 0.4162057 42.75127 169.3454 6048.7844
MPA 0.779035 0.384660 40.327793 199.65029 5889.3689
WOA 0.778961 0.384683 40.320913 200.00000 5891.3879
GWO 0.845719 0.418564 43.816270 156.38164 6011.5148
TLBO 0.817577 0.417932 41.74939 183.57270 6137.3724
GSA 1.085800 0.949614 49.345231 169.48741 11550.2976
PSO 0.752362 0.399540 40.452514 198.00268 5890.3279
GA 1.099523 0.906579 44.456397 179.65887 6550.0230

TABLE 11. Statistical results for the pressure vessel design problem.

Algorithm Best Mean Worst SD Median
TDO 5887.1783 5890.0206 5892.1952 1.0215 5888.9142
TSA 6048.7844 6052.6241 6071.2496 2.893 6050.2282
MPA 5889.3689 5891.5247 5894.6238 13.910 5890.6497
WOA 5891.3879 6531.5032 7394.5879 534.119 6416.1138
GWO 6011.5148 6477.3050 7250.9170 327.007 6397.4805
TLBO 6137.3724 6326.7606 6512.3541 126.609 6318.3179
GSA 11550.2976 23342.2909 33226.2526 5790.625 24010.0415
PSO 5890.3279 6264.0053 7005.7500 496.128 6112.6899
GA 6550.0230 6643.9870 8005.4397 657.523 7586.0085

obtained from the optimization of the tension/compression to eight competitor algorithms in solving this problem. The

spring design problem using TDO and eight competitor convergence curve behavior of TDO in providing the optimal
metaheuristics are presented in Table 15. The simulation solution to the tension/compression spring design problem is
results show that TDO has a superior performance compared shown in Figure 13.
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TABLE 12. Comparison results for the speed reducer design problem.

Algorithm Optimum Variables Optimum Cost
b m p /i b d, d
TDO 35 0.7 17 7.3 7.8 3.35021 5.28668 2996.3482
TSA 3.50159 0.7 17 7.3 7.8 3.35127 5.28874 2998.5507
MPA 3.506690 0.7 17 7.380933 7.815726  3.357847 5.286768 3001.288
WOA 3.500019 0.7 17 83 7.8 3.352412 5.286715 3005.763
GWO 3.508502 0.7 17 7.392843 7.816034  3.358073 5.286777 3002.928
TLBO 3.508755 0.7 17 7.3 7.8 3.461020 5.289213 3030.563
GSA 3.600000 0.7 17 83 7.8 3.369658 5.289224 3051.120
PSO 3.510253 0.7 17 8.35 7.8 3.362201 5.287723 3067.561
GA 3.520124 0.7 17 8.37 7.8 3.366970 5.288719 3029.002
TABLE 13. Statistical results for the speed reducer design problem.

Algorithm Best Mean Worst SD Median
TDO 2996.3482 2997.812 2999.6142 1.1642 2997.016
TSA 2998.5507 2999.640 3003.889 1.93193 2999.187
MPA 3001.288 3005.845 3008.752 5.83794 3004.519
WOA 3005.763 3105.252 3211.174 79.6381 3105.252
GWO 3002.928 3028.841 3060.958 13.0186 3027.031
TLBO 3030.563 3065.917 3104.779 18.0742 3065.609
GSA 3051.120 3170.334 3363.873 92.5726 3156.752
PSO 3067.561 3186.523 3313.199 17.1186 3198.187
GA 3029.002 3295.329 3619.465 57.0235 3288.657

TABLE 14. Comparison results for the tension/compression spring design problem.

Algorithm Optimum Variables Optimum Cost
d D P L

TDO 0.0518001 0.359375 11.1509 0.012671024
TSA 0.051144 0.343751 12.0955 0.012674000
MPA 0.050178 0.341541 12.07349 0.012678321
WOA 0.05000 0.310414 15.0000 0.013192580
GWO 0.05000 0.315956 14.22623 0.012816930
TLBO 0.050780 0.334779 12.72269 0.012709667
GSA 0.05000 0.317312 14.22867 0.012873881
PSO 0.05010 0.310111 14.0000 0.013036251
GA 0.05025 0.316351 15.23960 0.012776352

TABLE 15. Statistical results for the tension/compression spring design problem.

Algorithm Best Mean Worst SD Median
TDO 0.012671024 0.012681410 0.012701561 0.00002042 0.012678251
TSA 0.012674000 0.012684106 0.012715185 0.000027 0.012687293
MPA 0.012678321 0.012697116 0.012720757 0.000041 0.012699686
WOA 0.013192580 0.014817181 0.017862507 0.002272 0.013192580
GWO 0.012816930 0.014464372 0.017839737 0.001622 0.014021237
TLBO 0.012709667 0.012839637 0.012998448 0.000078 0.012844664
GSA 0.012873881 0.013438871 0.014211731 0.000287 0.013367888
PSO 0.013036251 0.014036254 0.016251423 0.002073 0.013002365
GA 0.012776352 0.013069872 0.015214230 0.000375 0.012952142

VOLUME 10, 2022
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TABLE 16. Unimodal objective functions.

Objective Function Range Dim Fuin
m

F(X)=)x] [~100,100] 30 0
i=l1
m m

Fy(X) = Z x| + 1_[ x| [~10,10] 30 0
i=1 i=1
m i 2

F3(X) = Z <Z xi) [-100,100] 30 0
i=1 j=1

Fy,(X) =max{|x;]}, 1<i<m [-100,100] 30 0
m-1 2

Fo(X) = Z [100(xi41 = x7)° + G = D) [~30,30] 30 0
i=1
m

Fo(X) = Z ([x; + 05])2 [~100,100] 30 0
i=1

F7(X)

m
= Z ixt+r, [-1.28,1.28] 30 0
i=1

where r is a random real number in the range 0 to 1

Objective space

0.1 =

,_E Tension/Compression Spring Design
2 0.08F

b=

D

g

£0.06f

S

L

g 0.04f

2

D

2 0.02+

10° 10! 10° 10°
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FIGURE 13. Convergence analysis of the TDO for the
tension/compression spring design optimization problem.

V. CONCLUSION AND FUTURE WORKS

In this paper, a new bio-inspired metaheuristic algorithm
called Tasmanian Devil Optimization (TDO) was introduced.
The fundamental inspiration of TDO is the Tasmanian devil
feeding behavior in nature, which has two strategies (i) eating
carrion and (ii) feeding through hunting. TDO mathematical
modeling was presented along with a description of its steps
and strategies. The performance of TDO in solving optimiza-
tion problems was tested on twenty-three objective functions
of unimodal and multimodal types. The optimization results
of unimodal functions showed the exploitation ability of TDO
in convergence towards global optimal. The optimization
results of multimodal functions showed that TDO has a high
exploration ability in the scanning search space, passing local
areas, and discovering the main optimal area. To analyze

19616

the quality of TDO results, its performance was compared
with eight well-known algorithms, TSA, MPA, WOA, GWO,
TLBO, GSA, PSO, and GA. What was concluded from
the simulation results was that TDO by providing strong
performance and creating the appropriate balance between
exploration and exploitation, is superior than the eight
competitor algorithms and provides far more competitive
optimization results. TDO’s performance in optimizing four
design problems showed TDO’s high ability to solve real-
world optimization problems.

The authors provide perspectives for future studies in
this paper, the main ones being the design of binary and
multi-objective TDO versions. The use of TDO in solving
optimization problems in various sciences and real-world
problems are other suggestions that open the way for further
studies.

APPENDIX A
See Tables 16-18.

APPENDIX B
WELDED BEAM DESIGN PROBLEM

Consider X = [x1,x2,x3,x4] = [h, 1, t, b].
Minimize f (x) = 1.10471x12xz + 0.04811x3x4(14.0 + x3).
Subject to : g1 (x) =t (x) — 13600 < 0,
g2 (x) = o (x) — 30000 <0,
g3(x) =x1 —x3 <0,
g4(x) = 0.10471)612 + 0.04811x3x4(14 + xp)
—-5.0<0,
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TABLE 17. High-dimensional multimodal objective functions.

Objective Function Range Dim Frnin
m
Fg(X) = Z —x; sin(y/|x;]) [—500,500] 30 —12569
i=1
m
Fo(X) = Z [x? — 10 cos(2mx;) + 10] [-5.12,512] 30 0
i=1
1 m 1 m
Fio(X) = —20exp| —0.2 —Z x? | —exp (—Z cos(Zn:xl-)> +20+e [—32,32] 30 0
Mméai=1 mlai=1
Fra(X) = — Zm ? Hm (xi)+1 [-600,600] 30 0
=— x} — cos|— —600,
n 4000 Luj=q " A W
Fi,(X) = = {10sin(myy) + T2, (i — D?[1 + 10sin*(myis)] + 0 — D +
™ u(x;,10,100,4), where
k(xi _ a)n x; > a [—50,50] 30 0
y; =1 +xiT+1,u(xl-,a, i,n) = 0, —a< x; <a;
k(_xi - a)n’ X <-a,
Fi3(X) = 0.1{sin?(Bmx,) + X%, (; — D?[1 + sin?Bmx; + D] + (x, — D2 [1 +
sin? (2mx,)]} + X, u(x;, 5,100,4), where
k(x; —a)™, x> a; [-50,50] 30 0
u(x;, a,i,n) = 0, —-a< x <a
k(—x; —a)™, x; < —a.

gs5(x) =0.125 — x; <0,
g6(x) = 8(x) —0.25 <0,
g7(x) = 6000 — p.(x) < 0.

where

() = \/r’ + Qrt)) ;—; @2,

, 6000
V2xixy
_’:// _ MR
==,

X2
M_6000(14+3),
2 2
X X1+ x3
R= =24+ (222)
2 2
X X1 +x3
J=2 2|22 ,
{x1x2\/_|:12+( > >i|}

504000
o) = 3
X4X3
50 65856000
X)) = ———,
(30 - 109) xux3
2.6
4.013 (30 - 10°) / 3 x3 | 30-106
Pe(x) = L= T e
196 28\ 4(12- 10°)
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With

0.1 <x1, x4<2 and 0.1 <x, x3 <10.

APPENDIX C
PRESSURE VESSEL DESIGN PROBLEM

Consider X = [x1, xp, x3,x4] = [T, Ty, R, L] .
Minimize f (x) = 0.6224x1x3x4 + 1.778):2)632
+3.1661x7x4 + 19.84x7x3.
Subject to : g1 (x) = —x1 +0.0193x3 <O,
g2 (x) = —x2 + 0.00954x3 <O,

4

g3 (x) = —mxixg — gnxg + 1296000 < 0,
g4 (x) =x4—240 < 0.

and

x2 <100, 10 < x3, x4 < 200.

APPENDIX D
SPEED REDUCER DESIGN PROBLEM

Consider X = [x1,x2,x3,x4,x5,x6,x7]
=[b,m,p,l1,h,dy, dr].
Minimize f (x) = 0.7854X1x22
(3.3333x§ 4 14.9334x; — 43.0934)

— 1.508% (x2 +53) +7.4777
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TABLE 18. Fixed-dimensional multimodal objective functions.

Objective Function Range Dim Frnin
1 25 1 -
Fiu(X) = (5— + Z ) [—65.53,65.53] 2 0.998
00 J=1j + 32 1(xl—otu)
1 x1(b? + b; xz)
= -55 4 0.00030
Fis(X) = Z [ b? 4 bixs + x4 =53]
1
Fig(X) = 4x? —2.1-xf + §x16 + X%, — 4x3 + 4x3 [-5,5] 2 -1.0316
_ 51 5 ’ 1 [-5,10] X [0,15] 2 0398
F17(X)—(2 yp= —xf+= x1—6> +10<1—§>cosx1+10 > > :
Fig(X) = [1+4 (1 + x5 + 1)2(19 — 14x; + 3x7 — 14x, + 6x,x, + 3x2)]
[30 + (2x; — 3x,)%(18 — 32x; + 12x? + 48x, — 36X, %, + 27x2)] [=55] : 3
F. (X) = _24 Ciex (_ 23 a..(x. — )2) [0 1] 3 -3.86
19 i=1 L p j:l 19) ] pl] 4 :
Fyo(X) = _24 crexp(— ZG a;(x; = pi;)") [0,1] 6 322
20 i=1 v p j:l 5] ] pl] ’ :
5
Fa ==Y [(X-a) (X —a)’ +6c]™! [0,10] 4 101532
i=1
7
P == [(X-a)- (X —a)’ +6c]™ [0,10] 4 -104029
i=1
10
Fp(X) = —Z [(X —a) - (X —a)” + 66, [0,10] 4 -10.5364
i=1
w (33 + 3 2 2 _
. 27 1 745xs5\ 2
Subject to : g1 (x) = s——1=0, ge(x) = (_xs> +157.5-10°
X1X5X3 85 X2X3
397.5 —1 < 0,
g x) = 3 -1=<0, XX3
X1X5X3 g1 (x)=———-1<0,
) 1.93x; 1 <0 5%,
&) = —-1=0 ="=Z-1<
xoxsxd gs (x) X1 <0,
1.93x3 = 1<
g0 = 5120, g0 =0 —120
2347 1.5 1.9
3 g0 = 02 <,
() = —— \/<—745x“> +16.9-10° 4
&5 W) = 3 7 1.1 1.9
110x; X2X3 g1 (x) = —X7x§,+ -1=<0.
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With
26 <x1 <36, 07<x<038, 17 <x3 <28,
73 <x4 <83, 78<x5<83, 29<x=<39, and

5 <x7<55.

APPENDIX E
TENSION/COMPRESSION SPRING DESIGN PROBLEM

Consider X = [x1,x3,x3]1 = [d, D, P].

Minimize f (x) = (x3 + 2) xlez.
3

Subject 10 : g1 (x) = 1 — —23 <
ubject to : ) =1—- ——— s
g 8l 71785x% ~
4x% — x1x2 1
2 ()= —2— s —1<0,
12566(x2x7)  5108x3
140.45x,
BW=1-—7F—=0,
x2x3
X1+ x2
=212 _1<o.
84 (x) G <
With
005<x1 <2, 025<x,<13 and 2<x3<15.
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