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ABSTRACT In this paper, a new bio-inspired metaheuristic algorithm called Tasmanian Devil
Optimization (TDO) is designed that mimics Tasmanian devil behavior in nature. The fundamental
inspiration used in TDO is simulation of the feeding behavior of the Tasmanian devil, who has two
strategies: attacking live prey or feeding on carrions of dead animals. The proposed TDO is described, then
its mathematical modeling is presented. TDO performance in optimization is tested on a set of twenty-
three standard objective functions. Unimodal benchmark functions have analyzed the TDO exploitation
capability, while high-dimensional multimodal and fixed-exploitationmultimodal benchmark functions have
challenged the TDO exploration capability. The optimization results indicate the high ability of the proposed
TDO in exploration and exploitation and create a proper balance between these two indicators to effectively
solve optimization problems. Eight well-knownmetaheuristic algorithms are employed to analyze the quality
of the obtained results from TDO. The simulation results show that the proposed TDO, with its strong
performance, has a higher capability than the eight competitor algorithms and is much more competitive.
For further analysis, TDO is tested in optimizing four engineering design problems. Implementation results
show that TDO has an effective performance in solving real-world applications.

INDEX TERMS Bio-inspired, exploitation, exploration, feeding, optimization, optimization algorithm,
Tasmanian devil.

I. INTRODUCTION
Optimization is the process of determining the best solution
among several candidate solutions for a problem with respect
to its constraints. Advances in science and technology have
led to the emergence of new and complex optimization
problems as well as more details in existing optimization
problems [1]. Many of these problems have features such as
unknown search space, discrete search space, non-derivative
objective functions, high dimensions, and non-convexity.
This has led to the failure of traditional methods and math-
ematical analysis to effectively solve real-world optimization
problems [2]. Hence, researchers and scientists tend to
introduce new optimization solving methods called meta-
heuristic algorithms that can solve optimization problems
without the need for derivative information, based on random
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searcher agents and using random operators. Metaheuristic
algorithms have becomemore popular than classical methods
because of their advantages such as easy comprehension, easy
implementation, good performance, ability to avoid local
optimization, and application to optimization problems in
various sciences [3].

Two important features in the search and solution finding
process in metaheuristic algorithms are exploration and
exploitation. Exploration is the concept of global search
in the problem-solving space to analyze different areas of
the search space and not get caught in the optimal local
areas, while exploitation is the concept of locally search in
the neighborhood of the obtained solution to find a better
solution [4]. Metaheuristic algorithms to have acceptable
performance in solving optimization problems, must have
a good balance between exploration and exploitation [5].
Metaheuristic algorithms are able to identify the optimal
area based on the exploration phase and then converge
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towards the global optimal solution based on the exploitation
phase.

Due to the random nature of the search process in
metaheuristic algorithms, the solution they provide may not
be the same as the global optimal. For this reason, the
solution obtained from metaheuristic algorithms is called
quasi-optimal solution [6]. The performance of metaheuris-
tic algorithms is different due to their randomness and
different nature in the search process. Thus, metaheuris-
tic algorithms may offer different solutions in solving
a given optimization problem [7]. This has led to the
design of numerous metaheuristic algorithms by researchers
to provide better quasi-optimal solutions to optimization
problems.

Metaheuristic algorithms are stochastic optimization
problem-solving methods that have been inspired by various
natural phenomena, the laws of physics, biological sciences,
the rules of the game, and other evolutionary phenomena.
These algorithms first generate candidate solutions according
to the constraints of the problem. Then, they improve
these candidate solutions based on the algorithm update
steps in an iterative-based process. The main difference
between metaheuristic algorithms is in the same process of
improving candidate solutions during algorithm iterations.
Metaheuristic algorithms in a general category based
on main inspiration can be divided into four groups:
evolutionary-based, swarm-based, physics-based, and game-
based algorithms.

Applying the biological sciences alongside the theory of
natural selection and Darwin’s theory of evolution have
inspired the design of evolutionary-based algorithms. Genetic
Algorithm (GA) [8] and Differential Evolution (DE) [9] can
be considered as the most famous evolutionary algorithms.
In the design of GA and DE, the random operators of
selection, crossover, and mutation play a key role in updating
the algorithm population. The mechanism of the human
immune system in the face of disease has been a fundamental
inspiration in the development of the Artificial Immune
System (AIS) algorithm [10].

The natural behaviors of various species of animals,
birds, aquatic animals, and other living things have paved
the way for the development of swarm-based algorithms.
Particle Swarm Optimization (PSO) [11] and Ant Colony
Optimization (ACO) [12] are among the most familiar and
widely used swarm-based algorithms. PSO has employed
the natural behavior of swarm movement of birds or
fish. ACO has modeled the natural behavior of ants in
identifying the shortest path. The animals’ strategy in hunting
their prey in nature represents an optimization process.
Simulations of these natural behaviors have been employed
in the design of metaheuristics such as Whale Optimiza-
tion Algorithm (WOA [13], Marine Predators Algorithm
(MPA) [14], and Grey Wolf Optimization (GWO) [15].
Search behaviors of animals with access to food sources
have led to the introduction of metaheuristics such as
Artificial Bee Colony (ABC) [16] and Tunicate Swarm

Algorithm (TSA) [17]. Some other swarm-based algorithms
are Red Fox Optimization Algorithm (RFOA) [18], Raccoon
Optimization Algorithm (ROA) [19], Crow SearchAlgorithm
(CSA) [20], Teaching-Learning Based Optimization (TLBO)
[21], and Grasshopper Optimization Algorithm (GOA) [22].

Modeling of various laws in physics and physical phe-
nomena has been considered in the introduction of physics-
based algorithms. Simulated Annealing (SA) algorithm is one
of the most prominent physical algorithms that is inspired
in metal melting operations by the process of melting
and cooling materials [23]. The simulation of Newton’s
laws of motion with the use of physical forces has been
effective in the development of optimizers. Gravitational
Search Algorithm (GSA) [24] using gravitational force,
Spring Search Algorithm (SSA) [25] using elastic force,
and Momentum Search Algorithm (MSA) using momentum
have been designed. Physical phenomena are the source
of inspiration in the design of metaheuristics, such as
Water Cycle Algorithm (WCA) [26] according to the water
cycle phenomenon, Small-World Optimization Algorithm
(SWOA) [27] according to the mechanism of small-world
phenomenon, and Black Hole (BH) [28] according to observ-
able fact of black hole phenomena. Some other physics-
based algorithms are Nuclear Reaction Optimization (NRO)
[29],Multi-Verse Optimizer (MVO) [30], Artificial Chemical
Reaction Optimization Algorithm (ACROA) [31], Optics
Inspired Optimization (OIO) [32], Equilibrium Optimizer
(EO) [33], Atom Search Optimization (ASO) [34], and
Electromagnetic Field Optimization (EFO) [35].

Simulation of rules and behavior of players in different
games has led to the design of game-based algorithms.
Football Game Based Optimization (FGBO) [36] and Vol-
leyball Premier Ligue (VPL) [37] algorithms are game-
based metaheuristics developed based on the simulation of
club competitions during a sports season. The behavior
of players in collecting points and winning based on the
throwing mechanism is modeled on the design of Ring Toss
Game Based Optimizer (RTGBO) [38] and Darts Game
Optimizer (DGO [39].

The major research question in all studies of metaheuristic
algorithms is whether, given the various algorithms that
have been developed, there is still a need to introduce
new algorithms. The No Free Lunch (NFL) theorem [40]
answers this question that the strong performance of an
algorithm in solving a set of optimization problems provides
no guarantee of optimal performance in other problems.
Therefore, the superiority of a particular algorithm in solving
all optimization problems is hypothesis rejected. The NFL
theorem provides a research path for scientists to design
new metaheuristic algorithms to solve optimization problems
more effectively. The NFL theorem motivated the authors of
this paper to come up with a new metaheuristic algorithm to
effectively solve optimization problems.

What is evident from all studies of literature review and
its obtained best knowledge is that Tasmanian devil behavior
simulation has not been employed in the design of any
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metaheuristic algorithm. However, the natural behavior of the
Tasmanian devil during feeding represents an optimization
process in achieving the main purpose of this animal, i.e.,
food source. This research gap prompted the authors to design
a new optimizer by simulating the Tasmanian devil feeding
strategy, which is discussed in the next section.

This paper introduces a new optimization algorithm called
Tasmanian Devil Optimization (TDO) that can be applied to
solve various science optimization problems. The scientific
contribution of this research can be expressed as follows:
1. The novelty of this paper is in the design of the new TDO

optimizer based on the simulation of the Tasmanian devil’s
natural behavior.

2. The fundamental inspiration of TDO is the Tasmanian
devil feeding mechanism in two strategies of live prey
hunting and carnivore eating.

3. The various stages of TDO are described and mathemati-
cally modeled.

4. TDO is evaluated by solving twenty-three benchmark
functions including unimodal, high-dimensional multi-
modal, and fixed-dimensional multimodal types.

5. TDO is used to solve four engineering design problems to
evaluate its performance in real-world problems.

6. To analyze the capability of the proposed algorithm, the
optimization results obtained from TDO are compared
with eight well-known algorithms.
In the following, the paper is organized in such a

way that in Section 2, the proposed TDO algorithm is
introduced and modeled. Simulation studies and results are
presented in Section 3. The capability of TDO in optimizing
engineering design problems is analyzed in Section IV.
Finally, in Section 5, conclusions and several research
suggestions are presented.

II. TASMANIAN DEVIL OPTIMIZATION
In this section, the proposed metaheuristic Tasmanian Devil
Optimization (TDO) is introduced and its mathematical
modeling is presented.

A. INSPIRATION AND BEHAVIOR OF TAMANIAN DEVIL
The Tasmanian devil is a carnivorous and marsupial wild
animal belonging to the family Dasyuridae that lives in the
island state of Tasmania. A photo of the Tasmanian devil
is shown in Figure 1. Tasmanian devils are opportunistic
animals, and although they are able to hunt prey, they feed
on carrion if present [41]. Tasmanian devil has two strategies
for feeding. In the first strategy, if Tasmanian devil finds a
carrion, it feeds on it. In the second strategy, it hunts and feeds
on prey by attacking it.

The modeling of this Tasmanian devil feeding mechanism
is used in the TDO design.

B. MATHEMATICAL MODELLING
In this subsection, the process and how to simulate the natural
behavior of Tasmanian demons during feeding is described to
design an optimizer.

FIGURE 1. Tasmanian devil (take from Wikimedia Commons - Tasmanian
Devil (33295981294)).

The optimization process is how to achieve the optimal
solution for an optimization issue. The analogy of this process
in the life and behaviors of the Tasmanian devil is like
access to food. In fact, just as in the optimization process,
the goal is to find the optimal solution, in the Tasmanian
devil’s nutritional process, the goal is to find the food source.
Two important principles in the optimization process are
exploration in the comprehensive search the problem-solving
space and exploitation in approaching the optimal solution.
The Tasmanian devil’s search behavior in finding food
sources in different spaces, in fact, indicates the exploration
index in the optimization process in order to identify the
optimal area of search space. On the other hand, the chasing
process between the Tasmanian devil and the prey that occurs
in a limited area is similar to the exploitation index in the local
search with the aim of converging to the optimal solution.
This means that mathematical modeling of Tasmanian devil
strategies to reach the food source is prone to designing
an optimizer to achieve optimal solutions to optimization
problems.

1) INITIALIZATION
The proposed TDO is a population-based stochastic algo-
rithmwhose searcher agents are Tasmanian devils. The initial
population of these agents is generated randomly based
on the constraints of the problem. Population members of
TDO, who are searchers of problem-solving space, suggest
candidate values for problem variables based on their position
in the search space. So mathematically, each member of a
population is a vector with the number of elements equal to
the number of problem variables. As a result, the set of TDO
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members can be modeled using a matrix in (1).

X =



X1
...

Xi
...

XN


N×m

=



x1,1 · · · x1,j · · · x1,m
...

. . .
... . .

. ...

xi,1 · · · xi,j · · · xi,m
... . .

. ...
. . .

...

xN ,1 · · · xN ,j · · · xN ,m


N×m

,

(1)

were X is the population of Tasmanian devils, Xi is the ith
candidate solution while xi,j is its candidate value for the jth
variable, N is the number of searching Tasmanian devils, and
m is the number of variables of given problems.
The objective function of problem can be computed by

placing each of the candidate solutions in the values of the
variables of the objective function. As a result, the values
obtained for the objective function are modeled using a vector
in (2).

F =



F1
...

Fi
...

FN


N×1

=



F(X1)
...

F(Xi)
...

F(XN )


N×1

, (2)

where F is the vector of values of the objective function
and Fi is the value of the objective function obtained by the
ith candidate solution. The analysis of the values obtained
for the objective function shows the quality of the candidate
solutions. The candidate solution that leads to the calculation
of the best value for the objective function is considered
the best member of the population. The best member of the
population is updated based on new values in each iteration.

The population updating process in TDO is modeled on
two Tasmanian devil feeding strategies. It is possible for
any Tasmanian devil to eat carrion or feed on prey hunting.
In TDO, it is assumed that the probability of choosing any of
these strategies is equal to 50%. According to this concept,
in each iteration of the TDO, each Tasmanian devil is updated
based on only one of these two strategies.

2) STRATEGY 1: FEEDING BY EATING CARRION
(EXPLORATION PHASE)
Sometimes the Tasmanian devil prefers to feed on carrion
in the area instead of hunting. There are other predatory
animals living around the Tasmanian Devil, which hunt large
prey and are unable to eat it all. Additionally, these animals
may not be able to eat sufficiently from their prey until
the Tasmanian devil arrives. In these cases, the Tasmanian
devil prefers to feed on these carrions. Tasmanian devil
behavior in scanning the habitat area to find carrion is
similar to the algorithm search process in problem-solving
space. This Tasmanian devil strategy actually demonstrates
the power of TDO exploration in scanning different areas
of the search space to identify the original optimal area.

The concepts expressed in the Tasmanian devil strategy of
eating carcasses are mathematically modeled using (3) to (5).
In the TDO design, for each Tasmanian devil, the position
of other population members in the search space is assumed
to be carrion locations. Random selection of one of these
situations is simulated in (3) so that the k ′th population
member is selected as the target carrion for the i′th Tasmanian
devil. Therefore, k must be chosen randomly from 1 to N
while the opposite is i.

Ci = Xk , i = 1, 2, . . . ,N , k ∈ {1, 2, . . . ,N |k 6= i}, (3)

where Ci is the selected carrion by ith Tasmanian devil.
Based on the selected carrion, a new position is calculated

for the Tasmanian devil in the search space. In the Tasmanian
devil motion simulation in this strategy, if the objective
function value of the carrion is better, the Tasmanian devil
moves toward that carrion, otherwise it moves away from that
carrion. This Tasmanian devil movement strategy is simulated
in (4). In the last step of the first strategy, after calculating the
new position for Tasmanian devil, this position is accepted
if the value of the objective function is better in this new
position otherwise, Tasmanian devil remains in its previous
position. This update step is modeled in (5).

xnew,S1i,j =

{
xi,j + r · (ci,j − I · xi,j), FCi < Fi;
xi,j + r · (xi,j − ci,j), otherwise,

(4)

Xi =

{
Xnew,S1i , Fnew,S1i < Fi;
Xi, otherwise,

(5)

Here, Xnew,S1i is the new status of the ith Tasmanian devil
based on the first strategy, xnew,S1i,j is its value for the jth

variable, Fnew,S1i is its objective function value, FCi is its
objective function value of selected carrion, r is a random
number in interval [0, 1], and I is a random number which
can be 1 or 2.

3) STRATEGY 2: FEEDING BY EATING PREY
(EXPLOITATION PHASE)
The Tasmanian Devil’s second feeding strategy is to hunt
and eat prey. Tasmanian devil behavior during the attack has
two stages. In the first stage, by scanning the area, it selects
the prey and attacks it. Then, in the second stage, after
approaching the prey, it chases it to stop it and start eating.
The modeling of the first stage is similar to the modeling
of the first strategy, i.e., the selection of the carcass.
Therefore, the first stage of prey selection and attack it
is modeled using (6) to (8). In the second strategy, when
updating the i′th Tasmanian devil, the position of other
population members is assumed as preys location. The k ′th
population member is randomly selected as prey, while k is a
natural random number between 1 to N and opposite i. The
prey selection process is simulated in (6).

Pi = Xk , i = 1, 2, . . . ,N , k ∈ {1, 2, . . . ,N |k 6= i}, (6)

Here, Pi is the selected prey by the ith Tasmanian devil.
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After determining the prey position, a new position is
calculated for the Tasmanian devil. In calculating this new
position, if the objective function value of the selected prey
is better, the Tasmanian devil moves towards it, otherwise
it moves away from that position. Modeling of this process
is presented in (7). The new position calculated for the
Tasmanian devil replaces the previous position if it improves
the value of the target function. This step of the second
strategy is modeled in (8).

xnew,S2i,j =

{
xi,j + r · (pi,j − I · xi,j), FPi < Fi;
xi,j + r · (xi,j − pi,j), otherwise,

(7)

Xi =

{
Xnew,S2i , Fnew,S2i < Fi;
Xi, otherwise,

(8)

Here, Xnew,S2i is the new status of i′th Tasmanian based on
the second strategy, xnew,S2i,j is its value for the jth variable,

Fnew,S2i is its objective function value, and FPi is its objective
function value of selected prey.

The main difference between this strategy and the first
strategy is the second stage and the simulation of prey
chasing. The chase of prey in the vicinity of the attack site is
similar to the local search of the search space. This Tasmanian
devil behavior actually demonstrates the TDO’s ability to
exploit to converge to better candidate solutions. In order
to simulate this chase process, the Tasmanian devil follows
the prey in the neighborhood of the attacked place. The prey
chase stage is modeled by the Tasmanian devil using (9) to
(11). At this stage, the Tasmanian devil position is considered
the center of a neighborhood where the prey chasing process
takes place. The radius of this neighborhood indicates the
range that the Tasmanian devil follows the prey, which can
be calculated using (9). Thus, a new position based on the
chasing process in this neighborhood can be calculated for the
Tasmanian devil, which is mathematically simulated in (10).
The new calculated position is acceptable to the Tasmanian
devil if it provides a better value for the objective function
than its previous position. This position update process is
simulated for the Tasmanian devil in (11).

R = 0.01(1−
t
T
), (9)

xnewi,j = xi,j + (2r − 1) · R · xi,j, (10)

Xi =

{
Xnewi , Fnewi < Fi;
Xi, otherwise,

(11)

where R is the neighborhood radius of the point of attacked
location, t is the iteration counter, T is the maximum number
of iterations, Xnewi is the new status of the ith Tasmanian devil
in neighborhood ofXi, xnewi,j is its value for the jth variable, and
Fnewi is its objective function value.

4) REPETITIONS PROCESS, FLOWCHART, AND
PSEUDO-CODE OF TDO
When the update of all TDO members is completed, the first
iteration of the algorithm ends. New values are calculated for

the position of Tasmanian devils and the objective function.
After this, the algorithm enters the next iteration and the
TDO population update process continues until the end of the
algorithm iterations according to equations (3) to (11). TDO
updates and stores the best candidate solution during these
iterations. After the algorithm is fully implemented, TDO
introduces the best candidate solution as the solution to the
problem. The various steps of TDO are presented in flowchart
format in Figure 2 and its pseudocode in Algorithm 1.

C. COMPUTATIONAL COMPLEXITY
This section analyzes the computational complexity of TDO.
The computational complexity of TDO initialization is equal
to O(N · m) where N is the number of members of the
Tasmanian devil population and m is the number of problem
variables. TDO has a problem-solving process in the number
of repetitive T . The process of updating population members
on their way to the carcass or prey has a computational
complexity equal toO(N ·m ·T ). The prey chasing process in
the second strategy has a computational complexity equal to
O(NS2 ·m ·T ) where NS2 is the number of Tasmanian demons
who have used the second feeding strategy. Thus, the total
computational complexity of TDO is equal to O((N · m) ·
((1+ T )+ (T · NS2))).

III. SIMULATION STUDIES AND DISCUSSION
In this section, simulation studies of TDO performance
in optimization are presented. TDO is employed to solve
twenty-three standard benchmark functions, including seven
unimodal functions, six high-dimensional multimodal func-
tions, and ten fixed-dimensional unimodal functions [42].
The information of these benchmark functions is presented in
the Appendix and in Tables 16 to 18. The performance quality
of TDO is compared with eight well-known metaheuristic
algorithms, TSA,MPA,WOA,GWO, TLBO,GSA, PSO, and
GA. The values of the control parameters of these algorithms
are specified in Table 1.

Each of the competitor algorithms and the proposed
TDO is used in twenty independent executions to optimize
the benchmark functions, while each execution contains
1000 iterations. In presenting the simulation results, ‘‘avg’’
is the average of the best obtained candidate solutions and
‘‘std’’ is the standard deviation of these values.

A. EVALUATION OF UNIMODAL TEST FUNCTION (F1-F7)
The selected unimodal functions F1 to F7 have only one main
optimal solution. This feature has made unimodal functions
suitable for evaluating the exploitation ability of optimization
algorithms. The optimization results of F1 to F7 functions
using TDO and eight competitor algorithms are presented
in Table 2. The simulation results show that TDO with
high exploitation power has been able to provide the global
optimal solution for F6. TDO is also the first best optimizer in
solving F1, F2, F3, F4, F5, and F7. The analysis of the results
of this table shows that TDO has been able to provide much
more competitive results compared to the eight competitor
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FIGURE 2. Flowchart of TDO.
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FIGURE 3. Boxplot of performance of TDO and eight competitor algorithms in solving test functions.
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FIGURE 3. (Continued.) Boxplot of performance of TDO and eight competitor algorithms in solving test functions.

algorithms with high exploitation power, which shows the
superiority of TDO.

B. EVALUATION OF HIGH-DIMENSIONAL MULTIMODAL
TEST FUNCTION (F8-F13)
The selected high-dimensional multimodal functions have
a large number of local optimal solutions. Therefore,
optimization algorithms must have high exploration power
in scanning the search space to find the original local
optimization by passing through local optimal solutions.
The implementation results of TDO and eight competitor
algorithms on F8 to F13 functions are reported in Table 3.
What is clear from the analysis of this table is that TDO, with
its high exploration power, has provided the global optimal
for F9 and F11 functions. TDO is also the best optimizer in
solving F8, F10, F12, and F13. The simulation results show

that TDO with high exploration ability is able to identify the
main optimal area in the search space and has a superior
and competitive performance compared to eight competitor
algorithms.

C. EVALUATION OF FIXED-DIMENSIONAL MULTIMODAL
TEST FUNCTION (F14-F23)
The selected fixed-dimensional multimodal functions have a
small number of variables as well as a small number of local
optimal solutions. These problems challenge the exploration
ability of the optimization algorithms to discover the main
optimal region of search space. The optimization results
obtained from TDO and eight competitor algorithms in F14
to F23 optimization are presented in Table 4. Analysis of the
results of this table shows that TDO with its high exploration
power, has provided the global optimal for F14 and F17. TDO
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Algorithm 1 Pseudo-Code of Proposed TDO Algorithm
Start TDO.
1. Input the optimization problem information.
2. Set the number of iterations (T ) and the number of
members of the population (N ).
3. Initialization of the position of Tasmanian devils and
evaluation of the objective function.
4. For t = 1:T
6. For i = 1:N
8. If Probability < 0.5, Probability = rand
9. Strategy 1: Feeding by eating carrion

(exploration phase)
10. Select carrion for the ith Tasmanian devil using

Eq. (3).
11. Calculate new status of Tasmanian devil using

Eq. (4).
12. Update the ith Tasmanian devil using (5).
13. else
14. Strategy 2: Feeding by eating prey

(exploitation phase)
15. Stage 1: Prey selection and attacking
16. Select prey for the ith Tasmanian devil using (6).
17. Calculate new status of Tasmanian devil using

Eq. (7).
18. Update the ith Tasmanian devil using (8).
19. Stage 2: Prey chasing
20. Update neighborhood radius using (9).
21. Calculate new status of the ith Tasmanian devil in

neighborhood of Xi using (10).
22. Update the ith Tasmanian devil using (11).
23. end if
24. end for i = 1:N
25. Save the best proposed solution so far.
26. end for t = 1:T
27. Output: The best solution obtained by TDO for given
optimization problem.
End TDO.

has outperformed eight competitor algorithms in solving
F15, F16, and F20. Also, the analysis of ‘‘avg’’ and ‘‘std’’
criteria, indicates the more effective performance of TDO
in optimizing F18, F19, F21, F22, and F23. The simulation
results of F14 to F23 functions show the superiority of TDO
performance in providing optimal solutions compared to
eight competitor algorithms.

The performance of TDO and eight competitor algorithms
in optimizing benchmark functions is presented as a boxplot
in Figure 3.

D. STATISTICAL ANALYSIS
Presentation of simulation results using ‘‘avg’’ and ‘‘std’’
criteria provides valuable information on the ability of
optimization algorithms and their comparison. However, it is
always possible, even with the slightest probability, that the
superiority of one algorithm over another is a chance. In this

TABLE 1. Parameter values for the competitor algorithms.

regard, a statistical analysis is presented to examine whether
the superiority of TDO has been significant or not against any
of the competitor algorithms in this subsection. To provide
statistical analysis on the performance of TDO and eight
competitor algorithms, Wilcoxon rank sum test [43] has been
used. In this test, a p-value is used to show the significant
superiority of the corresponding algorithm over a competitor
algorithm.
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TABLE 2. Optimization results of TDO and competitor algorithms on unimodal test function.

TABLE 3. Optimization results of TDO and competitor algorithms on high-dimensional multimodal test function.

The simulation results obtained from the Wilcoxon rank
sum test are presented in Table 5. What can be deduced from
the analysis of the results of this test is that in cases where
a p-value is less than 0.05, TDO has a significant statistical
superiority over the competitor algorithm.

E. SENSITIVITY ANALYSIS
TDO is able to solve optimization problems in a repetition-
based process based on search space scans by members
of the population of Tasmanian devils. Thus, the number of
population members of Tasmanian devils and the number
of iterations of the algorithm affect the performance of
the TDO. In this subsection, TDO sensitivity analysis to
parameters N and T is studied.

To analyze the sensitivity to the parameter N , the proposed
TDO is employed for the population size of Tasmanian devils
equals to 20, 30, 50, and 100 in solving F1 to F23. The
simulation results of the sensitivity analysis of TDO to the
parameter N are presented in Table 5. TDO convergence
curves in solving these functions and for different values of
N are shown in Figure 4. What can be deduced from the
analysis of the simulation results is that with the increase
in the population of Tasmanian devils, the search power of
TDO has improved and led to a decrease in the values of the
objective functions.

To analyze the sensitivity to the parameter T , the proposed
TDO algorithm for different values of T equal to 100, 500,
800, and 1000 is implemented on the benchmark functions F1
to F23. The results of TDO sensitivity analysis study under
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TABLE 4. Optimization results of TDO and competitor algorithms on fixed-dimensional multimodal test function.

TABLE 5. p-values obtained from Wilcoxon rank sum test.

the changes of parameter T are reported in Table 6. The
behavior of TDO convergence curves under the influence of
parameter T is presented in Figure 5. What is evident from
the simulation results of the sensitivity analysis is that the
increase in values T has led the algorithm to converge to better
solutions and reduce the values of the objective functions.

IV. TDO APPLICATION FOR ENGINEERING
DESIGN PROBLEMS
The performance of TDO in real-world applications is
evaluated by optimizing four engineering design optimization
problems including welded beam design, pressure vessel
design, speed reducer design, and tension/compression spring
design.

A. WELDED BEAM DESING OPTIMIZATION PROBLEM
Welded beam design is a minimization problem which its
main purpose is to reduce the fabrication cost of welded
beam [13]. A schematic of this problem is shown in Figure 6.
The optimum values of the design variables and the values
of the objective function using TDO and eight competitor
algorithms are presented in Table 8. TDO provides the best
candidate solution by providing the values of the design vari-
ables equal to (0.205730, 3.470521, 9.036603, 0.205731) and
the corresponding objective function value equal to 1.724901.
The statistical results of the performances of TDO and eight
competitor metaheuristics are presented in Table 9. The
simulation results show that TDO is superior to eight com-
petitor algorithms by providing optimal performance. The
convergence curve behavior of TDO in achieving the optimal
solution for the welded beam design problem is shown
in Figure 7.

B. PRESSURE VESSEL DESING OPTIMIZATION
PROBLEM
Pressure vessel design is a minimization problemwhosemain
purpose is to reduce the total cost of material, welding, and
forming of a cylindrical vessel [44]. A schematic of this
problem is shown in Figure 8. The implementation results
of TDO and eight competitor algorithms in optimizing the
pressure vessel design problem are presented in Table 10.
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FIGURE 4. Sensitivity analysis of the TDO for the number of population members.

TDO provides the optimal 11 by providing better values for
design variables equal to (0.7780535, 0.3860383, 40.31357,
199.9841) and the corresponding objective function value
equal to 5887.1783. The statistical results obtained from
the implementation of TDO and eight metaheuristics are

presented in Table 11. The simulation results show the
superiority of TDO in solving the pressure vessel design
problem more effectively than eight competitor algorithms.
The TDO convergence curve to optimize this problem is
shown in Figure 9.
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FIGURE 5. Sensitivity analysis of the TDO for the maximum number of iterations.

C. SPEED REDUCER DESING OPTIMIZATION PROBLEM
Speed reducer design is a minimization problem whose
main purpose is to reduce the weight of the speed
reducer [45], [46]. A schematic of this problem is shown
in Figure 10. The application results of TDO and eight
competitor metaheuristics in optimizing the speed reducer

design problem are presented in Table 12. TDO has been
able to provide the optimal solution to this problem with the
values of the design variables equal to (3.5, 0.7, 17, 7.3, 7.8,
3.35021, 5.28668) and the corresponding objective function
value equal to 2996.3482. The statistical results of the
implementation of TDO and eight competitor metaheuristics
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TABLE 6. Sensitivity analysis of the TDO for the number of population members.

TABLE 7. Sensitivity analysis of the TDO for the maximum number of iterations.
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FIGURE 6. Schematic view of the welded beam design problem.

FIGURE 7. Convergence analysis of the TDO for the welded beam design
optimization problem.

FIGURE 8. Schematic view of pressure vessel design problem.

are presented in Table 13. The simulation results show the
superiority of TDO compared to eight competitor algorithms
in minimizing the objective function of this problem.
The TDO convergence curve during achieving the optimal
solution is shown in Figure 11.

D. TENSION/COMPRESSION SPRING DESING
OPTIMIZATION PROBLEM
Tension/compression spring design is a minimization prob-
lemwhosemain purpose is to reduce the tension/compression
spring weight [13]. A schematic of this problem is shown

FIGURE 9. Convergence analysis of the TDO for the pressure vessel
design optimization problem.

FIGURE 10. Schematic view of speed reducer design problem.

FIGURE 11. Convergence analysis of the TDO for the speed reducer
design optimization problem.

FIGURE 12. Schematic view of tension/compression spring problem.

in Figure 12. The values obtained for the design variables
and the objective function of this problem are presented in
Table 14. TDO presents the optimal solution to the problem
by providing the values of the design variables equal to
(0.0518001, 0.359375, 11.1509) and the value of the objec-
tive function equal to 0.012671024. The statistical results
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TABLE 8. Comparison results for the welded beam design problem.

TABLE 9. Statistical results for the welded beam design problem.

TABLE 10. Comparison results for the pressure vessel design problem.

TABLE 11. Statistical results for the pressure vessel design problem.

obtained from the optimization of the tension/compression
spring design problem using TDO and eight competitor
metaheuristics are presented in Table 15. The simulation
results show that TDO has a superior performance compared

to eight competitor algorithms in solving this problem. The
convergence curve behavior of TDO in providing the optimal
solution to the tension/compression spring design problem is
shown in Figure 13.
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TABLE 12. Comparison results for the speed reducer design problem.

TABLE 13. Statistical results for the speed reducer design problem.

TABLE 14. Comparison results for the tension/compression spring design problem.

TABLE 15. Statistical results for the tension/compression spring design problem.
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TABLE 16. Unimodal objective functions.

FIGURE 13. Convergence analysis of the TDO for the
tension/compression spring design optimization problem.

V. CONCLUSION AND FUTURE WORKS
In this paper, a new bio-inspired metaheuristic algorithm
called Tasmanian Devil Optimization (TDO) was introduced.
The fundamental inspiration of TDO is the Tasmanian devil
feeding behavior in nature, which has two strategies (i) eating
carrion and (ii) feeding through hunting. TDO mathematical
modeling was presented along with a description of its steps
and strategies. The performance of TDO in solving optimiza-
tion problems was tested on twenty-three objective functions
of unimodal and multimodal types. The optimization results
of unimodal functions showed the exploitation ability of TDO
in convergence towards global optimal. The optimization
results of multimodal functions showed that TDO has a high
exploration ability in the scanning search space, passing local
areas, and discovering the main optimal area. To analyze

the quality of TDO results, its performance was compared
with eight well-known algorithms, TSA, MPA,WOA, GWO,
TLBO, GSA, PSO, and GA. What was concluded from
the simulation results was that TDO by providing strong
performance and creating the appropriate balance between
exploration and exploitation, is superior than the eight
competitor algorithms and provides far more competitive
optimization results. TDO’s performance in optimizing four
design problems showed TDO’s high ability to solve real-
world optimization problems.

The authors provide perspectives for future studies in
this paper, the main ones being the design of binary and
multi-objective TDO versions. The use of TDO in solving
optimization problems in various sciences and real-world
problems are other suggestions that open the way for further
studies.

APPENDIX A
See Tables 16–18.

APPENDIX B
WELDED BEAM DESIGN PROBLEM

Consider X = [x1, x2, x3, x4] = [h, l, t, b].

Minimize f (x) = 1.10471x21x2 + 0.04811x3x4(14.0+ x2).

Subject to : g1 (x) = τ (x)− 13600 ≤ 0,

g2 (x) = σ (x)− 30000 ≤ 0,

g3 (x) = x1 − x4 ≤ 0,

g4(x) = 0.10471x21 + 0.04811x3x4(14+ x2)

− 5.0 ≤ 0,
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TABLE 17. High-dimensional multimodal objective functions.

g5(x) = 0.125− x1 ≤ 0,

g6(x) = δ(x)− 0.25 ≤ 0,

g7(x) = 6000− pc(x) ≤ 0.

where

τ (x) =

√
τ ′ + (2ττ ′)

x2
2R
+ (τ ′′)2,

τ ′ =
6000
√
2 x1x2

,

τ ′′ =
MR
J
,

M = 6000
(
14+

x2
2

)
,

R =

√
x22
4
+

(
x1 + x3

2

)2

,

J = 2

{
x1x2
√
2

[
x22
12
+

(
x1 + x3

2

)2
]}

,

σ (x) =
504000

x4x23

δ (x) =
65856000(

30 · 106
)
x4x33

,

pc (x) =
4.013

(
30 · 106

)√ x23x
6
4

36

196

1−
x3
28

√
30 · 106

4(12 · 106)

 .

With

0.1 ≤ x1, x4 ≤ 2 and 0.1 ≤ x2, x3 ≤ 10.

APPENDIX C
PRESSURE VESSEL DESIGN PROBLEM
Consider X = [x1, x2, x3, x4] = [Ts,Th,R,L] .

Minimize f (x) = 0.6224x1x3x4 + 1.778x2x23
+ 3.1661x21x4 + 19.84x21x3.

Subject to : g1 (x) = −x1 + 0.0193x3 ≤ 0,

g2 (x) = −x2 + 0.00954x3 ≤ 0,

g3 (x) = −πx23x4 −
4
3
πx33 + 1296000 ≤ 0,

g4 (x) = x4 − 240 ≤ 0.

With

0 ≤ x1, x2 ≤ 100, and 10 ≤ x3, x4 ≤ 200.

APPENDIX D
SPEED REDUCER DESIGN PROBLEM

Consider X =
[
x1,x2, x3, x4, x5, x6, x7

]
= [b,m, p, l1, l2, d1, d2] .

Minimize f (x) = 0.7854x1x22(
3.3333x23 + 14.9334x3 − 43.0934

)
− 1.508x1

(
x26 + x

2
7

)
+ 7.4777
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TABLE 18. Fixed-dimensional multimodal objective functions.

×

(
x36 + x

3
7

)
+ 0.7854(x4x26 + x5x

2
7 ).

Subject to : g1 (x) =
27

x1x22x3
− 1 ≤ 0,

g2 (x) =
397.5

x1x22x3
− 1 ≤ 0,

g3 (x) =
1.93x34
x2x3x46

− 1 ≤ 0,

g4 (x) =
1.93x35
x2x3x47

− 1 ≤ 0,

g5 (x) =
1

110x36

√(
745x4
x2x3

)2

+ 16.9 · 106

− 1 ≤ 0,

g6(x) =
1

85x37

√(
745x5
x2x3

)2

+ 157.5 · 106

− 1 ≤ 0,

g7 (x) =
x2x3
40
− 1 ≤ 0,

g8 (x) =
5x2
x1
− 1 ≤ 0,

g9 (x) =
x1
12x2

− 1 ≤ 0,

g10 (x) =
1.5x6 + 1.9

x4
− 1 ≤ 0,

g11 (x) =
1.1x7 + 1.9

x5
− 1 ≤ 0.
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With

2.6 ≤ x1 ≤ 3.6, 0.7 ≤ x2 ≤ 0.8, 17 ≤ x3 ≤ 28,

7.3 ≤ x4 ≤ 8.3, 7.8 ≤ x5 ≤ 8.3, 2.9 ≤ x6 ≤ 3.9, and

5 ≤ x7 ≤ 5.5.

APPENDIX E
TENSION/COMPRESSION SPRING DESIGN PROBLEM

Consider X = [x1, x2, x3] = [d,D,P] .

Minimize f (x) = (x3 + 2) x2x21 .

Subject to : g1 (x) = 1−
x32x3

71785x41
≤ 0,

g2 (x) =
4x22 − x1x2
12566(x2x31 )

+
1

5108x21
− 1 ≤ 0,

g3 (x) = 1−
140.45x1
x22x3

≤ 0,

g4 (x) =
x1 + x2
1.5

− 1 ≤ 0.

With

0.05 ≤ x1 ≤ 2, 0.25 ≤ x2 ≤ 1.3 and 2 ≤ x3 ≤ 15.
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