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ABSTRACT Patients with diabetes are at risk of developing a retinal disorder called Proliferative Diabetic
Retinopathy (PDR). One of the main characteristics of PDR is the development of neovascularization,
a condition in which abnormal blood vessels are formed on the retina. This condition can cause blindness if
it is not detected and treated early. Numerous studies have proposed different image processing techniques
for detecting neovascularization in fundus images. However, because of its random growth pattern and
small size, neovascularization remains challenging to detect. Hence, deep learning techniques are becoming
more prevalent in neovascularization identification because of their ability to perform automatic feature
extraction on objects with complex features. In this paper, a method of neovascularization detection based
on transfer learning is proposed. The performance of the transfer learning method is investigated using four
pre-trained Convolutional Neural Network (CNN) models, which include AlexNet, GoogLeNet, ResNet18,
and ResNet50. In addition, an improved network based on the combination of ResNet18 and GoogLeNet
is proposed. Evaluation on 1174 retinal image patches showed that the proposed network could achieve
91.57%, 85.69%, 97.44%, and 97.10% of accuracy, sensitivity, specificity, and precision, respectively.
We demonstrated that the proposed method outperforms each individual CNN for neovascularization
detection. It also shows better performance compared to another method that utilized deep learning models
for feature extraction and Support Vector Machine (SVM) for classification.

INDEX TERMS Neovascularization detection, deep learning, convolutional neural networks, biomedical
image processing, proliferative diabetic retinopathy.

I. INTRODUCTION
Diabetic Retinopathy (DR) is more prevalent in patients with
long-term diabetes [1]. It is categorized intoNon-proliferative
DR (NPDR) and Proliferative DR (PDR). Patients with
NPDR will have several clinical symptoms such as microa-
neurysms, hemorrhages, hard exudates, and cotton wool
spots [2]. PDR is the advanced stage of DR, and it carries
a significant risk of vision impairment [3]. This condition

The associate editor coordinating the review of this manuscript and
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is caused by the development of small and irregular blood
vessels in the retina, a process called neovascularization [4].
One of the primary causes of aberrant and fragile blood
vessel growth is a lack of oxygen delivery in the blood
vessels [5]. The newly formed vessels are delicate and can
easily burst, resulting in retinal bleeding. If these new blood
vessels are formed within the diameter of the optic disk,
the condition is referred to as neovascularization at the optic
disk (NVD). On the other hand, neovascularization elsewhere
(NVE) refers to the new vessels forming one disk diameter
away from the optic disk. Both NVD and NVE are equally
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blamed for vessel growth and vitreous hemorrhage, resulting
in visual loss. Therefore, a referral to an ophthalmologist is
necessary when neovascularization occurs, whether NVD or
NVE.

PDR must be detected early to preserve the patient’s
vision. This can be accomplished by analyzing the patient’s
fundus image to detect blood vessels and identifying the
newly formed vascular associated with neovascularization.
Numerous techniques for segmenting blood vessels have
been proposed [6]–[15], but detecting neovascularization
remains difficult. The retinal vasculature is a visible cir-
culatory system in the eye that provides valuable informa-
tion about the body’s microcirculation without the need for
invasive procedures [16]. Effective computer-aided diagno-
sis algorithms may improve the accuracy and sensitivity of
neovascularization identification during frequent follow-up
visits or telemedicine consultations. If detection were more
accurate, patients would be less likely to miss out on early and
effective laser therapy. In comparison to microaneurysms, the
shape and size of neovascularization vary, posing additional
challenges and highlighting the importance of developing
automated detection methods [17].

Multiple studies have demonstrated that image process-
ing algorithms can automatically identify microaneurysms,
hemorrhages, hard exudates, and cottonwool spots. However,
research into detecting neovascularization is still in its infancy
due to the difficulty of distinguishing between normal blood
vessels and new blood vessels that have formed. Additionally,
the number of labeled neovascularization images is limited,
impeding the field’s advancement. A comprehensive retinal
image may be obtained using angiography-based techniques.
However, due to the invasive nature of these procedures, they
are generally not recommended, particularly for early-stage
or routine diagnosis [18].

This paper proposed a deep learning approach for neovas-
cularization detection based on transfer learning. A network
based on the combination of ResNet18 and GoogLeNet is
proposed. These two networks are combined using a depth
concatenation layer. The performance of the combined net-
work is compared to that of the original pre-trained net-
works, which include AlexNet, GoogleLeNet, ResNet18, and
ResNet50. Additionally, we conducted experiments to eval-
uate the transfer learning results and determine the method’s
efficacy in detecting neovascularization. We demonstrated
that the proposed network (ResNet18 + GoogLeNet
combination) could outperform other pre-trained net-
works in detecting neovascularization through transfer
learning.

This paper is organized as follows: Section II summarizes
several previous studies on the detection of neovasculariza-
tion. Section III explains the methodology and the proposed
transfer learning method for classifying neovascularization.
Section IV presents the evaluation results and performance
comparison with other deep learning methods. Finally, a con-
clusion is given in Section V.

II. RELATED WORKS
Neovascularization lesions usually have complex features.
They look like entangled tiny vessels and are challenging
to detect because of their random pattern of growth. Fur-
thermore, the blood vessel responsible for the lesion is typ-
ically as small as a single-pixel wide. Additionally, due to
the scene’s erratic lighting, the neovascularization becomes
entangled with the background image. Typical image pro-
cessing techniques used to recognize the complex neovascu-
larization features are based on traditional machine learning
and deep learning methods. While some researchers have
achieved promising results in detecting neovascularization,
their proposed methods continue to have some limitations.

For example, in a method proposed by
Gandhimathi et al. [19], the blood vessels are segmented
first using the Fuzzy C-means clustering technique. Then,
neovascularization vessels are detected using morphologi-
cal and threshold techniques. Their proposed method can
identify whether a patient is at high risk of having neovas-
cularization. However, the technique produced a very low
specificity. On the other hand, Coelho et al. [20] introduced a
neovascularization detection technique near the optic disk by
measuring the angular spread of the Fourier power spectrum
of the image’s gradient magnitude. Based on the computed
measures, they used a linear classifier to detect neovascu-
larization at the optic disk. However, the neovascularization
elsewhere is not investigated. Kar et al. [21] suggested that
the vessel thickness can identify abnormal vessels, but false
detectionmay occur when other tiny lesions are present inside
a fundus image.

A paper by Lee et al. [22] introduced an automated
neovascularization detection system using statistical texture
analysis (STA), high order spectrum analysis (HOS), and
fractal analysis (FA) with reasonable accuracy. However,
their proposed system cannot grade the severity of the disease.
Saranya et al. [23] segmented the blood vessels from fundus
images using the Fuzzy C Means Clustering technique. The
features based on shape, brightness, position, and contrast are
then extracted from the segmented images. These features
are then used to classify the segmented images as normal
or abnormal using K-Nearest Neighbour. However, this tech-
nique is incapable of determining the location of the abnormal
vessels. It is only capable of determining whether a fundus
image is normal or abnormal.

Goatman et al. [24] described a method for detecting neo-
vascularization lesions on the optic disk. They extracted
15 neovascularization features using watershed lines and
ridge strength measurement and trained a Support Vector
Machine (SVM) to identify neovascularization vessels in the
optic disk. However, this method is only designed to detect
neovascularization on the optic disk (NVD). Detection of
neovascularization vessels outside the optic disk field (NVE)
was not investigated.

Convolutional neural networks (CNN) are widely used for
medical image classification due to the advancement of deep
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FIGURE 1. The flowchart of the methodology.

learning in computer vision technology. Setiawan et al. [25]
recently published a study that used several pre-trained con-
volutional neural networks to extract the image features of
neovascularization and perform classification using SVM.
They managed to demonstrate that the feature extraction
method through deep learning models can yield favorable
results. Carrillo-Gomez et al. [26] described a method for
detecting NVD using a deep learning algorithm. They evalu-
ated several neural networks for their ability to detect NVD.
DenseNet-161 and Efficientnet-B7 are two of these networks.
Their experiment demonstrated that both of these networks
are capable of detecting NVD with high accuracy and sen-
sitivity. Abu Hassan et al. [27] published a paper in which
they developed a CNN for detecting PDR in fundus images.
Their CNN achieves an accuracy of 73.81%, a sensitivity of
76%, and a specificity of 69%, respectively. A deep learning-
based semantic segmentation technique has also been applied
for neovascularization detection. In [28], a semantic seg-
mentation convolutional neural network is used to detect the
position of neovascularization in fundus images.

While several deep learning methods have been proposed
for neovascularization detection, a method based on transfer
learning remains unexplored. Transfer learning is a technique
in which an already-trained deep neural network is adapted to
detect a new object class. To our knowledge, transfer learning
has not been thoroughly investigated to identify neovascular-
ization. This paper assesses the performance of the transfer
learning approach using several pre-trained CNN for detect-
ing neovascularization. Additionally, a method for improving
the transfer learning results based on the combination of two
pre-trained networks is proposed.

III. METHODOLOGY
Fig. 1 shows the flowchart of the overall methodology of
this study. First, a set of fundus images with neovascu-
larization is collected. The images are pre-processed and
divided into patches suitable for network training. The detail
of the data preparation is given in Subsection A. Next,
several pre-trained CNN were evaluated for neovasculariza-
tion detection based on transfer learning. The pre-trained
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networks include AlexNet [29], GoogLeNet [30], ResNet18,
and ResNet50 [31]. The implementation and training of
the networks are explained in Subsection B. Subsequently,
in Subsection C, the proposed method based on the combi-
nation of ResNet18 and GoogLeNet using transfer learning
is presented. The networks are trained using the prepared
dataset, and their performance was evaluated using several
metrics. The results are then compared to another deep learn-
ingmethod based on CNN feature extraction and SVM classi-
fication as proposed by Setiawan et al. [25]. The metrics and
the performance comparison are explained in Subsection D.

A. DATA PREPARATION
The fundus image datasets used in this study are Messi-
dor [32], Diaretdb0 [33], and a private dataset collected
from the Department of Ophthalmology at Universiti Sains
Malaysia’s Hospital. Ethical approval was obtained from
the Univesiti Sains Malaysia’s Ethics Committee to collect
and use the patients’ fundus images. A total of fifty-three
images with neovascularization were collected for use in this
study. The images are in RGB color format with resolu-
tions of 1488× 2240 pixels (Messidor), 1152× 1500 pixels
(Diaretdb0), and 2000× 2368 pixels (private dataset).
Next, the ground truth images for neovascularization were

created with the help of an ophthalmologist. Fig. 2(a) shows a
raw fundus image that contains neovascularization. The raw
fundus image must be enhanced first to improve the visibility
of blood vessel structure and facilitate the ophthalmologist to
identify the neovascularization regions on the images. This is
done by extracting the green channel from the RGB fundus
image. The green channel is used because it shows the blood
vessels more clearly [34], [35]. The green channel image is
then enhanced using Contrast Limited Adaptive Histogram
Equalization (CLAHE) [36]. Fig. 2(b) shows an image that
has been pre-processed using green channel extraction and
CLAHE. Following that, the ophthalmologist labeled regions
of neovascularization, as shown in Fig. 2(c). Next, the labels
are used to generate the ground truth image, as shown in
Fig. 2(d). The ground truth images will be used as the ref-
erence for determining whether an area within an image
contains neovascularization.

For the networks’ training, the 3-channel images are used
without any pre-processing. This is to allow the networks
to learn all the available features in the raw images. First,
the fundus images are split into smaller patches so that they
can be processed by the networks. Due to the difference
in image resolution, images from the different datasets are
split into a different number of patches. For Diaretdb0, each
fundus image is divided into 30 patches, while for the Mes-
sidor and the self-collected neovascularization images, each
image is split into 60 and 80 patches, respectively. A total
of 2980 image patches were obtained from the 53 fundus
images. In the first layer, GoogLeNet, ResNet18, ResNet50,
and the proposed network (ResNet18 + GoogLeNet) use an
input image resolution of 224 × 224 pixels. On the other
hand, the first layer of AlexNet needs a minimum input size

of 227×227 pixels. Due to the different image sizes required,
two sets of data with the appropriate sizes are created by
resizing the image patches.

There are 571 image patches containing neovascularization
(Neo), while 2409 image patches do not contain neovascu-
larization (NotNeo). This imbalanced data may affect the
network’s performance. To achieve a balance between Neo
and NotNeo, image augmentation was performed on the 571
Neo image patches. This is done by rotating the image patches
by 90 degrees three times, resulting in an additional 1713 Neo
patches (571 extra Neo image patches per rotation). This
resulted in a total of 2284 Neo image patches. As a result,
the total image patches become 4693 with more evenly dis-
tributed image data (2284 Neo image patches and 2409 Not-
Neo image patches). Fifty percent of these patches are used as
a training set, 25 percent for a validation set, and 25 percent
for a testing set. Fig. 3 illustrates several image patches that
were used to train and test the deep learning models.

B. MODIFICATION ON THE PRE-TRAINED CNN FOR
NEOVASCULARIZATION DETECTION
In this study, four popular pre-trained networks (AlexNet,
GoogLeNet, ResNet18, and ResNet50) are modified to train
on the prepared dataset for neovascularization detection. The
four CNNs were pre-trained on images from ImageNet [37].
Using transfer learning, these networks can be retrained with
a new dataset to adapt the network to detect new objects
such as neovascularization. The advantage of transfer learn-
ing is that it can avoid training a machine learning model
from scratch, which will take a long time and requires many
training images. In this study, transfer learning is used to
detect neovascularization to circumvent this lengthy training
process and limited training images. These pre-trained net-
works will no longer require weight adjustment from scratch.
Instead, it can use the pre-trained weights obtained from the
ImageNet’s training and adjust them to fit the neovascular-
ization dataset’s images. This method can save a lot of time
while still achieving excellent results.

To begin, all the pre-trained networks (AlexNet,
GoogLeNet, ResNet18, and ResNet50) are modified to allow
for training using the prepared images to perform two-class
classification. This is accomplished by removing the final
fully connected layer and replacing it with a new one that
contains two defined classes: neovascularization (Neo) and
non-neovascularization (NotNeo).

For instance, in ResNet18, a fully connected layer exists in
the architecture’s rear part. The network’s original fully con-
nected layer is omitted. This is because this fully connected
layer was previously trained to classify multiple classes.
It cannot be used to perform binary classification. A new fully
connected layer is created with only two output classes. This
new fully connected layer is then used in place of the previous
one in ResNet18. Through this approach, the ResNet18 has
been modified to perform binary classification.

The four modified pre-trained models are then trained
using the two prepared datasets (227×227 pixels for AlexNet
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FIGURE 2. The procedures for image pre-processing and the labeling of ground truth. (a) A raw fundus
image. (b) The image after green channel extraction and contrast enhancement. (c) The labeled image. The
yellow circles are the neovascularization regions labeled by the ophthalmologist. (d) The generated ground
truth image.

FIGURE 3. Samples of cropped image patches used in the networks’ training. (a) Positive samples - image patches that
contain neovascularization. (b) Negative samples - image patches without neovascularization.

and 224 × 224 pixels for the other networks). The optimal
values of mini-batch size and learning rates for each net-
work are also determined to ensure that the networks learn
the neovascularization features to the best of their ability.
Fig. 4 depicts a flowchart of the pre-trained networks’ transfer
learning process.

C. THE PROPOSED NETWORK
A network based on the combination of Resnet18 and
GoogLeNet is proposed. This network combines the
ResNet18 and GoogLeNet architectures, allowing for the
detection of neovascularization using the outputs of both
networks. A depth concatenation layer is used to join the two
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FIGURE 4. The flowchart of the pre-trained networks’ transfer learning process.

networks. ResNet18 and GoogLeNet were chosen as they
are smaller networks. By combining two smaller networks,
computation power can be conserved, as larger networks
have more parameters to train. Moreover, ResNet18 and
GoogLeNet were combined because they both requires input
images of the same size (224×224). Unlike AlexNet, despite
its small network architecture, it requires input images with a
resolution of 227× 227, making it unsuitable for combining
with ResNet18 or GoogLeNet. Other networks with similar
input sizes, such as ResNet50, are too large. When ResNet50
is combined with GoogLeNet or ResNet18, a massive net-
work is created that requires a lot of computation power to
train. As a result, the only networks suitable for combination
are ResNet18 and GoogLeNet. Fig. 5 depicts the proposed
network’s transfer learning approach.

FIGURE 5. The proposed transfer learning approach based on the
combination of ResNet18 and GoogLeNet.

The layer before the classification layer for Resnet18 is a
Global Average Pooling layer with size 1×1×512, while for

GoogLeNet, it is a Dropout Layerwith size 1×1×1024. In the
proposed network, the ResNet18’s Global Average Pooling
output is combined with the output of GoogLeNet’s Dropout
Layer using a depth concatenation layer. This results in an
output with a size of 1× 1× 1536. This output is connected
to a newly created fully connected layer with only two out-
puts representing two new classes (Neo and NotNeo). This
combined network is then trained to recognize the features of
neovascularization using the prepared dataset.

The learning rate and mini-batch size for the network train-
ing are adjusted until their optimal values are discovered. The
network is then trained using both the training and validation
sets. During training, the network makes predictions on the
validation set during each mini batch (a subset of all training
image patches used in one iteration) and measures the error
produced. The cross-entropy loss function is used to calculate
this error. The measured error is then used to fine-tune the
weights to obtain the best possible prediction. Stochastic
Gradient Descent with Momentum (SGDM) is used as an
optimizer to accelerate the process of determining the optimal
weights. After training, the performance of the networks is
evaluated using the testing set.

D. PERFORMANCE METRICS
The proposed network is compared to other pre-trained
networks (AlexNet, GoogLeNet, ResNet18, and ResNet50)
that also employ transfer learning. Additionally, the trans-
fer learning results for all networks are compared to
Setiawan et al.’s [25] method that used CNN for feature
extraction and SVM for classification. In implementing Seti-
awan’s method, we first combined the training and validation
sets and fed them into a pre-trained network for feature
extraction. After extracting the features, an SVM classifier
was trained using the extracted features. The trained classifier
was then used to classify the images in the testing set for
neovascularization detection. This procedure was repeated
for all the pre-trained convolutional neural networks.

The metrics used to evaluate the models’ performance are
accuracy, sensitivity, specificity, and precision. These per-
formance metrics are calculated by comparing the classified
patches to their ground truths. For instance, if an image patch
is classified as having neovascularization when the ground
truth indicates that it does not, this is a false positive detec-
tion. When a model classifies an image patch as having no
neovascularization, but the ground truth indicates that it does,
this is referred to as a false negative detection. True positive
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and true negative detections indicate that a model classified
an image patch correctly. When a specific model is used to
classify the images in the testing set, the number of true
positives, true negatives, false positives, and false negatives
is determined. These values are then used to calculate the
performance metrics, which quantify a particular model’s
accuracy, sensitivity, specificity, and precision in detecting
neovascularization in the testing set. Accuracy is the number
of correctly classified cases divided by the total number of
instances. The following is the accuracy equation:

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(1)

True positive (TP) is the patches that have been correctly
categorized as Neo. The patches that are accurately cate-
gorized as NotNeo are referred to as true negative (TN).
The NotNeo patches that are mistakenly detected as Neo
are labeled as false positives (FP). The Neo patches that
are wrongly categorized as NotNeo are labeled as false
negative (FN).

Aside from that, sensitivity can be used to evaluate the per-
formance of a suggested algorithm. It measures the propen-
sity of accurately categorized cases. The following is the
equation for sensitivity:

Sensitivity =
TP

TP+ FN
(2)

Specificity is another useful performance parameter.
It assesses the likelihood of accurately categorized negative
events. The following is the specificity equation:

Specificity =
TN

TN + FP
(3)

Precision is determined by comparing the number of cor-
rectly identified positive samples to the total number of
detected positive samples. It is a metric that indicates how
accurate a model is in classifying a positive sample. The
equation for precision is as follows:

Precision =
TP

TP+ FP
(4)

IV. RESULTS AND DISCUSSIONS
This section is divided into three subsections. Subsection
A discusses the networks’ parameter tuning. Then, Subsec-
tion B presents the evaluation results based on the testing set.
Finally, Subsection C discusses the performance comparison.

A. PARAMETER TUNING
The learning rate and mini-batch size are tuned for each
network to determine their optimum values so that the net-
works perform the best at identifying Neo and NotNeo image
patches.

1) LEARNING RATE
For backpropagation learning, the learning rate is an essen-
tial parameter that controls the update step of learnable

weights [38]. When the learning rate is too fast, gradient
descent may increase rather than decrease the training error.
On the other hand, using a slow learning rate may result
in sluggish training and consistently high training errors.
As a result, determining the optimal learning rate is critical
for optimizing the search for the smallest point of loss in
backpropagation learning.

We followed the method given in [39] to determine the
optimum learning rate by starting with a larger rate and
decreasing it by 0.1 until the optimum learning rate was
discovered. The initial learning rate was set to 0.1 in this
experiment, and the mini-batch size was set to 32. Then, the
learning rate was decreased from 0.1 to 0.01, 0.001, 0.0001,
and 0.00001 to see which one of them performs the best. This
is done to determine the optimal learning rate. This process is
applied to all the convolutional neural networks (the proposed
network and the four pre-trained networks) to determine the
optimal learning rates for each of them. Fig. 6 illustrates
the accuracy obtained (from the validation set) with various
learning rates for each pre-trained network.

According to Fig. 6, the accuracy of all pre-trained net-
works is greatest when the learning rate is 0.001. This demon-
strates that the optimal learning rate is 0.001. This optimum
learning rate was determined after testing the trained net-
works on the validation set. The validation set is balanced in
terms of classes. In other words, the validation set contains an
equal number of Neo and NotNeo images. Thus, the highest
accuracy obtained from the validation set (when a learning
rate of 0.001 is used) indicates that the networks did the best
at differentiating Neo and NotNeo image patches.

2) MINI-BATCH SIZE
While training the pre-trained networks, the training set will
be divided into smaller mini batches. These mini batches
include a restricted number of training samples. The mini-
batch size controls the accuracy of the error gradient esti-
mation during network training. The error gradient is used
to update the weights of the networks, and the process is
repeated. According to the study in [40], using an overly
large mini-batch size may significantly degrade the trained
network’s quality due to a lack of generalization capacity,
causing it to converge to a sharp minimum. Consequently, the
optimum mini-batch size must be established to optimize the
convergence rate and stability of the network training [38].

Experiments were conducted to determine the optimal
mini-batch size for each of the pre-trained networks. The
learning rate was set to its optimal value of 0.001. Fig. 7 illus-
trates the accuracy obtained from the validation set when the
networks were trained using mini-batch sizes of 4, 8, 16,
and 32. The results show that the optimal mini-batch size
for AlexNet, ResNet18, ResNet50, and the proposed network
is 32, while the optimal mini-batch size for GoogLeNet is 16.

Using the optimal mini-batch size and learning rate for
each network training will produce the best results. Thus, the
same parameters will be used in the subsequent evaluation.
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FIGURE 6. The accuracy obtained from the validation set with various learning rates for each pre-trained network.

FIGURE 7. The accuracy obtained from the validation set with various mini-batch sizes for each pre-trained network.

B. CLASSIFICATION RESULTS
The performance of the networks trained using the optimum
parameters was then evaluated using the testing set. The
testing set includes images that have never been viewed
previously by the network. The trained convolutional neural
networks were used to classify the testing set images into
Neo or NotNeo. The number of true positives, true neg-
atives, false positives, and false negatives was determined

by comparing each classified image patch to its ground
truth.

Fig. 8 illustrates some of the classified image patches.
Fig. 8(a) and (b) show examples of correctly classified pos-
itive and negative images, respectively. Neovascularization
is present in Fig. 8(c), whereas it is absent in Fig. 8(d).
However, the network misclassified these two groups of
image patches. Due to the image patch’s low contrast in
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FIGURE 8. Examples of classification output from the transfer learning method (a) True positive. (b) True
negative. (c) False negative. (d) False positive.

TABLE 1. Comparison of feature extraction and transfer learning performance tested on different pre-trained networks. The best results are highlighted
in bold.

Fig. 8(c), misclassification of positive patches occurred.
Additionally, the images appear to be blurry. As a result,
the neovascularization features become obscure, leading to
wrong classifications.

In Fig. 8(d), false positives occurred because certain image
patches resemble the features of neovascularization. These
image patches contain various types of lesions that resem-
ble neovascularization features, including hemorrhages and
microaneurysms. Therefore, the networks may occasionally
misinterpret these objects as neovascularization. After cal-
culating the total number of true positives, false positives,
and false negatives in the testing set, accuracy, sensitivity,
specificity, and precision were determined.

C. PERFORMANCE COMPARISON
The performance of the proposed network is compared
to those of the pre-trained networks. The results are also

compared to the feature extraction and SVM classification
method proposed by Setiawan et al. [25]. To ensure a fair
comparison, the classifier in [25] was trained and tested on
our dataset and evaluated using the same performance met-
rics. The pre-trained models used in the implementation are
also the same as those used in the transfer learning method,
including AlexNet, GoogLeNet, ResNet18, and ResNet50.
Table 1 presents the results of transfer learning based on
the individual pre-trained CNN, feature extraction + SVM
methods, and the proposed method.

In general, the transfer learning approach outperformed
feature extraction and SVM classification. For all the pre-
trained networks, the transfer learning method has higher
accuracy, specificity, and precision. This is because the trans-
fer learning process retrained the entire pre-trained network,
adjusting all the weights in the network to fit for neo-
vascularization features detection. By contrast, the feature
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extraction + SVM classification method extracts features
using the original pre-trained networks and train the fea-
tures on an SVM to detect neovascularization. Since the fea-
tures extracted from the original pre-trained networks were
not optimized for neovascularization detection, this method
shows inferior performance compared to the transfer learning
method.

The proposed method, which is based on the combination
of ResNet18 and GoogLeNet, yields the highest results. This
is because neovascularization lesions are identified using fea-
ture maps from both networks (ResNet18 and GoogLeNet).
This has improved the results because more kernels are
used to extract and learn neovascularization features, thereby
increasing the detection accuracy of neovascularization.

ResNet50 outperforms the proposed model in the valida-
tion set when the optimum mini-batch size of 32 is used
(see Fig. 7). However, when the same mini-batch size is
used, ResNet50 produces lower accuracy than the proposed
model in the testing set. This demonstrates that when the
neovascularization dataset is used for training, ResNet50 is
prone to overfitting.

The Receiver Operating Characteristic (ROC) curve and
the area under the ROC curve (AUC) are used to analyze the
networks’ performance to determine which network is the
most effective at classifying Neo and NotNeo patches via
transfer learning. ROC depicts the diagnostic capabilities of a
binary classifier system when its discrimination threshold is
adjusted, while AUC can be used to summarize the classifier’s
ability to differentiate classes. The ROC plots for each net-
work are shown in Fig. 9. It can be observed that the proposed
network gives the best performance while AlexNet shows the
worst results.

FIGURE 9. ROC curves to compare the performance of different networks
for neovascularization detection using transfer learning.

The AUC of AlexNet, GoogLeNet, ResNet18, ResNet50,
and the proposed network are 0.8737, 0.8864, 0.9685,

0.9345, and 0.9855, respectively. These results show that the
proposed network with the biggest AUC is the best network
for classifying Neo and NotNeo image patches. This demon-
strates that the combination of ResNet18 and GoogLeNet
outperforms the original pre-trained networks in terms of
neovascularization detection via transfer learning.

The benefit of the transfer learning approach is that it
requires less effort to implement. Furthermore, the model
training does not begin with a random weight. Instead, pre-
trained weights that have been previously trained are used
as the starting point before being tuned to find the opti-
mumweights for detecting neovascularization features. Thus,
applying the transfer learning method will circumvent the
lengthy training process and the problem of limited training
images.

V. CONCLUSION
This paper presented a transfer learning approach for detect-
ing neovascularization. A network that is based on the
combination of ResNet18 and GoogLeNet is proposed.
The performance of four pre-trained convolutional neural
networks, which are AlexNet, ResNet18, ResNet50, and
GoogLeNet, was also investigated for neovascularization
detection through transfer learning. Experiment results based
on the performance metrics and ROC plots show that the
proposed network outperformed all these networks. This
is because more features can be extracted by combining
two pre-trained networks, resulting in more accurate detec-
tion of neovascularization. The results are also compared
to another deep learning approach, which uses the pre-
trained CNN for feature extraction and SVM for classifi-
cation. Evaluation results show that the transfer learning
approach yields superior performance. This paper demon-
strated that applying transfer learning on the combined fea-
tures of two pre-training networks can effectively detect
neovascularization on fundus images. The work contributed
toward the automatic detection of neovascularization, which
is an important topic for the diagnosis of proliferative diabetic
retinopathy.
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