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ABSTRACT In this article, we propose an accurate and fast method that is based on the genetic algorithm and
the Back-Propagation neural network (GABP) to improve the accuracy and speed of retrieving atmospheric
parameters (temperature, humidity, liquid water content, and so on). Firstly, the genetic algorithm is applied
to improve and optimize the connection weights and thresholds of the BP neural network according to situ
data measured by an sixteen-channel ground-based radiometer and a radiosonde, and then obtain a more
proper range of those weights and thresholds. Secondly, the BP neural network is trained once again to get
an ideal BP neural network model in a relatively short time. Finally, the model (or GABP), in which a genetic
algorithm (GA) is combined with the BP neural network algorithm, is tested by the situ measurements of
the sixteen-channel microwave radiometer. The tested results by GABP are not only in a good agreement
with those of other known models, and but also has better accuracy and faster convergence speed than those
reported algorithms for retrieving atmospheric parameters. It can make a conclusion that GABP is a new
algorithm which is capable of quickly retrieving accurately atmospheric parameters.

INDEX TERMS Remote sensing of atmosphere, BP neural network, genetic algorithm, microwave
radiometer.

I. INTRODUCTION
Generally speaking, a microwave radiometer can be applied
to retrieve the atmospheric temperature, humidity, liquid
water content, and other parameters [1], [2] based on its
measured brightness temperature data. It is widely applied
in such related areas as numerical weather forecasting and
climate change research and so on. Firstly, it can be applied in
themeteorological satellite to obtain atmospheric parameters.
Secondly, it has important applications in atmospheric
science research, for instance, forecasting the weather [3].
Finally, it can also provide data for relative corrections of
the parameters measured by satellites or other measuring
instruments, such as altimeters [4], [5]. A satellite altimeter
measures the sea surface height (SSH) by the echo time of
the rough sea surface [4], [6], [7]. The echo time is relative to
the atmospheric dielectric constant and water vapor content;
that is to say, a satellite radiometer can provide atmospheric
corrections for a satellite altimeter with water vapor and
liquid water contents [6]–[9].
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approving it for publication was Stefania Bonafoni.

In recent decades, the ground-based microwave radiometer
in atmospheric parameter detection has attracted more and
more attention of many scholars and experts [10], [11]. The
ground-based microwave radiometer has a higher accuracy
for the detection of the lower tropospheric atmospheric
parameters (less than 10km) than the spaceborne microwave
radiometer [2], [12], [13], and also has the advantage of being
less expensive for multiple channels detection [14]–[16] and
the continuous observation of the local area [17], [18].

The ground-based microwave radiometer receives passive
microwave signals of thermal radiation [19] from various
altitudes in the atmosphere to obtain the atmospheric tem-
perature, humidity, liquid water, and so on, based on relative
retrieval methods. These retrieval methods are important and
play a major role in obtaining atmospheric parameters with
good accuracy and convergence speed [14], [15], [20].

Among those known retrieval methods, the linear regres-
sion [21] and the neural network [22], [23] are simple and
easily applied to retrieve atmospheric parameters with accept-
able accuracy. But they require a set of initial data [1], [24],
for example, the neural network requires a set of prior data to
be trained [25]–[27]. The iterative algorithm is also simple,
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but its operating time is too long [1], [2]. The Kalman
filter [28]–[30] is complex and rarely used. Some retrieval
methods, such as optimization estimation, one-dimensional
variational assimilation [31], [32], and the Bayesian max-
imum probability method [33], have to need estimate the
prior profile and then compute the covariance from the
prior data [2]. After decades of development, the BP neural
network algorithm is widely used for retrieving atmospheric
parameters and is becoming more suitable for atmospheric
parameter retrieval. However, the network convergence speed
of the BP neural network algorithm is a little slow due to
the problem of finding the first derivative of the objective
function. In general, for improving the convergence speed,
there exists a kind of improved heuristic algorithms, such
as the momentum Back Propagation [34], [35] and variable
learning rate Back Propagation [36]. And also, there exists
another kind of improved numerical optimization method,
such as the conjugate gradient Back Propagation [37] and the
Levenberg-Marquardt Back Propagation (LMBP) [38], [39].
Secondly, the BP neural network algorithm often gets trapped
in local minima especially for non-linearly separable prob-
lems and can not find the actual global optimal solution due to
the local convergence. There are several methods to improve
the local convergence, such as the additional momentum
method [40], [41], simulated annealing method [42], [43],
and improved transfer function method, and so on. These
improved algorithms have their own merits and demerits
and have different effects in dealing with practical problems.
To this day, local optimization still exists. When the BP
neural network falls into the local optimal and minimum, it is
incapable of jumping out of it. And thus, the retrieval time
is so long that the accuracy is not so good. To resolve this
problem, the genetic algorithm is introduced and combined
with the BP neural network in this paper. The Genetic
Algorithm–BP Neural Network Algorithm (GABP), which
can find the optimal and minimum value from the global
aspect, can also improve the accuracy and convergence
speed of retrieving atmospheric parameters in a certain
degree.

II. BP NEURAL NETWORK ALGORITHM AND GENETIC
ALGORITHM
A. BP NEURAL NETWORK ALGORITHM
A general BP neural network is a multi-layer neural
network [44], [45], whose structure is shown in Figure 1.
x1,x2, . . . , xM represent the input which is the brightness
temperature measured by a radiometer, y1, . . . , yJ represent
the output which can be the atmospheric temperature from
0km to 10km height at a location. The model in Figure 1 can
have several hidden layers, but only one input layer and one
output layer. Each network layer consists of many neurons
(sign ◦ in the hidden layer), by which the different network
layers are connected with each other in terms of weights and
thresholds. This connected design can allow the BP network
to extract more efficient information from the input data and
finish complex tasks of linearity or non-linearity [46].

FIGURE 1. BP neural network structure.

To improve the accuracy and convergence speed, some
improved BP network algorithms were presented in recent
decades. For the standard BP network, those modified rules
of the weights and thresholds are called the steepest descent
method. Although those problems can be solved in a certain
degree by this technology, there still exists a local minimum
problem in addition to the slow convergence speed and the
unstable network during training. To improve the standard BP
neural network, several improved algorithms were proposed,
which included an improvement of the learning algorithm and
the determination of the network weights. The momentum
BP algorithm introduced the momentum factor α(0 < α < 1)
[35], [40] in the corrected weighting 1ω(n) at the nth times
as follows:

1ω(n) = −η(1− α)∇e(n)+ α1ω(n− 1) (1)

where the second term α1ω(n − 1) can make the weight
ω update in a certain inertia, η is learning rate and ∇e(n)
the gradient of the error at the nth times. However, updating
the weight ω not only requires the gradient calculation
but also the previous updated weight. The momentum BP
algorithm has a certain ability of accelerating convergence
and having an anti-oscillation, which makes it easier to find
the minimum.

The learning rate variable BP algorithm [36], [40] has an
adaptive ability of adjusting the learning rate gradient descent
in terms of the variation of error. The learning rate will
increase if the error decreases; otherwise, the adjustment is
wrong, and the step size should be reduced.

The Newton BP method is a fast optimization algorithm
based on the second order Taylor series expansion, but it is
too complex to calculate the second derivative. To avoid the
second derivative, an improved algorithm is proposed, which
is called the quasi-Newton method [47]. The Levenberg
Marquardt BP (LMBP) [37], [38] is an error-correcting
algorithm which is designed to avoid the Hessian matrix
calculations.

The BP neural network, as well as the other algorithms
mentioned above, can be used to find out solutions of all
kinds of complex objective functions. However, the excellent
local optimization ability makes them fall easily in the local
minimum if the function has multiple local minimum values
because it is difficult to discover a global optimal solution
among those local minimum values. In fact, the network
weight training has always been caught in a local minimum
from which it cannot jump out. On the other hand, the current
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improvements do not involve an effective search for global
optimization.

In this article, the improved BP network is based on the
genetic algorithm and is good at finding global optimization,
as well as improving the convergence speed and the accuracy
for those retrieved parameters. The genetic algorithm can
improve the BP neural network by optimizing: (1) the
network connection weights and thresholds; (2) the network
learning rules; and (3) the network structure. This article
improves the BP neural network by optimizing the network
connection weights and thresholds.

B. GENETIC ALGORITHM
The genetic algorithm is a method by which we can perform
a global search for the optimal solution, based on Darwin’s
theory of evolution and Mendel’s genetic theory. The genetic
algorithm follows the principle of ‘‘survival of the fittest’’.
In each of the generations of genetic inheritance, individuals
who are more adaptable to the environment are selected,
and then are used to have cross and mutation operations by
the genetic rework method, resulting in a new approximate
solution set.

The genetic algorithm includes individual coding, fitness
evaluation, and genetic operation.

1) INDIVIDUAL CODING
The genetic algorithm encodes the parameters of the problem
and transforms them into the coded individuals of the genetic
space according to a certain structure so as to carry on the
next step of genetic operation. Commonly, those encoding
methods are binary code, floating-point coding, real coding,
and so on. The coding by some real numbers is usually the
primary consideration in most applications.

2) FITNESS EVALUATION
For the genetic algorithm, the fittest survives, and the unfit
will be eliminated. Here, the magnitude of the fitness is
determined by the fitness function, which is used to evaluate
the current solution. The fitness function of a problem can be
chosen as the function, itself, or its reciprocal. In general, the
fitness function is easily calculated and can accurately find
out the corresponding solution of those problems to be solved.

3) GENETIC OPERATION
In the genetic algorithm, there are three kinds of genetic
operations: selection, crossover, and mutation.

The selection identifies those individuals who are more
adaptable to the environment based on the fitness value.

Crossover is the most important operation in the genetic
algorithm, mainly using some information of the parent
population to generate new individuals through the cross
operation. The design of the crossover operator is usually
based on individual coding. If binary coding is used, single
point, two points, and multi-point crossings can be selected.

Mutation can generate new individuals to sustain the
diversity of the population. By combining the mutation and

the selection, we can complete the global and local search
of the solution space and avoid the loss of some effective
information.

C. GENETIC ALGORITHM AND BP NEURAL NETWORK
The genetic algorithm is capable of finding out global
optimization and is easily integrated with other technologies.
Although the neural network has a strong non-linear mapping
ability, it falls easily into the local minimum value. To avoid
this problem, the genetic algorithm is introduced to improve
the connection weights and thresholds of the BP neural
networks.

This paper focuses on the initial connection weights and
thresholds of the neural networks. The basic idea is to
change the method of generating the initial weights of the
network. The basic solution space of the decision variables
(weights and thresholds) is estimated first, and then the
optimal threshold value of the optimal network is selected by
a genetic algorithm. The optimized values are substituted into
the neural network for training according to:

minE(w, v, θ, r) =
1
2

N1∑
k=1

n∑
t=1

[yk (t)− ŷk (t)]2

s, t : w ∈ Rm×p, b ∈ Rp×n, θ ∈ Rp, r ∈ Rn
(2)

where yk (t) is the desired output, ŷk (t) is the network output,
E is the total error of the network. N is the number of sample
sets, and N samples are divided into N1 training samples and
N2 testing samples, respectively; m is the number of input
nodes; p is the number of hidden nodes; n is the number
of output nodes; w and θ represent the connection weight
and threshold of the input layer-hidden layer corresponding
to w and b shown in Figure 3, and v, r represents the
connection weight and threshold of the hidden layer-output
layer corresponding to w and b shown in Figure 3.

Supposing the transfer function is the sigmoid function f in
the hidden layer, and the transfer function is a linear function
for the output layer, the network output can be expressed by

ŷk (t) =
p∑
j=1

vjt · f [
m∑
i=1

wij · xi(t)+ θj]+ rt (3)

where xi(t) is the value of the input layer. For GABP, it is
required that the network total error E1 should be less than ε1,
namely,

E1 = E =
1
2

N1∑
k=1

n∑
t=1

[yk (t)− ŷk (t)]2 ≤ ε1 (4)

and it is also necessary that the average mean square error E2
is less than ε2:

E2 =
1

N − N1

N∑
k=N1

n∑
t=1

[yk (t)− ŷk (t)]2 ≤ ε2 (5)

where ε1 and ε2 are infinitesimal numbers according to the
expected accuracy, respectively. In general, E1 < ε1 is to be
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ensured, but E2 < ε2 is not necessarily to be considered in
the BP network training. In this article, the genetic algorithm
is used to find out the connected weights and thresholds
of the global optimization by calculating the network error
according to Equation (4) and (5). When Equation (4) and (5)
hold, the output of the BP network will be reliable, and the
model is established and can be used to retrieve atmospheric
parameters.

For the sixteen-channel ground radiometer the genetic
algorithm can be implemented in accordance with the
following steps:

(1) Establish a three-layer BP network firstly and deter-
mine the initial solution space of weights and thresholds
in terms of Equation (4) and (5). The neural network is
established and trained, and then the network connection
weights and thresholds are recorded. The maximum and
minimum values of the network connection weights and
thresholds are denoted as wmax /vmax and wmin/vmin, and
[wmin/vmin-δ1,wmax /vmax + δ2] is used as the basic solution
space, where δ1 and δ2 are the adjustment constants.
(2) Determine the fitness function according to the neural

network output error. Here the function is defined as:

F(w, v, θ, r) =
1√

N1∑
k=1

n∑
t=1

[yk (t)− ŷk (t)]2

(6)

The greater the error, the smaller the fitness, so that Equation
(6) can be represented by:{

maxF(w, v, θ, r)
s, t : w ∈ Rm×p, v ∈ Rp×n, θ ∈ Rp, r ∈ Rn

(7)

(3) Encode the basic solution space and determine the
encoding length of genetic algorithm. If floating-point coding
is used, the string length can be given as

L = m∗p+ p∗n+ p+ n (8)

where m∗p is the number of weights of the input-to-hidden
layer, p∗n is the number of weights of the hidden-to-output
layer, p is the number of thresholds of the hidden layer, and n
is the number of thresholds of the output layer.

(4) Define the genetic algorithm parameters such as the
population size, maximum number of iterations, crossover
probability, and mutation probability, and then initialize the
population pop according to the basic solution space given in
step (1), which consists of M individuals.
(5) Calculate the individual’s fitness. Each individual in

population M is decoded to generate the corresponding net-
work connection weights and thresholds. And the individual
fitness is calculated according to Equation(6).

(6) The current population of the highest fitness of
individuals is retained and does not participate in genetic
operations, while other individuals will be going on to be
chosen, crossed, and mutated.

(7) Generate a new generation of groups.

FIGURE 2. Steps of implementing genetic algorithm.

FIGURE 3. Atmospheric parameter inversion neural network structure
shown by Matlab.

(8) Repeat step (5)∼(7) until the maximum number
MaxGen of iterating is reached.
(9) Select those individuals with the highest adaptation

in the first MaxGen generation and decode them to get the
appropriate network connection weights and thresholds.

(10) Those connection weights and thresholds generated
in step (9) are substituted into the network for training and
testing, and then the network performance will be evaluated.

These steps can be explained as Figure 2.

III. ANALYSIS OF GABP RETRIEVING ATMOSPHERIC
PARAMETERS
A. ANALYSIS OF GABP RETRIEVING ATMOSPHERIC
TEMPERATURE
The atmospheric temperature vertical profile (or temperature
profile) is a basic parameter in the atmospheric parameter
inversion. In this section, the performance of GABP in
retrieving atmospheric parameters is evaluated by compar-
ing it with other methods in retrieving the atmospheric
temperature. The GABP algorithm is compared with some
other reported methods from these following aspects: the
number of iterations, the training time, and the accuracy
of retrieving. Those inversion methods include the steepest
descent method, the momentum BP method, the learning rate
variable BP method, the quasi-Newton method, and LMBP
algorithm. The situ measurements are from the sixteen-
channel radiometer detection and the probe balloon detection.
The used network structure, which is shown by source codes
of Matlab, is shown in Figure 3. In Figure 3, there are eight
neurons in the input layer, 20 neurons in the hidden layer,
and 39 neurons in the output layer. Eight neurons are defined
by the number of the sixteen-channel radiometer (the eight-
channel at V band and eight-channel at K band, and the total
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FIGURE 4. The situ data from the sounding data is loaded.

sixteen-channel). Thirty-nine neurons are the number of the
temperature output points at 0∼10km height, as shown in the
follows: 0, 10, 30, 50, 75, 100, 125, 150, 200, 250, 325, 400,
475, 550, 625, 700, 800, 900, 1000, 1150, 1300, 1450, 1600,
1800, 2000, 2200, 2500, 2800, 3100, 3500, 3900, 4400, 5000,
5600, 6200, 7000, 8000, 9000, 10000(m). In Figure 3 the
brightness temperatures at 8-channel of V band or K band
is regard as the input and temperatures measured by the
sounding at 39 samples from 0 to 10km is regard as the output.
After training the expected model is established, and then is
tested by the testing data. To retrieve another atmospheric
parameter needs to train and establish a model and then to
test, an atmospheric parameter corresponds to a model.

Twenty neuronsM in the hidden layer can be given by [48]

M =
√
0.42nm+ 0.12m2 + 2.54n+ 0.77m+ 0.35+ 0.51

(9)

where m = 39 is the number of neurons in the output layer,
and n = 8 is the number of neurons in the input layer. W and
b in Figure 3 stand for connection weights and thresholds,
corresponding to w, θ , v, r in equation (3) respectively. For
the input-hidden layer, W = w and b = θ represent the
connection weights and thresholds of the input layer-hidden
layer. For the hidden-output, W = v and b = r represents the
connection weights and thresholds of the hidden layer-output
layer.

The situ data are from the sounding data, which
can be obtained from http://rucsoundings.noaa.gov/ (time:
2011.1-2016.1, place: Wuhan city), as shown in Figure 4.
In Figure 4 ‘‘57494’’ represents Wuhan and ‘‘58238’’
Nanjing.

From the situ data, the paper extracts pressure(pa),
height(m), temperature profile, and dew point. Firstly,
from the measurements of dew points corresponding to
the pressure or height, the water vapor profile can be
extracted. Secondly, by linear interpolation, we can obtain
the temperature and water vapor profiles that meet the
requirements. Finally, using the MPM93 model [49], the
brightness temperature can be obtained. The next series of
operations are neural network training, testing, and analysis.
In these neural network algorithms, the evolution parameters
of the network are the same values. The learning rate of

TABLE 1. Comparison of several algorithms.

the network is 0.01; the maximum number of iterations is
defined as 500; the target error is 0.001, and the check
value is 50 (the verification sample error is kept constant for
50 consecutive times, and then the training will end). The
number of iterations, training time, and error are shown in
Table 1. It is obvious from Table 1 that the test error of the
steepest descent method(SD) is very large in the network
training, and the network will no longer converge if the
number of iterations reaches 187 times. The convergence
effect of the momentum BP method(MBP) and the learning
rate variable BP method(LRVBP) is higher than that of the
steepest descent method(SD), and the number of iterations
reaches 500. However, these testing errors are 2.32K and
3.73K, respectively, in the training of 500 iterations. These
three methods still did not meet the requirements of retrieving
atmosphere temperature, although the training time is only a
few seconds. Their Gradients of error surface are large and
the minimum is not obtained. The larger these gradients, the
farther away from the minimum. The number of iterations
for the quasi-Newton method(QN) is 266 times, and its
testing error is 0.721K. The convergence of the quasi-Newton
method(QN) is better, but its training time is obviously longer
than those of LMBP algorithm and GABP algorithms, which
affects the efficiency of network computing. LMBP and
GABP are not very different in the number of iterations and
training time, but both of them can converge rapidly in a short
time. However, only the testing error of GABP is 0.00161,
which is almost the same as the target setting error 0.001,
while there is a big difference between the testing error and
the target setting error for the other methods, such as SD,
MBP and LRVBP.

After analyzing the network training, it is necessary to
use the test data to evaluate the performance of the neural
network. In this paper, the root mean square error (RMSE) is
used as:

RMSE =

√√√√√ N∑
i=1

(ŷi − yi)2

N
(10)

where N is the number of test samples, ŷi is the measured
value of the sounding, and yi is the network testing output.
RMSE of the temperature profile retrieved by these

six algorithms(SD,MBP,LRVBP,QN,LMBP,GABP)are plot-
ted in Figure 5. The data in Table 1 and Figure 5 shows that
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FIGURE 5. Temperature RMSEs of different algorithms.

FIGURE 6. Temperature profiles and RMSE by several algorithms.

SD without any improvements has large oscillation and its
convergence effect is also poor. To some degree, it does not
converge. LRVBP or MBP method with some improvements
can avoid network oscillation and improve network stability.
The RMSEs of the temperature profiles retrieved by LRVBP
andMBP fluctuate largely under 3000 or 2000 meters height,
although the convergence effects of them are better. At the
same time, the RMSEs of the retrieved results by LRVBP and
MBP are still poor at more than 3000 meters. The RMSEs of
QN, LMBP and GABP are almost the same, but the training
time of QN is relatively longer. The performance of GABP is
the same as that of LMBP, which is good and can be accepted
in retrieving atmospheric parameters.

Similarly, another network is trained by 600 sets of samples
and is tested by 297 sets of samples (time: 2010.1-2020.1,
place: Wuhan city, 897 sets of samples). Temperature profiles
retrieved by these six algorithms were shown in Figure 6(I).
Firstly, SD, MBP and VRVBP spend several seconds for
finishing the training, but their RMSEs are much larger than
those of QN, LMBP and GABP, as shown in Figure 6(II).
Secondly, they took longer using 897 sets of samples than
493 sets of samples, as shown in Figure 7. It is obvious that it
takes longer and longer with the training data increasing, even
more than several times longer especially for QN, LMBP and
GABP with good accuracy.

But from Figure 7 it is obvious that the mean square
error(MSE) of temperatures retrieved by QN, LMBP and
GABP reduce slowly and almost keep constant in a certain

FIGURE 7. Training time(left) and retrieving accuracy(right) by several
algorithms.

TABLE 2. Frequency channels of the based-ground radiometer.

degree when the number of training samples arrives at 400.
The retrieving accuracy of these three algorithms is less than
1K2 and almost the same, and also training time can also
be accepted when the number of training samples is 400.
Although the retrieving accuracy become better and better
with training samples increasing, as shown in Figure 7(right),
but the training time becomes longer and longer with training
samples increasing, as shown in Figure 7(left). Therefore, it is
not necessary to increase training samples until 800 or more
than in order to obtain a slightly good accuracy.

B. GABP RETRIEVING TEMPERATURE PROFILE
According to the sixteen-channel radiometer, the temperature
profile is retrieved from the brightness temperature data of V
band with eight channels, the water vapor, and liquid water
content is retrieved from the brightness temperature data
of K band with eight channels. Humidity can be retrieved
from K band and V band, or be calculated by the retrieved
temperature and water vapor. We use the different model
for different parameters. The brightness temperature data
of K-band and relative sounding data are used to train and
establish GABP model of retrieving temperature profiles,
and then the established model will be tested and evaluated.
The brightness temperature data of V-band and the relative
sounding data are used to train and establish GABP model
of retrieving the water vapor, and liquid water content,
respectively. And then the two models will be tested and
evaluated. The center frequency and its band width of
the sixteen-channel ground-based radiometer are shown in
Table 2. The noise of the radiometer is 3dB and can be
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FIGURE 8. The 16-channel radiometer(left) and its test site.

FIGURE 9. Temperature profile(left) and its RMSE(right).

counterbalanced by the integral time with one second. The
radiometer is equipped in Wuhan shown in Figure 8.

There are 400 groups of training samples and 93 groups
of testing samples from the situ data in Wuhan city. The
time of these situ data is from January 2011 to January
2016. Some clear days without clouds are chosen. The
temperature profiles and RMSEs of LMBP and GABP are
shown in Figure 9. Those curves in Figure 9 illustrate
that RMSEs of the two algorithms is small and can be
accepted. It can be found that the inversion error range of
the two algorithms is from 0.23K to 2.22K in temperature
profile inversion. But RMSE of GABP is smaller than
LMBP at most points. Between LMBP and GABP, training
time and testing time of GABP(164.3868s) are shorter
than those of LMBP(257.5945s), and also the accuracy
of GABP(mean(RMSE) = 0.5366K) is higher than that
of LMBP(0.5469K). At 2km or less, the network output
is consistent with the actual measurement results (or situ
sounding data). The inversion error or RMSE of atmospheric
temperature is below 1K. At the altitude of 2km ∼ 9km,
RMSE varies from 1K to 1.5K, and these inversion results
can be accepted and are ideal. In general, some parameters of
the lower atmosphere measured by the radiometer are more
accurate than those of the upper atmosphere. The temperature
is an example. The radiation of the lower atmosphere is
received directly by the radiometer, while the radiation of
the upper atmosphere is received by the radiometer after it
is attenuated during passing through the lower atmosphere.
Thus, RMSE is larger at the altitude of 2km∼ 9km than those
at 2km or less.

C. GABP RETRIEVING WATER VAPOR PROFILE
The brightness temperature from a K-band 8-channel
radiometer is used as the network input; the historical water

FIGURE 10. Comparison of water vapor density profile inversion and
sounding data.

vapor density from sounding balloon data is used as the
network output. The network is trained by 400 sets of samples
and is tested by 93 sets of samples. The tested results are
shown in Figure 10(I-IV) and Figure 11, which are plotted
by four sets of samples’ results among those 93 sets of
tested samples. To illustrate the results by GABP, four sets
of testing samples are randomly chosen from these 93 sets
of ones in Figure 10. In Figure 10 (I, III) the results by
GABP and LMBP are almost consistent with the measured
values(sounding data), although the retrieved results are quite
different from sounding data at a few points, as shown in
Figure 10 (II,IV). It is obvious that the retrieved water vapor
profiles can be accepted in practices.
RMSE of the neural network based on LMBP algorithm

is 0.082g/m3
∼ 1.115g/m3, and RMSE based on GABP

algorithm is 0.062g/m3 to 0.921g/m3. RMSE of the two
algorithms at more than 6km is small because the water
vapor density is small at more than 6km height, while RMSEs
increase with the height decreasing because the contribution
of water vapor density is large at low altitude. Obviously,
GABP algorithm inversion accuracy is better, especially at a
low altitude, the error is also relatively small in Figure 11(a).
The relative error is less than 10% at low altitude, for example
less than 2km in Figure 11(b). At most points (less than 8km
height) the relative error is less than 40%, where the relative
error is the retrieved RMSE divided by RMSE of Sounding
data

D. GABP RETRIEVING RELATIVE ATMOSPHERIC
HUMIDITY PROFILE
The relative atmospheric humidity profile can be directly
obtained by using the 16-channel brightness temperature and

19464 VOLUME 10, 2022



J. Tian, J. Shi: High-Accuracy and Fast Retrieval Method of Atmospheric Parameters Based on Genetic-BP

FIGURE 11. Comparison of inversion error RMSE (a) and Relative error
(%) (b) of water vapor profile.

also be derived from the temperature profile and water vapor
density as the second method. In the article, the first method
is chosen to establish a nonlinear relationship between the
brightness temperature and the relative humidity through
the neural network. The brightness temperature is used as
the network input and the relative humidity as the network
output, and then the network is trained to get a series of
related network parameters, where the brightness temperature
channels contain water vapor sensitive K-band and oxygen-
sensitive V-band ones because the relative humidity is related
to temperature and water vapor density.

The results estimated by LMBP and GABP are compared
with the sounding values, as shown in Figure 12 (I-IV)
and Figure 13. In Figure 12 four sets of testing samples
are randomly chosen from these 93 sets of ones. Relative
humidity decreases with altitude. However, at a few points
relative humidity values retrieved by GABP or LMBP are
negative. The reason for negative relative humidity values is
that there exists a little abnormal data in the training samples,
or the relative humidity is very low. For example the heavy

FIGURE 12. GABP and LMBP retrieving relative humidity profile and
sounding data.

FIGURE 13. Comparison of relative humidity profile inversion.

raining, antennas Radome attached with water, radiometer
calibration, or the very low relative humidity et al will give
rise to negative relative humidity values. By processing these
abnormal data and some corrections can solve the problem,
or let the very low relative humidity (negative values) be zero.
In Figure 13, RMSEs of the two algorithms are 4% ∼ 16.5%
and increase with height. RMSEs of the two algorithms are
almost the same under 1km, but the performance of the
neural network retrieving the relative humidity based on the
GABP algorithm is better than those based on the LMBP at
1km ∼ 10km, as shown in Figure 13. In Figure 13 relative
humidity RMSE of GABP is smaller than those of LMBP at
almost all points.
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FIGURE 14. RMSEs of liquid water content by GABP and LMBP.

FIGURE 15. Results by GABP and LMBP and sounding data.

E. GABP RETRIEVING LIGUID WATER CONTENT
The liquidwater content is 0 on a clear daywithout clouds and
is not zero on a cloudy day with no rain, and the liquid water
content mainly comes from the cloudy layer. The liquid water
content is retrieved by the four channels with 22.24GHz,
23.04GHz, 23.84GHz and 31.4GHz of K band. 4 nodes in
the input layer are chosen and 59 nodes in the output layer.

In the training of the network, 622 groups of cloudy data
are divided into the training sample with 400 groups and the
test sample data with 222 groups. The results retrieved by
LMBP and GABP are shown in Figure 14 and Figure 15.

In Figure 14, RMSEs of liquid water content retrieved by
GABP and LMBP decrease as the height increases, and is less
than 0.1g/m3 at more than 5km, and is 0.1g/m3

∼ 0.32g/m3

below 5km. In Figure 15(I–IV), the four-random-testing

FIGURE 16. The temperature profile by several algorithms in Nanjing.

FIGURE 17. The temperature RMSE by several algorithms in Nanjing.

liquid water content profiles retrieved by GABP are almost
the same as those by LMBP. However, results retrieved by
GABP and LMBP are much different from the radiosonde
data, especially below 5km, which is related to the variations
of the sounding data itself at low altitudes. In other words, the
accuracy of the measured samples in the lower layers is not
the same as those in the upper layers because the liquid water
content in the lower layers (below 5km) is larger and has a
more complex variation than those in the upper layers.

F. GABP RETRIEVING ATMOSPHERIC PARAMETERS IN
NANJING
In Figure 16, a temperature profile retrieved by SD, MBP,
VLRBP, QN, LMBP and GABP in Nanjing city is shown
in Figure 15. 622 sets of samples are chosen from January
2010 to December 2019 in Nanjing. Similarly, 400 sets of
samples are training ones and 222 sets of samples are testing
ones. It is obvious that the temperature profile is almost the
same as that of Wuhan from Figure 16. The temperature
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TABLE 3. The time and accuracy of the temperature retrieved by several
algorithms in Nanjing.

distribution law is similar to that of Wuhan. RMSEs of the
temperature profile retrieved by GABP is approximate the
smallest among these algorithms in Figure 17. The training
time and the accuracy (mean(RMSE))are given in Table 3.
Mean(RMSE) is the average RMSE for the 39 points at the
altitude. In Table 3 the accuracy of the temperature profile
retrieved by GABP is the same as that retrieved by QN,
LMBP and is good and can be accepted. However, the training
time of QN is longer than GABP and LMBP. All in all, It can
make a conclusion that GABP is a new effective method of
retrieving atmospheric parameters.

IV. CONCLUSION
The combination of the BP neural network and the genetic
algorithm is called as GABP algorithm in the paper. GABP
can improve the convergence speed and local optimization
to a large extent. The performances of GABP in retrieving
atmosphere parameters are compared with other network
algorithms. The compared results show that the performance
of GABP algorithm is better than that of LMBP algorithm
and is also much better than the other inversion algorithms
in terms of precision, convergence time, and the number
of iterations. Finally, GABP algorithm is used to retrieve
atmospheric parameters by using LMBP algorithm as a
reference. In the case of retrieving the temperature profile,
RMSE of GABP is below 2.3K, and is the same as that of
LMBP algorithm. In thewater vapor density profile inversion,
the error is very small at higher altitudes, and the error is
less than 1.2g/m3 at lower altitudes, and the error of relative
humidity is 4%∼16.5%. The inversion error of the liquid
water content is less than 0.1g/m3 at more than 5km height,
and the error range is 0.1g/m3

∼ 0.32g/m3 below 5km
height, and the error decreases as the height increases. Finally,
GABP is applied to retrieve the atmospheric temperature
profile in Nanjing city, and its performance is compared with
other algorithms and discussed. Similarly, its performance
is good, as is the same as those in Wuhan. All in all,
the training performance and test performance of GABP
algorithm are obviously superior to those of other neural
network algorithms and can be a new ideal algorithm for
retrieving atmospheric parameters. However, the training
time of GABP is sometimes slightly longer than that of
LMBP when the number of samples increases. The training
time of GABP will be studied in detail in the future.
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