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ABSTRACT In this paper, we designed and implemented a moving object prediction and grasping system
that enables a robot manipulator using a two-finger gripper to grasp moving objects on a conveyor and
a circular rotating platform. There are three main parts: (i) moving object recognition, (ii) moving object
prediction, and (iii) system realization and verification. In the moving object recognition, we used the
instance segmentation algorithm of You Only Look At CoefficienTs (YOLACT) to recognize moving
objects. The recognition speed of YOLACT can reach more than 30 fps, which is very suitable for dynamic
object recognition. In addition, we designed an object numbering system based on object matching, so that
the system can track the target object correctly. In the moving object prediction, we first designed a moving
position prediction network based on Long Short-Term Memory (LSTM) and a grasping point prediction
network based on Convolutional Neural Network (CNN). Then we combined these two networks and
designed two moving object prediction networks, so that they can simultaneously predict the grasping
positions and grasping angles of multiple moving objects based on image information. In the system
realization and verification, we used Robot Operating System (ROS) to effectively integrate all the programs
of the proposed system for the camera image extraction, strategy processing, and robot manipulator and
gripper control. A laboratory-made conveyor and a circular rotating platform and four different objects were
used to verify that the implemented system could indeed allow the gripper to successfully grasp moving
objects on these two different object moving platforms.

INDEX TERMS Moving object prediction, object grasping, long short-term memory (LSTM), convolutional

neural network (CNN), you only look at the coefficients (YOLACT).

I. INTRODUCTION

Object picking and placing is a fundamental but challenging
task in robot manipulation due to the various sizes, shapes,
and other properties of objects [1]. In addition, the imple-
mentation of object picking and placing system in a dynamic
environment is more challenging than that in a static environ-
ment. Nowadays, conveyors and circular rotating platforms
are widely used in distribution, warehousing, manufacturing,
and production in factories for automation and faster deliv-
ery [2]. Two common types of robot manipulators used to
pick and place objects are the suction method using vacuum
chucks and the grasping method using two-finger grippers.
For the task of picking and placing objects of the robot manip-
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ulator, the development in a static environment has achieved
good results. For technical and cost reasons, most scenes use
the suction methods to suck and place objects in dynamic
environments. The advantage of the suction methods is that
the system sucks the object without the need to consider the
suction angle of the object, and it does not need to have a good
position prediction of the moving object. However, the grasp-
ing method can grasp objects more diversely than the suction
method because it is less restricted by the surface shape of the
object. Therefore, we investigate an object grasping method
for a six-degree of freedom robot manipulator with a two-
finger gripper.

In terms of object grasping using two-finger grippers, most
applications only focus on grasping static objects, because the
pose, moving trajectory, and grasping efficiency of the target
object need to be considered. There are many challenges for a
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robot manipulator using a two-finger gripper to grasp objects
in a dynamic environment. The system using the grasping
method needs to have the same ability to recognize moving
objects as the system using the suction method, and it also
needs to have a good ability to predict the future position
of the moving object [3]-[S]. In addition, if the posture of
the object changes during the movement, the system also
needs to have the ability to predict the future posture of the
moving object. How to combine technologies such as visual
tracking and object grasping to enable the robot manipulator
to successfully grasp moving objects on an object moving
platform is a challenging question and a research direction
worthy of discussion. There are many papers on robotic
grasping, but few papers study both moving object prediction
and moving object grasping. The method proposed by Allen
et al. [6] can grasp a moving object, but it can only track a
single object, and the range that can be grasped is only on a
fixed track (a single fixed trajectory). And it uses the slope
of the track as the grasping angle, which is not determined
by the system. Therefore in this paper, we used an instance
segmentation algorithm to recognize multiple moving objects
on two different object moving platforms (a conveyor and a
circular rotating platform), and designed two moving object
prediction networks to simultaneously predict grasping posi-
tions and grasping angles of multiple objects. In addition,
we used Robot Operating System (ROS) to realize the pro-
posed system. In this study, we need to integrate methods
such as moving object recognition, moving object prediction,
and system realization. Some related works are introduced as
follows:

In the related research of object recognition, the related
models have been innovated continuously in recent years.
From the earliest development, R-CNN (Region-based Con-
volutional Neural Networks) [7], Fast R-CNN [8], and Faster
R-CNN [9] are two-stage high-precision methods. These
methods take out the bounding box of the object and then
classify it. The accuracy of two-stage methods is high, but
the operation speed is slow. Therefore, one-stage high-speed
methods such as YOLO (You Only Look Once) [10], SSD
(Single Shot MultiBox Detector) [11], and R-FCN (Region-
based Fully Convolutional Network) [12] were developed
to meet the requirements of real-time object recognition.
Among them, the YOLO series [10], [13], [14] are the
more commonly used methods. Although the accuracy of
one-stage methods is lower than that of two-stage meth-
ods, the impact of its lower recognition accuracy is within
an acceptable range. Therefore, many networks for object
recognition have developed. For example, the FCN [15], Seg-
Net [16], and DeepLab [17] are the semantic segmentation
networks, and YOLACT [18], FCIS (Fully Convolutional
Instance-aware Semantic Segmentation) [19], PA-Net (Path
Aggregation Network) [20], Mask R-CNN [21], and Mask
Scoring R-CNN [22] are the instance segmentation networks.
Both instance segmentation and semantic segmentation can
obtain the contour of the object to achieve accurate object
recognition. The difference between instance segmentation
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and semantic segmentation is that instance segmentation can
independently segment objects of the same category, while
semantic segmentation cannot. Therefore, we used instance
segmentation to implement the object recognition.

In the related research of moving object prediction, the
prediction of the moving position of a moving object is a very
important part in dynamic environments. In order to make
the predicted position more accurate, deep learning methods
are used to predict. One of the most commonly used network
architectures is the Long Short-Term Memory (LSTM) net-
work [23]. This network can analyze time series relationships
to make predictions efficiently. In addition, in order to obtain
the suitable grasping position of the object, Convolutional
Neural Networks (CNNs) are often used to learn. The con-
volutional layer, pooling layer, and fully connected layer are
used to perform feature extraction and analysis, and to predict
the grasping pose of the object. Therefore, we combined
two network models of LSTM and CNNs to implement the
moving object prediction.

In the related research of system realization, Robot
Operating System (ROS) is an open source operat-
ing system that can improve the development efficiency
of robot systems. Kumra et al. [24] used ROS to con-
struct a neural network-based robot grasping system,
Hernandez-Mendez et al. [25] constructed a 3-DOF robot
manipulator based on ROS, Wang et al. [26] constructed
a mobile robotic arm platform for detecting and grasping
radiation sources based on ROS, and Wong et al. [27], [28]
used ROS and Gazebo to design and simulate the motion
planning and manipulation planning of the robot manipulator.
Therefore, we used ROS to realize the proposed system.

The rest of this paper is organized as follows. Section II
introduces the system architecture of this paper and describes
the relationship of the proposed system. Section III intro-
duces the moving object recognition method and the devel-
oped object numbering system used in this system. Section
IV introduces the two proposed moving object prediction
networks. Section V explains how to use ROS to integrate
all the programs of the image, strategy, and control system,
and how to develop the topic and service functions required
by the system for hardware devices such as camera, robot
manipulator, and two-finger gripper. Section VI introduces
and discusses various tests and experimental results of the
proposed system on four experimental objects and two object
moving platforms, verifying the effectiveness of the pro-
posed moving object prediction and grasping system. Finally,
Section VII is the conclusion.

Il. SYSTEM ARCHITECTURE

We design and implement a moving object prediction and
grasping system so that the manipulator can grasp moving
objects. In the hardware part, three input/output devices are an
RGB-D camera (RealSense D435), a six-degree of freedom
robot manipulator (URS), and a two-finger gripper (Robotiq
2F-85). In the software part, the Robot Operating System
(ROS), which is easy to develop robot systems, is used to
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integrate all programs designed for the proposed system. The
overall system architecture is shown in Fig. 1. There are three
main parts: (i) moving object recognition, (ii) moving object
prediction, and (iii) control planning.

In the moving object recognition, three parts are planned
and implemented: object detection, data augmentation, and
object numbering. We first used the camera to obtain
RGB images, and then used You Only Look At Coeffi-
cienTs (YOLACT) to implement the object detection of the
proposed system to recognize the objects in the RGB image.
Since YOLACT requires a lot of training data, we first used a
data augmentation method to quickly generate some training
data required for YOLACT’s network training, so that the
trained YOLACT can get more accurate object information,
such as category, confidence value, bounding box, and mask
of the object. In addition, we designed an object numbering
system. The objects are numbered after being recognized by
YOLACT, and the numbering will remain consistent.

In the moving object prediction, we combined the time
series analysis capabilities of LSTM and the image recogni-
tion capabilities of CNN to design two moving object predic-
tion networks. This architecture takes the mask image of the
object obtained by YOLACT as input and obtains five future
grasping positions and grasping angles of the moving object.

In the control planning, we planned and realized three
parts: strategy, Movelt, and gripper control. We designed
strategy to control the robot manipulator and two-finger grip-
per, and used the Movelt suite [29] of ROS to find the solution
of the forward and inverse kinematics of the robot manip-
ulator and do the trajectory planning. The gripper control
cooperates with the movement of the robot manipulator to
timely send out the control commands of the gripper so that
the system can successfully complete the task of picking and
placing moving objects.

1. MOVING OBJECT RECOGNITION

We used deep neural networks to implement a moving object
recognition method to recognize moving objects. It requires a
lot of training data, so a data augmentation method is used to
increase the training data. During network training, we used
a GeForce GTX 1070 GPU for training to speed up the object
recognition operations. We also use GPU in the proposed
system to speed up the system’s operation speed for real-time
object recognition. The proposed moving object recognition
system can be separated into three main parts: (a) object
detection, (b) data augmentation, and (c) object numbering.
They are described as follows:

A. OBJECT DETECTION

We used YOLACT to implement the object detection of the
proposed system. YOLACT is a one-stage instance segmen-
tation algorithm proposed by the research team of the Uni-
versity of California Fornia [20]. Compared with two-stage
instance segmentation algorithms such as FCIS [21] and
Mask R-CNN [23], YOLACT aims to add a mask branch
to the one-stage model to achieve the purpose of instance
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TABLE 1. Comparison of some instance segmentation algorithms.

Algorithm Backbone fps mAP
YOLACT [19] ResNet-101 33~45 31.3

FCIS [20] ResNet-101 6~7 31.0
PA-Net [21] ResNet-101 4~5 38.1

Mask R-CNN [22] ResNet-101 8~9 38.1
Mask Scoring R-CNN [23] ResNet-101 8~9 40.4

segmentation. YOLACT completes the task of instance seg-
mentation by adding two parallel branches: The first branch
uses Fully Convolutional Networks (FCN) to generate a series
of prototype masks independent of a single instance. The
second branch uses an additional head in the detection branch
to predict the mask coefficients for the representation of the
coding example in the circular mask space. Finally, after
using Non-Maximum Suppression (NMS) for each instance,
the final prediction results of object information and mask
image are obtained by linearly combining the output results of
the two branches. This method not only preserves the spatial
correlation, but also maintains the structure of the one-stage
model, so the operation speed in the object recognition will
be faster than two-stage instance segmentation algorithms.

YOLACT’s recognition operation speed can reach more
than 33 fps. However, as shown in Table 1, under the same
COCO Dataset [30] and the same backbone, the mean of
Average Precision (mAP) obtained by YOLACT is lower than
other instance segmentation algorithms. But for the mov-
ing object prediction and grasping system proposed in this
paper, this accuracy is already within the acceptable range.
Therefore, in consideration of real-time object recognition,
we chose YOLACT to implement the object detection of this
system.

B. DATA AUGMENTATION

Before using YOLACT for object recognition, we must first
perform network training. Since the training data of the
instance segmentation algorithm all needs to label the con-
tour of the object, and the quantity of training data and the
accuracy of the contour of the labeled object will affect the
mask effect obtained by YOLACT. In the label processing of
training data, if manual labeling is used, it will require a lot of
manpower and time. Therefore, we adopt the method of data
augmentation to generate the training data. In the preparation
of training data, because the LabelMe tool allows the user to
determine the points to be labeled, and the generated JSON
file after the labeling is also very easy to provide for the
use of subsequent data augmentation. Therefore, we used the
image generated by LabelMe tool to augment the training
data. We used two object moving platforms as the background
and used the geometric transformation methods of the image
processing to rotate, zoom, and shift the object data to syn-
thesize and augment the training data. While retaining the
original feature of the object, various training files can be
randomly synthesized. In addition to processing the image,
the same geometric transformation is performed on the points
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FIGURE 1. Architecture diagram of the proposed moving object prediction and grasping

system.

in the JSON file generated by the LabelMe tool to complete
the augmentation of the training data.

C. OBJECT NUMBERING

We used the match method to design an object numbering
system. In the results of object recognition, because the
recognition results between each frame and each frame are
independent, and the object information output of YOLACT
recognition is stored in an array. If the user wants to use the
object information, the user must read it from the output array,
but while reading the information, errors such as Table 2 may
occur. When three consecutive images are recognized, the
order of the object information stored in the YOLACT output
array is different. When the user wants to use the object
information of the Bottle 1, the first position stored in the
output array must be used. This will use the object infor-
mation of Bottle 2 and cause the wrong object information
to be used for prediction. In addition, this sudden error of
numbering information may occasionally occur on different
objects. Therefore, we design an object numbering system to
avoid the inconsistent order of the array information output
by YOLACT.

First, the acquired object information must be stored.
We store the information in a list to facilitate matching.
With the object data list from the previous moment, the user
can match the information currently obtained. The relevance
between each other is obtained by matching, and the pro-
cessing flow of object matching is shown in Fig. 2. In order
to ensure the relevance between consecutive images, and to
ensure that the information is not affected by the reading order
of the recognition results. We will assign a number ID to the
read object, and this ID will remain until the object disappears
on the screen. Matching object is using the center point of
the object for comparison. When the current information is
obtained at this moment, the center point of all the objects at
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TABLE 2. Output situation of continuously recognized objects.

Object

Object (?urre?nt framg P?evigus fram§ information in
object information| object information|  the first two

frames
Boitlel Array order =1, | Array order =2, | Array order =1,
Point = (40,30) | Point=(35,30) | Point=(30,30)
Bottle2 Array order =2, | Array order =1, | Array order =2,
Point = (20,20) | Point=(15,20) | Point=(10,20)
Block Array order = 3, | Array order =3, | Array order = 3,
Point =(70,70) Point = (65,70) | Point = (60,70)
Array order =4, | Array order =4, | Array order =4,
TetraPak | ‘50 %0510y | Point - (90.10) | Point~ (85.10)

the previous moment will be subtracted. Find the minimum
value of the target object at the moment and the center point
of all objects at the previous moment. With this distance
value, it will determine whether it is the same object name
based on the object information of the smallest distance at
the previous moment. If it is not the same object name, it will
be determined as new object information, and a new ID will
be given for storage. If it is the same object name, a new
round of determination will be made to ensure that it is not
affected by the same category of object. In this paper, the new
round of determination is set to the moving distance between
each frame to be less than 20 pixels, so that the system can
recognize the object, and use these determinations to keep the
information of the object in the continuous image before and
after the sequence can be consistent.

IV. MOVING OBJECT PREDICTION

When the system obtains the object numbering information,
we design two moving object prediction networks to predict
the grasping position and the grasping angle of the moving
object. It is mainly divided into three parts: (a) LSTM-based
moving position prediction network, (b) CNN-based grasping
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FIGURE 2. Flow chart of the object matching processing.
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FIGURE 3. Architecture diagram of the proposed LSTM-based moving
position prediction network.

point prediction network, and (c) moving object prediction
network. They are described as follows:

A. LSTM-BASED MOVING POSITION PREDICTION
NETWORK

We used Long Short-Term Memory (LSTM) to design a mov-
ing position prediction network as shown in Fig. 3. The net-
work is composed of two LSTM layers and a fully connected
layer. Through the learning of the network, the prediction
network can analyze the three past positions of the object
and obtain the future five grasping positions of the moving
object. This network uses the center point of the bounding
box Pt of the moving object obtained by YOLACT and the
previous center point of the two bounding boxes (Pt — 2T,
Pt — T) as inputs to predict the future position of the moving
object. The outputs are the center points of the future five
bounding boxes of the moving object (Pt + T, Pt + 2T,
Pt + 3T, Pt + 4T, Pt 4+ 5T), where P is the center point
coordinate of the bounding box (X, y), ¢ is the current time,
and T is the time interval. We take every 20 frames (about
0.5 seconds) as an interval, so the position after 100 frames
(about 2.5 seconds) can be predicted. This time interval can
also be adjusted according to the needs of the system.
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FIGURE 4. Architecture diagram of the proposed CNN-based grasping
point prediction network.

FIGURE 5. Schematic diagram of the grasping point.

B. CNN-BASED GRASPING POINT PREDICTION NETWORK
We used Convolutional Neural Network (CNN) to design
a grasping point prediction network as shown in Fig. 4,
which is used to predict an appropriate grasping point of the
moving object in the future. The diagram of the grasping
point used in this paper is shown in Fig. 5, where x and
y are the coordinate values of the object’s suitable grasp-
ing point projected to the x-axis and y-axis of the camera
coordinate system, 6 is the angle formed by the angle of the
grasping direction of the gripper and the vertical line. This
network uses the object mask image obtained by YOLACT
as the input. The outputs are the grasping position (X, y)
and the grasping angle 6 of the contour of the appropriate
grasping point of the moving object. There are many ways
to define a grasping point [31]-[33]. For example, a method
of simplifying the contour of the picture was proposed
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FIGURE 6. Simple schematic diagram of the proposed prediction
network 1.

to improve the determination of the grasping position of
unknown object [34], and GQ-CNN [35] was used to verify
its effect. The definition method of grasping point used in
this paper also uses the contour of the object to determine
a suitable grasping point. The difference between the two
methods is that the method described in [34] used a depth
map to determine, and we used a mask image to determine.

C. MOVING OBJECT PREDICTION NETWORK

In predicting the grasping position and grasping angle of
a moving target object, we combine LSTM-based moving
position prediction network and CNN-based grasping point
prediction network to design two moving object prediction
networks, Prediction Network 1 and Prediction Network 2.
They are described as follows:

The architecture of Prediction Network 1 is shown in
Fig. 6, which is a network architecture that combines LSTM-
based moving position prediction network and CNN-based
grasping point prediction network in parallel. The input of
Prediction Network 1 has two parts. The first part is to input
the center point coordinate of the bounding box (x, y) of
the object obtained by YOLACT into LSTM-based moving
position prediction network. The second part is to input the
object mask image obtained by YOLACT into CNN-based
grasping point prediction network. The outputs of Prediction
Network 1 are five center point positions of the bounding box
of the moving object and one suitable grasping angle.

The advantage of the architecture of Prediction Network
1 is that LSTM and CNN networks can be trained at the same
time. However, the CNN-based grasping point prediction
network in Prediction Network 1 cannot perform time series
analysis, so it cannot predict a correct grasping angle when
the posture of the object changes. As shown in Fig. 7, if the
posture of the moving object changes, Prediction Network
1 cannot correctly predict the grasping angle.

In order to solve the problem that Prediction Network
1 cannot correctly predict the grasping angle of a moving
object when its posture changes, we propose Prediction Net-
work 2, as shown in Fig. 8. This architecture is a network
architecture that combines CNN-based grasping point pre-
diction network and LSTM-based moving position prediction
network in series. In addition, the TimeDistributed layer [36]
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FIGURE 7. Schematic diagram of the change in the grasping angle of a
moving object on a circular rotating platform.
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FIGURE 8. Simple schematic diagram of the proposed prediction
network 2.

is used to enable Prediction Network 2 to simultaneously
predict the grasping position and the grasping angle of the
suitable grasping point in the future. Since the first dimension
of the TimeDistributed layer is time, we set the first dimen-
sion to 3. According to input 3 consecutive mask images
to make the CNN-based grasping point prediction network
predict the grasping position and the grasping angle, it can
also make the LSTM network analyze its time relationship
to predict the future suitable grasping position and grasping
angle.

The inputs of Prediction Network 2 are three continuous
mask images of the target object obtained by YOLACT, and
the outputs are the name of the object and future five grasping
positions (x1, y1), (x2,¥2), -+ - , (x5, ys5) and grasping angles
(Osins Ocos1) » (Osin2, Ocos2) -+, (esinS’ Bcos5)- In terms of the
angle 6 of the grasping point, this paper only includes a semi-
circular interval from —90° to 90° and a total of 180° when
marking the grasping angle, but the angle is actually a circular
interval of —180° to 180° and a total of 360°. In order to make
the two ranges of values are the same, double-angle formulas
is used for training. For example, 0] is the angle of object 1 as
defined in Fig. 5, then 6051 = c0s (201) , Osin1 = sin (261).
This method can also make the training effect more in line
with the actual angle. Its network architecture is shown in
Fig. 9. We used the TimeDistributed layer to make the CNN-
based grasping point prediction network have a time series
relationship. The TimeDistributed layer is a layer wrapper,
which can be used on any layer of the network, such as
a convolution layer, a pooling layer, or a fully connected
layer. In the same TimeDistributed layer, weight information
can be shared with each other, so the input of the network
architecture can be related to each other before and after.
As shown in Fig. 10, it changed the original CNN network
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FIGURE 10. Description of time distributed layer used for CNN.

architecture from a single-input single-output method to a
multi-input multi-output method. Therefore, the CNN-based
grasping point prediction network can also have the same
ability as the LSTM network to analyze time series.

Compared with Prediction Network 1, Prediction Network
2 only needs one type of object information as input, and its
output is also changed from the center point of the bounding
box of the future movement of objects in Prediction Network
1 to a suitable grasping point of the object in the future.
The grasping angle is also a suitable grasping angle to grasp
the moving object. Therefore, Prediction Network 2 is more
suitable for the prediction of moving objects when the posture
of the moving object changes, and the predicted grasping
position is also more suitable for the position corresponding
to the shape of the object.

V. SYSTEM REALIZATION BASED ON ROS

We used Robot Operating System (ROS), which can make
system integration easier to implement and expand, to imple-
ment the proposed moving object prediction and grasping
system. As shown in Fig. 11, it integrates all the programs
of the camera image extraction, the strategy processing, and
the robot manipulator and gripper control. A total of six
nodes (RealSense, YOLACT, Strategy, Movelt, URS, and
ROBOTIQ ) as well as two topics (Topic 1, Topic 2) and three
services (Service 1, Service 2, Service 3) are designed. They
are described as follows:

In the part of the camera, we used RealSense as the image
sensor of the system. Because the “YOLACT” only needs the
RGB image information of the camera, and the ‘““Strategy”
only needs the target information processed by “YOLACT”.
These two kinds of messages only need one-way communi-
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cation, so two topics named Topic 1 and Topic 2 are designed
for this requirement. The node names of the publisher and
subscriber of Topic 1 are “‘RealSense” and “YOLACT”. The
node names of the publisher and subscriber of Topic 2 are
“YOLACT” and “Strategy”. The message that the publisher
“RealSense” will publish is the RGB image detected by the
camera with a resolution of 640x480. The message that the
publisher “YOLACT” will publish is the future five grasp-
ing positions (x1,y1), (x2,y2), -, (x5,ys5) and grasping
angles (Bsin1s Ocos1) » (Osin2, Ocos2) s -+ s (Bsinss Ocoss). Two
subscribers will respectively subscribe to the messages on
these topics according to the processing needs.

In the part of the robot manipulator, we used the robot
manipulator named URS as the execution and operation
equipment of the system. Because the strategy of the system
needs to obtain information such as the path of the trajectory
planning from Movelt, and Movelt needs to obtain the actual
joint moving trajectory of the robot manipulator (URS). This
way can control the robot manipulator effectively and monitor
the movement path of the robot manipulator. The commu-
nication between ‘“Strategy” and “Movelt” and between
“Movelt” and “URS” requires two-way communication.
Therefore, we plan two services named Service 1 and Service
2 in this section. The server and client nodes of Service 1 are
“Strategy” and “Movelt”. The request sent by “Strategy”
that plays the role of the server is the position (x, y, z) of
the robot manipulator end point and the quaternion (W, X, Y,
z) of the posture. After the “Movelt” that plays the role of
the client receives the sent information, the response given is
the result of forward and inverse kinematics and the planned
moving path. The node names of the server and client of
Service 2 are “Movelt” and “URS5”. The request sent by
“Movelt” that plays the role of the server is the joint trajec-
tory of the robotic manipulator. After the “UR5” that plays
the role of the client receives the response, the response given
is the state value of O (false) or 1 (true) to indicate whether the
robot manipulator is currently busy. In addition, we used the
Movelt suite provided by ROS to achieve the motion planning
of the robot manipulator. The advantage of Movelt is that it
is very friendly to beginners. Users can easily use Movelt to
complete robot operations without the concept of robot oper-
ation or kinematics. Another advantage is that Movelt make
users to easily replace kinematics, trajectory planning, and
collision detection modules based on the modules which they
want. The robot manipulator used in this paper is URS, and
the Movelt package for the built-in kinematics solver of URS
is KDL of OrocosL, but the solution speed of this method is
very slow, and it is easy to get different joint values at the
same target position. The solution speed of Trac_ik method
is very fast, and the value obtained is relatively stable, it is
not easy to find different solutions. Therefore, we choose the
Trac_ik method to solve the forward and inverse kinematics
of the robot manipulator.

In the part of the gripper, we used the ROBOTIQ 2F-85
gripper as the end effector of the robot manipulator. Because
the strategy of the system needs to obtain the information of
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FIGURE 11. System architecture of the implemented moving object prediction and grasping system based on

the robot operating system.

the grasping state of the gripper, it can control the gripper
to grasp the object. The communication method between the
strategy and the gripper requires a two-way communication
method, so we plan a service named Service 3. The node
name of the server is “‘Strategy”, and the node name of
the client is “ROBOTIQ”. The request sent by the server
“Strategy” is the state value of O (close) or 1 (open) for
grasping or releasing. After the client “ROBOTIQ” receives
the response, the response given is the status value of 0
(false) or 1 (true) to indicate whether the gripper is currently
busy.

In summary, Table 3 is the role and message of 2 topics,
3 services, and 6 nodes (programs) using the Robot Operating
System to integrate camera, robot manipulator, and gripper
designed for the proposed system.

VI. EXPERIMENTAL RESULTS

We used two kinds of object moving platforms made by the
laboratory to verify the effectiveness of the proposed system.
As shown in Fig. 12, they are a conveyor with a length x
width of 120 cm x 40 cm and a circular rotating platform with
a radius of 26 cm. In this paper, the used YOLACT and the
proposed moving object prediction networks are deep neural
networks. Thus they need training data for the network train-
ing. In the preparation of training data, an automatic data gen-
eration method based on the LabelMe tool is proposed to col-
lect a large amount of training data. The difference between
manual annotation and the method with data augmentation is:
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TABLE 3. Node definition and its description of the implemented
ROS-based moving object prediction and grasping system.

TOpl.C/ Node Name | ROS Role | Message/ Request/ Response
Service
. RealSense Publisher . "
Topic 1 YOLACT Subseribor RGB Image: 640480
Topic 2 YOLACT Publisher Target Information:
p Strategy | Subscriber | (X4, Vi, Osinis Ocost) i=1.2,....5
Command(Request)
Pose of Manipulator:
Strategy Sever Point (x, y, z) and
. Quaternion(w, X, v, z)
Service | Status (response)
. Control Command of
Movelt Client Manipulator: Forward and
Inverse Kinematics, Path
Command (Request)
Movelt Sever Tr_aJ ectory plz_mnmg.of
manipulator: Joint Trajectory
Service 2 Action
Status (Response)
URS Client Busy Status of Manipulator: 0
(False) or 1 (True)
Command (Request)
Strategy Sever Control Command of Gripper:
. 0 (close) or 1 (open)
Service 3 Status (Response)
ROBOTIQ Client Busy Status of Gripper: 0
(False) or 1 (True)

manual labeling needs to label the contour of the object, so it
will waste a lot of time on labeling the object. Moreover, when
the background is different, it needs to be labelled again. The
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(@ (b)

FIGURE 12. Two laboratory-made object moving platforms: (a) a conveyor
and (b) a circular rotating platform.

(b)

FIGURE 13. Types of training data for network training: (a) YOLACT and
(b) proposed moving object prediction network.

method with data augmentation can change the background
at any time without re-labeling, and can freely adjust the
position and angle of the object to obtain new training data.
As shown in Fig. 13 (a), the input of YOLACT is a single
RGB image and the type of training data is a picture with the
contour of the labeled object. Since each picture needs to be
marked with the contour of the object, manual labeling will
take a lot of time. On the other hand, as shown in Fig. 13 (b),
the inputs of the proposed moving object prediction network
are three consecutive mask images, and the type of training
data is in the form of a mask image with a grasping point and
an angle of the labeled object. Since only the grasping point
and angle of the object need to be labeled, manual labeling
will not take a lot of time, and it is easy to obtain training
data by the data augmentation. Data used to train YOLOCAT
and the proposed moving target prediction network in the
data augmentation are respectively shown in Table 4 and
Table 5, where the number of backgrounds is two, such as the
conveyor and the circular rotating platform. We found that
this method with data augmentation not only saves a lot of
manpower and time in preparing training data for the network
training, but also can augment the required data at any time
according to the actual needs of the system. The training
time for YOLACT using 5,000 images and the prediction
network using 200,000 images is about 18 hours and 12 hours,
respectively.

The experimental results are mainly divided into two parts:
(a) comparison of the two proposed moving object prediction
networks, and (b) prediction results of Prediction Network 2.
They are described as follows.
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TABLE 4. Data used to train YOLOCAT in data augmentation.

Item Number and Time
Training data type One RGB image photo
Number of objects 4

Number of backgrounds 2 (conveyor and circular
rotating platform)

100 sheets

About 5 hours

5,000 sheets

About 2 minutes

Manually annotate photos

Spend time (Manually annotate)
Automatically generate photos
Spend time (Automatically generate)

TABLE 5. Data used to train the moving object prediction network in data
augmentation.

Item Number and Time

Training data type Three consecutive mask pictures
Number of objects 4

Manually annotate photos 4 sheets

About 1 minute
200,000 sheets
About 1 hour

Spend time (Manually annotate)
Automatically generate photos
Spend time (Automatically generate)

A. COMPARISON OF THE TWO PROPOSED MOVING
OBJECT PREDICTION NETWORKS

We used four experimental objects: (a) Bottle, (b) Metal
Workpiece, (c) Danboard, and (d) Tetra Pak, as shown in
Fig. 14. A comparison of the two moving object prediction
networks of Prediction Network 1 and Prediction Network
2 is shown in Table 6. It can be seen from the table that
although the input and output used by the two prediction
networks are different, the predicted position error and angle
error are all within the acceptable range for object grasping.
During the movement, the mask image of the object obtained
by the object detection method will have some influence
due to environmental factors such as background reflection.
Therefore, the future grasping position predicted by the Pre-
diction Network 2 using the mask image of the object as the
input will slightly deviate from the most suitable grasping
position of the object at the current moment. As shown in
Table 6, using both the center point of the bounding box of
the object and the mask image as the inputs of Prediction
Network 1, the predicted position error will be smaller. How-
ever, the position error and angle error of these two prediction
networks will not have much influence on the object grasping.
In addition, if the posture of the object changes during the
movement, Prediction Network 1 cannot predict the correct
grasping angle, but Prediction Network 2 can. For example,
the posture of the moving object on the circular rotating plat-
form will change during the movement. Therefore, we used
Prediction Network 2 to carry out the prediction and grasping
experiments of moving objects on the object moving platform
of two different moving modes.

B. PREDICTION RESULTS OF PREDICTION NETWORK 2

The experimental environments for grasping moving objects
set up on the conveyor and the circular rotating platform are
shown in Fig. 15 and Fig. 16, respectively. A two-finger grip-
per is installed at the end-point of the robot manipulator, and
a camera is set up above the gripper of the robot manipulator
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(a)

FIGURE 14. Four experimental objects: (a) bottle, (b) danboard, (c) metal
workpiece, (d) tetra pak.

TABLE 6. Comparison of the two proposed moving object prediction
networks.

Ttem Prediction Prediction

Network 1 Network 2
Center point of the
Input object bounding box Mask image
& mask image
Output Object center point Suitable grasping
point

Conveyor 4.54 pixel 7.44 pixel

X-axis average error (about 0.45 cm) (about 0.74 cm)

Conveyor 2.001 pixel 2.16 pixel

y-axis average error (about 0.2 cm) (about 0.21 cm)

Conveyor 5.3 degree 5.22 degree

angle average error

(eye-in-hand). In the experiment of the two object moving
platforms, the initial state of the robot manipulator is located
at a position of 61.5 cm from the camera directly above the
platform. The actual process of the robot manipulator grasp-
ing the moving objects on the conveyor and circular rotating
platform are shown in Fig. 17 and Fig. 18. The video of
the proposed system for four different objects on a conveyor
and a circular rotating platform can be viewed on this web-
site: https://www.youtube.com/watch?v=XlocsIHGi98. Tak-
ing the experiment of Bottle on the circular rotating platform
as an example, the inputs of Prediction Network 2 for three
consecutive mask images on the circular rotating platform
are shown in Fig. 19. The outputs of the Prediction Network
2 are shown in Fig. 20, where the yellow dots are the grasping
positions and the red line are the grasping angles. Fig. 20 (a) is
the five grasping points and grasping angles of the network
output, and Fig. 20 (b)~(f) are five relationship diagrams
between the predicted result and the actual state of this object.

The prediction results of these four objects on the conveyor
and the circular rotating platform are respectively shown
in Table 7 and Table 8. It can be seen that the proposed
system can indeed correctly predict the moving trajectory of
the object. The data analysis of the objects on the conveyor
and the circular rotating platform are respectively shown
in Table 9 and Table 10. It can be seen from the results
that the proposed system can indeed make good predictions
for four objects on two different object moving platforms.
Since Prediction Network 2 only uses three mask images
as inputs, we found that the color of the Metal Workpiece
is greatly affected by the reflection of the ambient light
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Robot manipulator
Camera

2-Finger Gripper

FIGURE 15. Experimental environment for the grasping of moving objects
on the conveyor.

Robot manipulator

Camera

=~ 2-Finger Gripper
conveyor

circular rotating
platform

FIGURE 16. Experimental environment for the grasping of moving objects
on the circular rotating platform.

(€3] ()
FIGURE 17. Experimental snapshots of the moving object grasping
experiment on the conveyor.

source. Therefore, its shape damage of the mask image is
more obvious than that of the other two objects, Danboard
and Tetra Pak. Although its average error is relatively higher
than the others, but these errors are within the acceptable
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(h)
FIGURE 18. Experimental snapshots of the moving object grasping
experiment on the circular rotating platform.

(c)t
FIGURE 19. Inputs of prediction network 2 for the required three bottle

mask images on the circular rotating platform.

T (D ST

(d) t+3T (e) t+4T

FIGURE 20. Outputs of prediction network 2 for the bottle on the circular
rotating platform.

range to successfully grasp the object. Similarly, since the
shape of the Bottle is cylindrical, it will sway slightly from
side to side during the movement, so the obtained mask
image will cause the failure. Therefore, the average error is
relatively high, but the prediction results are mostly located
on bottles. As shown in Table 11, we performed a total of
160 experiments, 80 on a conveyor and 80 on a circular
rotating platform. That is, each of the four different objects
was tested 20 times on a conveyor and a circular rotating
platform. In these experiments, only 6 failures, and the over-
all success rate was 96.25%. These quantitative results can
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TABLE 7. Experimental results of prediction network 2 for four different
objects on the conveyor.

Predict
Result

Predict
Pointl

Predict
Point 2

Predict
Point 3

Predict
Point 4

Predict
Point 5

e —

TABLE 8. Experimental results of prediction network 2 for four different
objects on the circular rotating platform.

Metal
Workpiece

Danboard Tetra Pak

Predict
Result

Predict
Pointl

Predict
Point 2

Predict
Point 3

Predict
Point 4

Predict
Point 5

verify the effectiveness of the proposed system. From these
6 unsuccessful experiments, we found that the reasons for
these failures are related to the light source of the environment
and the shape of the objects. For example, objects such as
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TABLE 9. Average prediction errors of prediction network 2 for each of
the four different objects on the conveyor (50 experiments per object).

Object Bottle Danboard Metz}l Tetra Pak
Workpiece

zv:fge 8.07 pixel 6.01 pixel 8.6 pixel 7.11 pixel
error (~0.8 cm) (~0.86cm) | (~0.86cm) | (~0.71 cm)
var(:ge 211 pixel | 2.02pixel | 2.56pixel | 1.98 pixel
error (~0.2 cm) (~02cm) | (~0.25cm) | (~0.19 cm)
angle

average 5.3 degree 4.5 degree 6.3 degree 4.8 degree
€1ror

TABLE 10. Average prediction errors of prediction network 2 for four
different objects on the circular rotating platform (50 experiments per
object).

Object Bottle Danboard Meta!l Tetra Pak
Workpiece

:v":r‘: o | B09pixel | 7.54pixel | 8.5pixel | 7.473pixel
g (~0.8 cm) (~0.75 cm) | (~0.85 cm) (~0.74 cm)

error

Z;Zt:ge 9.7 Pixel 6.5 pixel 8.23 pixel 8.32 pixel

error (~0.97 cm) (~0.65 cm) | (~0.82 cm) (~0.83 cm)

angle

average 8.3 degree 4.2 degree 5.5 degree 5.3 degree

error

TABLE 11. Object grasping success rate of prediction network 2 for four
different objects on the conveyor and the circular rotating platform.

: Metal Tetra
Object Bottle Danboard Workpiece Pak

Object grasping

success rate 90% 100% 90% 100%

(20 experiments
on the conveyor)
Object grasping
success rate

(20 experiments 95% 100% 95% 100%
on the circular
rotating platform)

Bottle and Metal Workpiece are more susceptible to the influ-
ence of the light source of the environment. In addition to the
influence of the light source of the environment, the elongated
shape of the bottle will shake slightly due to the movement
of the object, which is one of the reasons why grasping
object was not successful. From these actual moving object
grasping experiments, these results indicate that the proposed
system indeed let the robot manipulator grasp the target object
successfully. We did not deliberately adjust the light source
of the experimental environment. If we pay attention to the
arrangement and adjustment of the light source, the object
grasping success rate of the proposed system can be further
improved.

VIi. CONCLUSION

Conveyors and circular rotating platforms are two object
moving platforms often used in production lines. We pro-
posed a practical solution to predict and grasp moving
objects on these two object moving platforms so that a robot
manipulator can successfully and effectively grasp moving
objects using a two-finger gripper. There are six main points
in this paper: (a) A two-stage instance segmentation algo-
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rithm named YOLACT is used to implement the moving
object detection of the proposed system to recognize multiple
objects in the RGB image. (b) In the preparation of train-
ing data, an automatic data generation method based on the
LabelMe tool is proposed to reduce the manpower and time
required to collect a large amount of training data. (c) The
proposed prediction network can simultaneously predict the
future grasping position and grasping angle of multiple mov-
ing objects in the image at one time. (d) Since the proposed
prediction network can simultaneously predict multiple mov-
ing objects in the image at one time, an object numbering
system is proposed to ensure that the order of these con-
secutively recognized moving objects is consistent. (e) ROS
is used to integrate all programs to implement the proposed
system, so that the robot manipulator can successfully grasp
objects not only on the conveyor, but also on the circular
rotating platform. (f) We fabricated a conveyor and a circular
rotating platform, and performed some practical experiments
on these two object moving platforms using four different
objects to verify the usability of the proposed system. The
contributions of this paper can be summarized as follows:
(1) In the design of object numbering system for the moving
object recognition, when multiple objects are moving on the
object moving platform, it is important for the system to
accurately track the target object to be grasped. Therefore,
an object numbering system based on object matching is
proposed to ensure that the order of these recognized moving
objects is consistent and the system can correctly track the
target object. (ii) In the design of moving object prediction
system, the time series analysis capabilities of Long Short-
Term Memory (LSTM) and the image recognition capabili-
ties of Convolutional Neural Network (CNN) are combined to
design the proposed moving object prediction system. First,
a LSTM-based moving position prediction network and a
CNN-based grasping point prediction network are designed
respectively. Then, the LSTM-based moving position predic-
tion network and the CNN-based grasping point prediction
network are respectively combined in parallel and in series
to design Prediction Network 1 and Prediction Network 2.
In addition, the TimeDistributed layer is used to make Predic-
tion Network 2 have the ability to predict the future pose of
the target object. Therefore, when the object moves on the cir-
cular rotating platform and the posture of this object changes,
Prediction Network 2 can correctly predict the future grasp-
ing position and grasping angle of the moving object at the
same time. (iii) In the system realization, we used ROS to
efficiently integrate all programs of the image, strategy, and
control for this system and clearly describe how to develop
the topic and service functions required by the system for
hardware devices of camera, robot manipulator, and two-
finger gripper. In addition, we used the ROS suite named
Movelt to find the solution of forward and inverse kinematics
of the robot manipulator, and to do the trajectory planning
of the robot manipulator, so that the robot manipulator can
effectively grasp the object. There are two main limitations
of the proposed system: (a) The proposed system cannot
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grasp unknown objects. Because the used object recognition
method (YOLACT) can only recognize trained objects, the
proposed system can only grasp trained objects. (b) The pro-
posed system cannot predict moving objects without regular
moving paths. Both object moving paths considered in this
research are regular moving path, so a random moving path is
out of the scope of this research. Thus, these two limitations
of the proposed system do not affect the problem that this
paper intends to solve. Related applications without these two
limitations can be further investigated in the future.
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