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ABSTRACT Based on respiratory sound production mechanisms, we study the relationship between airflow
characteristics in the bronchi and sound pressure spectrum curves to implement an end-to-end respiratory
sound classification system with a feature-band attention module. First, we analyse fluid-solid coupling
simulations of the bronchi and execute acoustic simulations to obtain the spectrum curves of the bronchi
at the sound pressure level. Then, based on the spectrum characteristics of the bronchi, we propose an
attention strategy to refine the acoustic features with adaptive weights. In addition, we introduce a feature-
band attention module to ResNet-based networks with a squeeze-and-excitation block. Finally, we perform
experiments on the ICBHI public database to classify respiratory sounds into one of four classes: normal,
wheezes, crackles, and both (wheezes and crackles). The results show that our proposed system exhibits
superior performance compared with the baseline system. This type of feature learning strategy is useful for
exploring the distinct characteristics of different types of respiratory sounds.

INDEX TERMS Fluid-solid coupling, attention learning, end-to-end system, respiratory sound
classification, squeeze-and-excitation.

I. INTRODUCTION
In recent years, chronic respiratory diseases have spread
all over the world with high prevalence rates and recur-
rent attacks. Asthma and chronic obstructive pulmonary
disease (COPD) are the main representative diseases [1].
Patients with asthma and COPD require long-term treatment
and daily monitoring, which is challenging due to limited
medical resources, as clinicians must auscultate for respira-
tory sounds during each visit at internal medicine depart-
ments. Fortunately, with the rapid development of machine
learning technology, many automatic respiratory sound clas-
sification systems have been launched to pave a new way for-
ward in aiding clinical diagnoses and treatment of respiratory
diseases [2].

The commonly used framework for respiratory sound clas-
sification includes two parts: feature extraction for respira-
tory sound signals and a classification model. For feature
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extraction, many methods have been adopted for extract-
ing acoustic features, including entropy-based features [3],
Short-Time Fourier Transform (STFT) [4], spectrogram [5],
Mel-Filter banks (FBank) [6], Wavelet analysis [7], Percep-
tual Linear Prediction (PLP) [8], and Mel-Frequency Cep-
stral Coefficient (MFCC) [9]. For the classification model,
some discriminative models and generative models have
been employed, such as the k-Nearest Neighbour (k-NN),
Gaussian Mixture Model (GMM), Hidden Markov Model
(HMM), and Support Vector Machine (SVM). As early as
1997, some experts began using autoregressive models for
extracting spectrum features from respiratory sounds, and
they established multiple k-NN classifiers to recognize respi-
ratory sounds [10]. Improved performance was achieved by
HMM-based and SVM-based systems [11]–[13].

Recently, deep neural networks have achieved promising
performance, and continuous optimizations have been made
in algorithms and applications. In our previous work [14],
we combined HMM and deep neural network architec-
ture to build a classification model for respiratory sounds.
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Some studies have focused on transfer learning strate-
gies by utilizing the pretrained VGG16 model on image
datasets [15]–[17]. More complex CNN-based systems with
a model tuning strategy and a data augmentation technique
were proposed to obtain better performance in the respiratory
sound classification task [18]–[20]. However, the abovemen-
tioned systems directly adopt conventionally used acoustic
parameters in the speech classification field or spectrogram
representation for image classification. To improve the per-
formance of respiratory sound classification systems, we aim
to explore the innate characteristics of respiratory sounds by
physically modelling the bronchi.

In the geometric modelling of bronchi, scholars started
with the bronchi’s geometric characteristics and modelled the
bronchi through a variety of methods. For example, they stud-
ied airflow movement and particle deposition in the trachea.
In 1982, Haselton and colleagues simulated the airflow state
in the windpipe by using a symmetrical bifurcation bronchi
model [21]. In 1989, based on the bifurcated pipe model,
Snyder and Olson focused on the flow velocity distribution of
the airflow near each bifurcation point. The research results
show that strong shear stress may directly cause the air-
flow to produce secondary flow vortices [22]. Cheng et al.
simulated particle deposition through oral and bronchi
models [23].

After conducting geometric modelling of the bronchi, the
airflow simulation process requires the related theory of fluid
mechanics. In 1755, the Euler equation [24] was proposed
to describe fluid motion under ideal conditions. Because
the Euler equation assumes that fluid is a non-viscous ideal
object, its applications in practical engineering are limited.
In the 19th century, Navier and Stokes considered the vis-
cous fluid movement in the boundary layer and defined the
Navier-Stokes equation, also referred to as the N-S equa-
tion [25], which is the theoretical cornerstone of modern fluid
mechanics. However, the N-S equation solution is also a chal-
lenge. Experts recommend turbulence simulation methods,
including direct numerical simulation and indirect numeri-
cal simulation. Examples of indirect simulation methods are
the Large Eddy Simulation (LES) and Reynolds averaged
Navier-Stokes (RANS). The k − ω model and the k − ε

model are two mainstream modelling solutions in the RANS
method, in which k represents turbulent kinetic energy, ω is
the frequency of turbulent decay processes, and ε denotes the
turbulent energy dissipation rate. For the law of airflowmove-
ment in the bronchi, the above numerical simulation methods
are usually used. For example, Zhao and colleagues used the
k−ωmodel to analyse airflow characteristics in the upper res-
piratory tract of the human body [26]. Mihai Mihaescu et al.
simulated the established human airway model and found
that the RANS method was not suitable for predicting the
anisotropic fluid movement. For the airflow simulation of
the human bronchial airway, the LES large eddy simulation
method captures microscopic characteristics of airflow and
fluid movement [27], [28].

However, most of the above numerical simulation stud-
ies on bronchial airflow patterns ignored the influence of
bronchial tube deformation and fluid-solid coupling and
directly set the bronchial wall structure as a rigid wall.
In actual situations, even small movements of the bronchial
wall have a great impact on airflow in the bronchial tubes.
Therefore, it is beneficial to consider the influence of the wall
on bronchial airflow under actual physiological conditions
within the human body. To complement this research gap,
we modelled the bronchi with fluid-solid coupling and simu-
lated the airflow in the bronchi, which provides basal data for
subsequent acoustic modelling.

The acoustic characteristics of respiratory sound signals
have a strong correlation with airflow characteristics in the
lungs. However, most of the early studies on acoustic mod-
elling of bronchi only analysed the relationship between
respiratory sound production mechanisms and bronchial air-
flow but failed to map relationships between respiratory
sound signal pressure levels and bronchial airflow. For exam-
ple, Forgacs analysed the sound generation mechanisms of
different types of respiratory sounds in the lungs, classi-
fied them based on corresponding airflow patterns in the
tube, and found that there are three modes of bronchial air-
flow: laminar, turbulent, and vortex. The research results of
Hardin et al. on vortex vocalisation in the respiratory system
further demonstrate Forgacs’ vortex theory, which illustrates
that the vortex phenomenon is generated when the airflows
from the small bronchi to the large bronchi [29]. The respi-
ratory sound source is broadband noise, so the vortex is the
main source of respiratory sounds.

In response to the problem of continuous wheezing,
Vaz and Thakor proposed the airway tremor theory, which
reveals the relationship between wheezing and airflow [30].
Xu et al. used the finite difference method to study the pro-
duction model and further clarified the theoretical production
mechanism of wheezes; wheezes are produced by the inter-
action between the airway wall and airflow during the move-
ment of respiratory airflow [31]. In 2017, Messner et al. used
linear predictive cepstral coefficients and polynomial regres-
sion to map the relationship between intrabronchial airflow
and generated respiratory sounds [32], and they detected the
respiratory phase of respiratory sound signals. It is assumed
that the airway pathophysiology can be detected to diagnose
respiratory diseases [33].

In the field of aeroacoustics, the Ffowcs Williams-
Hawkings (FW-H) equation is usually used to determine the
relationship between the sound pressure of sound signals
and airflow movement [34]. Zhang et al. combined the LES
and FW-H equations to predict the noise spectrum of the
wings of an aircraft [35]. After using different turbulence
calculationmethods to study the influence of turbulence on an
aircraft’s wings, Li et al. used the FW-Hmethod to investigate
the influence of the thickness of the wings’ trailing edges
on noise characteristics [36]. These studies in the field of
aeroacoustics inspired us to map the relationships between
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bronchial structures and respiratory sound acoustic charac-
teristics. Without considering the bronchial wall, we mapped
the relationships between bronchial structures and respiratory
sounds and achieved some conclusions [37]. We plan to
further explore the aeroacoustic phenomenon with the effect
of bronchial walls.

In this paper, we study respiratory sound production
mechanisms based on physical models of bronchi and air-
flow movement. We simulated airflow characteristics in
the bronchi and the sound pressure spectrum. Based on
the relationships between acoustic spectra and lung pathol-
ogy, we further developed an end-to-end respiratory sound
classification system with a feature-band attention module.
This paper is organized as follows. Section II describes the
related formulas for bronchial and acoustic modelling and
the baseline system in this study. Section III describes the
methods proposed in this study, including bronchial physical
modelling and optimized automatic classification systems.
Section IV illustrates the experimental settings and analy-
ses the simulation results of physical and acoustic mod-
elling. Section V discusses the performance of respiratory
sound classification systems. Finally, Section VI concludes
the paper.

II. RELATED WORKS
To better understand the mathematical content in this paper,
we define consistent notations. The subscript n denotes the
direction outside the wall of the tube. The subscripts i, j, and
k denote the directions of fully Cartesian coordinates. The
vectors with the superscript b represent the parameters of the
bronchial tube wall.

A. FLUID CONTROL EQUATION
Airflow in the bronchi is in a roughly viscous flow state,
which is isothermal and incompressible. The continuity equa-
tions for respiratory airflow movement in the tube and the
N-S control equation are described in [38] and formulated as
follows:

∂ui
∂xi
= 0, (1)

∂ui
∂t
+
∂
(
uiuj

)
∂xj

= −
1
ρ

∂p
∂xi
+ v

∂2ui
∂xjxj

+ h, (2)

where ui and uj are the velocities in directions i and j, respec-
tively; xi and xj are the displacements in directions i and
j, respectively. ρ is the airflow density, v is the kinematic
viscosity coefficient of airflow in bronchi, and they are related
to viscosity µ, µ = ρ × v. The viscosity of airflow µ is set
to 1.89 × 10−5 Pa · S. p is the pressure value per unit area
produced by the flow field in the bronchi. t indicates time,
h represents volume force, h = ρg, and g = 9.8 N/kg.
In the flow field simulation in the bronchi, the standard

k − ε model is adopted for steady simulation, and the LES
simulation is employed to solve the N-S equation. In the
LES simulation, the filtered continuity equation for airflow
movement in the bronchi and the N-S control equation are

written as:

∂ ūi
∂xi
= 0, (3)

∂ ūi
∂t
+
∂
(
uiuj

)
∂xj

= −
1
ρ

∂ p̄
∂xi
+ v

∂2ūi
∂xixj

, (4)

where ūi denotes the mean of ui, and uiuj is written as uiuj =
ūiūj+

(
uiuj − ūiūj

)
. We concencatenate (3) and (4):

∂ ūi
∂t
+
∂
(
ūiūj

)
∂xj

= −
1
ρ

∂ p̄
∂xi
+ v

∂2ūi
∂xixj

+
∂

∂xj

(
ūiūj − uiuj

)
. (5)

B. SOLID CONTROL EQUATION
We also consider the influence of bronchial wall deforma-
tions on bronchi airflow. According to nonlinear continuum
mechanics, the control equation for the solid bronchial wall
is as shown in [38]:

ρb
dub

dt
= ∇

(
F · Yb

)
+ ρbf b, (6)

where ρb is the bronchial wall density, ub is the motion
velocity of the bronchial wall, Yb is the stress tensor,
f b denotes stress near the boundary of the bronchial tube wall,
and F is the deformation gradient of the bronchial wall, which
is related to wall displacement.

C. SPECTRUM SIMULATION OF SOUND PRESSURE LEVELS
We use the FW-H equation to simulate the sound pressure
level spectrum. The FW-H equation is as follows:

1

a20
·
∂2p′

∂t2
−∇

2p′ =
∂

∂t
(Aδ (f ))−

∂

∂xi
(Fiδ (f ))

+
∂2

∂xi∂xj

(
TijH (f )

)
, (7)

where a0 represents the sound velocity in the bronchi, δ (f )
represents the Dirichlet function, H (f ) is the step function,
and p′ represents the sound pressure at an observation point
in the bronchi, which can be arbitrarily designated.

The right side of (7) represents the source term generated
by bronchial aerodynamic noise, and the monopole source
term is expressed as:

A = ρ0vn + ρ (un − vn), (8)

where ρ0 is the airflow density value without perturbation.
Since airflow in the bronchi can be regarded as incompress-
ible viscous flow, in this paper, ρ = ρ0.

The dipole source term is expressed as:

Fi = Yijnj + ρui(un − vn), (9)

where nj represents the unit normal vector pointing to the
outer area of the flow field surface. The fluid velocity com-
ponent perpendicular to the integration surface is represented
by un, and vn represents the velocity component of integration
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surface movement. Yij represents the stress tensor of the fluid
domain:

Yij = p̄δij − µ
[
∂ ūi
∂xj
+
∂ ūj
∂xi
−

2
3
∂ ūk
∂xk

δij

]
, (10)

where µ represents the viscosity of the airflow in the lungs,
and p̄ is the average sound pressure level.

The quadrupole source term Tij is expressed as:

Tij = Yij + ρūiūj − a20 (ρ − ρ0) δij = Yij + ρūiūj. (11)

Based on equation (7), the sound pressure p′ of a desig-
nated observation point of the bronchi is calculated. Then,
the effective sound pressure p (e) is obtained [39]:

p (e) =

√
1
T

∫ T

0
(p′)2 · dt. (12)

We calculate the sound pressure level SPL for a designated
observation point [39]:

SPL = 20 lg
p (e)
p (ref )

, (13)

where p (ref ) is the reference sound pressure and generally
p(ref ) = 2× 10−5 Pa.

D. DEEP NEURAL NETWORK ARCHITECTURE
We take ResNet [40] as the backbone network for the baseline
respiratory sound classification system. The basic component
of the ResNet network is a residual module, which uses a
jump-connect structure (also known as identity mapping).
Since the ResNet network is composed of many residual
modules stacked together, it is easy to modify and expand the
network structure.

III. PROPOSED METHODS
To explore the relationship between sound generation on the
bronchial structure and the feature representations of respi-
ratory sound signals, we propose an end-to-end respiratory
sound classification framework with a feature-band attention
module, which is obtained from the fluid-solid coupling sim-
ulation of a bronchial model.

A. BRONCHIAL MODELLING
1) FLUID-SOLID COUPLING BOUNDARY CONDITIONS
FOR BRONCHI
Fluid-solid coupling modelling of bronchi requires bound-
ary conditions: kinematic conditions, fluid velocity condi-
tions, and dynamic conditions. Specifically, on the fluid-solid
coupling interface between the bronchial fluid domain and
the solid domain, the following conditions (a)-(c) should be
satisfied [38]:

a: KINEMATICS CONDITION
The corresponding mass point between the fluid boundary
domain and the solid domain (i.e. the wall of the bronchi)
shares a consistent displacement. Namely, xb |0 = x |0 ,

FIGURE 1. The iteration process for fluid-solid coupling.

where xb |0 represents the boundary displacement of the
bronchi’s solid domain close to the fluid boundary surface,
and x |0 represents the boundary displacement of the fluid
domain close to the solid boundary surface.

b: FLUID VELOCITY CONDITION
The fluid-solid coupling interface adopts a non-slip wall
boundary condition, and the boundary velocity of the
bronchial fluid domain and the boundary velocity of
the bronchial wall should satisfy this condition. Namely,
ub |0 = u |0 , where ub |0 represents the boundary velocity of
the bronchial wall close to the fluid boundary surface, and u |0
represents the boundary velocity of the fluid domain close to
the boundary surface of the bronchial wall.

c: DYNAMIC CONDITION
The balanced force condition is f b · nb = f · n, where f b

represents the stress of the solid domain close to the fluid
boundary surface, and f represents the stress of the fluid
domain close to the solid boundary surface. nb is the normal
vector of the bronchial wall, and n is the normal vector of the
fluid boundary in the bronchi.

The iterative calculation flowchart for the fluid-solid cou-
pling of the bronchial model is shown in Fig. 1. The standard
k−εmodel and the solid control equation are used to simulate
the flow field in the bronchi, to calculate the flow field
velocity ūi and ūj, to determine flow field displacement x̄i and
x̄j, and to find the pressure p̄ per unit area of the flow field.
When the flow field reaches a steady flow state, we select
LES to simulate the flow field more precisely.

2) SOUND PRESSURE SPECTRUM CURVE FOR
RESPIRATORY SIGNALS
To solve the FW-H equation, we substitute the pressure p̄, the
flow field velocity ūi and ūj, and the flow field displacement
xi, xj into equation (10) to obtain Yij. Then, we substitute Yij
into (9) and (11) to determine Fi and Tij, and we substitute
Fi, Yij, and Tij into (7) to find p′. The effective sound pressure
p (e) is obtained after the root mean square calculation of the
instantaneous sound pressure p′ at the designated observation
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FIGURE 2. The overall framework.

point over time, and then the sound pressure level SPL at the
designated observation point is calculated in (13).

B. RESPIRATORY SOUND CLASSIFICATION FRAMEWORK
1) SYSTEM STRUCTURE
We design end-to-end respiratory sound classification sys-
tems based on the ResNet network. In contrast to the existing
systems, we do not copy the acoustic features from the speech
domain or pretrained neural networks for image recognition.
We introduce the feature acoustic attention mechanism to the
ResNet-backbone structure to strengthen the representation
of frequency band characteristics among different respiratory
sound signals. Due to the feature attention module that is
inferred by bronchial modelling and simulation, the spectrum
characteristics of the respiratory sound signals are adaptively
weighted to further improve the classification performance.
The overall framework is shown in Fig. 2.

2) CHANNEL-WISE ATTENTION MODULE
The whole structure of the ResNet baseline includes two
1-dimensional convolutional layers (Conv1D), two ResNet
blocks that operate on the frame level, a statistic pooling layer
that calculates the mean and standard deviation of each sam-
ple along the time-axis, some fully-connected (FC) layers,
and an output layer with four nodes for four classes. Based
on the ResNet baseline, we adopt the Squeeze-and-Excitation
(SE) module [41] to capture the dependency between differ-
ent feature channels and adjust the weight of each feature
channel adaptively. The output of the residual block flows
through the SE block before the skip connection, where T
denotes the sequence length, F is the feature dimension, C
denotes the number of channels of the residual block, and
parameter r is a reduction ratio for controlling the compu-
tational cost of the SE block.

FIGURE 3. Band attention module.

3) FEATURE-BAND ATTENTION LEARNING
Based on the analysis of spectrum curves for respiratory
sound pressure levels, we propose two types of feature-band
attention modules to obtain important frequency band infor-
mation in respiratory sound signals, namely, a feature-band
attention module (FB attention module) and a feature-band
with a Q-parameter band attention module (FBQ attention
module). With the FB attention module, the weight distri-
bution of frequency bands in respiratory sound signals is
obtained by the network’s training process, and the scale
operator weights the acoustic feature vectors. In the FBQ
attention module, the spectrum characteristics for respira-
tory sound pressure simulation analyses are considered to
include a Q vector. Then, the scale operator conducts band-
wise multiplication with theQ vector to reinforce informative
features and suppress less useful features. The structures of
these two feature-band attention module types are shown in
Fig. 3, where X represents the original acoustic features of
respiratory sound signals, and X̃ represents scaled acoustic
features with a feature-band attention module.

Given C bands of Mel-filter banks and T frames for each
sample, the acoustic feature vectors in each Mel-filter band
are averaged through the global pooling layer:

zc =
1
T

T∑
t=1

xt,c, (14)

where xt,c represents the value of the c-th filter band in
the t-th frame from the original acoustic features. X =

[x1, x2, · · · , xt, · · · , xT ], xt = [xt,1, · · · , xt,c, · · · , xt,C ].
zc represents the mean of the c-th filter band, and Z =
[z1, z2, · · · , zc, · · · , zC ]. The band-wise weight S =

[s1, s2, · · · , sc, · · · , sC ] is calculated through a series of non-
linear transformations.

S = σ (W2δ (W1Z)), (15)
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FIGURE 4. The bronchi geometric model.

FIGURE 5. The fluid domain and solid domain of the bronchi geometric
model.

where σ (·) represents the sigmoid function, δ (·) is the ReLU
function, andW1 andW2 are the network weights of the two
fully-connected layers.

For the FB attention module, the weight S dots the
original acoustic features X to obtain new scaled acous-
tic features, and X̃ =

[
x̃1, x̃2, · · · , x̃t, · · · , x̃T

]
, x̃t =

[x̃t,1, · · · , x̃t,c, · · · , x̃t,C ]:

x̃t,c = Fscale
(
xt,c, sc

)
= sc · xt,c. (16)

In the FBQ attention module, the parameter Q =

[q1, q2, . . . , qc, . . . , qC ] is used to control the weight S, and
then dots the original acoustic features X to obtain a new
scaled acoustic feature X̃:

x̃t,c = Fscale
(
xt,c, sc, qc

)
= sc · xt,c · qc. (17)

We introduce these two types of feature-band attention
modules to the SE-ResNet system and design the FB-SE-
ResNet system and the FBQ-SE-ResNet system.

IV. BRONCHIAL PHYSICAL MODELLING AND
SIMULATION RESULTS
A. EXPERIMENTAL SETUP
1) BRONCHIAL MODELLING
Based on the airway tree model proposed by Weibel,
we rendered the geometric structure of normal and asth-
matic bronchi with SolidWorksmodelling software. Since the
vortex of the fluid movement in the large bronchi greatly
contributes to creating respiration sounds in the bronchi,
we select 0-3 level bronchi in theWeibel model for geometric
modelling, and the wall thickness is 1.65 mm [42]. The spe-
cific parameters of the bronchial geometric model are shown
in Table 1.

TABLE 1. Specific parameters of bronchial geometric model (unit:mm).

FIGURE 6. The fluid-solid coupling surface in the solid domain.

FIGURE 7. The observation point of sound pressure levels on the bronchi.

Fig. 4 (a) shows the normal bronchi geometric model.
We also narrowed some specific bronchi to obtain the asth-
matic bronchi structure, as shown in Fig. 4 (b), and it is
emphasized by two red circles. The fluid domain and the solid
domain of the bronchi are shown in Fig. 5, where the solid
domain of the bronchi in Fig. 5 (b) is the shaded part outside
the yellow area in Fig. 5 (a).

2) FLUID-SOLID COUPLING MODELLING
We used ANSYS software to simulate the fluid-solid coupling
model. First, we executed the Fluid Flow (Fluent) workbench
in ANSYS software to simulate the airflow velocity and pres-
sure of the bronchi fluid domain, andwe utilized the Transient
Structure for the physical qualities of the bronchi’s solid
domain, including the solid wall displacement of the bronchi
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FIGURE 8. Velocity nephograms of normal bronchi and asthmatic bronchi (velocity unit: m/s).

and the velocity of the tracheal wall. Then, the System Cou-
pling module in ANSYS is used to transfer data between the
fluid domain and the solid domain.

In the Fluent workbench, we set the inlet boundary con-
dition of the bronchi so that airflow enters the bronchial
inlet at a certain speed with the software option Velocity
Inlet . The air inlet velocity was 1.2 m/s, and it was evenly
distributed on the inlet surface with an airflow turbulence rate
that is set to 10%. The outlet boundary conditions of the eight
outlets for the bronchi are all set to Pressure Out (software
option), and the relative pressure of the outlet was 0 [28].
We assumed that this fluid-structure interaction simulation
experiment was carried out under the physiological condition
of a human body temperature of 37 ◦C. The airflow density
ρ is set to 1.1 kg/m3, and the airflow viscosity µ is set to
1.89× 10−5 Pa · S. We used the standard k − ε model to
calculate the airflow velocity until the bronchial fluid domain

reached a steady flow state, and then we adopted the LES
simulation to further calculate the flow field information with
higher simulation accuracy.

In the Transient Structural module of ANSYS, we simu-
lated the pressure and displacement of the bronchial wall
during respiration. In the experiments, the density ρb of
the bronchial wall was set to 1,060 kg/m3, Poisson’s ratio σ
was 0.4, and the elastic modulus was set to 0.9 MPa, which
follows Hooke’s law [43]. In the solid domain, the inner
wall of the bronchi is set as a fluid-solid coupling surface.
As shown in Fig. 6, the fluid-solid coupling surface is marked
in yellow and indicated by a red arrow.

Finally, we utilized the SystemCouplingmodule inANSYS
software and linked the simulation data to the Fluid Flow
module for the fluid domain and the Transient Structural
module for the solid domain. To prevent extreme deforma-
tions in the grid or excessive distortion rates in the simulation
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FIGURE 9. Pressure nephograms of normal bronchi and asthmatic bronchi (pressure unit: Pa).

process, we employed a smoothing method to control the grid
of the fluid-solid coupling surface and to correct the deformed
grid in real time.

3) ACOUSTIC SIMULATION SETTINGS
In the acoustic module, the acoustic field information is
calculated according to the airflow velocity ūi and ūj of the
bronchi fluid domain at each time step and the pressure
intensity p̄ of the flow field.
In clinical auscultation, the position where the auscultation

head is placed roughly corresponds to the level 2 bronchi
in the Weibel model. We chose position ‘‘1’’, as shown in
Fig. 7, as the observation point for the sound pressure level.
The time step is set to 2.5 × 10−4 s in the simulation of
sound pressure levels. When the simulation converged, the
sound field simulation was completed. Then, we used the
Fourier Transform module to obtain the sound pressure level
spectrum curve.

B. SIMULATION RESULTS
1) AIRFLOW VELOCITY OF BRONCHI
Fig. 8 shows velocity nephograms of normal bronchi and
asthmatic bronchi under inhalation and exhalation conditions,
which were scanned in the plane on the central axis of

the bronchi. As shown in Fig. 4, we segmented the bronchi
into four regions, which were referred to as levels 0 through 3,
and we found that airflow velocity increases as it moves
through these ascending levels.

For normal bronchi, a flow rate imbalance occurs, wherein
the airflow velocity on the side close to the bifurcation point
is faster, and the airflow velocity at the central axis of the
bronchi is higher than that on both sides.

For asthmatic bronchi, the overall velocity of airflow on
the blocked side of the bronchus is greater than that on the
unblocked side of the bronchus. For example, the maximum
flow velocities of the blocked bronchus during inhalation and
expiration are approximately 10.3 m/s and 9.32 m/s, respec-
tively, whereas the maximum values of the normal bronchus
flow velocity in the inhalation state and the expiration state
are 6.74 m/s and 6.47 m/s, respectively.

2) BRONCHIAL WALL PRESSURE
Wecompared the pressure nephograms of normal bronchi and
asthmatic bronchi under inhalation and exhalation conditions,
which were scanned in the plane on the central axis of the
bronchi. As shown in Fig. 9, in the inhalation state, the
maximum bronchial wall pressure is in the entrance region,
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FIGURE 10. The spectrum curves of the sound pressure levels of normal bronchi and asthmatic bronchi.

and the wall pressure decreases as the airflow moves through
levels 0-3 of the segmented bronchi model. However, in the
exhalation state, the maximum wall pressure of the bronchi
is at the outlet region, and the wall pressure increases as the
airflow moves through levels 0-3 of the segmented bronchi
model.

Furthermore, we found that the wall pressure of asthmatic
bronchi is more uneven than that of normal bronchi. The
overall pressure range on the blocked side of the bronchus
is greater than that on the unblocked side of the bronchus
(as well as that of the normal bronchi), which is consistent
with the phenomenon that patients with physiological asthma
breathe more difficultly.

3) SOUND PRESSURE LEVEL SPECTRUM CURVE
In the acoustic simulation process, we compared the sound
pressure level spectrum curves of normal bronchi and asth-
matic bronchi in both inhalation and expiration states, which
were obtained from observation point 1. Fig. 10 shows that
spectrum curves of normal respiratory sounds and asthmatic
sounds are mainly distributed below 2,000 Hz, but sound
pressure levels of asthmatic bronchi are higher than those of
normal bronchi both in the exhalation and inhalation state,
as well as the distribution differences in spectrum peaks.
For example, the spectrum curves reach maximum peaks
at 45 Hz (asthmatic bronchi) and 50 Hz (normal bronchi)
under exhalation conditions. Under inhalation conditions, the
sound pressure level spectrum curve of normal bronchi ranges

from 0 to 1,000 Hz and thereafter declines until stabilizing at
approximately 1,000 Hz. However, the sound pressure level
spectrum curve of asthmatic bronchi still fluctuates with low
pressure level values during the frequency range of 1,000 Hz
to 2,000 Hz. These spectrum peak distributions are nearly
identical to clinical statistics, which benefits the design of the
feature-band attention module proposed in Section III.

V. CLASSIFICATION RESULTS AND ANALYSIS
A. DATASET
To verify the proposed methods, we used the Inter-
national Conference on Biomedical and Health Infor-
matics (ICBHI’17) scientific challenge respiratory sound
database [44]. The dataset contains 920 recordings from
126 patients, and a total of 6,898 respiratory cycles:
1,864 cycles are annotated by respiratory experts as crackles,
886 cycles are identified as wheezes, 506 cycles are both, and
the rest are normal. According to ICBHI official standards,
60% of breathing cycles are marked as the training set, and
40% make up the test set. All samples are recorded with
different equipment from hospitals in Portugal and Greece
by two different research teams. Most audio samples of the
database were acquired by the research team of the Respira-
tory Research and Rehabilitation Laboratory (Lab3R) of the
School of Health Sciences, University of Aveiro (ESSUA),
and the others were recorded by the research team of the
Aristotle University of Thessaloniki (AUTH). A significant
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TABLE 2. The ResNet and SE-ResNet baseline architectures. F is the
feature dimension (F =41 for FBank features), and T is the sequence
length. FC denotes the fully-connected layer.

number of samples are noisy, which makes the dataset more
challenging.

B. EVALUATION METRIC
In the ICBHI challenge, the official evaluation metrics for
the four-class (normal (N), crackles (C), wheezes (W), and
both (B)) classification problem are defined as follows [12]:

Specificity =
TN

TN + FP
× 100%, (18)

Sensitivity =
TP

TP+ FN
× 100%, (19)

Score =
Specificity+ Sensitivity

2
× 100%, (20)

where Specificity represents the specificity of the system,
Sensitivity is the sensitivity of the system, and Score is the
average accuracy of the system. TN is the number of normal
respiratory sounds that are correctly detected, FP represents
the number of samples that are misjudged as abnormal res-
piratory sounds, TP is the number of abnormal respiratory
sounds that are correctly detected, and FN represents the
number of samples that are misjudged as normal respiratory
sounds.

C. FEATURE EXTRACTION
First, all samples were downsampled to 4 kHz. The
41-dimensional FBanks, including the logarithmic power
spectrum extracted from 40 filter banks and 1-dimensional
energy values, were used as the neural network inputs.
The architectures and detailed parameters of ResNet and
SE-ResNet are listed in Table 2. From the sound pressure
level spectrum curve in Section IV, we found that normal
respiratory sounds and wheezing sounds had different spec-
trum peaks at 50 Hz, 100 Hz, 340 Hz, and other frequen-
cies, and the sound pressure level spectrum curves of normal
bronchi and asthmatic bronchi tended to be relatively flat
after 1,000 Hz. Then, we spliced the Mel-filter bands on
the Mel scale with a sampling rate of 4 kHz, as shown in
Table 3. We matched the peak frequencies to the Mel bands
and focused on Mel bands 2-10, 12-13, 17-18, 20-21, and
26-27. The weighting parameter Q for the FBQ attention

TABLE 3. Frequency range for 40 Mel filter bands in Mel scale with a
sampling rate of 4kHz (unit: Hz).

FIGURE 11. Classification performance on different values of q.

module is set to:

Q = [1, q, q, q, q, q, q, q, q, q, 1, q, q, 1, 1, 1, q, q, 1, q, q,

1, 1, 1, 1, q, q, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1].

(21)

D. RESULTS AND DISCUSSION
We analysed the proposed end-to-end respiratory sound
classification systems in the ResNet network on the
ICBHI’17 database, which are abbreviated as ResNet-
backbone, SE-ResNet, FB-SE-ResNet, and FBQ-SE-ResNet.
ResNet-backbone is the end-to-end system on the ResNet-9
network with four classes as outputs. SE-ResNet uses two
SE blocks and places the SE block sequentially after the
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TABLE 4. Comparisons among different respiratory classification systems with ICBHI Challenge’s official split (Highest scores in bold).

FIGURE 12. Examples of original FBank features (left: normal, center: crackle, right: wheeze).

FIGURE 13. Examples of scaled FBank features with FB-attention (left: normal, center: crackle, right: wheeze).

FIGURE 14. Examples of scaled FBanks features with FBQ-attention (left: normal, center: crackle, right: wheeze).

Res layer. FB-SE-ResNet applies the FB attention module
on the SE-ResNet framework. FBQ-SE-ResNet scales the FB
attention module of FB-SE-ResNet according to the simula-
tion results of bronchial modelling. We compared them with
public systems [12], [13], [16], [18]–[20] in terms of the
official evaluation metrics, Specificity, Sensitivity, and Score,
which were released by the organization.

The details are shown in Table 4. Since the results in
some references were calculated to two decimal places and
the other results were whole integer values, we unified the
accuracy to whole integer values.

1) SE BLOCK
From Table 4, the ResNet-backbone system gained 9%
relative improvement in score value compared to the
Decision Tree method [13], which is the baseline for the
ICBHI 2017 Challenge. Based on the ResNet-backbone sys-
tem, we introduced SE blocks and obtained relatively bet-
ter performance in which the specificity value increased by
25%. The SE block’s characteristics render it more attuned to
feature channels between Res layers, thereby contributing to
such improvements. However, the sensitivity value decreased
by 35%, which may be due to unbalanced sample numbers

among the four classes; for example, the normal class con-
tains as many samples as the total number from the other three
classes.

2) FEATURE-BAND ATTENTION MODULE
We focus on the effects of the feature-band attention mod-
ule. In terms of the score value, the FB-SE-ResNet and
FBQ-SE-ResNet systems were both better than the
SE-ResNet system, which reached 2% and 6% improve-
ments, respectively. The sensitivity values of the FB-SE-
ResNet and FBQ-SE-ResNet systems were inferior to the
ResNet-backbone but were beyond the SE-ResNet. For
specificity values, the reverse applied. We think this is due
to the effects of the feature-band attention module, which
extracts innate feature representations for abnormal respira-
tory sounds even with an imbalanced sample size. In addi-
tion, we analysed the classification performance on different
values of q in the range of 1.1 to 2.0, as shown in Fig. 11.
We found that the q value of the feature had a great influence
on the performance improvement and chose the best system
with q = 1.3 to compare with the FB-SE-ResNet system.
Examples of FBank acoustic features, the scaled FBank

features with FB attention learning, and the scaled FBank
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TABLE 5. Comparisons between the proposed system with the state-of-the-art systems with the random data split(highest scores in bold).

FIGURE 15. Confusion matrices for the FBQ-SE-ResNet.

features with FBQ attention learning, which are extracted
from the normal, crackle, and wheeze respiratory sounds
respectively, are shown in Fig. 12 – 14. The original FBank
features of abnormal lung sounds, such as wheezes and crack-
les, show significant features. And the scaled FBank features
with the introduction of the feature-band attention module,
allow the systems to focus on important acoustic feature
bands, thereby improving the classification performance.

Table 4 also shows the performance obtained by the pro-
posed FBQ-SE-ResNet framework and state-of-the-art pub-
lished systems (where available), CNN-MoE and two-path
VGG-16. We note that the FBQ-SE-ResNet framework lies
second in the official training-set split, which only uses a low-
complexity network structure ResNet-9, but is very competi-
tive to the state-of-the-art systems.

For the experiment with 5-fold cross validation,
we obtained a sensitivity value of 80%, a specificity value of
87%, and a score value of 83%. Compared to the CNN-MoE
system, the proposed FBQ-SE-ResNet gained 18% relative
improvement in sensitivity and 5% relative improvement in
score, while there was a relative decrease in specificity of 3%.
For the experiment with 10-fold cross validation, we achieved
an outstanding performance with a sensitivity value of 93%,
a specificity value of 84%, and a score value of 88%. The
classification results are presented in the confusion matrices
as shown in Fig. 15.
Let’s take for example, the 10-fold cross validation. It can

be observed that the true positive rates of normal, crackles,
wheezes and both (crackles and wheezes) are 93.0%, 93.0%,
74.7% and 64.0% respectively. In the case of the normal class,

4.9%, 1.4% and 0.5% of samples are falsely predicted as
crackles, wheezes and both (crackles and wheezes) respec-
tively. In the crackles class, 5.1%, 1.0% and 0.9% of samples
are wrongly predicted as normal, wheezes and both (crackles
and wheezes) respectively. In the wheezes class, 6.7%, 8.2%
and 10.4% of samples are incorrectly identified as crackles,
normal and both (crackles and wheeze) respectively. For the
class of both (crackles and wheezes), only 3.6% of samples
are falsely identified as normal, while 12.2% and 20.2% of
samples are incorrectly classified as crackles and wheezes
respectively. Although, it’s still an interesting and challenging
task to further improve the discriminant performance of the
class of both (crackles and wheezes), the results demonstrate
the proposed system is a progressive and innovative approach
to the diagnosis of normal and abnormal respiratory sounds.

VI. CONCLUSION
We studied the physical modelling of lung bronchi to simulate
sound pressure curves of normal breath sounds and wheezes.
The simulation results show that respiratory sound signals
in the bronchi are mainly distributed below 2,000 Hz, and
the spectrum peaks differ among various types of respira-
tory sounds. Based on such respiratory sound characteristics,
we designed a feature-band attention module to adaptively
weight the spectrum characteristics of the respiratory sound
signals; this feature-band attention module is then used as
the input of the end-to-end respiratory sound classification
system. Experimental results on public databases indicate that
the proposed end-to-end respiratory sound classification sys-
tems with a feature-band attention module achieve promising
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performance. In the future, we intend to explore the impact
of actual physiological conditions, such as increased airway
mucus secretion and airway mucosal oedema. In addition,
we plan to optimize the sensitivity value with data augmen-
tation and the transfer learning technique.
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