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ABSTRACT Bitcoin is one of the best-known cryptocurrencies, which captivated researchers with its
innovative blockchain structure. Examinations of this public blockchain resulted in many proposals for
improvement in terms of anonymity and privacy. Generally used methods for improvement include mixing
protocols, ring signatures, zero-knowledge proofs, homomorphic commitments, and off-chain storage
systems. To the best of our knowledge, in the literature, there is no study examining Bitcoin in terms
of differential privacy, which is a privacy notion coming up with some mechanisms that enable running
useful statistical queries without identifying any personal information. In this paper, we provide a theoretical
examination of differential privacy in Bitcoin. Our motivation arises from the idea that the Bitcoin public
blockchain structure can benefit from differential privacy mechanisms for improved privacy, both making
anonymization and privacy breaches by direct queries impossible, and preserving the checkability of the
integrity of the blockchain. We first examine the current Bitcoin implementation for four query functions
using the differential privacy formulation. Then, we present the feasibility of the utilization of two differential
privacymechanisms in Bitcoin; the noise addition to the transaction amounts and the user graph perturbation.
We show that these mechanisms decrease the fraction of the cases violating differential privacy, therefore
they can be used for improving anonymity and privacy in Bitcoin. Moreover, we showcase the noise addition
to transaction amounts by using IBM Differential Privacy Library. We compare four differential privacy
mechanisms for varying privacy parameter values and determine the feasiblemechanisms and the parameters.

INDEX TERMS Anonymity, bitcoin, blockchain, cryptocurrency, differential privacy, graph perturbation,
noise addition, privacy.

I. INTRODUCTION
Bitcoin and its blockchain structure proposed in 2008 [1]
caused a new era to be opened in digital cash systems with the
concept of proof of work and conversion ofmining power into
money. Since then, although, many blockchain-based digital
currencies came out, Bitcoin still remains at the top of the
market with $1,171,005,836,167 market capitalization [2] as
of November 2021. Since Bitcoin has a public blockchain and
transactions are explicitly visible, activities of the users can
be tracked and linked, and the user identities can be revealed
by linking one of the transactions to off-network information
as surveyed in [3] and [4]. For instance, with the knowl-
edge that someone shopped online for 0.000381 BTC from
a well-known e-commerce site, Bitcoin addresses that made
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a 0.000381 BTC valued shopping can be found by querying
the Bitcoin address of the site and the transaction amounts
equal to 0.000381 from the blockchain. Consequently, room
for research came up for anonymity and privacy improve-
ment in Bitcoin, and many academic papers have been pub-
lished [3]–[7]. In these studies, generally used methods for
anonymity and privacy improvement include mixing proto-
cols, ring signatures, zero-knowledge proof, homomorphic
commitments, and off-chain storage systems. Some of these
studies are implemented, for example, Monero [8] using ring
signatures, and Zcash [9] using zero-knowledge proofs are
two of the prominent cryptocurrencies.

On the other hand, differential privacy, which was pro-
posed in 2006 [10], [11], is a privacy notion that is related to
the distinguishability of the presence/absence of an element
in a dataset via query functions. Amechanism is differentially
private if this distinguishability is below some threshold.
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There are methods for providing differential privacy, and
these methods can be used for improving privacy. Perturbing
data with added noise is a way of providing differential
privacy, and this method is used for sharing private data for
analysis purposes instead of sharing real data. For instance,
in order to ensure differential privacy, data from a health
database is shared with researchers under certain rules, e.g.,
a certain number of queries are allowed, and the actual data is
perturbed with the addition of noise. This approach provides
global differential privacy since the addition of the noise is
done after the data aggregation. Differential privacy can be
achieved locally, as well. In this approach, noise is added
before data is aggregated to a database. This local approach is
utilized by Apple for collecting data from devices [12] and by
Google for collecting data from Chrome web browsers [13].
There is a trade-off between privacy and data utility. Adding
more noise improves privacy, but it also decreases data utility.
This trade-off is formally controlled using a parameter called
epsilon (ε). As ε gets smaller, the amount of noise increases,
resulting in improved privacy and decreased utility. There
are many studies utilizing differential privacy approaches in
different areas, some examples include messaging, health,
scheduling for ridesharing, artificial intelligence, deep learn-
ing, and software defect prediction [14]–[19].

While researchers are exploring new ways to improve
anonymity and privacy in blockchain-based cryptocurrencies,
taking extra measures for improving anonymity and privacy
complicates checking the integrity of the system. This com-
plication is due to the use of public Bitcoin addresses and
transaction amounts to check the integrity of the system.
For instance, when the transaction amounts are hidden using
a cryptographic approach, the total number of coins in the
system cannot be counted, and if someone breaks the system,
he can issue coins without being detected. Similarly, when
the links between transactions are broken using cryptography,
the flow of bitcoins cannot be tracked [3]. Considering these,
we hypothesize that the Bitcoin blockchain may benefit from
differential privacy, which will not affect the checkability of
the integrity of the system. Hiding actual transaction amounts
by adding noise can be a way of applying differential privacy.
Our motivation for this approach also arises from the fact that
perturbing actual data with noise makes anonymization and
privacy breaches by direct queries impossible. For instance,
in the previously mentioned scenario with 0.000381 BTC
valued shopping from awell-known e-commerce site, if some
noises are added to the transaction amounts while adding
them to the blockchain, a value of 0.000381would be updated
as 0.000383 or 0.000377. Therefore, the detection of these
shoppers would be prevented by direct queries. Moreover,
there would be no guarantee that the closest value to 0.000381
corresponds to the related transaction.

A. RELATED WORK
To the best of our knowledge, there is no study on the
examination of Bitcoin in terms of differential privacy in the
literature. There are studies combining differential privacy

and blockchain [20]–[24] mostly in general areas. Privacy-
preserving solutions for general blockchain structure were
studied in [20], and differential privacy was mentioned as a
potential solution very briefly. Differential privacy was used
in [21] while aggregating crowd data via blockchain by a
service provider before sharing it with a data consumer. Dif-
ferentially private machine learning models via blockchain
were studied in [22] and [23]. Differential privacy was used
in [24] to obfuscate the results of statistical queries in a
differentially private blockchain-based data-sharing model.

The utilization of differential privacy in financial
blockchain-based systems for improving anonymity and pri-
vacy has recently begun to be considered. Digital currency
and international money transfers are considered areas as
future applications of differential privacy in blockchain [25].
Correspondingly, inspired byMonero, an approach for a cryp-
tocurrency utilizing differential privacy was introduced [26]
as a proposal to Zcash Foundation, and granted; however,
there is no follow-up study that details and verifies the
approach as of this writing. The addition of noise to trans-
action amounts in the Ethereum blockchain and analysis
according to the Eigen centrality measure was done in [27].
The implementation was done in R using relevant net-
work packages, and January 2019 blockchain transaction
data (1,551 transactions) obtained from the Etherscan web-
site [28] was used in the study. A graph structure was formed
using these transactions, and the most central nodes were
detected before and after addingGaussian noise to transaction
amounts respectively. It was shown that the central nodes
changed when the noises were added. The motivation for
using centrality comes from the idea that more central nodes
are at higher risk of being attacked, therefore, preserving
privacy for these nodes is important. In this model, the noise
addition is done by dedicated and distributed servers before
publishing the transactions online. The actual transaction
amounts can be accessed through these servers by authen-
ticated users. The Gaussian parameters were determined
trial and error, ε was determined as 0.9, and the delta (δ)
was determined as 0.4. This study did not examine other
differential privacy mechanisms, nor gave the results for
different Gaussian parameter values.

In [29], four variants of differential privacy mechanisms
(Laplace, Gaussian, Uniform, and Geometric) were tested
in decentralized blockchain-based smart metering. In this
system, smart meters act as blockchain nodes sending their
real-time data plus noises generated via differential privacy
mechanisms to grid utility databases. The grid energy data
from [30] was modified accordingly to carry out an exper-
iment for 24-hour usage. The evaluation was carried out
on 144 data values ranging between 200 and 1,900. For the
implementation, Python libraries NumPy v1.14 and pandas
v1.0.3 libraries were used. The Laplace, the Gaussian, and
the Geometric mechanisms were compared using different ε
values (ε = 0.01, 0.05, 0.1, 0.3, 0.7, and 1), and the same
values are used for δ in the Uniform mechanism. The eval-
uation was done according to Mean Absolute Error (MAE).
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MAE is calculated by summing absolute differences between
the noisy values and the original readings, and taking the
mean. Graphs, showing the original and protected readings,
were generated at the stated ε and δ values for the mecha-
nisms. The results showed that the mechanisms provide high
privacy by adding a large amount of noise when ε or δ is
low (ε, δ = 0.01), and the privacy reduces gradually as ε or
δ increases. Among these four mechanisms, the Geometric
and the Laplace are found to be performing better at lower ε
values by adding a sharp amount of noise, resulting in higher
MAEs. Specifically, the Geometric mechanism is found to
be more suitable for protecting high peak values (e.g., high
usage), and the Laplace mechanism is found to be more
suitable for protecting low peak values (e.g., low usage) at ε=
0.01. It was stated that an adequate amount of noise is added
when ε, δ = 0.01 and 0.05, to protect privacy, and ε, δ = 0.01
were declared as the most suitable privacy parameters. The
MAE values for ε, δ > 0.05 were not provided in the study.

B. CONTRIBUTION
As far as we are aware, there is no study on the examination
of Bitcoin from the differential privacy perspective, and this
is the first time bringing together these two. In this paper,
first, we examine the current implementation of Bitcoin in
terms of differential privacy. Then we examine the utilization
of one of the differential privacy approaches, i.e., adding
noise to the transaction amounts for four query functions. The
noise addition decreases the fraction of the cases violating
differential privacy from 1/

2 to 1/
4 for one of the functions,

and from 1/
4 to 1/

8 for another function. No decrease can
be obtained for two of the functions. Moreover, since the
flow between users of Bitcoin can be poured as a graph,
inspired by the studies combining differential privacy and
graphs [31-34], we examine the applicability of differential
privacy mechanisms for graphs to Bitcoin, as well. The graph
perturbation decreases the fraction of the cases violating
differential privacy from 1/

2 to 1/
4 for three functions, and

from 1/
4 to

1/
8 for one of the functions.

Lastly, we demonstrate the practical usage of a differen-
tial privacy approach in Bitcoin. We showcase the addition
of noise, generated by the differential privacy mechanisms,
to the transaction amounts. In this context, we provide brief
information on the prominent differential privacy libraries,
then we provide the details of Diffprivlib [35], the IBM Dif-
ferential Privacy Library which we use. Utilizing this library
and a sample Bitcoin transaction dataset, we use the Laplace,
the Gaussian, the Geometric, and the Uniform mechanisms
for noise generation at varying ε and δ values (ε= 0.01, 0.05,
0.1, 0.5, 1 and δ = 0.01, 0.05, 0.1, 0.5), visualize the actual
amounts along with the noisy values and evaluate the results
according to the MAE. It is observed that the MAEs decrease
as ε (or δ) increases, and changing the dataset size, to 100,
1,000, and 10,000, does not make a significant difference
in the MAE values. The Laplace mechanism results in the
highest MAEs for all dataset sizes and all ε values, providing
higher privacy protection compared to the other mechanisms.

The Gaussian follows the Laplace, and the Uniform results in
the third-highest MAEs. The Geometric mechanism results
in the lowest MAEs. Furthermore, we present the results of
our examination analyzing the effect of the noise addition for
preventing direct queries, i.e., queries for transactions with
a specific amount. We introduce a novel metric called mean
ranking offset (MRO), which gives the average rank change
over a dataset after the noise addition when the transactions
are sorted by amounts. We use this metric in our experiments
for the comparison of the mechanisms and the parameter
values. The Laplace mechanism provided the largest MRO
values for all ε or δ values considered for a dataset with
100 transactions. The Gaussian follows the Laplace and the
Uniform results in the third-highest MROs. The Geometric is
found to be ineffective according to the MROmetric, as well.
It is observed that the MRO values tend to decrease as ε or δ
increases. As a result, the Laplace mechanism is determined
as the optimal mechanism for improving anonymity and pri-
vacy in Bitcoin within the mechanisms we examined. ε equal
or less than 0.5 can be used in the Laplace mechanism for
successfully hiding the transaction amounts and ranks.

The organization of this paper is as follows. Section II
gives background information about differential privacy,
Bitcoin, and blockchain. Section III examines the current
implementation of Bitcoin in terms of differential privacy,
while Section IV provides the feasibility of the utilization
of differential privacy mechanisms in Bitcoin. Section V
presents an empirical study on noise addition to transac-
tion amounts. Alternative differential privacymechanisms are
also compared in the section. Section VI gives the summary
and the discussion. Finally, we present the conclusion in
Section VII.

II. BACKGROUND
A. DIFFERENTIAL PRIVACY
Dwork et al. [10] introduced ε-indistinguishability as a new
notion of privacy leakage in 2006. A mechanism is defined
as ε-indistinguishable if for all databasesD1 andD2 differing
in a single row and for all responses to a query function,
the probability of obtaining response r for the database D1
is within a (1 + ε) multiplicative factor of the probability
of obtaining the same response, r, when the database is D2.

Dwork et al. stated that ε-indistinguishability is cording to
the Laplace distribution as Pr [x] ∝ e−ε|x|/S(f ) where S (f ) is
the sensitivity of function f: Dn → Rd . S (f ) is the smallest
number such that for all D1, D2 ∈ Dn which differ in a
single row, ‖f (D1)− f (D2) ‖1 ≤ S (f ). More noise means
more privacy. However, as the amount of noise increases, data
utility for analysis decreases, so there is a trade-off between
privacy and utility. ε determines the amount of privacy loss,
the smaller ε is the better privacy and ε is a parameter chosen
by the policy. Dwork et al. also called ε as leakage.
Differential privacy was defined by Dwork [11] as a new

measure in the same year and the formulation of differential
privacy is given as follows. A function f is ε-differential
private if (1) holds for all datasets D1 and D2 which differ
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in at most a single row and for all subsets S ⊆ Range (f )
where P denotes probability.

P [f (D1) ∈ S] ≤ exp (ε)× P [f (D2) ∈ S] (1)

For noise calculation, although the Laplace distribution
was the first mechanism proposed, the Gaussian [36], the
Geometric [37], and the Uniform [38] distributions can be
also used for numeric data as an alternative, and the Expo-
nential distribution can be used for non-numeric data [36].
Differential privacy can be applied to graphs, as well.
Graph perturbation [39] is the noise graph addition to real
graph structure and used for obtaining differentially private
graphs [40], [41].

B. BITCOIN AND BLOCKCHAIN
Bitcoin is a distributed, peer-to-peer (P2P) digital currency
where no central authority exists. Bitcoin is the unit of the
currency, and it is shortened to BTC. Bitcoins can be trans-
ferred from one address to another address. A transaction is
a transfer of bitcoins. Transaction management and issuance
of bitcoins are performed jointly by the peers in the network.

Blockchain is the general ledger of Bitcoin; it is the public
record of all transactions, shared between all users and used
to verify transactions. Blockchain consists of blocks. A block
contains and confirms a part of new waiting transactions.
Confirmation means a transaction getting processed by the
network and being added to the blockchain. Transactions at
each block are hashed, paired, and hashed again until a single
hash is obtained, which is the Merkle root [42]. Merkle root
is stored in the block header. Each block also includes the
hash of the previous block header, which results in a chain
of blocks. The basic structure of the blockchain is given
in Fig. 1.

Each transaction has at least one input and one output
including the address and the amount information. In the
input, a user can use bitcoins, which were received as an
output in one or more transactions previously. As a result,
the flow of bitcoins between transactions also forms a chain
structure.

In Bitcoin, everything is transparent; all transactions are
publicly announced. The only thing done for anonymity is
to keep public keys anonymous, using pseudonyms for the
addresses. Everyone can monitor that users transfer bitcoins

FIGURE 1. The simplified version of the blockchain [3].

to each other, but the real names are not provided, only the
pseudonyms are used.

III. THEORETICAL EXAMINATION OF BITCOIN FROM
DIFFERENTIAL PRIVACY PERSPECTIVE
One can infer that Bitcoin does not provide differential pri-
vacy by a pragmatic approach since the presence of a Bitcoin
address is explicit in the public Bitcoin blockchain. Although
real names are not paired with Bitcoin addresses, addresses
can be related to user identities using off-network informa-
tion [3]. Another argument supporting Bitcoin is not dif-
ferentially private is the explicitness of transaction amounts
and whether a transaction occurred between two specific
addresses in the public blockchain. It is worth examining Bit-
coin in terms of differential privacy theoretically to confirm
these arguments.

The formulation of differential privacy, given as (1), has
to be checked to examine Bitcoin in terms of differential
privacy theoretically, and finding a counterexample to (1)
suffices to detect a violation of differential privacy. In the
case of Bitcoin, a set of transactions in the blockchain can
be considered as a dataset. In the following subsections,
we check the formula for four functions querying; (i) transac-
tions between two specific addresses, (ii) transactions above
a specific amount, (iii) transactions for a specific transaction
amount, (iv) transactions with a specific amount between two
specific addresses, as given in Fig. 2. These functions are
chosen in the analysis since they can be used for exploit-
ing information from the public blockchain for detecting
addresses and deanonymizing users.

A. QUERIES FOR TRANSACTIONS BETWEEN TWO
SPECIFIC ADDRESSES
Assume that one wishes to learn whether a transaction
occurred between two specific Bitcoin addresses. Let A1
and A2 denote the addresses and F be a function that gives
the average transaction amount between A1 and A2. Let D1
consists of n+1 transactions andD2 consists of n transactions
which are exactly the same as the first n transactions of D1,
which makes D1 and D2 differ in a single row. The range of
F is between 0 and 21×106 BTCs (the maximum number of
bitcoins that will ever exist) theoretically. The sensitivity of
this function is 21×106 divided by the number of transactions
in the blockchain. To cover all possible datasets, two cases
must be considered; (i) the (n+ 1)st transaction is not a
transaction between A1 and A2, (ii) the (n+ 1)st transaction
is a transaction between A1 and A2. The two cases for D1 and
D2 can be visualized as in Fig. 3. The (n+ 1)st transaction
states, relations between F(D1) and F(D2), differential pri-
vacy provision or violation statuses in these cases are given in
Table 1, where ax+1 denotes the (n+ 1)st transaction amount.
In the first case, F (D1) equals F (D2), and the dif-

ferential privacy formula given in (1) is true for all
subsets and ε values. For the second case, F (D1)

equals F (D2) plus some value that comes from the
(n+ 1)st transaction. The minimum amount that can be
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FIGURE 2. Examined cases for the investigation of current Bitcoin implementation from the differential privacy
perspective.

transferred in a Bitcoin transaction is 0.00000546. Let S
be

[
F (D2)+

(
0.00000546

/
(n+ 1)

)
, 21x106

]
. The formula

(1) turns into (2) with these values.

P
[
F (D1) ∈ [F (D2)+ (

0.00000546
n+ 1

), 21× 106]
]

≤ exp (ε)×P
[
F (D2)∈ [F (D2)+(

0.00000546
n+ 1

), 21×106]
]
(2)

In this formula, P
[
F (D1) ∈

[
F (D2) + (0.00000546/

(n+1)), 21 × 106
]]

equals 1, P
[
F (D2) ∈

[
F (D2) +

(0.00000546/ (n+ 1)), 21 × 106
]]

equals 0, and (2) turns
into (3).

1 ≤ exp (ε)× 0 (3)

Since (3) is false for all ε values, this is a violation of
differential privacy. This means that there is no differential
privacy for a transaction between two Bitcoin addresses in 1

/
2

of the cases considered.

B. QUERIES FOR TRANSACTIONS ABOVE
A SPECIFIC AMOUNT
As a second examination, assume that one wishes to learn
whether a transaction with an amount above a BTCs
occurred. Let F be a function that gives the number of trans-
actions having an amount above a BTCs in the blockchain.

The sensitivity of this function is 1, since adding a single row
to any dataset will change the output by at most 1. Let D1
consists of n+1 transactions andD2 consists of n transactions
that are exactly the same as the first n transactions of D1.
To cover all possible datasets, two cases must be considered;
(i) the (n+ 1)st transaction amount is not above a BTCs,
(ii) the (n+ 1)st transaction amount is above a BTCs. The
two cases for D1 and D2 can be visualized as in Fig. 4.
The (n+ 1)st transaction states, relations between F(D1) and
F(D2), differential privacy provision or violation statuses in
these cases are given in Table 2.

In the first case, F (D1) equals F (D2) , and the differential
privacy formula given in (1) is true for all subsets and ε values.
For the second case, F (D1) equals F (D2)+ 1. Consider the
case when F (D2) equals 0, i.e., there is no transaction with
an amount above a. In this case, F (D1) equals 1. The range
of F is [0, n+1] for D1 and [0,n] for D2. Let S be [1,n]. F is
ε-differential private if the following holds.

P [F (D1) ∈ [1,n]] ≤ exp (ε)× P [F (D2) ∈ [1,n]] (4)

Since F (D1) equals 1, P [F (D1) ∈ [1,n]] equals 1, and
since F (D2) equals 0, P [F (D2) ∈ [1,n]] equals 0, (4) turns
into (5), which is false for all ε values, showing a violation
of differential privacy. This means that differential privacy is
violated for transactions having an amount above a specific
value in 1

/
2 of the cases considered.

1 ≤ exp (ε)× 0 (5)
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FIGURE 3. Two transaction datasets that differ in a single transaction;
(a) The

(
n + 1

)st transaction is not a transaction between A1 and A2;
(b) The

(
n + 1

)st transaction is a transaction between A1 and A2.

TABLE 1. Cases considered in differential privacy evaluation of the
queries for transactions between two specific addresses.

C. QUERIES FOR A SPECIFIC AMOUNT
A question that comes to mind might be ‘‘What happens
if blockchain was sought for transactions with a specific
amount?’’. Pragmatically, it can be said that transactions
transferring a specific amount and related Bitcoin addresses
can be detected easily from the public blockchain structure.
However, a theoretical examination is required to confirm
these arguments. Therefore, as the last examination, we eval-
uate this query theoretically in terms of differential privacy.
Assume that one wishes to learn whether there is a transaction
with an amount equal to a BTCs. Let F be a function that
gives the number of transactions that have an amount equal
to a BTCs in the blockchain. The sensitivity of this function
is 1, as well. Let D1 consists of n + 1 transactions and D2
consists of n transactions that are exactly the same as the first
n transactions ofD1. Again, to cover all possible datasets, two
casesmust be considered; (i) the (n+ 1)st transaction amount
is not equal to a BTCs, (ii) the (n+ 1)st transaction amount
equals a BTCs. The two cases for D1 and D2 can be visu-
alized as in Fig. 5. The (n+ 1)st transaction states, relations

FIGURE 4. Two transaction datasets that differ in a single transaction;
(a) The

(
n + 1

)st transaction amount is not above a BTCs; (b) The(
n + 1

)st transaction amount is above a BTCs.

TABLE 2. Cases considered in differential privacy evaluation of the
queries for transactions above a specific amount.

between F (D1) and F (D2), differential privacy provision or
violation statuses in these cases are given in Table 3.

In the first case, F (D1) equals F (D2) , and the differential
privacy formula given in (1) is true for all subsets and ε values.
In the second case, F (D1) equals F (D2) + 1. Consider the
case when F (D2) equals 0, i.e., no transaction amount is
equal to a BTCs. In this case, F (D1) equals 1. The range
of F is [0, n+1] for D1 and [0,n] for D2. For S is [1,n], there
is a violation of differential privacy as shown in the previous
query. Again, this means that there is no differential privacy
for a specific transaction amount 1

/
2 of the cases considered.

D. QUERIES FOR TRANSACTIONS WITH A SPECIFIC
AMOUNT BETWEEN TWO SPECIFIC ADDRESSES
Assume that one wishes to learn whether a transaction with an
amount a occurred between two specific Bitcoin addresses.
Let A1 and A2 denote the addresses and F be a function
that gives the number of transactions between A1 and A2
that have an amount equal to a BTCs. This query function
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is basically the combination of the query functions examined
in III-A and III-C. Let D1 consists of n + 1 transactions and
D2 consists of n transactions which are exactly the same as
the first n transactions of D1, which makes D1 and D2 differ
in a single row. To cover all possible datasets, four cases must
be considered; (i) the (n+ 1)st transaction is a transaction
betweenA1 andA2, the amount is not equal to aBTCs, (ii) the
(n+ 1)st transaction is not a transaction between A1 and A2,
the amount is equal to a BTCs, (iii) the (n+1)st transaction
is not a transaction between A1 and A2, the amount is not
equal to a BTCs, (iv) the (n+1)st transaction is a transaction
between A1 and A2, the amount is equal to a BTCs. The
(n+ 1)st transaction states, relations between D1 and D2,
differential privacy provision or violation statuses in these
cases are given in Table 4.

In the first three cases, F (D1) equals F (D2) since the
(n+1)st transaction is not a transaction between A1 and A2
that have an amount equal to a BTCs. As a result, the dif-
ferential privacy formula given in (1) is true for all subsets
and ε values for these cases. In the fourth case, F (D1) equals
F (D2) + 1. Consider the case when F (D2) equals 0, i.e.,
this means that there is no transaction between A1 and A2
with an amount a. In this case, F (D1) equals 1. The range
of F is [0, n + 1] for D1 and [0,n] for D2. For S is [1,n],
there is a violation of differential privacy according to the
differential privacy formulation. This means that there is
no differential privacy for transactions between two specific

FIGURE 5. Two transaction datasets that differ in a single transaction;
(a) The

(
n + 1

)st transaction amount is not equal to a BTCs; (b) The(
n + 1

)st transaction amount equals a BTCs.

TABLE 3. Cases considered in differential privacy evaluation of the
queries for a specific amount.

TABLE 4. Cases considered in differential privacy evaluation of the
queries for transactions with a specific amount between two specific
addresses.

Bitcoin addresses with a specific amount in 1/
4 of the cases

considered.

IV. FEASIBILITY OF THE UTILIZATION OF DIFFERENTIAL
PRIVACY MECHANISMS IN BITCOIN
After examining the current Bitcoin implementation in the
previous section, in this section, we investigate the effects of
applying differential privacy mechanisms as shown in Fig. 6.

A. NOISE ADDITION TO TRANSACTION AMOUNTS
One way of utilizing differential privacy for improving pri-
vacy in Bitcoin may be the addition of Laplace noise to
the transaction amounts while including transactions in the
blockchain, as a local differential privacy application. This
change clearly requires a modification of the Bitcoin trans-
action verification mechanism, as well. However, this study
focuses on the examination of applying differential privacy
mechanisms and results in terms of satisfying differential
privacy; we leave the actual implementation of such a veri-
fication mechanism, and examination of the utility of noise
added transaction amounts as a future study. In the follow-
ing subsections, we examine the effect of noise addition on
differential privacy for the four query functions, which were
examined in Section III.

1) EFFECT OF NOISE ADDITION ON QUERIES
FOR TRANSACTIONS BETWEEN TWO
SPECIFIC ADDRESSES
Consider the function in Section III-A provided as an exam-
ple, where the existence of a transaction between two specific
Bitcoin addresses, A1 and A2, is sought, and F is a function
that gives the average transaction amount between A1 and A2.
D1 consists of n + 1 transactions and D2 consists of n trans-
actions which are exactly the same as the first n transactions
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FIGURE 6. Examined cases for the investigation of Bitcoin from the differential privacy perspective with the application of differential privacy
mechanisms.

of D1. Assume that the blockchain stores transactions with
noise values generated according to the Laplace mechanism
added to the transaction amounts. Moreover, assume that
noise values are added accordingly so that the minimum and
the maximum Bitcoin transaction amounts do not change,
stay as 0.00000546 and 21× 106 BTCs respectively.
The noise values that will be added can be calculated using

the noise distribution function and the sensitivity of the query
function. Again, the range of F is between 0 and 21 × 106

BTCs since even in the nonexistence of at least one transac-
tion between A1 and A2, the average transaction amount is
still 0. To cover all possible datasets, again, two cases must
be considered; (i) the (n+ 1)st transaction is not a transaction
between A1 and A2, (ii) the (n+ 1)st transaction is a transac-
tion between A1 and A2. The two cases for D1 and D2 after
the noise addition can be visualized as in Fig. 7. These cases

and the corresponding (n+ 1)st transaction states, relations
between F(D1) and F(D2), differential privacy provision or
violation statuses after the noise addition are given in Table 5,
where ax+1 denotes the (n+ 1)st transaction amount.

In the first case, F (D1) equals F (D2) after the noise
addition, and the differential privacy formula given in (1) is
true for all subsets and ε values. For the second case, again,
F (D1) equals F (D2) plus some value that comes from the
noise added (n+ 1)st transaction. The minimum amount that
can be transferred in a Bitcoin transaction is still 0.00000546.
For S is

[
F (D2)+

(
0.00000546

/
(n+ 1)

)
, 21× 106

]
, a vio-

lation of differential privacy can be shown as in Section III-A
in 1/

2 of the cases considered for this query. Thinking prag-
matically, it can be inferred that adding noise to transaction
amounts does not hide the existence of a transaction between
two specific addresses at any level, as well.
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TABLE 5. Cases considered in differential privacy evaluation of the
queries for transactions between two specific addresses with noise
addition.

TABLE 6. Cases considered in differential privacy evaluation of the
queries for transactions above a specific amount with noise addition.

2) EFFECT OF NOISE ADDITION ON QUERIES FOR
TRANSACTIONS ABOVE A SPECIFIC AMOUNT
Consider the function in Section III-B, where one wishes to
learn whether a transaction with an amount above a BTCs
occurred and F is a function that gives the number of trans-
actions greater than a BTCs in the blockchain. Again, let
D1 consists of n + 1 transactions, and D2 consists of n
transactions which are exactly the same as the first n trans-
actions of D1. To cover all possible datasets, two cases must
be considered again; (i) the (n+ 1)st transaction amount is
not above a BTCs, (ii) the (n+ 1)st transaction amount is
above a BTCs. The two cases for D1 and D2 after the noise
addition can be visualized as in Fig. 8. These cases and the
corresponding (n+ 1)st transaction states, relations between
F(D1) and F(D2), differential privacy provision or violation
statuses after the noise addition are given in Table 6.

In the first case, there are two possible outcomes. F (D1)

may be equal to F (D2) after the noise addition if the amount
remains not above a. In this situation, the differential privacy
formula given in (1) is true for all subsets and ε values. If the
amount gets greater than a, F (D1) gets equal to F (D2)+ 1.
For the second case, there are two possible outcomes, as well.
F (D1) may be equal to F (D2) if a negative noise is added
to the (n+ 1)st transaction, which results in a transaction
amount below a BTCs and true for the differential privacy
formula given in (1) for all subsets and ε values. Alternatively,
F (D1) may be equal to F (D2) + 1, if a positive noise is
added to the (n+ 1)st transaction, which results in a violation
of differential privacy as shown in Section III-B. The differ-
ential privacy is violated for this query in 2/

4 of the cases
considered.

3) EFFECT OF NOISE ADDITION ON QUERIES FOR A
SPECIFIC TRANSACTION AMOUNT
Consider the function in Section III-C, where one wishes
to learn whether a transaction with an amount equal to a

FIGURE 7. Two transaction datasets that differ in a single transaction
after the noise addition; (a) The

(
n + 1

)st transaction is not a transaction
between A1 and A2; (b) The

(
n + 1

)st transaction is a transaction
between A1 and A2.

BTCs occurred and F is a function that gives the number of
transactions with the amount a in the blockchain. Let D1 and
D2 be two neighbor datasets that consist of exactly the same
n transactions and D1 has an additional (n+ 1)st transaction.
For this query function, two casesmust be considered to cover
all possible datasets; (i) the (n+ 1)st transaction amount is
not equal to a BTCs, (ii) the (n+ 1)st transaction amount is
equal to a BTCs. The two cases for D1 and D2 after the noise
addition can be visualized as in Fig. 9. These cases and the
corresponding (n+ 1)st transaction states, relations between
F(D1) and F(D2), differential privacy provision or violation
statuses after the noise addition are given in Table 7.

In the first case, two outcomes can occur after the noise
addition; (i.i) (n+ 1)st transaction amount gets a value dif-
ferent from a BTCs, (i.ii) (n+ 1)st transaction amount gets
equal to a BTCs. In case (i.i), the numbers of transactions
having an amount equal to a BTCs are equal for D1 and D2,

and F (D1) is equal to F (D2), therefore, differential privacy
is provided. In case (i.ii), F (D1) equals F (D2)+1. Consider
the case when F (D2) equals 0, i.e., no transaction amount
is equal to a BTCs after the noise addition. In this case,
F (D1) is equal to 1. The range of F is [0, n + 1] for D1
and [0,n] for D2. For S is [1,n], the violation of differential
privacy can be shown as in Section III-C. In the second case,
when Laplace noise values are added to the amounts in these
datasets, (n+ 1)st transaction of D1 has no longer an amount
equal to a. Remaining n transactions are the same for D1 and
D2, and when the noise values are added to the amounts,
these n transactions again be the same. As a result, F (D1)
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FIGURE 8. Two transaction datasets that differ in a single transaction
after the noise addition; (a) The

(
n + 1

)st transaction amount is not
above a BTCs; (b) The

(
n+1

)st transaction amount is above a BTCs.

equals F (D2), and the differential privacy formula given in
(1) is true for all subsets and ε values. For case (i), 1/2 of the
cases violates differential privacy, and for case (ii), there is
no differential privacy violation. For this query, the weighted
average of the differential privacy violation becomes 1

2 ×
1
2 +

1
2 × 0 = 1/

4.

4) EFFECT OF NOISE ADDITION ON QUERIES FOR
TRANSACTIONS WITH A SPECIFIC AMOUNT
BETWEEN TWO SPECIFIC ADDRESSES
Consider the function in Section III-D, where one wishes
to learn whether a transaction with an amount equal to a
BTCs occurred between two specific Bitcoin addresses. Let
A1 and A2 denote the addresses and F be a function that gives
the number of transactions between A1 and A2 that have an
amount equal to a BTCs. Let D1 and D2 be two neighbor
datasets that consist of exactly the same n transactions and
D1 has an additional (n+ 1)st transaction. For this query
function, four cases must be considered to cover all possible
datasets; (i) the (n+1)st transaction is a transaction between
A1 and A2, the amount is not equal to aBTCs, (ii) the (n+1)st

transaction is not a transaction betweenA1 andA2, the amount
is equal to a BTCs, (iii) the (n+ 1)st transaction is not a
transaction between A1 and A2, the amount is not equal to a
BTCs, (iv) the (n+ 1)st transaction is a transaction between
A1 andA2, the amount is equal to aBTCs. These cases and the
corresponding (n+ 1)st transaction states, relations between
F(D1) and F(D2), differential privacy provision or violation
statuses after the noise addition are given in Table 8.

FIGURE 9. Two transaction datasets that differ in a single transaction
after the noise addition; (a) The

(
n+1

)st transaction amount is not equal
to a BTCs; (b) The

(
n + 1

)st transaction amount is equal to a BTCs.

The range of F is [0, n+ 1] for D1 and [0,n] for D2. When
F (D1) equals F (D2)+1, the violation of differential privacy
can be shown by considering the case when F (D2) equals 0,
and F (D1) is equal to 1 for S is [1,n]. When F (D1) equals
F (D2), the differential privacy formula given in (1) is true
for all subsets and ε values. For case (i), 1/2 of the cases
violates differential privacy, and for cases (ii − iv), there is
no differential privacy violation. For this query, the weighted
average of the differential privacy violation becomes 1

4 ×
1
2 +

1
4 × 0+ 1

4 × 0+ 1
4 × 0 = 1/

8.

B. USER GRAPH PERTURBATION
Another potential way of provisioning differential privacy in
Bitcoin is the perturbation of the user graph. In the user graph,
also named the user network, the flow of bitcoins between
users over time is depicted as a directed graph [3]. Nodes
represent users, namely Bitcoin addresses, and directed edges

TABLE 7. Cases considered in differential privacy evaluation of the
queries for transactions with a specific amount with noise addition.
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represent the flow of bitcoins between users. An example of
the user graph is given in Fig. 10.

Graph perturbation can be applied as adding dummy
edges, i.e., dummy transactions, between users or deleting
some existing edges, i.e., actual transactions. This change
also requires a change of the Bitcoin transaction verifica-
tion mechanism. Again, our focus in this paper is on the
examination of applying differential privacy mechanisms and
the corresponding results; we leave the design of such a
verification mechanism, and examination of the utility of
perturbed transaction graph as future work. In the following
subsections, we examine the effect of graph perturbation on
differential privacy for the four query functions, which were
examined in Section III and Section IV-A.

1) EFFECT OF GRAPH PERTURBATION ON QUERIES FOR
TRANSACTIONS BETWEEN TWO SPECIFIC ADDRESSES
Consider the query function that was given in Section III-A,
i.e., one wishes to learn whether a transaction occurred
between two specific Bitcoin addresses, A1 and A2. Let D1
and D2 be two neighbor datasets that consist of exactly the
same n transactions and D1 has an additional (n+ 1)st trans-
action. Example graphs for D1 and D2 are given in Fig. 11.
Let F be a function that gives the average transaction

amount betweenA1 andA2. For this query function, two cases
must be considered to cover all possible datasets; (i) (n+ 1)st

transaction is between A1 and A2, (ii) (n+ 1)st transaction
is not between A1 and A2. In the first case, when graph
perturbation is applied to these datasets, the following two
cases can occur:

• InD1, the graph perturbation deletes the (n+ 1)st trans-
action. Between A1 and A2, no or some dummy transac-
tions may be added. In any case, F (D1) equals F (D2),
and the differential privacy formula given in (1) is true
for all subsets and ε values.

• In D1, the graph perturbation does not delete the
(n+ 1)st transaction. Between A1 and A2, no or some
dummy transactions may be added. In any case, F (D1)

equals F (D2)+1. When F (D2) equals 0, for S is [1,n],
there is a violation of differential privacy.

In the second case, when graph perturbation is applied to D1
and D2, since (n+ 1)st transaction is not between A1 and A2,
in the end, F (D1) equals F (D2) . As a result, the differential
privacy formula given in (1) is true for all subsets and ε
values.
For case (i), 1/2 of the cases violates differential privacy,

and for case (ii), there is no differential privacy violation. For
this query, the weighted average of the differential privacy
violation becomes 1

2 ×
1
2 +

1
2 × 0 = 1/

4.

2) EFFECT OF GRAPH PERTURBATION ON QUERIES ABOVE
A SPECIFIC TRANSACTION AMOUNT
Consider the query function that was given in Section III-B,
i.e., one wishes to learn whether a transaction with an amount

TABLE 8. Cases considered in differential privacy evaluation of the
queries for transactions with a specific amount between two specific
addresses with noise addition.

FIGURE 10. A sample Bitcoin user graph.

above a BTCs occurred. F is a function that gives the num-
ber of transactions greater than a BTCs in the blockchain.
D1 and D2 are two neighbor datasets as described in the
previous query function. Again, two cases must be consid-
ered to cover all possible datasets; (i) (n+ 1)st transaction is
above a BTCs, (ii) (n+ 1)st transaction is not above a BTCs.
In the first case, when graph perturbation is applied to these
datasets, the following two cases can occur:

• InD1, the graph perturbation deletes the (n+ 1)st trans-
action. No or some dummy transactions above a BTCs
may be added. In any case, F (D1) equals F (D2), and
the differential privacy formula given in (1) is true for
all subsets and ε values.

• In D1, the graph perturbation does not delete the
(n+ 1)st transaction. No or some dummy transactions
above a BTCs may be added. In any case, F (D1) equals
F (D2)+ 1. When F (D2) equals 0, for S is [1,n], there
is a violation of differential privacy.

In the second case, when graph perturbation is applied to D1
and D2, since (n+ 1)st transaction is not above a BTCs, in
the end, F (D1) equals F (D2) . As a result, the differential
privacy formula given in (1) is true for all subsets and ε values.
Again, for case (i), 1/2 of the cases violates differential

privacy, and for case (ii), there is no differential privacy vio-
lation. For this query, the weighted average of the differential
privacy violation becomes 1

2 ×
1
2 +

1
2 × 0 = 1/

4.
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FIGURE 11. (a) D1 consists of n + 1 transactions that n of them are
exactly the same with the n transactions of D2 and an

(
n + 1

)st

transaction which is between A1 and A2; (b) D2 is a dataset that has
exactly the same n transactions of D1.

3) EFFECT OF GRAPH PERTURBATION ON QUERIES FOR A
SPECIFIC TRANSACTION AMOUNT
Consider the query function given in Section III-C, i.e., one
wishes to learn whether a transaction with an amount equal
to a BTCs occurred. Function F gives the number of trans-
actions with an amount a in the blockchain. Let D1 and
D2 be two neighbor datasets as described earlier. For this
query function, two cases that must be considered to cover
all possible datasets are as follows; (i) (n+ 1)st transaction
amount is a BTCs, (ii) (n+ 1)st transaction amount is not a
BTCs. In the first case, when the graph perturbation is applied
to these datasets, the following two cases can occur:

• InD1, the graph perturbation deletes the (n+ 1)st trans-
action. No or some dummy transactions with an amount
equal to a BTCs may be added. In any case, F (D1)

equals F (D2), and the differential privacy formula given
in (1) is true for all subsets and ε values.

• In D1, the graph perturbation does not delete the
(n+ 1)st transaction. No or some dummy transactions
with an amount equal to a BTCs may be added. In any
case, F (D1) equals F (D2)+ 1. When F (D2) equals 0,
for S is [1,n], there is a violation of differential privacy.

In the second case, when graph perturbation is applied to D1
and D2, since (n+ 1)st transaction is not equal to a BTCs,
in the end, F (D1) equals F (D2) . As a result, the differential
privacy formula given in (1) is true for all subsets and ε values.

For case (i), 1/2 of the cases violates differential privacy,
and for case (ii), there is no differential privacy violation.
For this query, the weighted average of the differential pri-
vacy violation becomes 1

2 ×
1
2 +

1
2 × 0 = 1/

4, as well.

4) EFFECT OF GRAPH PERTURBATION ON QUERIES FOR
TRANSACTIONS WITH A SPECIFIC AMOUNT
BETWEEN TWO SPECIFIC ADDRESSES
Consider the query function given in Section III-D, i.e., one
wishes to learn whether a transaction with an amount equal
to a BTCs occurred between two specific Bitcoin addresses.
Let A1 and A2 denote the addresses and F be a function that
gives the number of transactions between A1 and A2 that has
an amount equal to a BTCs. Let D1 and D2 be two neighbor
datasets as described earlier. For this query function, four
cases that must be considered to cover all possible datasets
are as follows; (i) the (n+1)st transaction is a transaction
betweenA1 andA2, the amount is not equal to aBTCs, (ii) the
(n+1)st transaction is not a transaction between A1 and A2,
the amount is equal to a BTCs, (iii) the (n+1)st transaction
is not a transaction between A1 and A2, the amount is not
equal to a BTCs, (iv) the (n+1)st transaction is a transaction
between A1 and A2, the amount is equal to a BTCs.

In the first three cases, since (n+ 1)st transaction is not
a transaction between A1 and A2 with an amount equal to
a BTCs, in any case, F (D1) equals F (D2) after the graph
perturbation . As a result, the differential privacy formula
given in (1) is true for all subsets and ε values.

In the fourth case, the following two cases can occur:

• InD1, the graph perturbation deletes the (n+ 1)st trans-
action. No or some dummy transactions with an amount
equal to a BTCs may be added. In any case, F (D1)

equals F (D2), and the differential privacy formula given
in (1) is true for all subsets and ε values.

• In D1, the graph perturbation does not delete the
(n+ 1)st transaction. No or some dummy transactions
with an amount equal to a BTCs may be added. In any
case, F (D1) equals F (D2)+ 1. When F (D2) equals 0,
for S is [1,n], there is a violation of differential privacy.

For cases (i − iii), there is no differential privacy vio-
lation. For case (iv), 1/2 of the cases violates differ-
ential privacy. As a result, the weighted average of
the differential privacy violation for this query becomes
1
4 × 0+ 1

4 × 0+ 1
4 × 0+ 1

4 ×
1
2 =

1/
8.

V. AN EMPIRICAL STUDY ON NOISE ADDITION TO
TRANSACTION AMOUNTS
After examining theoretically, we demonstrate a practical
utilization of a differential privacy approach in Bitcoin in an
empirical way in this section. We add noise to the Bitcoin
transaction amounts by applying the Laplace, the Gaussian,
the Geometric, and the Uniform mechanisms for the noise
generation at different ε values, and evaluate the results.

There are several differential privacy libraries to use.
SmartNoise [43], [44], which is a joint study of Microsoft
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and Harvard School of Engineering and Applied Sci-
ences, Google’s differential privacy library [45], and Diff-
privlib [35], [46], the IBM Differential Privacy Library, are
the prominent alternatives. The comparison of these libraries
according to the variety of differential privacy mechanisms
they provide is given in Table 9. The current latest SmartNoise
version is v0.2.2 as of this writing and this library offers
the Laplace, the Gaussian, and the Geometric mechanisms.
The current latest Google library version is v0.0.1 as of
this writing and it provides the Laplace and the Gaussian
mechanisms. The current latest IBM library DiffPrivlib ver-
sion is v0.4 as of this writing and this library is the one
affording the greatest number of mechanisms for numerical
values. The library provides the Laplace, the Gaussian, the
Geometric, and theUniformmechanisms for noise generation
in order to achieve a differentially private model. Moreover,
according to our evaluation, the documentation of DiffPrivlib
is more comprehensible and the usage of the mechanisms
is more straightforward, compared to the alternatives. As a
result, we selected DiffPrivlib with Python support for our
experiments.

The referenced publication and the parameter details of
the mechanisms provided by Diffprivlib are summarized in
Table 10. Regarding the mechanism parameters, ε can have 1
as the maximum value for the Gaussian mechanism, whereas
ε can have higher values than 1 for the Laplace, and the
Geometric mechanisms. The Uniform mechanism only uses
δ instead of ε, and δ can have a maximum of 0.5. The
mechanisms also have a parameter for the sensitivity, which is
not stated in the table. We use 1 for the sensitivity parameter
for all runs since three out of four query functions that we
analyzed in Sections III and IV have sensitivity equal to 1.
There are some points to be considered while adding noise
to the Bitcoin transaction amounts. The minimum amount
of bitcoin that can be sent in a transaction is 546 satoshis,
which is equivalent to 0.00000546 BTC. Besides, we assume
that the maximum amount of bitcoin that can be sent in a
transaction at a certain time is equal to the total amount of
bitcoins mined until that time. As of April 2021, we take this
maximum value as 18,670,000 [47]. Therefore, the minimum
value that a noise added amount can get is 0.00000546 BTC,
and the maximum value that a noise added amount can get
is 18,670,000 BTC, and the noise values must be added
accordingly. Diffprivlib offers folded versions of the Laplace
and the Geometric mechanisms. In the folded versions, values
outside a predefined range are folded back toward the domain
around the closest point within the domain. Since the noisy
values must be between 0.00000546 BTC and 18,670,000
BTC in our problem, rather than using the Laplace and the
Geometric classes, we used the LaplaceFolded and Geomet-
ricFolded classes. We set the lower and the upper bounds
as 0.00000546 and 18,670,000 respectively in these meth-
ods. Although Laplace and LaplaceFolded can be used with
real numbers, Geometric and GeometricFolded require an
integer input. Therefore, while using GeometricFolded, if an
amount is not an integer, we multiplied it with 108 to make

it an integer value, then applied the randomise method to
obtain the noisy value and then divided the output by 108.
Since a folded version for the Gaussian mechanism is not
provided in the library, the noise addition trial is done until
the noisy value falls within the lower and the upper bounds.
Another point to consider is that a noise-added value can
have a decimal fraction of up to 8 digits since satoshi is the
smallest unit of the currency, which is equal to one hundred
millionth of a single bitcoin (0.00000001 BTC). Accord-
ingly, outputs of the randomization methods are rounded to
8 decimal places. We utilized the Python NumPy libraries in
our implementation.

We used a published dataset including Bitcoin network
transactional metadata [48]. We carried out our experiments
by adding noises to in_btc fields in this dataset, which are the
input amounts of the transactions.We used randomly selected
transaction data from 01.01.2014 and 02.01.2014.

In our experiments, first, we analyzed the effect of the
dataset size on the behavior of the mechanisms. To this end,
while applying the mechanisms, we changed the dataset size
to 100, 1,000, and 10,000 respectively. For the evaluation,
we used mean absolute error (MAE) values, calculated by
summing the absolute differences between the noisy amount
values and the actual values, and taking the mean. For the ε
parameter of the Laplace, the Gaussian, and the Geometric
mechanisms, we used 0.01, 0.05, 0.1, 0.5, and 1. For the δ
parameter of the Uniform mechanism, we used 0.01, 0.05,
0.1, and 0.5 since this parameter can have a maximum of 0.5.
Although ε can have a value greater than 1 in the Laplace and
the Geometric mechanisms, our tests showed that the amount
of noise generated is insignificant when this value is greater
than 1. As a result, we did not include the results for the
greater ε values. We used 1 for δ in the Gaussian mechanism
in all runs. The results are given in Fig. 12-14. In the figures,
there are no bars for theUniformmechanismwhen ε is 1 since
it cannot be greater than 0.5.

Fig. 12-14 show that changing the dataset size does not
make a significant difference in the MAE values. Apart from
the dataset size, the figures show that the MAEs decrease as
the ε (or δ) value increases. This outcome is expected since
privacy reduces as ε (or δ) increases, and the amount of noise
reduces consequently. Moreover, changing the dataset size
does not make a difference in the order of the mechanisms.
The Laplace mechanism results in the highest MAEs for all
dataset sizes and all ε values. The Gaussian is the second by
adding approximately the half amount of noise compared to

TABLE 9. The comparison of the differential privacy libraries.
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the Laplace. The Uniform is the third in the MAE ranking by
adding approximately a quarter amount of noise compared to
the Laplace mechanism. The Geometric mechanism results
in the lowest MAEs, which are significantly lower compared
to the other mechanisms. While comparing the mechanisms
for the same ε value, it can be said that a higher MAE is better
since a higher MAE means that the total amount of noise
is higher, resulting in higher privacy protection, as in [29].
Accordingly, the Laplace mechanism is the best for hiding
transaction amounts by adding a larger amount of noise. The
Gaussian comes next, and the Uniform follows the Gaussian.
It is expected that the noisy and the actual amounts are close
when the Geometric mechanism is used due to the low noise
amounts.

We also visualize 100 actual transaction amounts belong-
ing to 01.01.2014 from the dataset and the corresponding
noisy values according to the mechanisms for ε equal to
0.01, 0.05, 0.1, 0.5, and 1 and δ equal to 0.01, 0.05, 0.1,
and 0.5 in Fig. 15-19. The average of the actual amounts is
1.409928611, the maximum is 14.96900006, and the mini-
mum is 0.001. From the figures, it is observed that the noisy
values deviate a lot from the actual amounts in the Laplace,
the Gaussian, and the Uniform mechanisms when ε or δ is
smaller than 0.5. The fluctuation of the Laplace mechanism
is significant when compared to the other mechanisms. The
noisy values in the Geometric mechanism seem to be very
close to the actual amounts for all ε values. In these fig-
ures, it can be seen that mostly positive amounts of noise
are added, i.e., the actual amounts are lower than the noisy
amounts mostly. This situation is due to that Bitcoin trans-
action amounts do not allow so much negative amount of
noise since there is a minimum threshold of 0.00000546
BTC, which is the minimum transaction amount. Therefore,
the mechanisms continue to generate noise until the noisy
amount falls between the minimum and the maximum limits.
Especially for the lower ε or δ values, i.e. greater noise
amounts, the final noisy value tends to be a greater value than
the actual value since the maximum limit, which is assumed
as 18,670,000 in this study, is quite large.

One of our aims while considering differential privacy for
improving anonymity and privacy in Bitcoin has been pre-
venting privacy breaches via direct queries. In the previously
mentioned scenario with 0.000381 BTC valued shopping
from a well-known e-commerce site, the transactions with
the noisy amounts near 0.000381 in the blockchain may be
considered as the candidates while attempting to detect the
corresponding transaction. Similarly, an observer may think
of using the rank information of the transactionwith 0.000381
amount value when all transactions in the dataset are sorted
by amounts. The transaction with the same rank or the trans-
actions having ranks close in the noise added dataset may
be considered as the candidate transactions corresponding
to the transaction sought. In order to examine the differen-
tial privacy mechanisms from this aspect, we examined the
change in the ranks of specific transactions before and after
adding noise. The amount of change shows the performance

TABLE 10. The details of the mechanisms provided by Diffprivlib.

of the mechanism at hiding the actual rank, and a higher
change in the rank makes it difficult for an observer to detect
a transaction related to a specific transaction amount.

In our dataset with 100 amount values, we first checked
the ranks of the noisy values corresponding to 14.96900006,
which is the maximum of the actual amounts, for varying
mechanisms and ε (or δ) values. The results are given in
Table 11. We observed that the ranks of the noisy values
stay the same when ε is 1 for all mechanisms using ε. It can
be said that the mechanisms are unable to hide the rank in
this value of ε. The rank of the noisy value does not change
for all ε values in the Geometric mechanism. The Laplace
mechanism hides the actual rank in 4/

5 of the cases, the
Gaussian mechanism hides the actual rank in 3

/
5 of the cases,

and the Uniformmechanism hides the actual rank in 2
/
4 of the

cases.
Then, we checked the ranks of the noisy values correspond-

ing to 0.001, which is the minimum of the actual amounts,
for varying mechanisms and ε values. The results are given in
Table 12. Unlike the previous example value, the Laplace and
the Gaussian mechanisms hide the actual rank even when ε is
1. Again, the ranks of the noisy values do not change for all
ε values in the Geometric mechanism. It can be seen that the
Laplace and the Gaussian mechanisms hide the actual rank in
all five ε values, and the Uniformmechanism hides the actual
rank in all four δ values.

Finally, we checked the ranks of the noisy values corre-
sponding to the randomly selected 0.41510257 value, which
is the 59th in the actual amounts in ascending order, for
varying mechanisms and ε (or δ) values. The results are given
in Table 13. The rank of the noisy value stays the same for all
ε values in the Geometric mechanism. The Laplace and the
Gaussian mechanisms are successful at hiding the actual rank
in all ε values, and theUniformmechanism successfully hides
the actual rank in all δ values.

In order to generalize this approach to the whole dataset,
we define a new metric called mean ranking offset. The
mean ranking offset (MRO) over a dataset is calculated by
taking the average of the absolute differences between the
ranks of the actual values in the dataset in ascending order
and the ranks of the noisy values in ascending order. As the
MRO increases, the distances between the ranks of the noisy
values and the actual values increase. Therefore, MRO is an
indicator of how successful a mechanism is at hiding the

VOLUME 10, 2022 25547



M. C. Kus, A. Levi: Investigation and Application of Differential Privacy in Bitcoin

FIGURE 12. Mean absolute errors for varying ε, δ values when the dataset size is 10,000.

FIGURE 13. Mean absolute errors for varying ε, δ values when the dataset size is 1,000.

actual ranks. We calculated the MRO values over our dataset
with 100 transaction amounts for all mechanisms and ε, δ
values that we evaluated in the previous analyses. The results
are given in Table 14 and visualized in Fig. 20. The largest
MRO values are provided by the Laplace mechanism, for all
ε (or δ) values considered. It is observed that the mean rank
offset values for the Geometric mechanism are very close to 0
and the ineffectiveness of the mechanism compared to the
other mechanisms can be clearly seen. For ε, δ = 0.01, the
Uniform mechanism follows the Laplace, and the Gaussian

mechanism comes after the Uniform. For ε, δ = 0.05, 0.1,
and 0.5, the Uniform and the Gaussian change their order, the
Gaussian follows the Laplace and the Uniform comes after
the Gaussian. δ cannot be 1, therefore MRO is not calculated
for the Uniform mechanism in this value. It is observed that
as ε or δ increases, MRO values tend to decrease.

VI. SUMMARY AND DISCUSSION
In this section, we summarize our research and observa-
tions. In this study, firstly, the current implementation of
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FIGURE 14. Mean absolute errors for varying ε, δ values when the dataset size is 100.

FIGURE 15. The actual transaction amounts along with the noisy amounts when ε or δ is 0.01.

TABLE 11. The rank of the noisy value corresponding to 14.96900006
which is the 1st in the actual amounts in descending order.

Bitcoin is examined for four query functions in terms of
differential privacy using the differential privacy formula-
tion. Then, the feasibility of utilizing the noise addition and

TABLE 12. The rank of the noisy value corresponding to 0.001, which is
the 1st in the actual amounts in ascending order.

the graph perturbation mechanisms in Bitcoin is examined
for these functions, as well. All possible cases for neigh-
bor datasets are evaluated and the violations are detected.
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FIGURE 16. The actual transaction along with the noisy amounts when ε or δ is 0.05.

FIGURE 17. The actual transaction amounts along with the noisy amounts when ε or δ is 0.1.

FIGURE 18. The actual transaction amounts along with the noisy amounts when ε or δ is 0.5.

The fractions of the cases violating differential privacy are
given in Table 15. The discussed functions query the average

transaction amount between two specific addresses, the num-
ber of transactions having an amount above a BTCs, and
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FIGURE 19. The actual transaction amounts along with the noisy amounts when ε is 1.

TABLE 13. The rank of the noisy value corresponding to 0.41510257,
which is the 59th in the actual amounts in ascending order.

TABLE 14. Mean ranking offsets for varying mechanisms and ε/δ values.

the number of transactions having an amount equal to a
BTCs, respectively. The selection of these functions was done
by considering what an observer would like to learn and
get insight from the public blockchain. Interactions between
users and the amount values are somemeaningful information
to use with off-network information.

The current implementation of Bitcoin violates differ-
ential privacy in 1/

2 of the cases considered for the
first three queries and 1/

4 of the cases considered for the
fourth query. The application of noise addition does not
change the fraction of the cases violating differential privacy
for the first and the second functions, which query the average
transaction amount between two specific addresses, and the

FIGURE 20. Mean ranking offsets for varying mechanisms and ε/δ values.

TABLE 15. The fraction of the cases violating differential privacy.

number of transactions having an amount above a BTCs,
respectively. However, the noise addition decreases the frac-
tion of the cases violating differential privacy to 1/

4 for the
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third function, which queries the number of transactions hav-
ing an amount equal to a BTCs. The noise addition decreases
the fraction of the cases violating differential privacy to 1/

8
for the fourth function, which queries the number of transac-
tions between two specific addresses with an amount equal
to a BTCs.

The graph perturbation decreases the fraction of the cases
violating differential privacy to 1/

4 for the first three func-
tions. The fraction of the cases violating differential privacy
is decreased to 1

/
8 for the fourth function, similar to the noise

addition. It can be concluded that both mechanisms can be
used to improve anonymity and privacy, whereas the graph
perturbation seems to be a better option for the first and the
second functions. In these experiments, we covered all possi-
ble cases regardless of the amount and exact method of noise
addition and perturbation. However, the amount of noise can
be calculated using S (f ), the sensitivity of a function. For the
commonly used Laplace noise mechanism, adding noise with
scale S(f )/ε preserves ε-differential privacy.
Moreover, we demonstrated the utilization of the noise

addition to transaction amounts by using the IBM differential
privacy library. In our experiments, we examined the Laplace,
the Gaussian, the Geometric, and the Uniform mechanisms
for generating noise to add to the transaction amount values
in a dataset for varying ε and δ values (ε = 0.01, 0.05, 0.1,
0.5, 1, and δ = 0.01, 0.05, 0.1, 0.5). The evaluations are
done using MAE values. The results show that the MAEs
decrease as ε (or δ) increases, as expected. We observed
that the effect of changing the dataset size, to 100, 1,000,
and 10,000, does not make a significant difference in the
MAE values. The dataset size change also does not make a
difference in the order of the mechanisms. We hypothesize
that the higher MAE is better since a higher MAE results
in higher privacy protection. The Laplace mechanism results
in the highest MAEs for all dataset sizes and all ε values.
The Gaussian follows the Laplace, and the Uniform results
in the third-highest MAEs. The Geometric mechanism is not
found effective due to very low MAEs. The behaviors of the
mechanisms, in terms of variation, are also noticed when the
noisy values generated by the mechanisms for varying ε and
δ values are visualized along with the actual amounts for 100
transactions.

We also carried out experiments to analyze the effect of
the noise addition on detecting a transaction with a spe-
cific amount. We introduced the mean ranking offset (MRO)
metric, which gives the average rank change over a dataset
after the noise addition when the transactions are sorted by
amounts. In our evaluation for a dataset with 100 transactions,
the Laplace mechanism provided the largest MRO values
for all ε or δ values considered. The Gaussian showed a
better performance compared to the Uniform in most of the
cases and followed the Laplace. The Geometric is ineffective
according to the MRO metric, as well. It is observed that the
MRO values tend to decrease as ε or δ increases. Moreover,
for the maximum and the minimum values in the dataset,

TABLE 16. The fraction of the ε or δ values hiding the actual rank of the
maximum and the minimum values in the dataset.

we evaluated the mechanisms according to the fraction of the
ε or δ values hiding the actual rank. The results are presented
in Table 16. It can be seen that the rank of the actual mini-
mum value is successfully hidden for all mechanisms except
the Geometric. For hiding the rank of the actual maximum
value, there is no mechanism that hides the actual rank for
all ε or δ values. However, Laplace performs the best. The
Gaussian follows the Laplace, and the Uniform comes after
the Gaussian. The Geometric is unsuccessful at hiding both
ranks for all mechanisms and ε, δ values.
As the overall result of our experiments, within the mecha-

nisms and the parameters we examined, the Laplace mech-
anism can be opted for successfully hiding the transaction
amounts and ranks with ε equal or less than 0.5. However,
in the previously mentioned related study [29], the most suit-
able values for ε and δ are determined as 0.01 for generating
an adequate amount of noise. This may be due to the range
of the values. The values in [29] range between 200 and
1,900, whereas the values used in this study are between
0.001 and 14.96900006 which exemplify the real Bitcoin
transaction amounts. Another difference is that the Geometric
mechanism is found to be successful for adequate noise gen-
eration in [29], whereas our experiments show the opposite
by finding this mechanism ineffective.

While attaching the perturbation mechanism to the
blockchain, it should be considered that the perturbation
should not require a central party since the blockchain is
managed collectively by the peers. A reasonable way of
perturbation may be triggering and executing the perturba-
tion algorithm automatically while publishing transactions,
resulting in perturbed transaction data being added to the
blockchain via dedicated and distributed servers as in [27].

Another important point to consider is that the focus of
this study was on the examination of applying differential
privacy mechanisms and results in terms of satisfying dif-
ferential privacy. In order to use these differential privacy
mechanisms, the verification mechanism must be modified
accordingly, and perturbed amounts or transaction graphmust
be examined in terms of utility. There may be concerns on
the effect of the perturbation on the usability of data since
hash values used in verification would change, however, these
concerns can be addressed with the methods that come from
the notion of modifiable blockchains [50], [51] emerged from
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the erasing requirements imposed by the GDPR’s ‘‘right to be
forgotten’’ provision.

VII. CONCLUSION
In this study, we present an examination of Bitcoin in terms
of differential privacy. Our motivation arises from the fact
that differential privacy approaches can be used for improving
the privacy of the public Bitcoin blockchain. The differential
privacy methods offer the prevention of anonymization and
privacy breaches by direct queries and the preservation of
checkability of the integrity of the blockchain. We first exam-
ine the current Bitcoin implementation using the differential
privacy formulation. Then, we examine the application of
noise addition to transaction amounts and user graph per-
turbation as differential privacy mechanisms. Furthermore,
we demonstrate an empirical study for practical utilization
of the noise addition approach and compare four differential
privacy mechanisms according to mean absolute error for
varying ε and δ values. In addition, we introduce a new
metric called mean ranking offset and use it for the com-
parison, as well. In Section VII, we summarize our obser-
vations. It is observed that the noise addition and the graph
perturbation mechanisms decrease the fraction of the cases
violating differential privacy, therefore they can be used for
improving anonymity and privacy in Bitcoin. The noise addi-
tion method decreases the fraction of the cases violating
differential privacy by half for the three query functions,
whereas the graph perturbation method decreases the fraction
of the cases violating differential privacy by half for all of
the four query functions considered. When the differential
privacy mechanisms are compared practically for the noise
addition, it is demonstrated that the Geometric mechanism
adds a marginal amount of noise for all considered ε values
and this mechanism is ineffective at hiding the ranks of the
amounts in the dataset. This allows an observer, searching for
a transaction with a specific amount, to detect the transaction
by finding the nearest noisy value even if the noises are
added. Our experiments show that the Laplace mechanism
outperforms other mechanisms with high MAE and MRO
values, and it can be opted with ε equal or less than 0.5
for improving differential privacy in Bitcoin. Although the
results that are obtained in this paper are promising, none of
the proposed methods achieved perfect differential privacy.
Moreover, there is room for more research. Further research
topics include the modification of the verification mecha-
nism accordingly, and examining the effect of the perturba-
tion on the degradation of utility. Moreover, applying these
differential privacy mechanisms to other blockchain-based
cryptocurrencies may be investigated, as well.
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