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ABSTRACT In this paper, we propose a machine learning system for the estimation of atmospheric
particulate matter (PM) concentration, specifically, particles with a maximum diameter of 2.5µm. These
very fine particles, also known as PM2.5 particles, are very dangerous to the human body as they are small
enough to penetrate deep areas of the vital organs. The proposed system uses a combination of features from
both polarimetric and spectral imaging modalities in training and developing a machine learning model
that provides high accuracy PM2.5 estimates. Furthermore, acquisition of the polarimetric images is done
near the ground surface with a horizontal field of view aiming at standard targets which enables higher
accuracy at the surface level. The accuracy of the approach was verified through a study conducted during
the summer months of the United Arab Emirates (UAE). The proposed system employs different machine
learning techniques such as Support Vector Regression (SVR), Gaussian Process Regression (GPR), and
Bagging Ensemble Trees (BET), to provide high accuracy PM2.5 estimates. Our proposed system achieves
the best performance within the red wavelength with accuracy up to 93.8627% and an R2 score up to 0.9420.

INDEX TERMS Division of focal plane, environmental monitoring, machine learning, polarization image.

I. INTRODUCTION
The incident light from solar radiation is characterized by
intensity, wavelength, and polarization. While intensity and
wavelength are respectively perceived as brightness and
color, the polarization characteristic is imperceptible to the
human eye. As a result, so many applications in the field
of applied optics only employ intensity and wavelength.
In more recent times, the polarization property of light is
shown to provide useful information and as a result, it has
been employed in various fields such as food monitoring [1],
material classification [2], [3]. Polarimetry is also found to be
a promising remote sensing method for the monitoring and
characterization of atmospheric aerosols [4].
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Aerosol is a mixture of various small particles of different
shapes, morphologies, and composition. The radiative and
optical properties of such amixture are characterized bymany
complex parameters which need to be recorded for a reliable
characterization of aerosols. To record the requisite informa-
tion about the properties of aerosols, the widely employed
instruments are multi-angular multi-spectral polarimeters.
Indeed, the sensitivity of observations to detailed aerosol
properties could be maximized by the simultaneous spec-
tral, angular and polarimetric measurements of atmospheric
radiation [5]–[9].

Aerosol particles’ sizes range from a few tenths to several
tens of micrometers. Although these particles are invisible to
the human eye, their interaction with solar radiation impacts
other important parameters such as total atmospheric energy
budget, atmospheric visibility, climate dynamics, as well as
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air quality [4]. In general, aerosols are mostly character-
ized by the presence of microscopic particles suspended in
the air known as particulate matter (PM). As a result, the
term ‘‘aerosol’’ is often used to refer to the particulate/air
mixture [10]. The particulate matters in aerosols are of two
groups – the group with particles having a diameter of 10µm
or less, known as PM10; and the group with particles having
a diameter of 2.5µm or less, known as PM2.5 [11]. These
particulates are quite harmful to the human body due to their
ability to penetrate deep into the lungs, brain, and blood
streams [12].

In a 2013 study involving 312,944 people in nine
European countries, the significant danger of particulates was
revealed [13]. The study showed that for every increase of
10µg/m3 in PM10 level, the rate of lung cancer rose by 22%;
while for the same level of PM2.5 increase, the lung cancer
rate rose by 36%. From the results of this study, it was also
observed how the PM2.5 particles are more deadly as they can
deposit in deeper parts of the lung causing tissue damage and
inflammation. Some other studies to determine the effect of
PM2.5 concentration levels on the human health have been
reported in [14]–[16].

Previous works have shown that polarimetry tech-
niques are promising in the characterization of atmospheric
aerosols [5]–[9], [17]. Initially, monitoring of aerosol proper-
ties was done by space-borne polarimetry in the late 1980s
and early 1990s. Currently, there are several instruments
that have already provided polarization observations from
space. The first and most extensive record of such space-
borne polarimetric imagerywas provided by POLDER-I [18],
POLDER-II and POLDER/PARASOL multi-angle multi-
spectral polarization sensors [19]. More recently, in [20],
a multi-angle Stokes vector analyzer was utilized to charac-
terize aerosol particles.

Over the past decades, ground-based polarimetric mea-
surements have been evolving. Some monitoring stations
include the CE318 sun/sky-radiometer manufactured by the
Cimel Electronique for measuring atmospheric aerosol and
water vapor measurements [21]. The most recent of CE318
version, the CE318-DP [22], possess eight wavelengths in
addition to its capability to measure polarization. The Degree
of Linear Polarization (DoLP) is calculated at each wave-
length and the spatial distribution of the sky polarization
is essentially related to the optical and microphysical prop-
erties of aerosols. Other ground-based observations include
the GroundSPEX spectropolarimeter [23] and the GroundM-
SPI [24]. Although the characterization of aerosol particles -
especially fine particles - is improved by polarimetry, major
observational networks such as AERONET [25] are reluctant
to include the measurements as part of the routine retrievals.
This is due to the complexity of acquiring and interpreting
polarization data.

To interpret and analyze any recorded data, Machine
Learning models using features other than the polarimetric
kinds have been utilized. Some of these models include the
random forest model [26] to estimate the quantity of PM2.5

in China; and [27] utilized a random forest approach for PM
predictions in US.

More recently, a geographically and temporally weighted
neural network constrained by global training (GC-GTWNN)
was proposed in [28], for the estimation of surface PM2.5.
The proposed model which was tested across China utilized
satellite AOD and surface PM2.5 measurements in addition
to other auxiliary variables to address the nonlinear spatio-
temporal relationship between AOD and PM2.5. In [29],
a deep learning model ‘‘EntityDenseNet’’ was proposed to
retrieve ground-level PM2.5 concentrations. A key feature of
this model is its ability to automatically extract PM2.5 spatio-
temporal characteristics. A common theme to the aforemen-
tioned models was the non-consideration and non-utilization
of polarimetric features and observations. However, the stud-
ies reported in [30] and [31] have indicated the significant
potential of polarimetric observations.

In this work, we investigate the use of polarimetry in the
estimation of PM2.5 with the aid of machine learning tech-
niques. The study is conducted in the United Arab Emirates
(UAE) whose desert climate is characterized in summer by
dusty winds and sandstorms that significantly contribute to
the rising levels of both PM10 and PM2.5 particles in the
air [32]. Furthermore, the region, which is devoid of forests,
is also characterized by very minimal average annual rainfall
of less than 12cm. Compared to the tropical regions, the
minimal annual rainfall in the desert regions results in the
PM particles - especially the fine PM2.5 particles - to remain
suspended in the air for longer periods. Indeed, the study of
Engelbrecht et al. [33] reported the presence of significant
levels of Particulate Matters in the desert environment that
are up to three or four times higher than the acceptable
United States Army Center for Health Promotion and Pre-
ventive Medicine (USACHPPM) 1-Year Air-MEG value of
50µg/m3. There is therefore a need to carefully conduct new
studies and monitor the concentration of the PM2.5 particles
using novel techniques.

The goal of the paper is to propose the use of a horizontal
setup of polarimeters that use machine learning techniques in
order to provide amore practical PM2.5 estimation instrument
than current solutions. Such a setup would allow wide area
horizontal accurate measurements, that are not possible nei-
ther with satellites nor with in-situ measurement devices. The
horizontal setup allows a wide spatial inclusion of the PM2.5
measurements taken. With this vision, the paper provides
evidence that it is in fact possible to achieve accuracies of
up to 93% with such a system, through the use of machine
learning based techniques. In addition, the paper explores
various options for system implementation. Several machine
learning techniques were tested and compared, and the paper
shows that GPR model outperformed SVR and BET, and
hence forms a good candidate for the proposed measurement
system. All three machine learning models tested provided
individual accuracies of more than 90%, and R2 above 0.9,
indicating that on average, the predicted values are close to
the observed values, and that the predictor variables used
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in the paper can precisely lead to a setup that can predict
the PM2.5 values accurately. The contribution of this work is
two-fold:
• Firstly, the paper proposes a system that captures polari-
metric images at near-ground level with a horizon-
tal field-of-view aiming at standard targets to estimate
PM2.5 levels using polarimetric features such as DoLP
and AoP. Such a system has the potential of providing
accurate estimates of the levels of small PM2.5 par-
ticles, as opposed to the satellite AOD/PM products
that have reported higher accuracy for studying PM10
particles [34], [35].

• Secondly, the paper provides evidence that the accu-
racy of the proposed model can be further enhanced
by employing a combination of both polarimetric and
spectral features, rather than only polarimetric features.
Specifically, it is shown that the use of red wavelength
provides relatively better estimation in the study area
probably because of the type of aerosols prevalent in
the desert environment. In the future, this has to be
investigated for different environments.

The rest of this paper is organized as follows: section II
describes the proposed system; experimental results are dis-
cussed in section III, and conclusions are drawn in section IV.

II. PROPOSED SYSTEM
The proposed system aims to estimate the level of PM2.5
concentration in the environment. The proposed system,
as illustrated in Figure 1, is broadly divided into two major
implementation processes: Data preparation and machine
learning. These processes are presented in this section.

A. DATA PREPARATION
This process begins with the capture of polarization images.
The polarization images were captured using the ‘‘4D Polar-
Cam snapshot micro-polarizer camera’’, which is a Division-
of-Focal-Plane (DoFP) polarization camera with a spatial
resolution of 1780 × 1200. The setup for capturing data is
illustrated in Figure 2.

1) IMAGE CAPTURE
The acquisition setup which is positioned (1m) above the
ground level, involves a DoFP camera horizontally facing a
white spectralon board, as seen in Figure 2. This setup is
different from other reported setups in the literature where
the instruments are either facing upwards from the ground-
level [21], [23], [24], or space-borne facing towards the
ground [18], [19]. The DoFP camera has the micro-polarizer
(MP) array fabricated on top of the imaging sensor. This MP
array is a periodic structure arranged in a 2 × 2 pattern to
capture polarization information along four distinct direc-
tions (0◦, 45◦, 90◦, and 135◦). The proposed system takes full
advantage of the micro-polarizer array structure to record the
full polarization information of the reflected light in a single
frame. In the proposed setup, a spectral filter is also posi-
tioned in front of the camera to be able to capture the spec-
tral information in addition to the polarization information

FIGURE 1. Flowchart of the proposed system.

FIGURE 2. Image acquisition setup.

of any incoming light. This spectral filter is mounted on
a motorized wheel, as shown in Figure 3, to enable for
the capture of spectral properties at different wavelengths:
red (620 -750nm), green (520 – 560nm), blue (450 – 490nm)
and white (390 – 700nm) where no spectral filter was used
(we refer to this case as clear). As light incidents on the
white spectralon board, it is reflected and captured by
the DoFP camera after passing through the spectral filter.
The spectralon board has a very high diffuse reflectance
value and, in most cases, assumed to be a Lambertian surface
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FIGURE 3. A closer look at the spectral filters mounted on a motorized
filter wheel.

with isotropic luminosity [36]. Therefore, the incident light
is assumed to retain its property after reflecting from the
board.

2) DEMOSAICKING
The image obtained using the DoFP camera is amosaic image
composite of four low-resolution sub-images (I0◦ , I45◦ , I90◦ ,
and I135◦ ). These low-resolution sub-images are extracted,
and their respective full-resolution images are generated
using Interpolation algorithms. In the proposed system, the
nearest neighbor interpolation algorithm [37] is used. This
interpolation algorithm involves replacing a missing pixel
with its nearest neighbor within a 3 × 3 block.

3) STOKES/RECONSTRUCTED IMAGES GENERATION
The full-resolution images generated by the demosaicking
stepwill be used in determining the Stokes parameters needed
to generate the reconstructed images that have more phys-
ical meanings [38]. Mathematically, the Stokes parameters
are evaluated using the four full resolution subimages as
follows [38]:

Intensity/S0 = I0 + I90 (1)

S1 = I0 − I90 (2)

S2 = I45 − I135 (3)

S3 = IRCP − ILCP (4)

In addition to natural light being typically linearly polar-
ized, the absence of a retarder in the DoFP camera means
only linearly polarized light is recorded. As a result, the
S3 term, which is the difference between the Right Cir-
cular Polarization (RCP) component and the Left Circular
Polarization (LCP) component, is ignored. The other three
parameters are dependent on intensity measurements and can
therefore be easily computed from the full resolution images.
With the determined stokes parameters, two useful images,
DoLP and Angle of Polarization (AoP), can be constructed
as follows:

DoLP =

√
S21 + S

2
2

S20
(5)

AoP =
1
2
atan (

S2
S1

) (6)

4) FEATURES EXTRACTION
The input parameters (features) to the machine learning mod-
els are the average of each reconstructed image (DoLP and
AoP) DoLPavg, AoPavg, in addition to S0avg, which is the
average of three pre-selected points (pixel (100,100), pixel
(200,200) and pixel (300,300)) from the intensity image (S0).
The reason for using the average of the three pre-selected
points from the intensity/S0 image is to represent the bright-
ness or the light intensity as a function of the time in a day,
which represents the temporal information about the image
within the day. The data spans multiple days over a period
of 2 months, and therefore very well caters for the temporal
effects.

B. MACHINE LEARNING
In order to model the relationship between the polarization
images and the corresponding PM2.5 measurements, machine
learning based regression is implemented in two phases,
namely the training phase and the testing phase.

Taken as an input and target pairs in the training phase,
image feature vectors (DoLP, AoP of each filter and S0avg)
and the associated PM2.5 measurements (taken from the train-
ing data), are fed to the machine learning block to model
the function f(·), as illustrated in Figure 4. In the testing
phase, the trained model f(·), takes the feature vectors of
new images (taken from the testing data) as input to esti-
mate the corresponding PM2.5 concentrations. MAE between
the estimated and measured PM2.5 concentrations is calcu-
lated to judge the estimation accuracy generated model f(.).
In this work, we implement three machine learning algo-
rithms namely, Gaussian Process (GP) method, Support Vec-
tor Machines (SVM) and Bagging Ensemble Trees (BET).
The three algorithms are used in the regression mode.

FIGURE 4. Training phase.

Support Vector Regression (SVR) is a supervised machine
learning algorithm that uses a kernel function to map the
problem in the input space to a higher dimensional space
where regression problems that are highly nonlinear in the
input space become linear in the higher dimensional space.
Based on the structural risk minimization principle [39],
it utilizes a risk function consisting of the empirical error and
a regularization term and aims to minimize the risk based on
Vapnik’s e-insensitive loss metric. A detailed formulation of
the SVR method can be found in [40].

Gaussian Process Regression (GPR) is a kernel-based
supervised machine learning method. It is a non-parametric
Bayesian approach [41] that assumes a prior probability
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distribution of the input data. Using the training data, a pos-
terior probability distribution is generated as an update for
prior probability distribution. Although the posterior proba-
bility distribution is completely described by its covariance
and mean value, the mean value is the one used for predic-
tion [42], [43]. The key assumption in GP modelling is that
our data can be represented as a sample from a multivariate
Gaussian distribution [44] which means that a draw from the
GP is a function and not a single value [45]. Themathematical
formulation of GPR can be found in [41].

Bagging ensemble trees are improved form of decision
trees. Decision trees, which are used for both classification
and regression purposes are based on the idea of recursive
partitioning [46]. They are considered as a computationally
simple supervised machine learning methods [47]. Unfor-
tunately, they can suffer from overfitting or under fitting
leading to high variance or bias in their predictions [48].
Being applied on decision trees, ensemble methods such
as boosting and bagging are used to account for the above
mentioned problems [47]. While boosting aims to reduce
bias, bagging, which is also known as bootstrap aggregation,
results in reducing variance in predictions [48]. An improved
and well-known form of bagging ensemble trees where input
feature selection is implemented is the random forest algo-
rithm [49]. Because of their ability, to limit prediction vari-
ability, ensemble methods including random forests have
been widely used in literature for modeling and predicting
environmental related phenomena [26], [47], [50]. Since in
this work the number of features is low, we use the nor-
mal bagging ensemble trees rather than random forest. More
information on decision trees and ensemble methods can be
found in [46], [48].

III. EXPERIMENTAL RESULTS AND DISCUSSIONS
A. EXPERIMENTAL SETUP
To verify the usefulness of polarization imaging in estimat-
ing the concentration of PM2.5 particles in the surrounding
environment, four experiments - corresponding to the four
spectral filters were conducted during the months of July
and August 2020 in Ras Al Khaimah, UAE. During this
period, DoFP polarization images were captured using the
experimental setup illustrated in Figure 2. The actual PM2.5
measurements were recorded using the ‘‘Xiaomi Smartmi
PM2.5 Detector1’’ and were compared to the measurements
retrieved from the ‘‘Air-quality2’’ website at the same time
stamp for further confirmation of the measurements accu-
racy. The total data accumulated encompasses 544 DoFP
images (136 images per filter) in addition to 136 actual PM2.5
measurements. A fifth experiment considered a combination
of the four spectral features obtained from experiments 1-4.
The experiments aimed to relate the captured DoFP polar-
ization images under different wavelengths to the actual
PM2.5 measurements acquired during the same period. More

1https://xiaomi-mi.com/air-and-water-purifiers/xiaomi-mi-pm25-
detector-white/

2https://air-quality.com/

specifically, experiment one, which employed no spectral
filter (white or we refer to it here as clear filter), aimed to
evaluate the efficiency of using the polarization properties to
estimate the PM2.5 concentrations in the surroundings. On the
other hand, the objective of experiments 2-5 was to evaluate
the efficiency of using the polarization properties under dif-
ferent wavelength to estimate the PM2.5 concentrations.

In experiments 1, 2, 3, and 4, the respective filters used
were clear, blue, green, and red filters. The features set used
in each of these experiments included 3 parameters namely,
S0avg, DoLP and AoP for the corresponding filter used in the
experiment. Experiment 5 however, used a 9-element feature
set that comprises of the DoLP and AoP of each of the four
filters together with S0avg. The actual PM2.5 measurements
on the other hand, formed the training targets.

For each of the five experiments, 75% of the data was
utilized to train and validate the system using 5-fold cross
validation method. The remaining 25% was used test the
performance of the system. Both sets of data included PM2.5
measurements ranging from small, medium to high values.
It is common practice in machine learning literature to use
‘‘k-fold cross validation’’ when the dataset is small to avoid
over-fitting. In this work, the training set included 100 mea-
surements on which 5-fold cross validation was applied.
5-fold cross validation partitions the data into 5 groups. It uses
4 groups to train and develop the model, and the fifth group
to validate the trained model. This is repeated until each
group serves as a validation group. The average of the five
iterations is the reported model accuracy. Cross validation
ensures no over-fitting occurs and helps in optimizing the
machine learning model parameters that we applied to test
the performance on the testing set (36 measurements).

The machine learning systems used were Gaussian Process
Regression (GPR), Bagging Ensemble Tree (BET) and Sup-
port Vector Regression (SVR). Both GPR and SVR use RBF
kernel function. Performance of the systems was verified by
calculating the overall Mean Absolute Error (MAE), Root
Mean Square Error (RMSE), estimation accuracy and the
coefficient of determination (R2). R2 is a statistical mea-
sure that represents the proportion of the variance for a
dependent variable (estimated PM2.5) that’s explained by
the independent variable in a regression model. Both RMSE
and R2 are widely used to judge the quality of regression
models. As is the case in related PM2.5 estimation literature
[28], [29], R2 is used here to evaluate the correlation between
the measured PM2.5 values and the estimated PM2.5 values
from the machine learning model, as a function of polarimet-
ric and spectral properties.

B. RESULTS AND DISCUSSIONS
The results of the five experiments when employing each of
the three machine learning methods (GPR, BET, and SVR),
are reported in Tables 1 - 3. The tables show the performance
of each method using four metrics: the Mean Absolute Error
(MAE), Root Mean Square Error (RMSE), Estimation accu-
racy and the Coefficient of determination R2. The estimation
accuracy and the coefficient of determination (R2) for the
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TABLE 1. GPR results.

TABLE 2. BET results.

three machine learning models are also depicted in figure 5
and figure 6, respectively.

FIGURE 5. PM2.5 Estimation accuracy (%) corresponding to each spectral
filter for the three models.

Referring to Table 1 and the GPR bars in figure 5 and
figure 6, it is evident that the red filter resulted in an estima-
tion accuracy of 93.8627% and a RMSE of 1.743 in addition
to having a reported R2 of 0.9370. This leads to the inference
that the system performed best for DoFP images within the
red wavelength. Interestingly, when all the spectral features
are added by combining all the filters, the resulting accuracy,
RMSE and R2 were respectively 91.0211%, 2.55 and 0.8680.
These results clearly show a lower performance compared to
the case of the red filter. This can be attributed to the fact that
the increased number of features (9) in the combined filter
case is relatively high with respect to the number of training
vectors (100). It is well known in machine learning literature
that such a scenario could lead to over-fitting in the training
phase and less generalization ability in the testing phase. This
in turn, results in a reduced accuracy when compared to the
case of red filter.

Table 2 and the BET bars in figure 5 and figure 6 show
the results of the five experiments when BET was used as
the machine learning regression method. From the presented
results, it is evident that the red filter resulted in an estimation
accuracy of 92.2852%, a RMSE of 2.1910 and a reported
R2 of 0.9420 which once again leads to the conclusion
that the system performed best for DoFP images in the red
wavelength. Similar to the GPR case, it can be seen that,
the combination of all the filters did not improve the

TABLE 3. SVR results.

system performance as the obtained accuracy was 82.4613%
while the reported RMSE and R2 were 4.9810 and 0.6602,
respectively.

The SVR results of the five experiments are presented in
Table 3 and the green bars in figure 5 and figure 6. The use of
SVR as the regression method resulted in an estimation accu-
racy of 92.6549%, a RMSE of 2.0860 and a reported R2 of
0.9083 ranking the best among the 5 cases. The SVR results
also concur with the GPR and BET results to indicate how
the combination of all the filters did not rank highest. In the
SVR, it ranked second at 91.6795% in terms of accuracy and
last at 0.8820 in terms of R2.

Referring to Tables 1 – 3, as well as figure 5 and figure 6,
it can be seen that the use of the polarization properties alone
(clear case) to estimate PM2.5 concentrations proved to be
successful resulting in an estimation accuracy ranging from
87.1408% in the case of BET to 90.6091% in the case of GPR.
It resulted, as well, in R2 ranging from 0.7518 in the case
of BET to 0.8550 in the case of GPR. Also, the addition of
spectral features did not necessarily improve the performance
except for the case of the red filter. Including the polarization
properties at the red wavelength considerably improved the
estimation accuracy by a range of 2.5352% in the case of SVR
to 5.1444% in the case of BET. It also improved R2 by a range
of 0.0623 in the case of SVR to 0.1902 in the case of BET.

FIGURE 6. R2 corresponding to each spectral filter for the three models.

Figure 7 and Figure 8 give a closer comparison among
the three methods in terms of accuracy and R2 when the red
filter is used. It is clear from Figure 7 that the GPR model,
at the red wavelength, outperformed the other two models
by yielding the highest accuracy value of 93.8627%. On the
other hand, figure 8 shows that that the BET model, at the red
wavelength, outperformed the other two models by yielding
the highest R2 of 0.9420. Fortunately, the three models have
individual accuracies above 91% and R2 above 0.9 which
indicate that on average, the predicted values are close to the
observed values; and that the predictor variables (S0avg, DoLP
and AoP) can precisely predict the PM2.5 values.
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As noticed above, the use of a red filter before the DoFP
camera resulted in the best estimation of PM2.5 measurement,
as compared to the study when any of the other individual
filters, or their full combination, is used. It is believed that
smaller aerosols contributing to PM2.5 are characteristically
different in a dusty region compared to other regions orig-
inating from a variable combination of natural and anthro-
pogenic sources [32], [51]. The natural dust sources from
the surrounding desert form a significant part of the PM2.5
composition and contribute to higher reflectance in the Red
wavelength band [52].

The proposed approach showed a stable performance.
It was tested on 3 different machine learning methods. All
of them resulted in the best estimation performance for
PM2.5 when utilizing the Polarimeteric properties in the
red wavelengths range. This also agrees with literature that
reported best performance in the red range in a desert environ-
ment [52]. Another indicator of the stability of the system is
the high reported values of R2 with low values of RMSE; and
that R2 and RMSE resulting from training and testing were
comparable. We tried different values of K during ‘‘k-fold
cross validation’’ and got comparable results. This shows that
the system can generalize properly.

FIGURE 7. Red results for the accuracy (%) metric.

FIGURE 8. Red results for the R2 metric.

The discussion above proves that the proposed system can
estimate PM2.5 near the ground level. To our knowledge,
this is the first system to employ polarimetry and spectral
characteristics to estimate PM2.5 near the surface.

IV. CONCLUSION
In this work, we introduced a machine learning based system
for the estimation of atmospheric particulate matter (PM)
concentration, specifically, particles with a maximum diame-
ter of 2.5µm. Unlike the other reported setups in the literature

where the instruments are either facing upwards from the
ground-level, or space-borne facing towards the ground, this
system enabled the acquisition of the polarimetric images
near the ground surface with a horizontal field of view aim-
ing at standard targets which enables higher accuracy at the
surface level. The proposed system uses a combination of
features from both polarimetric and spectral imaging modal-
ities developing three machine-learning models to estimate
PM2.5 concentrations in the surrounding environment. The
experiment was conducted in Ras Al Khaimah, UAE during
the months of July and August, where the weather tends to
be hot, dusty, and humid. Evaluation of the proposed system
showed high estimation accuracies up to 93.8627% and an R2

score up to 0.9420 for the PM2.5 concentrations. The highest
estimation accuracy was reported for the red wavelength over
all the used machine-learning approaches. While the current
acquisition setup was at close distance to the reference point,
there is a plan as part of future work to accommodate more
spatial features by placing the reference point farther away,
or by rotating the sensor and havingmultiple reference points.
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